
Bridging the Gap:
Automatic Verified Abstraction of C

David Greenaway1,2, June Andronick1,2, and Gerwin Klein1,2

1 NICTA, Sydney, Australia?

2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{first-name.last-name}@nicta.com.au

Abstract. Before low-level imperative code can be reasoned about in
an interactive theorem prover, it must first be converted into a logical
representation in that theorem prover. Accurate translations of such code
should be conservative, choosing safe representations over representa-
tions convenient to reason about. This paper bridges the gap between
conservative representation and convenient reasoning. We present a tool
that automatically abstracts low-level C semantics into higher level spec-
ifications, while generating proofs of refinement in Isabelle/HOL for
each translation step. The aim is to generate a verified, human-readable
specification, convenient for further reasoning.

1 Introduction

Low-level imperative C is still the most widely used language for developing
software with high performance and precise memory requirements, especially in
embedded and critical high-assurance systems. The challenge of formally verifying
C programs has been attacked with approaches ranging from static analysis for
eliminating certain runtime errors to full functional correctness with respect to a
high-level specification. This paper addresses the latter by improving automation
in the verification process while preserving the strength of the correctness proof.

The first step required to formally reason about a program is to parse the
code into a formal logic. The parser is necessarily trusted, giving rise to two
approaches: either the parser is kept simple, minimising the assumption we make
about its correctness, but resulting in a low-level formal model; or the parser
generates a specification that is more pleasant to reason about, but resulting in
a weaker trust chain.

We advocate the first approach, increasing the level of trustworthiness of the
final proof. In this context, existing solutions either bear the burden of working
with the low level C semantics, as for instance in Verisoft [2], or manually bridge

?
NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program

i n t max(i n t a , i n t b) {
i f (a < b)

r e t u r n b ;
r e t u r n a ;

}

i n t gcd (i n t a , i n t b) {
i n t c ;
wh i l e (a != 0) {

c = a ;
a = b % a ;
b = c ;

}
r e t u r n b ;

}

max a b ≡
if a <s b then b else a

gcd a b ≡
do

(a, b) ← while (λ(a, b) s. a 6= 0)
(λ(a, b). return (b mod a, a))
(a, b);

return b
od

Fig. 1. C functions max and gcd and their corresponding abstractions.

the gap by abstracting the low-level specification to an intermediate functional
specification as in the L4.verified project [7], which showed correctness of the
seL4 microkernel.

The contribution of this paper is a new tool1 that automatically abstracts
low-level C semantics into higher level specifications, while generating proofs in
Isabelle/HOL for each translation step. The aim is to generate a human-readable
specification that is easier and more convenient to reason about than the original
code. Simpler specifications are more amenable to proving further high-level
properties: instead of 25 person years reasoning on the code level, establishing
integrity and authority confinement for seL4 merely took 10 person months,
because it could be proved about the much simpler, abstract specification instead
(with the functional correctness proof guaranteeing that it is then true down to
the C code level). One third of these 25 person years were dedicated to refinement
proofs of the form we envision our tool to eventually automate. The novelty here
lies in providing both automated abstraction and correctness proofs.

As a running example, we will consider two simple functions, computing
the maximum and the greatest common divisor respectively of two numbers.
The C implementation of these two functions is given in Fig 1 on the left and
the translation output of our tool on the right. In comparison, Fig 2 shows the
output of the L4.verified C parser by Norrish [14,11] in the Simpl language [12]
embedded in Isabelle/HOL [10]. The output of this parser is the starting point
of our translation.

Compared to the C parser output, the result of our tool is significantly simpler
and more abstract. The raw parser output is so complex because the C semantics
have to deal with abrupt termination (e.g., return statements), with ensuring
the C standard is obeyed (guard statements), with non-terminating loops, etc.
Modelling these conservatively and precisely with a minimal trusted computing
base induces overhead. Our tool aims to automatically distill the interesting
semantic content without sacrificing trust.

1 Available at http://ssrg.nicta.com.au/projects/TS/autocorres/

http://ssrg.nicta.com.au/projects/TS/autocorres/

TRY
IF {|´a <s ´b|} THEN

´ret-int :== ´b;
´exn-var :== Return;
THROW

ELSE
SKIP

FI;
´ret-int :== ´a;
´exn-var :== Return;
THROW;
GUARD DontReach ∅

SKIP
CATCH

SKIP
END

(a) max Simpl Translation

TRY
NonDetInit c- ′ c- ′-update;
WHILE {|´a 6= 0 |} DO

´c :== ´a;
GUARD Div-0 {|´a 6= 0 |}

´a :== ´b mod ´a;
´b :== ´c

OD;
´ret-int :== ´b;
´exn-var :== Return;
THROW;
GUARD DontReach ∅

SKIP
CATCH

SKIP
END

(b) gcd Simpl Translation

Fig. 2. The C functions from Fig 1 parsed into Simpl.

