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Abstract—The L4.verified project successfully completed a
large-scale machine-checked formal verification at the code
level of the functional correctness of the seL.4 operating system
microkernel. The project applied a middle-out process, which is
significantly different from conventional software development
processes. This paper reports a simulation model of this
process; it is the first simulation model of a formal verification
process. The model aims to support further understanding
and investigation of the dynamic characteristics of the process
and to support planning and optimization of future process
enactment. We based the simulation model on a descriptive
process model and information from project logs, meeting
notes, and version control data over the project’s history.
Simulation results from the initial version of the model show
the impact of complex coupling among the activities and
artifacts, and frequent parallel as well as iterative work during
execution. We examine some possible improvements on the
formal verification process in light of the simulation results.

Keywords-software process modeling; process simulation;
formal verification; system dynamics; microkernel

I. INTRODUCTION

Formal software verification is the verification method
that provides the strongest known assurance that a software
system implementation is consistent with its specification.
Formal verification does not merely check all lines of code
or all decisions in a program, but all possible behaviors for
all possible inputs.

More commonly applied verification methods are testing
and code inspection. While they provide high return for
lower assurance levels, they do not scale well to provid-
ing high assurance and become prohibitively expensive for
the assurance level that formal verification can provide.
While formal verification is cheaper for high assurance
than testing, it still is a high-effort verification method and
currently only feasible to apply for life- or mission-critical
software systems. Most previous industrial use of formal
methods has only performed formal specification, rarely
formal verification [1], and if the latter, then often only for
lightweight properties, not for a full proof of implementation
correctness [2].

The recent formal verification of the selL4 (secure em-
bedded L4) microkernel [3] has demonstrated that this
method does scale to industrially relevant software systems
and sizes on the order of 10,000 lines of C code. selL4
is part of the L4 family of high-performance operating
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system (OS) microkernels [4]. The L4.verified project has
performed formal verification not only at the design level,
but down to C source code; and not only for lightweight
properties, but for the full functional correctness of a highly
complex software system—the seL.4 microkernel. While a
microkernel is a comparatively small software system, its
verification with an overall effort of 25 person years was a
large-scale research project.

Because of its relatively high effort and up to now
infrequent use in practice, we believe it important to an-
alyze and investigate the process of formal verification and
how it influences the rest of the development process. The
process used in the L4.verified project was significant in
enabling its success. In earlier work [5], we reported on
a detailed, descriptive model of the verification process
used in L4.verified that was validated by project data and
experience. A qualitative finding was that the middle-out ap-
proach provides advantages over pure top-down and bottom-
up processes for formal methods. However, a descriptive
process model neither reflects the dynamic behavior of the
process, nor does it provide predictive power for supporting
detailed project planning and execution. As there is little
empirical evidence about formal verification processes, we
decided to employ a simulation model to further investigate
them, based on our experience with L4.verified. This paper
builds on our previous work [5], and reports a new process
simulation study of the L4.verified project. The objective
of this research is to contribute to better understanding of
how large formal methods projects can be run successfully.
Simulation results will inform process improvements for
overall project performance and process adaptability.

To our knowledge, in terms of the earlier systematic
surveys [6], [7] and more recent observations, this is the first
process simulation model of a formal verification process.
Based on a tailored descriptive process model of L4.verified,
in this paper we report our work that: /) developed a
continuous process simulation model—VPMsim 1.0; 2) ap-
proximately calibrated parts of the simulation model with the
data from L4.verified’s project repository and team leaders’
recollections; and 3) investigated the possible impacts of
process decisions or changes to this project.

The paper is structured as follows. We first provide a brief
overview of the L4.verified project and seL4 microkernel
in Sect. II. Sect. III describes the middle-out verification
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process of Ld4.verified using a conceptual model and a
descriptive model. In Sect. IV, we elaborate the simulation
model (VPMsim) of the verification process and discuss
its calibration with L4.verified project data. Sect. V shows
how the simulation model can be applied to investigate
formal verification processes. We discuss experiences with
and limitations of the current work, before concluding and
identifying future research.

II. BACKGROUND

Software verification can be accomplished by any of
several means or their combination. Common verification
methods are test, review, and analysis, which can be per-
formed manually or automatically. A number of process
simulation models studied these verification methods [6],
[7]. Formal methods are another verification option that
is able to prove correctness of software with respect to
mathematically-specified requirements. It has not yet been
investigated using process simulation.

