Chapter 1
Trustworthy Real-Time Systems

Stefan M. Petters, Kevin Elphinstone and Gernot Heiser

Abstract Embedded systems have experienced a dramatic increase in ubiquity and
functionality. They have penetrated our life to a degree where we rely heavily on
them and at the same time entrust them with vast amounts of personal information.
The trust placed in them does not necessarily mean they are trustworthy. Within this
chapter we summarise past research of the ERTOS group at NICTA in the area and
provide the initial reasoning which motivated that research. Topics covered are a
secure kernel design and the design and verification of this kernel design, as well as
work on scheduling and WCET analysis.

1.1 Introduction

The market of embedded processors far surpasses the market of personal computers
and servers. While being more prolific than their desktop counterparts, the progress
in semiconductor technology has also brought unprecedented computing power to
embedded systems. On the back of these opportunities the complexity of embedded
applications is rising dramatically. Two typical examples are today’s smartphones
or cars. The amount of software contained in these devices is impressive, as for
example 100 million lines of code (LOC) in a modern high end car [7] in 2009,
while the Android operating system without applications weighs in at around 12
million LOC in 2010.

With the rising complexity there is also increased scope for problems leading to
system failure. While it is clear that a degree of functional correctness is required,
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temporal behaviour must also be considered even in the absence of safety-critical
temporal requirements, as the utility of most systems is subject to degradation in
the presence of temporal failures. In this paper we consider a bug to be any kind
of design or implementation error. Aside from bugs, system failures may also be
triggered by deliberate attacks or transient errors. Examples of the latter are electro-
magnetic interference or single-event upsets induced by ionised particles in space.

Another trend in embedded systems is towards mutable or open systems [14].
This ranges from upgrade facilities available in factory machinery, to tunable cars, to
downloadable extensions and games on personal digital assistants or mobile phones.
This post-deployment installation of applications not only increases the attack sur-
face for a device, it also implies that the set of active tasks cannot be determined
a-priori, which requires a dynamic approach to managing processor time. Further-
more, not the entire task set of a system will have hard real-time character, but some
will be of best-effort or soft-real-time character. Such systems are usually referred
to as mixed-criticality systems and require that the system components having real-
time requirements be protected from those which have a best-effort character.

In summary we perceive the following requirements for modern embedded sys-
tems. Reliability and security are the central pillars of the increasing number of
complex embedded systems we surround ourselves with. This covers not only the
functional aspects, but also the temporal aspects of these systems. While not all re-
quirement lapses will lead to catastrophic consequences, issues like confidentiality
of personal and commercially sensitive data, as well as simple usability aspects,
motivate the construction of trustworthy systems beyond the traditional safety do-
main. The lowest software layer or core needs to provide the basic mechanisms for
allowing secure, reliable and feature rich embedded systems to be built. While the
availability of such mechanisms alone is not sufficient to prevent unreliable systems
to be developed, it is a precondition for reliable systems.

The following sections will provide an overview of past research at the ERTOS
group at NICTA and the considerations which lead to this research agenda.

1.2 Comparison of Approaches

1.2.1 Real-Time Executives and Desktop Operating Systems

Currently two operating system (OS) paradigms dominate the embedded systems
market: classical real-time executives and (more recently) stripped-down versions of
desktop operating systems. The major advantage of real-time executives is their size.
They fit on small devices and consume minimal resources. A real-time executive can
usually be bypassed, as it is rarely used with memory protection enabled, even if that
is available on the given platform. This leaves the executive unprotected, and a bug
in an application may crash the entire system. Sometimes state is corrupted slowly,
and the offending instructions can be very hard to track down. As a consequence,
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real-time executives are mostly deployed on classical single-purpose devices of low
to moderate complexity.

Stripped-down desktop operating systems have been introduced in embedded
systems some time ago, but have become more mainstream to handle more com-
plex embedded applications as well as harness the computational power available.
This is driven by the realisation that embedded devices often take on tasks similar to
a desktop computer. Examples of such stripped-down operating systems are embed-
ded versions of Windows or Linux (such as Android). A major advantage of such
operating systems is that — unlike real-time executives — the kernel is to some degree
protected against misbehaving applications.

However, even a minimal configuration of Linux or Windows still features a
large code base, hundreds of thousands of lines, and dubious real-time performance.
While there are attempts to address real-time behaviour, such as the preempt-RT
[30] effort in Linux, these are highly dependent on (for Linux kernel code) unusual
coding standards, such as not disabling interrupts, which can be easily violated for
example by legacy drivers.