While the above are toy examples for presentation, the tool is not: it success-
fully translates, for instance, the seL4 microkernel with ca. 8 700 lines of code, a
malloc-style allocator, and a real-time operating system task scheduler. Where
insightful, we will mention results of applying the tool to these code bases.

Current limitations of the tool are: recursion is not supported, and a limited
number of features of the C language are not supported, most notably taking the
address of local variables. The first limitation is planned for future work, while
the second limitation stems from the C parser front-end.

In the following, Sec 2 describes the supported C subset, the input language
Simpl and the monadic framework the tool is working in. Sec 3 presents the core
of the tool by explaining the translations in the abstraction process and their
proofs, while Sec 3.7 describes the final theorem between tool input and output.

2 Background

2.1 Parsing C

Before code can be reasoned about, it must first be translated into the theorem
prover. In this work, we consider programs in C99 [6] translated into Isabelle/HOL
using Norrish’s C parser [14,11]. This parser supports a subset of C, including
loops, function calls, type casting, pointer arithmetic and structures. Integer
arithmetic is defined to match a two’s-complement 32-bit system. The parser
emits inline guards to ensure that undefined operations, such as divide-by-zero or
signed integer overflow, do not occur. As the parser must be trusted, it attempts
to be simple, giving the most literal translation of C wherever possible.

The parser does not support goto statements, expressions with side-effects,
references to local variables, switch statements using fall-through, unions, floating
point arithmetic, or calls to function pointers. Finally, while the parser does
support recursion, our tool does not yet handle such inputs. Our tool remains
useful despite these limitations as embedded and systems code is often stack
depth-constrained and typically avoids recursion.

2.2 Simpl

The parser translates C source code into Schirmer’s Simpl language [12] embedded
in Isabelle/HOL. Simpl is a generic imperative language with deeply embedded
statements and shallowly embedded expressions, designed to be a target for
embedding programs in a variety of languages, such as C, Java and Ada.

The Simpl language consists of 11 commands. The commands of interest are:

c ≡ SKIP | BASIC m | c1 ; c2 | IF e THEN c1 ELSE c2 FI | WHILE e DO c OD
| TRY c1 CATCH c2 END | THROW | CALL f | GUARD F P c | SPEC r

The statement BASIC m modifies the state by applying function m to it; in the
common case where m is a function that updates a variable a to the value b, we
use the notation ´a :== b. GUARD F P c asserts property P before executing c,
otherwise aborting execution with fault F . SPEC r non-deterministically selects
a new state s′ based on the current state s such that (s, s′) ∈ r holds; we use
such non-determinism to model hardware and uninitialised memory.

Fig 2(a) shows an example of a simple C function max parsed into Simpl.
Input parameters a and b are set up by the caller and otherwise treated as local
variables, while the return value of the function is recorded in the ghost variable
ret-int. The function body is surrounded by an exception handler with the empty
SKIP body; this pattern is used to model abrupt termination as in return, break
and continue. The ghost variable exn-var records the reason for the current
exception, so that, for instance, return statements inside loops are not handled
by the break handler surrounding the loop. Finally, the GUARD command rules
out particular undefined behaviour in C; in this case asserting that execution does
not fall off the end of the (non-void) function. Fig 2(b) is similar in structure,
but additionally initialises the variable c to a non-deterministically chosen value.

All Simpl programs execute on a particular state type. In our case it always
contains a record with local variables and a record with global variables, among
them the heap, a partial function mapping addresses in memory to their byte
values. We use Schirmer’s notation Γ` 〈C , Normal s〉 ⇒ Normal t to specify that
the Simpl program C starting in state Normal s has at least one execution path
resulting in Normal t . Other state types include Abrupt s , indicating the program
is currently propagating an exception; Fault f , indicating an irrecoverable failure
f ; or Stuck, indicating stuck execution. The variable Γ maps function names to
function bodies, and is used for making function calls in Simpl. We additionally
use Schirmer’s notation Γ`C ↓ Normal s to specify that all execution paths of
the program C starting in state Normal s terminate.

Simpl Monad Monadic Definition

– returnE x λs. ({(Norm x , s)}, False)
SKIP skipE λs. ({(Norm (), s)}, False)
BASIC m modifyE m λs. ({(Norm (), m s)}, False)
THROW throwE () λs. ({(Exc (), s)}, False)
IF c THEN L ELSE R FI condE c L R λs. if c s then L s else R s
GUARD t g B guardE g condE g skipE failE
WHILE c DO B OD whileE c B () (see text)

Fig. 3. A selection of monadic functions with corresponding Simpl commands.

2.3 Monadic Framework

Our goal is to abstract imperative programs encoded in Simpl into a representation
that eases reasoning. But which representation is best suited to such reasoning?
Any representation we choose must encode the same functionality as Simpl,
including programs that read and write global state; contain loops that potentially
do not terminate; raise and catch exceptions; are non-deterministic; and have
execution paths that result in irrecoverable failure.