A. LA4.Verified Project

The L4.verified project completed the implementation and
formal verification of the seL4 microkernel. A kernel is
the part of the OS that runs in the privileged mode of the
hardware. It has direct access to all hardware resources and
provides the basic mechanisms for implementing the rest
of the system. A microkernel, as opposed to more common
monolithic OS kernels, is reduced to the bare minimum of
functionality and code. The seL4 kernel comprises 8,700
lines of C code and 600 lines of assembler (without counting
blank lines and comments). This radical reduction in size
comes with a price in complexity. It results in high coupling
and a high degree of interdependency between different
parts of the kernel, as apparent in the function call graph
of seL4 in Fig. 1. The motivation for the radical reduction
in size and for formally proving functional correctness, is
to provide high levels assurance for safety, security, or
correct functionality of systems built on top of seL4. Formal
verification gives the highest degree of assurance we can
provide [8]. The small size of seL.4 reduces the amount of
critical code that must be formally verified.

The L4.verified project ran over 4 years from 2005 to
2009. It involved two teams: OS kernel developers and
formal methods practitioners. A previous paper [5] has
reported a number of general lessons about the management
and execution of the project.

B. Related Work in Process Simulation

Systematic literature surveys [6], [7] show that software
verification, e.g., inspection and testing, is one of the five
most common topics in process simulation. Nonetheless, the
model reported in this paper is the first reported simulation
model for a formal verification process. This subsection

Figure 1. Function call graph of the seL4 kernel

reviews process simulation models that focus on non-formal
verification and validation in software development.

Software verification ensures product quality, and has
been investigated by different process simulation techniques
in varying organizational settings. Raffo et al. [9], [10]
modeled V&V (verification and validation) as a portion of
the traditional V-model style development process (i.e. ISO
12207) adopted on NASA’s software development projects.
They created a discrete-event simulator to quantitatively
assess the economic benefits of performing V&V activities
on development projects and to optimize that benefit across
alternative V&V integration strategies. This enabled NASA
to more effectively allocate scarce resources for V&V ac-
tivities.

GENSIM 2.0 [11] is a System Dynamics based process
simulator that models and simulates a generic development-
verification (D-V) process. The GENSIM 2.0 model is con-
structed with three levels of refinement and their validation
counterparts: requirements D-V, design D-V, and code D-V.
A variety of verification activities could be adopted on each
level. GENSIM 2.0 is able to assess the overall effectiveness
and performance (e.g., product quality, project duration and
effort/cost) of varying combinations of different develop-
ment, verification, and validation strategies and techniques
depending on the inputs of 28 parameters.

III. A MIDDLE-OUT FORMAL VERIFICATION PROCESS

This section describes the middle-out formal verification
process of the L4.verified project using a high-level concep-
tual model and a detailed descriptive model.

A. Conceptual Process Model

The goal of the L4.verified project was to develop and
formally verify a high-performance kernel. It is a challenge
to design a formally verifiable kernel while maintaining high
performance. To obtain high performance, kernel developers



usually take a bottom-up approach to design, focusing on
low-level details that allow efficient management of hard-
ware. In contrast, formal methods practitioners often prefer
a top-down approach based on simple models with a high
level of abstraction.
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To achieve both objectives, the L4.verified project bridged
the gap between verifiability and performance using an iter-
ative, concurrent prototype-base, middle-out process shown
in Fig. 2. This is significantly different from the conventional
pure bottom-up and top-down approaches. It is based around
an intermediate target that is used and understood by both the
kernel developers and the formal methods practitioners, with
the aim of rapidly iterating through design, specifications,
implementation and formal model until convergence. This
intermediate target is a profotype of the kernel written in
the functional language Haskell (in the middle of Fig. 2). It
is translated automatically into the executable specification
of the kernel in the theorem prover Isabelle/HOL [12].
The importance of the use of executable specifications in
formal verification in a theorem prover has been recognized
previously [13].

The abstract specification, on the right of Fig. 2, is a
formal description of the functionality of the kernel. It
specifies the outer interface and effects of each system
call, but does not describe in detail how these effects are
implemented. In other words it describes what is expected
from the kernel, whereas the executable specification de-
scribes how the kernel will achieve its purpose. In that
sense the executable specification represents the design of
the kernel. The proof that the executable specification refines
the abstract specification was carried out first. This proof can
be seen as design verification.