1.2.2 Trusted vs. Trustworthy

While many embedded systems are trusted to some degree to perform according
to their specification, it may be questioned whether these systems deserve the trust
placed in them. Recalls of cars for software updates or required reboots of mobile
phones indicate that there are indeed issues which need to be addressed.

Trustworthiness can be established in several ways, collectively referred to as
verification. Firstly functional correctness can be assured by performing exhaustive
testing. While this is possible for trivial examples, the approach fails for more de-
manding code. Systematic code inspection helps to increase the confidence that the
code performs as expected, but as complexity increases, this also fails to provide
real assurance, as it is in general not practical to consider all interactions between
different parts of a complex system. The logical extension of systematic code in-
spection is employing formal verification methods. Formal verification provides a
mathematical proof of correctness, but becomes infeasible beyond a few thousand
lines of code.

The poor scalability of thorough verification approaches requires a system that
is “small” (of limited conceptual complexity). A small system is not only easier
to verify, it is less likely to be faulty (or vulnerable) in the first place. However,
smallness is not necessarily required for the whole system, only the “critical” bits.
This is encapsulated in the concept of the trusted computing base (TCB) [28]. The
TCB is the collection of components and mechanisms in hardware, firmware, and
software that are critical to enforce the security policy of an entire computer system.
A bug in the TCB has the potential to undermine the security or safety of the whole
system.
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The TCB contains, among others, all software executing in the hardware’s privi-
leged mode, this is generally referred to as the operating system kernel. In the case
of traditional microcontrollers that do not offer memory protection hardware, or
when employing a real-time executive which does not utilise memory protection,
all software is part of the TCB. In such a system of non-trivial size, security or
safety become practically impossible to assure.

1.2.3 Minimising and Managing the TCB

To enable any meaningful verification, the size of the TCB needs to be minimised.
This requires minimising the OS kernel. The most practical way to minimize kernel
size is to restrict it to provide just basic mechanisms for securely managing the
hardware, and move all actual system services (including the implementation of
application-specific policies) into user-mode code. Such a minimised OS kernel is
called a microkernel [20].

Some non-kernel components of such a microkernel-based system are still part
of the TCB, despite executing without hardware privileges. However, they are now
themselves subject to kernel-mediated memory protection and forced to interact
via well-defined interfaces. This greatly aids their verification, as they can often
verified independently of the rest of the system. The kernel itself can be made small
enough that it is within reach of the most rigorous verification approaches. The
main prerequisites for using this approach is that the hardware provides memory
protection (in the form of a memory-management or memory-protection unit) and
dual-mode execution (the distinction between privileged and unprivileged modes).

Figure 1.1 provides a comparison of the three different approaches to system
structure. In systems built on top of traditional real-time executive, all code is part
of the TCB (indicated by the grey background) and as such are safety/security-
critical. A (stripped-down) desktop OS removes application code from the TCB, as
the OS is protected by hardware mechanisms. However, the OS itself is still large
(100,000s of lines of code) and infeasible to verify completely. In the microkernel-
based system, the TCB consists of the (much smaller) kernel plus whatever essential
services the critical system operations depend on, the total can be as small as 10,000
lines of code.

While a microkernel-based OS does not ensure that a system is well-designed,
it provides the basic mechanisms for building robust systems, by encapsulating ser-
vices into individual address spaces [15]. In general, the microkernel provides a
good base for componentised systems, as envisaged by, for example, the Autosar
consortium. Finally it simplifies reasoning about fault isolation properties of the
system, and lends support for advanced features such as hot swapping and hot up-
grades.

Device drivers are an interesting case in point. Traditionally they are in the kernel
and therefore part of the TCB. In a microkernel-based system, they are user-mode
components and might be removed from the TCB. There are two reasons why even
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user-mode drivers may be part of the TCB: Firstly, the correct operation of the sys-
tem may depend on the correct operation of the device (e.g. a safety-critical actu-
ator). Secondly, if the device is capable of direct memory access (DMA), it could
overwrite arbitrary memory, including the microkernel. The latter problem can be
avoided if the hardware platform features an input/output memory management unit
(IOMMU), which makes DMA subject to memory protection just as any other mem-
ory access.