Our chosen representation is a state monad with additional support for non-
determinism, exceptions and failure (representing irrecoverable program failure).
We name this monad the exception monad which has type ′s ⇒ ((′e + ′a) × ′s)
set × bool abbreviated as (′s, ′a, ′e) monadE . The monad accepts a single input
state ′s and returns a tuple. The first half of this tuple contains the results of
the execution: a set of pairs containing a return value and state. The result is a
set so that functions may return more than one resulting state, modelling non-
determinism. Each return value is either a standard value of type ′a indicating
normal execution, or an exception value of type ′e. The second half of the tuple
is a flag indicating whether any execution of the monad failed. We name the first
and second halves of this tuple results and failed respectively. A full description
of the motivation for and formalisation of this monad with VCG support are
presented in earlier work [3].

Fig 3 lists the monadic commands used in this paper and their Simpl equiva-
lents where applicable. Monadic commands are suffixed with the character E to
indicate they operate on the exception monad. Monadic functions may be joined
together by the bind operator, where a >>=E (λx. b x) denotes that a is executed
with its return value passed into b, bound to the variable x. We additionally
use the notation doE x← a; b x odE as alternative syntax for bind. returnE f
simply returns the value f , allowing it to be used later as a bound variable.

To represent loops, we define a combinator whileE c B i with type:

(′a ⇒ ′s ⇒ bool) ⇒ (′a ⇒ (′s, ′a, ′e) monadE) ⇒ ′a ⇒ (′s, ′a, ′e) monadE

The combinator takes a loop condition c, a loop body B, and an initial loop
iterator value i. While the condition c remains true, the loop body will be executed
with the current loop iterator value. The return value from each iteration of the

Fig. 4. The process of converting Simpl to an abstracted output program. Dashed
arrows represent trusted translations, white arrows represent refinement proofs, while
solid arrows represent term rewriting. Each phase beyond parsing is in Isabelle/HOL.

loop body will become the loop iterator value for the next loop iteration, or
the return value for the whileE block if the loop condition is false. This allows
us to bind variables in one iteration of the loop and use them in either the
next iteration of the loop or after the loop completes. Formally, whileE returns
the set of all results that can be reached in a finite number of loop iterations.
Additionally, whileE fails if any computation within the loop fails or if there exists
any non-terminating computation.

3 Abstraction Process

This section describes in detail the transformations that take place from our input
Simpl specification to the output specification presented to the user, as well as
the proofs of correctness generated at each step. Fig 4 depicts the transformations
applied, each of which is described below.

3.1 Conversion to Shallow Embedding

When C code is parsed into Isabelle/HOL, it is converted into the Simpl language
with deeply-embedded statements. While such a deep embedding is sufficient for
reasoning about program behaviour, in practice it is a frustrating experience:
standard Isabelle mechanisms such as term rewriting, which can replace sub-terms
of a program with equivalent alternatives, cannot be used, as two semantically
equivalent programs are only considered equal if they are structurally identical.
While tools can be developed to alleviate some of this burden [15], still much of
the support provided by Isabelle remains unavailable.

Our first step towards generating an abstraction is thus converting the deeply-
embedded Simpl input into a monadic shallow embedding. We name the output
of this translation stage L1.

The conversion process is conceptually easy: Simpl constructs are simply
substituted with their monadic equivalents shown in Fig 3. Our goal, however, is
to also generate a proof that the conversion is sound. We achieve this by proving
a property corresL1 stating that the original Simpl program is a refinement of our
translated program, defined as follows:

corresL1 Γ (modifyE m) (BASIC m)
corresL1 Γ L L ′ corresL1 Γ R R ′

corresL1 Γ (L >>=E (λy . R)) L ′; R ′

L1CorresSkip L1CorresSeq

corresL1 Γ L L ′ corresL1 Γ R R ′

corresL1 Γ (condE c L R) (IF c THEN L ′ ELSE R ′ FI)
L1CorresCond

corresL1 Γ B B ′

corresL1 Γ (whileE (λ-. c) (λ-. B) ()) (WHILE c DO B ′ OD)
L1CorresWhile

Fig. 5. Selection of rules, compositionally proving corresL1 in the Simpl to L1 translation.

corresL1 Γ A C ≡
∀ s. ¬ failed (A s) −→

(∀ t . Γ` 〈C , Normal s〉 ⇒ t −→
(case t of Normal s ′ ⇒ (Norm (), s ′) ∈ results (A s)
| Abrupt s ′ ⇒ (Exc (), s ′) ∈ results (A s) | - ⇒ False)) ∧

Γ`C ↓ Normal s

The definition reads as follows: Given a Simpl context Γ mapping function
names to function bodies, a monadic program A and a Simpl program C, then,
assuming that the monadic program A does not fail: (i) for each normal execution
of the Simpl program there is an equivalent normal execution of the monadic
program; (ii) similarly, for each execution of the Simpl program that results in
an exception, there is an equivalent monadic execution also raising an exception;
and, finally (iii) every execution of the Simpl program terminates.