On the left of the conceptual model (Fig. 2), a low-
level high-performance implementation of the Kernel was
manually written in the C language. The second proof shows
that the source code correctly implements the executable
specification, which we will also refer to as code verification.
Note that the C code is translated directly and automatically
into the theorem prover for verification [14].

B. Descriptive Process Model

The formal verification of selL.4, in combination with the
development of the kernel itself, did not follow a conven-
tional software engineering process reported in the literature.
Instead the project followed the implicit conceptual process
described above. In earlier work [5], we reported on a
postmortem analysis of the process applied in this project
and formulated a detailed, descriptive process model that
shows process patterns and potential process factors for
reuse and scaling of formal verification in software and
systems development. In this subsection, the descriptive
process model [5] is tailored for our initial simulation model,
by eliminating the maintenance phase. This was done to sim-
plify creation and calibration of this initial simulation model.

As shown in the conceptual model in Fig. 2, the
L4.verified project used a middle-out approach, starting with
an executable specification, which was then proved to be
consistent with a high-level abstract specification, and later
with the low-level source code. Fig. 3 shows the tailored
descriptive process model of L4.verified. Each activity in
the model is directly linked to its input and output artifacts,
and annotated with the performers (OS or FM team), type
(manual, automatic, or interactive) and its step number. Note
that the terms activity and step are used interchangeably in
this paper. We do not include activities on proof tools and
libraries in this version. The formal verification activities are
technical development processes [15] modeled between the
three levels of abstraction.

The steps S1 to S6 in Fig. 3 roughly correspond to the
transformations between artifacts in the conceptual model.
While the main differences between the conceptual model
and the descriptive representation of the process in Fig. 3 are
the detailed artifact- and work-flow and the explicit decision
points being modeled.

The initial kernel requirements (and new feature & change
requests) on the top left in Fig. 3 are fed into the first
step S1 — prototype development. The dashed line denotes
the exogenous artifacts that come from outside the process
rather than artifacts being generated during the process.
The output prototype (Haskell) is automatically translated
to be executable specification at S2. S3 defines the abstract
specification based on the prototype. When S2 and S3
become stable, the refinement between these two specifica-
tions is proved in S4. The defects (inconsistencies between
the two specifications) detected in S4 are returned to S1
and S3 separately for rework. On the code level, when
the prototype becomes stable (i.e. S4 has gone through its
first major iteration), S5 is triggered to manually implement
the kernel in C. Later in S6, the source code is verified
against the design (executable specification). Because the
design becomes mature after S4, code-level defects are
usually fixed directly in S5 and S6. In rare cases they are
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Figure 3. Descriptive model of L4.verified project

escalated to the design level (S1) or even up to the abstract
specification level (S3).

In the real project, this process experienced multiple
iterations through steps S1-S6. They were triggered by
feature changes in the prototype as well as by defects
discovered during either verification phase, for example the
loop S1-S3-54-S1-52-S4-...

An interesting artifact in formal verification is the set
of invariants. In the middle-out process, the invariants
are mostly proved as part of the design verification (S4).
These invariants are reused heavily in the code verification,
which helps to reduce the workload in step S6. Though
theoretically S4 and S6 could be performed in parallel,
significant savings in low-level (code) verification were
possible because the invariants from S4 had stabilized.
In terms of the experience from L4.verified, starting S6
too early may negate this effect. Note that S6 may also

induce additional invariants to be proved on the executable
specification. Invariant proofs are the highest-effort parts of
this verification.

More generally, the descriptive process model identifies
three main phases of the project annotated on the right-hand
side of the diagram: I) prototype development, which clearly
appears in the beginning; 2) specification definition and
design verification, an iterative process on the right of the
diagram; and 3) kernel implementation and code verification,
another iterative process on the left of the diagram. The
entire process in Fig. 3 terminated when there were neither
bugs remaining or being reported in all artifacts, nor new
features or change requests coming into the process.

IV. THE VPMSIM SIMULATION MODEL

In order to understand and investigate the dynamic be-
haviors of the middle-out formal verification process, we
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Figure 4. Model structure of VPMsim 1.0

developed a process simulation model based upon the de-
scriptive model (Fig. 3). This section elaborates the initial
version of the simulation model—VPMsim 1.0.