1.3 Design and Verification

When setting out to create a trustworthy operating system, a basic question is which
design approach to use. Traditionally two different approaches, representative of
different mindsets, have been pursued. In a bottom-up approach, depicted in Fig-
ure 1.2, expert programmers design and implement an operating system, which will
later be subject to verification by formal-methods experts. Given the expensive na-
ture of formal verification, it is performed as a last step after the system is mature
and thoroughly tested to ensure acceptable performance. Since expert kernel pro-
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Fig. 1.2 Expert Programmer Design Flow
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grammers are not normally formal-verification experts, this likely leads to a system
which in the best case is not very amenable to proving the required properties of
the system, and in the worst case does not even expose the properties stipulated in
the initial requirements, or be practically intractable to formally reason about due to
complexity.

An alternative approach usually favoured by formal methods experts is to start
with a formal specification and high-level design to ensure the desired properties
will be achieved [16]. The design is then implemented by kernel programmers, this
approach is illustrated in Figure 1.3. While ensuring that the implementation does
not impinge on the properties proved for the design is reasonably straight forward,
the design decisions taken on such high abstraction levels likely result in an oper-
ating system which might be correct, but exhibits unacceptable performance, or is
impractical for programmers build applications upon.

Design & Specify

Formal Model
High-Performance C
Implementation Rl Thecigly

Fig. 1.3 Formal Methods Centered Design Flow

A third way, employed by NICTA, is to assemble a team of developers with
both formal methods and programming experts willing to at least partially learn the
repective expertise of their counterparts, and work together to achieve a provably
trustworthy high-performance operating system. However, development of exper-
tise alone is not enough, as one must reconcile the different development approaches
of both groups. Additionally, the requirement of an iterative approach to the design
still exists. This has two implications. On the one hand it requires a quick assess-
ment of the performance impact of design decisions, on the other hand it requires a
low barrier to formally reasoning about the design, in order to ensure optimisations
aimed at improving performance still maintain the required formal properties.

The team at NICTA has approached this problem by choosing Haskell as the
specification and design language [13]. Its functional style makes it amenable to
automatic translation into the input of an interactive theorem prover. It also forms
part of an executable specification which may be used to assess the performance
impact of design decisions by requiring a concrete implementation of data structures
and algorithms, and enables a much faster turn-around of the design of the API,
compared to implementing any specification change in a low-level programming
language like C.
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With an executable specification, an operating system in-the-loop can be used to
assess the utility, usability and general performance of API design decisions with-
out resorting to the time-consuming implementation associated with bare hardware
prototypes. Figure 1.5 illustrates the approach taken at NICTA. A set of test appli-
cations are be ported to the operating system. The applications themselves execute
on a simulator, which is modified such that it only directly simulates user-mode (i.e.
application) execution. Transitions to kernel mode (via system calls, interrupts, and
other exceptions) result in transfer of control to the Haskell model, which replaces
the kernel-mode portion of the simulator itself. The Haskell model manipulates the
user-level state such that to applications it appears that an operating system running
in kernel mode had serviced the exception.
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Fig. 1.5 Kernel In the Loop [11]

The approach of running the specification also avoids ambiguities of an plain En-
glish specification. Haskell is a functional programming language with well-defined
semantics, which enables automatic translation into an input usable by theorem
provers. This then provides the starting point for the verification effort. This is eased
by the fact that the theorem prover Isabelle/HOL [24] is based on lambda calculus,
which also forms the core of Haskell.
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Some parts of the kernel, such as the exact scheduling algorithm, are left un-
derspecified in the NICTA work, to allow a later exploration of design choices.
Difficulties in the verification process can be addressed, if needed, by changes to
the kernel design or API. This flexibility proved to be of fundamental importance in
reducing the time to proceed through design iterations.

Despite the common roots of Haskell and Isabelle/HOL, some restrictions were
required to facilitate the automatic translation. The executable model avoided the
use of lazy evaluation, unlimited recursion, and other problematic Haskell features.
Additionally, to support the later reimplementation of the production design in C,
the model also avoided use of garbage collection beyond automatic stack variables.
The interested reader is referred to relevant publications for further details [17, 18].

1.4 Security and Safety

Security comprises the aspects of confidentiality, integrity and availability; in a par-
ticular application scenario some of these tend to be more important than others.
Safety is similar, except that confidentiality is not relevant but the (data) integrity
aspect is extended to functional correctness.

In many cases of embedded systems, security and safety requirements can be
fulfilled using isolation of components. Isolation can be used to prevent a misbe-
having application from bringing down another application, or prevent a malicious
application from intruding on private data or denying critical actions.