The final termination condition may initially seem surprising. Recall, however,
that these conditions must only hold if A does not fail, while our definition of
whileE ensures that infinite loops will raise the failure flag. Consequently, proving
termination of C is reduced to proving non-failure of A.

We prove corresL1 automatically using a set of syntax-directed rules such as
those listed in Fig 5. The final L1 output is a program that has the same structure
as the source Simpl program, but is in a more convenient representation.

3.2 Control Flow Peephole Optimisations

The Simpl output generated by the C parser is, by design, as literal a conversion
of C as possible. This frequently leads to clutter such as: (i) unnecessary skipE
statements, generated from stray semicolons (which remain after the preproces-
sor strips away debugging code); (ii) guardE statements that are always true;
(iii) dead code following throwE or failing guardE statements; or (iv) conditional
condE statements where the condition is True or False. As the L1 specification
is a shallow embedding, we are able to use Isabelle’s rewrite engine to apply a
series of peephole optimisations consisting of 21 rewrite rules, removing significant
amounts of unnecessary code from the L1 programs. Table 1 at the end of this
paper measures the size reduction in each translation stage.

no-throw A

catchE A E = A

CatchNoThrow

always-throw A

A >>=E B = A

SeqAlwaysThrow

catchE (throwE a) E = E a

CatchThrow

no-throw A

catchE (A >>=E B) C = A >>=E (λx . catchE (B x) C)
SeqNoThrow

catchE (condE c L R) E = condE c (catchE L E) (catchE R E) CatchCond

catchE (condE C L R >>=E B) E
= condE C (catchE (L >>=E B) E) (catchE (R >>=E B) E)

CatchCondSeq

Fig. 6. Rewrite rules to reduce exceptions in control flow

3.3 Exception Rewriting

Statements in C that cause abrupt termination such as return, continue or
break are modelled in Simpl with exceptions, as described in Sec 2.2. While
exceptions accurately model the behaviour of abrupt termination, their presence
complicates reasoning about the final program: each block of code now has two
exit paths that must be considered.

Fortunately, most function bodies can be rewritten to avoid the use of excep-
tions. Fig 6 shows the set of rewrite rules we use to reduce exceptional control
flow. CatchNoThrow eliminates exception handlers surrounding code that
never raises exceptions (denoted by no-throw). Analogously, SeqAlwaysThrow
removes code trailing a block that always raises an exception (denoted by
always-throw). The no-throw and always-throw side-conditions are proved au-
tomatically using a syntax-directed set of rules.

Not all rules in this set can be applied blindly. In particular, the rules
CatchCond and CatchCondSeq duplicate blocks of code, which may trigger
exponential growth in pathological cases. For CatchCond, which duplicates the
exception handler, knowledge of our problem domain saves us: inputs originating
from C only have trivial exception handlers generated by the parser, and hence
duplicating them is of no concern.

The rule CatchCondSeq, however, also duplicates its tail B , which may be
arbitrarily large. We carry out the following steps to avoid duplication: (i) if nei-
ther branch of the condition throws an exception, then SeqNoThrow is applied;
(ii) if both branches throw an exception, then SeqAlwaysThrow is applied;
(iii) if one branch always throws an exception, then the rule CatchCondSeq
is applied followed by SeqAlwaysThrow on that branch, resulting in only a
single instance of B in the output; finally (iv) if the body B is trivial, such as a
simple returnE or throwE statement, we apply CatchCondSeq and duplicate B
under the assumption the rewritten specification will still be simpler than the
original. Otherwise, we leave the specification unchanged, and let the user reason
about the exception rather than a larger output specification.

doE
modifyE (λs. s(| a- ′ := 3 |));
condE (λs. 5 ≤ a- ′ s)

(modifyE (λs. s(| b- ′ := 5 |)))
(modifyE (λs. s(| c- ′ := 4 |)));

modifyE (λs. s(| ret-int- ′ := a- ′ s |))
odE

(a) Locals in state

doE
a ← returnE 3 ;
(b, c) ← condE (λs. 5 ≤ a)

(returnE (5 , c))
(returnE (b, 4));

returnE a
odE

(b) Local lifted form

Fig. 7. Two program listings. The first stores locals in the state, while the second uses
bound variables. The shaded region does not affect the final return value; this is clearly
apparent in the second representation.

Using these rules, all exceptions can be eliminated other than those in nested
condition blocks described above, or those caused by break or return statements
inside loop bodies. Applying the transformation to the seL4 microkernel, 96%
of functions could be rewritten to eliminate exceptional control flow. Of the
remaining 4%, 10 could not be rewritten due to nested condition blocks, 13
because of either return or break statements inside a loop, and one function for
both reasons independently.