A. Modeling Scope and Approach

There is a difference in modeling scope between the
earlier descriptive process model [5] and the simulation
model in this study. In the complete descriptive process
model, after the release of the verified system (cf. Fig. 3), the
L4.verified project progressed into the maintenance phase.
This is out of the scope for the simulation modeling reported
in this paper. For this stage, the simulation model focuses
on the phases from the beginning until the first release of
the project, i.e. excluding the maintenance phase.

Our research focus for this first version of VPMsim is
on the direct activities of the production and verification of
the artifacts in Fig. 3. This means we did not: 1) model the
development of supporting tools for translation and theorem-
prover; 2) explicitly model the conventional verification, e.g.,
unit test, whose effects are reflected when calibrating the
development rates of prototype development and kernel im-
plementation; 3) model the activities that did not contribute
to development and verification based on requirements, e.g.,
documentation and code cleanup.

We have used a continuous process simulation approach,
System Dynamics (SD), which allows less micro-process
level data than would be required for discrete simulation.

B. Model Structure and Execution

VPMsim 1.0 was developed using Vensim, the most
commonly used SD modeling and simulation package in
software process research over the past decade [7]. Vensim
provides a graphical workbench and a number of extra
features on the top of SD, e.g., views and subscripts. The
VPMsim 1.0 model comprises ten views, 180+ parameters,
including auxiliary ones, and over 2000 lines of code.

Fig. 4 shows the high-level structure of the simulation
model that is based on the descriptive model of the middle-
out process (Fig. 3). The development and formal verifica-
tion activities of the middle-out process are modeled and
organized by views, a mechanism offered by Vensim that
facilitates development and understanding of large scale SD
models. It also increases module reuse within a complex
model. The current version (1.0) model is composed of ten
views, eight of which correspond to the specific activities
(steps) of the formal verification process modeled in Fig. 3.
As shown in Fig. 4, they are prototype development (PD),
abstract definition (AD), kernel implementation (K1), high-
level verification (HV), low-level verification (1V), prototype
rework (PR), abstract rework (AR), and kernel rework (KR).
Note that step S2 (Fig. 3) is not modeled as a view in
Fig. 4 since this step can be automated. Another important
change from the descriptive model is that rework views
of abstract, prototype and kernel are created apart from
their development views, because differences between the
two types of view are significant, e.g., inputs, productivity,
workforce and process control. On the bottom of Fig. 4, there
are the other two views—process state (PS), which defines
important variables shared by the other views of activities
and exogenous variables (e.g., requirements generation),
and workforce allocation (W2) that implements dynamic
workforce allocation among the activities in parallel. In
addition to view, subscripting, a mechanism provided by
Vensim that enables the variables holding different values
for multiple entities simultaneously, is also used in building
VPMsim 1.0, but for modeling defect severity levels only
(i.e. high, medium and low).

Due to limited space, we do not show all views of the SD
model. We only describe the relationships and constraints
among the views in simulation. The above eight activities
(views) are performed by the FM and OS teams respectively.
This is denoted by the darker and lighter gray background of
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the views in Fig. 4. The simulation starts with the PD view
by the OS team. (The automated translation of prototype is
absorbed in the PD view in the simulation model.) PD is
followed by AD (abstract spec. by the FM team) and KI
(kernel by the OS team). Note that in the real project and in
the simulation, the stabilization of PD may always trigger AD
immediately for an early HV. The lower-level KI waits until
a majority of HV completes. The question of when to kick
off KI depends on a number of factors (e.g., the progress
of HV), and is one of the what if questions to be explored
in simulation (cf. Sect. V). When the first version of the
abstract spec. is completed, it is proved in HV against the
prototype (design) from PD. During HV, any design defects
and abstract (specification) defects detected are fed into PR
and AR correspondingly for rework. The corrected prototype
and abstract are re-verified in HV.

In the L4.verified project, kernel programming started
when a large portion of the design proof was completed.
In the simulation model, the implemented kernel (from KI)
is verified against the prototype in LV. Any detected code-
level defects are fixed in KR. Only a small number of design
defects have to go into PR or AR for rework. All of these
corrections may lead to re-verification at LV or even at HV.
During simulation, requests for new features and changes
are generated and introduced into the process from the left
(PD in Fig. 4). The resulting updates to prototype, abstract
spec., and kernel also have to be re-verified.