With respect to security and safety requirements, isolation relates to the spatial as
well as temporal domains. In the spatial domain it leads to address-space isolation
as the basic mechanism. Temporal isolation as it relates to scheduling is discussed
in Section 1.5. In this section examine temporal isolation in the context of avoidance
of denial-of-service attacks through carefully crafted system calls to, for example,
cause a very long running kernel operation and thus deny the other applications of
the service of the operating system.

Memory management needs to be carefully considered to avoid starvation of this
resource at runtime and consequent unbounded or long running system calls. One
challenge is that resources such as pages and threads not only require the mem-
ory that is part of the user-visible resource, but additional memory for the in-kernel
metadata required for management of the resource. Implicit allocation of this mem-
ory creates a potential exploit, by forcing the kernel to allocate large amounts of
memory for the metadata, which leads to the starvation of memory needed for other
tasks. One way to address the starvation issue is to avoid dynamic memory alloca-
tion in kernel. In order to achieve this in the seL4 microkernel [12], seL.4’s design
team promoted all metadata to explicitly allocated first-class objects. The metadata
is included in the object allocation process and is part of the memory for the object,
thus enabling direct control of memory consumption.

A further building block in providing spatial isolation is managing the authority
of object creation and authority transfer between applications. The seL4 kernel is
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implemented as a capability-based system. Capabilities [10] are a tamper-proof rep-
resentation of the authority to access and/or modify certain data and invoke kernel
services. A capability, and thus the corresponding authority, can be passed from ap-
plication to application allowing concepts like shared memory or task creation to be
implemented.

During bootstrapping, all free memory not used by the kernel is handed to the
first task as untyped memory (UM). Such UM may be subdivided, passed to another
application or cast into some other type (e.g. a thread-control block) via a retype
invocation. The capability, and thus authority to perform these operations, comes
with the UM. After invoking the retype method and creating an object of different
type, the invokee receives full authority over the object. When it passes the capa-
bility to another task it may do so with reduced authority. The key observations to
note are that all kernel data structures are objects of a specific type; all typed objects
are allocated (via retype) using authority to UM, and UM is a finite resource. Hence
applications cannot exceed the memory footprint beyond the authority they possess.

A typical system architecture based on the seL.4 microkernel is depicted in Fig-
ure 1.6. The system is comprised of a sensitive application which needs to be pro-
tected from unknown or untrusted convenience and legacy functions also running on
the same hardware. This might, for example, separate the security-critical crypto-
functionality and processing of unencrypted data from wireless networking func-
tionality, or the life-supporting functions in a medical device from the GUI stack.
Spatial isolation is assured between all parts of the system. However, trusted services
and drivers can be accessed from the untrusted subsystem through well-defined and
enforced interfaces. A potential use of a Linux server allows legacy or comfort
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Fig. 1.6 seL4-based system architecture
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Linux applications to be deployed alongside critical applications without porting
to a new environment. Further information on seL.4’s security mechanisms can be
found in the relevant publications [12,17].

1.5 Temporal Isolation

The functional isolation and its verification discussed so far is instrumental to build-
ing trustworthy embedded systems. This needs to be augmented by temporal isola-
tion, which we now look at in detail in the context of resource scheduling.

Most embedded operating systems in industrial use are either time-driven or
fixed-priority—driven. The time-driven approach provides isolation of different ap-
plications at the cost of responsiveness. For example, OSEKTime [27] implements
a table-driven scheduling approach that allows interrupt delivery only in one slot
of the schedule, and otherwise requires interrupts to be disabled. Ultimately this
leads to a potential latency of interrupt delivery of an entire scheduling frame. In
contrast, fixed-priority schedulers offer the flexibility of fast response time for high-
priority applications. However, fixed priority scheduling suffers from poor temporal
isolation, as there is no inherent contract about computation time available to an
application. Furthermore, relative urgency as well as importance of the application
have to be integrated into a single priority value.

For traditional tightly-integrated systems with a known task set, these limitations
were acceptable. However, the increasing integration of applications of different
and potentially unknown vendors, as well as legacy subsystems, into one device
highlights the issue of lack of temporal isolation.

Dependent on the circumstances temporal fault isolation may have different
goals. Obviously it should allow critical components to continue to operate cor-
rectly in the presence of misbehaving component. It may also ease fault location by
avoiding knock-on effects which hide the source of a problem.

Another aspect of temporal isolation is that subsystem may have different schedul-
ing requirements. Best-effort type applications are traditionally scheduled using a
fairness-based scheduling scheme, while real-time systems require strict guarantees
and the implementation of which are often in juxtaposition to fairness. However,
modern embedded systems have often both types of scheduling needs, leading to
mixed-criticality systems with conflicting requirements [22].