3.4 Local Variable Lifting

Both the Simpl embedding of our original input programs and our L1 translation
represent local variables as part of the state: each time a local is read it is
extracted from the state, and each time a local is written the state is modified.
While this representation is easy to generate, it complicates reasoning about
variable usage. An example of this is shown in Fig 7(a): the variable a is set to the
value 3 at the top of the function and later returned by the function. However,
to prove that the function returns the value 3, the user must first prove that the
shaded part of the program preserves a’s value.

An alternative approach to representing locals is using the bound variables
feature provided by our monadic framework that we have so far ignored. To
achieve this, we remove locals from the state type and instead model them as
bound Isabelle/HOL variables. We name this representation lifted local form
and the output of this translation L2. The representation is analogous to static
single-assignment (SSA) form used by many compilers as an intermediate repre-
sentation [9], where each variable is assigned precisely once.

Fig 7(b) shows the same program in lifted local form. The function returns
the variable a, which is bound to the value 3 in the first line of the function. As
variables cannot change once bound, the user can trivially determine that the
function returns 3 without inspecting the shaded area.

Two complications arise in representing programs in local lifted form. The
first is that variables bound inside the bodies of condE and catchE blocks are
not available to statements after the block. To overcome this, we modify the

bodies of such blocks to return a tuple of all variables modified in the bodies
and subsequently referenced, as demonstrated in Fig 7(b); statements following
the block can then use the names returned in this tuple. The second, similar
complication arises from loops, where locals bound in one iteration not only
need to be accessible after the loop, but also accessible by statements in the
next iteration. We solve this by passing all required locals between successive
iterations of the loop as well as the result of the loop in the iterator of the whileE
combinator. The gcd function in Fig 1 shows an example. In both cases, the tool
must perform program analysis to determine which variables are modified. The
emitted proofs imply correctness of this analysis as we shall see below.

For the soundness proof of the translation from L1 to L2 we use a refinement
property corresL2 defined as follows:

corresL2 st rx ex P A C ≡
∀ s. P s ∧ ¬ failed (A (st s)) −→

(∀ (r , t)∈results (C s).
case r of Exc () ⇒ (Exc (ex t), st t) ∈ results (A (st s))
| Norm () ⇒ (Norm (rx t), st t) ∈ results (A (st s))) ∧

¬ failed (C s)

The predicate has several parameters: st is a state translation function, converting
the L1 state type to the L2 state type by stripping away local variable data; P is a
precondition used to ensure that input bound variables in the L2 program match
their L1 values; and A and C are the abstract L2 and concrete L1 programs
respectively. The values rx and ex are a return extraction function and an
exception extraction function respectively; they are required because the L2
monads return or throw variables, while the corresponding L1 monads store these
values in their state. The return extraction function rx extracts a value out of
the L1 state to compare with the return value of the L2 monad, while ex is used
to compare an exception’s payload with the corresponding L1 state.

The corresL2 definition can be read as: for all states matching the precondition
P , assuming that A executing from state st s does not fail, then the following holds:
(i) for each normal execution of C there is an equivalent execution of A whose
return value will match the value extracted using rx from C’s state; (ii) similarly,
every exceptional execution of the C will have an equivalent execution of A with
an exception value that matches the value extracted using ex from C’s state;
and, finally (iii) the execution of C will not fail.

The first two conditions ensure that executions in L2 match those of L1 with
locals bound accordingly. The last condition allows us to later reduce non-failure
of L1 programs to non-failure of L2 programs.

As a concrete example, Fig 9 shows our example max function after local
variable lifting has taken place. The generated corresL2 predicate for max is:

corresL2 globals ret-int- ′ (λs. ()) (λs. a- ′ s = a ∧ b- ′ s = b) (maxL2 a b) maxL1

In this example the state translation function globals strips away local variables
from the L1 state; the return extraction function rx ensures the value returned
by maxL2 matches the variable ret-int- ′ of maxL1, while the exception extraction

∀ s. P s −→ st s = st (M ′ s) ∀ s. P s −→ rx (M ′ s) = v

corresL2 st rx ex P (returnE v) (modifyE M ′)
L2CorresReturn

∀ s. P s −→ M (st s) = st (M ′ s)

corresL2 st rx ex P (modifyE M) (modifyE M ′)
L2CorresModify

corresL2 st rx ex QA A A ′ ∀ x . corresL2 st rx ′ ex (QB x) (B x) B ′

{|P |} A ′ {|λ- s. QB (rx s) s|}, {|λ- -. True|} ∀ s. P s −→ QA s

corresL2 st rx ′ ex P (A >>=E B) (A ′ >>=E (λx . B ′))
L2CorresSeq

∀ x . corresL2 st rx ex (Q ′ x) (A x) B
{|λs. Q (rx s) s|} B {|λ- s. Q (rx s) s|}, {|λ- -. True|}

