

Do Microkernels Suck?

Gernot Heiser
UNSW, NICTA and Open Kernel Labs

OLS 2007

• Talk by Christoph Lameter: “Extreme High Performance
Computing or Why Microkernels Suck”

• Contents:
– This is how we got Linux to scale to 1000's of CPUs

 clearly knows what he's talking about
 no need to add to this...

– This is why microkernels can't do the same
 clearly hasn't got a clue about microkernels

• I'll explain...

Summary of Paper

• Look, we've scaled Linux to 1000 processors [with a little
help of billions of $$ from IBM, HP, SGI, ...], microkernels
[developed mostly by cash-strapped universities] haven't
done the same, obviously they suck

• Equivalent statement in 1998: Look, Windows has drivers for
zillions of devices, Linux doesn't, hence Linux sux.

• Very scientific approach, right?

• OK, I'm exaggerating somewhat, but let's see what it really
says...

Common Misconceptions

• Microkernel-based systems are less reliable, as failure of one
component makes whole system fail

• Wrong!
– Counter example: QNX High Availability Toolkit (sold

commercially since 2001)
– More recent counter example: Minix 3, which is open

source — check it out for yourself

• Were reliability matters most, microkernels are used
– aerospace, automotive, medical devices...

A Voice from the Coal Face

• “NTFS-3G is a user/hybrid-space driver”
• “Similar functionality and performance on commodity

hardware as in-kernel file systems”
• “The invested effort and resource were only a fraction of

what is usually needed, besides other benefits.”
• “The empirical learnings keep being highly instructive,

refuting widely believed folklore”

Szaka Szabolcs, leader of NTFS-3G, http://ntfs-3g.orgSzaka Szabolcs, leader of NTFS-3G, http://ntfs-3g.org

Common Misconceptions

• Microkernel relies on IPC, IPC requires expensive message
queue operations, hence IPC is costly

• Wrong!
– Counter example: L4, since 1993 (publ in SOSP)

• Why the sudden popularity?
– it's fast
– it's small
– it enables fault containment

– L4 runs in 10s of millions of mobile phone
– OS performance is critical for cell-phone baseband

processing
– L4 expected to run on 250M mobile devices within a year

Let's Look at IPC

• IPC is used to obtain system service
– IPC performance is important

Intrinsic Difference Syscall vs IPC

• Syscall: 2 mode switches (user→kernel, kernel→user)

• IPC: 2 mode switches + 1 context switch

• Server invocation needs 2 IPCs
– extra cost is 2 mode switches, 2 context switches

• This is the inherent microkernel overhead!
– it is wrong to think that IPC was used inside the system a

lot (replacing function calls)

• Is it significant?
– depends on the ratio between overhead and total cost of

service obtained
– it's a killer for the null system call
– it's irrelevant for most others

Actual L4 IPC Cost [cycles]

Intra Inter
address address

Architecture space space
113 305

AMD-64 125 230
Itanium 36 36
MIPS64 109 109

170 180

Pentium

ARM Xscale

• How do a couple hundred cycles compare to the typical Linux
system call???

Sort-of Extreme Example: Linux on L4

• Cops the full microkernel overhead

• Doesn't get any of the microkernel benefits

• How does it perform?

ReAIM Benchmark Native Virtualised Ratio
1 Task 45.2 43.6 0.96
2 Tasks 23.6 22.6 0.96
3 Tasks 15.8 15.3 0.97

Native Linux vs Linux virtualized on L4

on Xscale PXA255 @ 400MHz

Not everything in L4 fully optimised yet (fork/exec)

Linux on L4: ReAIM Macrobenchmark

Benchmark Native Virtualized Ratio
lmbench latencies in microseconds, smaller is better
lat_proc procedure 0.21 0.21 0.99
lat_proc fork 5679 8222 0.69
lat_proc exec 17400 26000 0.67
lat_proc shell 45600 68800 0.66
lmbench bandwidths, MB/s, larger is better
bw_file_rd 1024 io_only 38.8 26.5 0.68
bw_mmap_rd 1024 mmap_only 106.7 106 0.99
bw_mem 1024 rd 416 412.4 0.99
bw_mem 1024 wr 192.6 191.9 1
bw_mem 1024 rdwr 218 216.5 0.99
bw_pipe 7.55 20.64 2.73
bw_unix 17.5 11.6 0.66

Lmbench microbenchmarks

Native Linux vs Linux virtualized on L4

on Xscale PXA255 @ 400MHz

Not everything in L4 fully optimised yet (fork/exec)

Benchmark Native Virtualized Ratio
lmbench latencies in microseconds, smaller is better
lat_ctx -s 0 1 11 20 0.55
lat_ctx -s 0 2 262 5 52.4
lat_ctx -s 0 10 298 45 6.62
lat_ctx -s 4 1 48 58 0.83
lat_ctx -s 4 10 419 203 2.06
lat_fifo 509 49 10.39
lat_pipe 509 49 10.39
lat_unix 1015 77 13.18
lat_syscall null 0.8 4.8 0.17

Lmbench Context Switching

Native Linux vs Linux virtualized on L4

on Xscale PXA255 @ 400MHz

How Can Virtual be Faster than Real?

• It's a microkernelmicrokernel!
– Complete kernel is about 10–11kloc!

• Linux is bigbig!
– 100s of kloc not counting drivers, file systems etc

• ARM MMU is quirky, needs a lot of effort to optimise
– much easier to optimize a small code basemuch easier to optimize a small code base

• Of course, the same can be achieved with Linux
– in fact, we did it and offered patches upstream
– maintainers didn't take — who cares about factor of 50!
– Snapgear is running our patches in their modems

Back to Multiprocessor Scalability

• Lameter myth: IPC is needed across nodes inside a
microkernel OS, and on NUMA this causes problems
allocating the message queues NUMA-friendly

Whom you gonna call — local or remote OS????

Multiprocessor Scalability

• syscall slowdown vs # CPUs

• compare against several

commercial systems

• only one system scales
(constant slowdown)

• which is it?

What's the story?

• Tornado microkernel scales perfectly to 16p
– this is 1999! [Gamsa et al, 3rd OSDI]
– done by a small group at Univ of Toronto
– Tornado is predecessor of IBM's K42

• How far did Linux scale in 1999?

• How far would Linux scale todaytoday on the same bechmarks?
– Note: the benchmarks show concurrentconcurrent ops on all CPUs

• page faults, fstats, thread creation

Synchronization Claims

• “Microkernel isolation limits synchronization methods”

• “Data structures have to be particular to subsystems”

• “Linux would never have been able to scale to these

extremes with a microkernel approach because of the rigid

constraints that strict microkernel designs place on the

architecture of operating systems”

• This is simply wrong (repeating doesn't make it right)This is simply wrong (repeating doesn't make it right)
– synchronisation in a well-designed system is local to

subsystems
– there is no reason why subsystems can't share memory,

even if microkernel-based

OS Scalability Principles

• OS must not impose synchronisation overhead except as
forced by user code

• Then user code scalable ⇒ system scalable

• What does this mean?
– keep data structures local
– process system calls on the caller's CPU
– only involve other CPUs if the caller explicitly asks for it!

• creating/killing/signalling a thread on another CPU
• invoking a synchronisation system call
• unmap pages

• If this is done, you get a scalable OS
– even if the apps actually perform system calls
– user pays what user asks for...

Summary

• Hey, I can do this cool thing but you can't
– How do you know if you don't understand me?

• Linux is cool
– but this doesn't mean it is perfect for everything
– nor does it mean Linux will remain as is forever

• Same is true for microkernels