C. Model Parameters and Calibration

The VPMsim model consists of a large number of parame-
ters that represent inputs, outputs, and policies or constraints
at the activity (view) level and overall process level. Many
other parameters have to be calibrated against empirical data
for specific projects, teams, artifacts, and techniques. Table I
lists a subset of the model parameters as examples. Note that
many of the parameters may vary over time and between
specific activities, artifacts, teams, and iterations.

The development and verification of the seL4 kernel from
prototyping through implementation, including all formal
models and proofs, has been managed using version control
systems. Around 9,000 changesets provide detailed infor-
mation about the evolution of artifacts over the full lifetime

Dec 2009

Timeline of the main artifacts developed in sequence

of the project, including the ongoing maintenance phase.
Each changeset identifies who made the change, of which
artifact, at what time, and the size change of the artifact.
Analysis of these changesets give us estimates of the growth
of artifacts and the workforce allocation over its project
period. For other information for model calibration, such
as for invariants, defect distribution, and policy issues, we
made relatively coarse estimates based on the team leaders’
recollections. More detail about how the data was retrieved
from the repositories can be found in earlier work [5]. Some
calibrated parameters are marked in Table L.

By analyzing graphical representations of the repository
data (cf. [5]) combined with explanatory project logs (com-
ments), we constructed Fig. 5. It shows the real progress
on each of the five major artifacts during the project du-
ration (without maintenance phase) in swim lanes. On the
leftmost of Fig. 5 the five artifacts are grouped by their
development/verification teams. The intermediate states of
each artifact (denoted in rectangles) are positioned in the
diagram in terms of their artifact type (lane) and occurring
time along with the project’s timeline. We marked the critical
states for model calibration in gray. The shadowed states
(bug fixes) are also important, but cannot easily be distin-
guished within the repository data. The dashed-line arrows
indicate the sequential order and dependencies across the
artifacts’ states. The timeline diagram clearly shows how the
different artifacts’ states overlapped, and how dependencies
and iterations happened in the project.

V. MODEL USE AND RESULTS

As the Ld4.verified project is the first instance of the
middle-out formal verification process and VPMsim 1.0 was
calibrated with the data of this project only, the proper
application of this model is to re-investigate this project.
In this section, we first validate the model by simulating
the original L4.verified project as a baseline, then use it to
examine some possible changes to the project.

A. Simulation Baseline

We first defined the input parameters as close as possible
to the real L4.verified project, and then ran the simulation
model. According to the project timeline Fig. 5, there were



TABLE 1
A SUBSET OF VPMSIM 1.0 MODEL PARAMETERS

Parameter Attribute of Type Value (range) View(s) Team(s)
Requirements generation rate Project Input PS n/a

Overall team size People Input 1-10 (3-7 for FM, 1-4 for OS) WA FM/OS
Workforce turnover rate People Input WA FM/OS
Bug-fix threshold for rework Project Input 1-3 HV/LV FM/OS
Nominal developer’s productivity People Calibrated vary over time, teams and artifacts PD/AD/KI/HV/LV/AR/PR/KR FM/OS
Artifact conversion ratio Product Calibrated vary over time and between artifacts PD/AD/KI/HV/LV FM/OS
Bug density Product Calibrated/Subscript vary among artifacts PD/AD/KI FM/OS
Verification effectiveness Process Calibrated/Subscript 0.7-1.0 HV/LV M

Artifact size adjustment factor by bug-fix Product Calibrated/Subscript 0-2000 (mean) PD/AD/KI/AR/PR/KR FM/OS
Size of completed artifact Product Output PD/AD/KI/HV/LV FM/OS
Number of bugs detected by verification Product Output HV/LV FM

Number of residual defects Product Output PD/AD/KI/HV/LV/AR/PR/KR FM/OS
Team utility People Output PD/AD/KI/HV/LV/AR/PR/KR  FM/OS
Total effort Project Output PS FM/OS

three major versions of the prototype, which corresponded
to the evolved requirements (new features+change requests)
during the project. The simulation generates the exact same
amount of requirements changes at these three time points.
Also the kernel implementation and abstract definition are
triggered as shown in Fig. 5. Another important input is
the workforce turnover. The baseline model simulates the
personnel’s entries and exits in both teams as recorded in
the project repository. Due to space limitations, Fig. 6 only
shows the changes of some important output parameters
generated in this run.