∀ s. Q (rx s) s −→ c ′ s = c (rx s) (st s)
∀ s x . Q x s −→ Q ′ x s ∀ s. Q x s −→ rx s = x ∀ s. P x s −→ Q x s

corresL2 st rx ex (P x) (whileE c A x) (whileE (λ-. c ′) (λ-. B) ())

L2CorresWhile

Fig. 8. Selected rules used in the corresL2 proofs.

function ex is unused and simply returns unit, as no exceptions are thrown by the
max function. The remainder of the predicate states that, assuming the inputs a
and b to our maxL2 function match those of the L1 state, then the return value of
our maxL2 function will match the L1 state variable ret-int after executing maxL1.

We prove the predicate corresL2 compositionally using a syntax-directed
approach similar to our rule set for corresL1. Fig 8 shows a sample of the rules
used to carry out the proofs. We use the Hoare-style syntax {|P |} C {|Q |}, {|E |}
to state that program C starting in a state satisfying P ensures Q in the event
of normal termination or E in the event of an exception.

The rule L2CorresReturn shows that the L1 statement modifyE M ′ refines
the L2 statement returnE v if the state-update function M ′ only modifies locals,
and the L2 return value v corresponds to the local updated in L1, extracted
using rx. The rule L2CorresModify is similar, but is used when an L1 modifyE
statement updates non-local state. Automating such proofs requires: (i) parsing
the term M ′; (ii) determining if it has a local or non-local effect; (iii) emitting the
corresponding abstract statement; and finally (iv) generating the corresponding
proof term. If an L2 term is correctly generated then the side-conditions of the
rule are discharged automatically by Isabelle’s simplifier.

The composition rules are more involved. For instance, L2CorresSeq states
the L1 program fragment A ′ >>=E (λ-. B ′) refines the L2 program fragment
A >>=E B . For the rule to apply, A′ must refine A under the precondition QA,
and B′ must refine B under precondition QB. This latter precondition has an
additional parameter x representing the return value from A. We must prove
that executing A′ from a state satisfying P leads to a state s where the second

condE (λs. a <s b)
(doE

ret ← returnE b;
exn-var ← returnE Return;
returnE ret

odE)
(doE

ret ← returnE a;
exn-var ← returnE Return;
returnE ret

odE)

Fig. 9. The max function after local
variable lifting.

condE (λs. a <s b)
(returnE b)
(returnE a)

Fig. 10. The max function after flow-
sensitive optimisations.

returnE (if a <s b then b else a)

Fig. 11. The max function after type-
strengthening.

precondition QB (rx s) is satisfied. This second parameter to QB is what ensures
that the locals stored in the L1 state match the bound variables used in L2.

To automatically prove an application of the L2CorresSeq rule, we must
calculate a suitable precondition P that both implies the first precondition QA

and will lead to QB being satisfied. We generate such a P stating that all bound
variables required by A match their L1 state; and all bound variables required by
B and not modified by A match their L1 state. Using this P , we can discharge
the Hoare-style side-condition by showing that A′ preserves all variables required
by B which it does not otherwise pass in by bound variables; these proofs are
again automated using a syntax-directed rule-set.

3.5 Flow-Sensitive Simplifications

A significant benefit of lifted local form is that it allows us to easily determine
how local variables are used, and carry out simplifications based on this. Such
simplifications include: (i) removing code that writes to locals that are never
subsequently read from; (ii) using assumptions from guardE, condE and whileE
statements to simplify later expressions; and (iii) collapsing variables that are
only used once into the locations where they are used. By allowing constant
valued expressions to be folded into the location they are used, we are also able to
discharge many more guardE statements not previously provable and determine
that some condE conditions always have the same value.

Fig 10 shows the max function after flow-sensitive optimisations: the redundant
exn-var variable is detected, and the two returnE terms in each branch of the
condE are collapsed into a single statement, resulting in a much simpler program.

3.6 Type Specialisation

So far, all of our generated programs have been written using our exception
monad. Sec 2.3 outlined some of the motivations for using this monad, including
our aim to represent C that supports reading and writing from global state;
abrupt termination; non-determinism; or code that may fail.

For the majority of the code we translate, many of these features are not
required. For example, Sec 3.3 describes how the majority of exception usage can
be eliminated from specifications; the use of non-determinism is mostly limited
to setting up uninitialised variables, many of which are eliminated using the
simplifications in Sec 3.5; further, many functions do not modify the state of the
system at all, either only reading the global state or having results that depend
entirely on their input parameters. In these cases, the exception monad is far
more expressive than required. Less expressive monads would constrain program
behaviour by type and give the user free theorems by notation alone.