In the simulation (Fig. 6-d), the baseline project completes
on Dec 25, 2008 with a total effort of 5,400 person-days
(roughly 15 person-years), which conforms to the project
teams’ experience (14 person-years for kernel-specific veri-
fication) [5]. The effort on formal verification related work
(done by the FM team) takes about 80% of the total
effort (4400 person-days), in particular nearly half on the
design refinement proof (approximately 2400 person-days).
The frequent ups and downs shown in Fig. 6-c indicate
the intensive personnel switches between parallel activities.
Note that the simulated baseline project finished earlier than
the real project. The length of the gap is almost one calendar
year. It is caused by the following possible reasons: /) the
VPMsim 1.0 models development and verification, but not
other activities such as documentation and code cleanup;
2) the simulation only handles weekdays and weekends, but
the public holidays and team members’ (annual and sick)
leave are not calculated; 3) the workload on development
related to the theorem prover is not considered in this model.
However, by comparing the trends and quantitative measures
of the scales of main output parameters (e.g., sizes of
artifacts in Fig. 6-a and -b) between the baseline simulation
and the original project, the simulation results are close to
the reality and most noticeable differences can be reasonably
explained. Hence, based on the model calibration and the
baseline simulation, we consider VPMsim 1.0 acceptable for
further process investigation of L4.verified.

B. Model Application Scenarios

One important characteristic of the L4.verified project is
the parallel work on development and verification. Fig. 5
shows a number of parallel activities in the project, in
particular the second half of the project. Note that some
activities started late in the diagram with a big gap to
their predecessors. The real L4.verified project had particular
reasons for this, but in other hypothetical projects following
the middle-out process these reason may not be present. In
a new project, these steps could potentially start earlier in
the process, in parallel with other activities, to optimize the
overall process performance. For example, /) the abstract
definition, 2) the manual implementation of the kernel in C,
3) the development of new features introduced in prototype
(after ver. 2). Accordingly, we chose 6 months as an obser-
vation period and investigated the impact of three possible
change scenarios to the baseline project using simulation:

S1 : start the abstract definition six months earlier than the
baseline;

S2 : enable the kernel implementation six months earlier
than the baseline;

S3 : introduce new features to the last major version (ver.
3) of prototype development six months earlier than the
baseline.

Of these scenarios S2 would have been feasible in the real
L4.verified project, S1 and S3 not, at least not easily.

C. Simulation Results

The simulation ran in terms of the process changes sug-
gested above without changing any other model parameters.
The results of some output parameters are shown in Fig. 7
in comparison with the baseline. Based on the simulation
results, we discuss the possible impacts of the proposed
process changes on overall project performance, particularly
effort and duration.

S1: Fig. 5 shows the abstract definition started about 14
months later than the kickoff of the project. Theoretically,
this step can start once the initial version of prototype is
stable. For triggering it six months earlier the simulation
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Figure 6. Simulation baseline of the L4.verified project

predicts savings on both project cost (effort) and duration.
The scenario S1 finishes on May 1, 2008 with a cost of 4,437
person-days. This suggested change may result in a nearly
seven-month advance of the overall project. This possible
improvement can be attributed to the early involvement of
the FM team, which allows an earlier high-level verification
on design (shown as Fig. 7-c). As two main rounds of design
proof complete earlier, it further reduces the later parallel
verification work on both levels and increases the verification
rate for the code proof.

S$2: For moving the kernel implementation six months
forward, the simulation predicts a delay of the overall project
for five months, as well as an effort increase of about 800
person-days compared to the baseline. By looking into the
simulation, we found that at the suggested time, the kernel
implementation starts when the prototype is not mature and
stable yet (in parallel with ver. 3 development and rework),
and so it incurs a number of additional code defects that
cannot be fixed immediately (a flat defect level in Fig. 7-
b). Meanwhile, since the OS team has fewer members
than FM team, frequent switches between prototype and
kernel may lower the team’s productivity. As a result, the
extended completion of prototype and kernel further delays
the verification on two levels.
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S3: In Fig. 5, the third group of requirements (new
features) were introduced to prototype nine months after the
version 2. When introducing these new features six months
earlier, the simulated project effort and duration remain
almost unchanged compared to the baseline. Although the
OS team develops version 3 of the prototype earlier, bug
fixing also relies on the progress on the design refinement
proof (cf. the accumulated design bug level in Fig. 7-a).
In addition, as the kernel implementation starts at the same
time as in the baseline, there are no improvements on the
performance of the code proof.