We therefore specialise the type of individual functions to contain only the
features they require. The types we use are as follows, in decreasing strength:

Pure functional: These are standard Isabelle functions, where the function
returns a deterministic output depending only on its input parameters. Our
example max function falls into this category.

Option monad: The C standard is littered with restrictions that result in
guardE statements that cannot be automatically discharged. Unfortunately,
such a guardE statement will prevent a function from being translated into
a pure Isabelle function, as we must consider failed executions. We can,
however, use the option monad, where every computation either results in a
single value a (represented as Some a), or failure (represented as None). Any
intermediate failure results in failure of the entire computation.
Functions that may potentially fail, but are deterministic, have simple control
flow, and only read from global state can be transformed into the option
monad. Callers of such functions will translate a result of None into failure.

State monad: Functions which need to modify global state or use non-deter-
minism but do not use exceptional control flow are translated into a state
monad without exceptions.

Type specialisation takes place using a series of rewrite rules that attempt to
strengthen individual parts of the program, and then combine partial results to
strengthen larger parts of the program. For instance, the rewrite rules we use to
strengthen the exception monad to a pure Isabelle function are as follows:

skipE = returnE ()
condE (λ-. c) (returnE A) (returnE B) = returnE (if c then A else B)
returnE A >>=E (λx . returnE (B x)) = returnE (let x = A in B x)

Fig 11 shows the result of applying these rules to our example max function.
To determine which type we can strengthen each function to, we attempt to

apply each set of strengthening rules in order from strongest type to weakest
type. If a particular function can be completely rewritten, the transformation
was successful and a new definition for the function is emitted. Otherwise, we
continue to try alternative, more expressive, representations. If all translations
fail, we simply continue to use the exception monad.

Table 2 shows statistics of type strengthening used on the seL4 microkernel
source code, with almost 96% of functions being strengthened into another type.
The remaining 4% of functions correspond to the functions unable to be rewritten
to avoid using exceptions in Sec 3.3.

Table 1. Average function term size after
each translation phase of the seL4 source.

Specification Avg. Size

Simpl 356.7
Shallow Embedding 362.5
Control-Flow Peephole 286.2
Exception Rewriting 281.1
Lifted Local Vars 249.2
Flow-Sensitive Opts. 173.6
Type Strengthening 173.5
Polish 168.9

Table 2. Number of functions in the seL4
microkernel translated into each type.

Type Count

Pure function 151
Option monad 51
State monad 309
Exception monad 24

Total 535

3.7 Final Theorem

Along with the abstracted program specification, the tool emits a proof of
correctness. In particular, the final refinement theorem between the input Simpl
and output monadic program is as follows:

corresF st Γ rx P A C ≡
∀ s. P s ∧ ¬ failed (A (st s)) −→

(∀ t . Γ` 〈C , Normal s〉 ⇒ t −→
(∃ s ′. t = Normal s ′ ∧

(Norm (rx s ′), st s ′) ∈ results (A (st s)))) ∧
Γ`C ↓ Normal s

It composes the two previous theorems, and is proved with the following rule:

corresL2 st rx (λ-. ()) P A B corresL1 Γ B C no-throw A

corresF st Γ rx P A C

Our final corresF definition, while differing from the definition given in previous
work on C abstraction in L4.verified [15], is strong enough to prove it.

In summary, we have shown the following transformations: (i) from deep into
shallow embedding, which enables us to use rewriting; (ii) simple control flow
peephole rewrites, exploiting the shallow embedding; (iii) exception rewriting,
which further simplifies control flow; (iv) local variable lifting, which allows us
to make use of Isabelle’s built-in bound variables, substitution, and unification;
(v) flow-sensitive rewrites, enabled by explicit bound variables; (vi) and, type
specialisation, giving the user convenient notation and implicit free theorems.

The final additional step is a polishing phase which rewrites internal terms into
a more human-friendly form. Table 1 quantifies the effect of each transformation
by showing the average term size after each phase for the translation of seL4.

4 Related Work

The motivation for this work is the paper Mind the Gap: A verification framework
for low-level C by Winwood et al. [15] in the context of the seL4 microkernel

verification. They showed that formal, interactive verification of low-level C code
at scale is possible, but noted that automation could be improved. Our final
refinement theorem implies their ccorres statement. Some of the automation ideas
are present in early forms in this previous work, such as lifting a single variable
from the state into a bound variable in the monad. In addition to our other
transformations, we generalise this approach to completely automatically lift all
variables of all functions in a program. On the technical side, our rule sets and
refinement statements are tuned for full automation. The idea is to remove all
unnecessary manual work in low-level C verification and enable the human to
concentrate on the interesting reasoning instead.

Two further projects have treated large low-level code bases interactively. The
Verisoft project [1] reasoned directly about Simpl using a VCG that translates
Hoare triples about Simpl code into proof obligations. While the VCG provides
some automation, it performs less abstraction. Consequently, the verification
overhead in Verisoft was similarly high as in L4.verified.