Each of the above scenarios only suggests process change
on one parameter: the start date of one step. The simulation
also supports testing combinations of other possible process
changes, but this is beyond the scope of this paper.

VI. DISCUSSION
A. Experience

The simulation model, VPMsim 1.0, reflects the char-
acteristics of the formal verification process in model
structure and simulation results: /) concurrent develop-
ment/verification activities, 2) frequent iterations and re-
verifications, 3) dynamic and concurrent resource (work-
force) allocation, and 4) the effect of invariants in code
verification.
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When we started to develop the simulation model, we
tried to apply more customizable process patterns (such
as [11]) and the use of subscripting to simplify the model
structure and maximize the reuse of model components
across activities (views). However, as shown in Fig. 3, each
activity has different types of input and output artifacts and
complex control flows with other activities, which resulted
in complicated control logic behind the model components.
This explosion in complexity further complicated model de-
bugging. In response to this, we restructured the model with
eight dedicated views for the activities. This allows a more
straight-forward modeling and debugging of activity-specific
characteristics, but sacrifices some component reusability.

Fig. 6-c reflects frequent staff switches between con-
current activities in the project life-cycle. In the extreme
case, one developer may work on three different artifacts
simultaneously and quickly switch between them. Due to
the inherent limitation of continuous modeling, this phe-
nomenon was seldom modeled and reported in the literature
of SD based process simulation. In order to correctly model
the dynamic workforce allocation between the parallel work,
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we developed a large and complex model component (WA
view in Fig. 4). This component can be reused in modeling
other concurrency-intensive processes in the SD approach.

B. Limitations

The metrics used in VPMsim 1.0, such as lines of proof
and numbers of invariants, are relatively coarse measures,
used for simulation study. They sometimes do not realisti-
cally capture and reflect the essence of size and progress
in a formal verification process. For example, because the
invariants are all connected, isolating their individual effects
in verification is almost impossible. The investigation and
development of appropriate metrics for a formal verification
process is beyond the scope of this paper, and requires
more theoretical research and empirical evidence from the
practical application of formal verification.

Another limitation is the precision of the data for model
calibration. The details about size of change of artifacts and
workforce allocation are based on version control. However,
the data set only reflects each artifact’s commit times, not the
effort spent on the artifact. In particular, if a person worked



on multiple activities simultaneously, a precise estimate of
their effort allocation to different activities is hard to achieve.

The VPMsim 1.0 is implemented using System Dynamics.
We found it is difficult to model such a complex process at a
fine-grained level using continuous simulation. For instance,
continuous simulation merely allows the tracking of process
entities on an average level, e.g., feature, defect, invariant
and developer, we cannot assign properties to each of them
and trace their change individually. Though we can use
mechanisms such as subscripting in Vensim to setup finer
categories, the help this provides for modeling precision
is still limited. Discrete simulation is more suitable for
handling an individual entity’s movement through a process,
especially in iterative and parallel styles, and may result in
a higher precision with more details for analysis.

VII. CONCLUSIONS AND FUTURE WORK

The L4.verified formal verification project succeed in
large part due to the middle-out process used, together
with other formal and technical innovations. Based on the
descriptive process model formulated in our previous study,
we developed a large scale process simulation model—
VPMsim 1.0 to further investigate this unique process.
This paper reports the model and simulation results after
the initial calibration. Specifically, we I) developed the
first instance of continuous simulation model of a formal
verification process; 2) calibrated the model with the data
from a real, large-scale project; 3) show the potential value
of a process simulator in support of formal verification in
practice; 4) report our experience in modeling and simulating
a formal methods project.

The initial results and experience of this research on
formal verification process offer a number of suggestions for
future work, such as /) converting VPMsim 1.0 to a discrete-
event (or hybrid) simulation model that allows detailed
modeling and tracking of the entity flow; 2) extending the
scope of VPMsim to cover the maintenance phase of the
L4.verified project and support for future decision making;
3) applying the simulation model in other formal methods
projects and enhance its adaptability.
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