The Verisoft-XT project applied the VCC tool [4]. VCC does not attempt
automated abstraction of this form either, but instead uses a powerful SMT
solver as backend reasoner to increase productivity. The increased automation
comes at the cost of reduced expressiveness in annotations and explicit ghost
state to guide the reasoner. While our focus is on interactive reasoning, we believe
the approach is complementary: our tool could be used to generate a higher-level,
less detailed model, and automated reasoners could then be used on top.

The FramaC framework [5] with the Jessie plug-in [8] also supports deductive
verification of C. Annotated C code is translated into the functional language Why
on which verification then proceeds. The translation touches on some transfor-
mations that are close to ours. The main difference is that these transformations
need to be trusted whereas our work produces proofs. The necessarily trusted
translation step from C into a formal logic is much smaller in our work.

5 Conclusions

We have presented a tool that automatically abstracts low-level C semantics into
higher-level specifications with automatic proofs of correctness for each of the
transformation steps. The tool consists of 3 300 lines of ML code and 5 000 lines
of Isabelle proof script, on top of existing libraries for monads, Simpl and parsing.

While our main case study is the seL4 microkernel, because it provides a
convenient known target for comparison, the tool is not specific to this kernel.
We have also applied it to Tuch’s memory allocator case study [14], and other
projects such as the scheduler of a small commercial real-time system. We believe
that the general idea can be applied to languages other than C, and that the tool
may even be directly applicable to these as long as a front-end to Simpl exists.

The tool accepts anything the C parser front-end accepts, but presently does
not translate recursive functions. While not a problem for embedded code, this is
one of the obvious next steps for future work. The second direction for future work
is to provide further translation steps, for instance exploiting Tuch’s interactive

framework [13] to automatically generate a more abstract heap format for type
safe fragments of the program.

Our experience indicates a significant improvement in clarity and ease of
reasoning for the output of the tool. Our long term goal is to completely au-
tomate the low-level C verification phase in Winwood et al. [15] for projects
like L4.verified.

Acknowledgements We are grateful to Matthias Daum, Daniel Matichuk, Thomas
Sewell and the anonymous reviewers for their feedback on drafts of this paper.

References

1. E. Alkassar, M. Hillebrand, D. Leinenbach, N. Schirmer, A. Starostin, and A. Tsyban.
Balancing the load — leveraging a semantics stack for systems verification. JAR:
Special Issue Operat. Syst. Verification, 42, Numbers 2–4:389–454, 2009.

2. E. Alkassar, W. Paul, A. Starostin, and A. Tsyban. Pervasive verification of an
OS microkernel: Inline assembly, memory consumption, concurrent devices. In
P. O’Hearn, G. T. Leavens, and S. Rajamani, editors, VSTTE 2010, volume 6217
of LNCS, pages 71–85, Edinburgh, UK, Aug 2010. Springer.

3. D. Cock, G. Klein, and T. Sewell. Secure microkernels, state monads and scalable
refinement. In O. A. Mohamed, C. Muñoz, and S. Tahar, editors, 21st TPHOLs,
volume 5170 of LNCS, pages 167–182, Montreal, Canada, Aug 2008. Springer.

4. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, 22nd TPHOLs,
volume 5674 of LNCS, pages 23–42, Munich, Germany, 2009. Springer.

5. The Frama-C platform. http://www.frama-c.cea.fr/, 2008.
6. ISO/IEC. Programming languages — C. Technical Report 9899:TC2, ISO/IEC

JTC1/SC22/WG14, May 2005.
7. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In 22nd SOSP, pages 207–220. ACM, 2009.

8. Y. Moy. Automatic Modular Static Safety Checking for C Programs. PhD thesis,
Université Paris-Sud, Paris, France, Jan 2009.

9. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, 1997.

10. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

11. M. Norrish. C-to-Isabelle parser, version 0.7.2. http://ertos.nicta.com.au/

software/c-parser/, Jan 2012.
12. N. Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD

thesis, Technische Universität München, 2006.
13. H. Tuch. Formal Memory Models for Verifying C Systems Code. PhD thesis, School

Comp. Sci. & Engin., University NSW, Sydney 2052, Australia, Aug 2008.
14. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In

M. Hofmann and M. Felleisen, editors, 34th POPL, pages 97–108. ACM, 2007.
15. S. Winwood, G. Klein, T. Sewell, J. Andronick, D. Cock, and M. Norrish. Mind

the gap: A verification framework for low-level C. In S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, editors, 22nd TPHOLs, volume 5674 of LNCS, pages
500–515, Munich, Germany, Aug 2009. Springer.

http://www.frama-c.cea.fr/
http://ertos.nicta.com.au/software/c-parser/
http://ertos.nicta.com.au/software/c-parser/