A number of scheduling approaches have been proposed to address these is-
sues. Examples include sporadic servers [31], deferrable servers [32], or constant-
bandwidth servers [1]. In our discussion we will focus on the constant-bandwidth
server. Rather than assigning tasks priorities or specific time slots, tasks are assigned
a budget of execution time, which will be replenished periodically. This effectively
assigns tasks a certain share of the execution time. While the approach guarantees
the execution time budget to be available before the next replenishment, it does not
stipulate in which order unused budgets may be consumed, allowing a secondary
scheduling algorithm to be applied.
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Depending on the criticality and the worst-case execution time (WCET) of the
task, different sizes of the budget can be chosen. For hard real-time applications,
budgets will essentially be dictated by the WCET of a task. For soft real-time ap-
plications, budgets might be chosen to be less than the WCET but higher than the
average execution time. In this case, a slack-management approach, as described
below, can use leftover budget to fulfill the needs of a task in most cases where the
execution time exceeds the assigned budget. Finally, best-effort tasks with a long ex-
ecution time and aperiodic inter-arrival may be assigned budgets and periods which
are a fraction of the needs of an individual job of a task. Such time slicing in com-
bination with slack management ensure fairness and progress among the multiple
best-effort tasks.

Research on scheduling performed at NICTA is based on earlier work by Brandt
et al. [6,21]. A fundamental observation underlying their work is that neither a
fairness-based approach retrofitted with some real-time mechanisms, nor a real-time
scheduling approach with an emulated fairness layer will provide acceptable service
for both classes of application needs. Instead an integrated solution offering native
fairness and real-time guarantees is required.

In principle, Brandt’s proposal has many similarities with other approaches based
on bandwidth servers [2]. The distinguishing factors of this work are the detailed
consideration of temporal reconfiguration constraints, integration of an albeit simple
real-time analysis, and finally, effective dynamic slack management. Brandt’s work
uses earliest deadline first (EDF) [23] as the secondary scheduling algorithm. EDF
has been proven to be optimal for a set of independent non-blocking tasks. Besides
assuming independent deadlines of all tasks, deadlines were assumed to be equal to
the release periods of tasks, which was also used as replenishment period.

In the work of Brandt et al., the traditional scheduling approach is split into a
fundamental choice of how much bandwidth is allocated, and a dispatcher to decide
when. The former step is taken by the resource allocator, which is active in any mode
change of the system to recalculate available shares. The latter is performed by a
more traditional scheduler. However, the scheduler enforces the budget allocation
and manages unused budget, as well as overruns. Unused budget or slack can be
collected and passed to tasks in need of extra budget.

Different aspects of this slack management are discussed by Lin and Brandt [21].
Slack can be passed around in the system under the presumption that slack is sched-
uled with either the deadline of the task it was associated with, or a more relaxed
deadline. This property is required to ensure that the assumptions made in the re-
source allocator regarding budget use are maintained. A very fundamental corollary
is the observation that a task exhausting its budget can be assigned the budget of the
next release, if the deadline of the tasks is adjusted such that it reflects the deadline
relative to this future release.

The core elements of this approach are depicted in Figure 1.7. Application arrival
or departure in the system triggers a reconfiguration of the budget allocation. During
this stage, a real-time analysis is performed, and, after successful completion, the
task is provided with a budget and period and is added to the set of schedulable tasks.
The EDF scheduler assigns budgets and thus associates applications with enforced
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timeouts. A slack manager integrated with the scheduler performs the collection and
assignment of slack.

We have extended the approach of the resource allocator to perform a demand-
bound-based schedulability test [3]. Fundamentally, these tests compute the worst-
case request for computation in a given interval. If the worst-case demand does not
exceed what can be provided in the same interval, the schedulability test is success-
ful. An expressive event model, which describes the worst-case number of releases
of a task — including release jitter and bursty releases — underpins this analysis.

Besides adding the capability to analyse bursty tasks, the resource allocator
may also allow for deadlines which are different from the minimum inter-arrival
times. This is relevant for rare, but highly important tasks, such as tasks respond-
ing to exceptional external input. We have also investigated this approach for crit-
ical sections, such as interrupt-service routines and critical sections in user-mode
drivers [26]. Further work exploits the explicit knowledge of slack to facilitate prac-
tical dynamic voltage and frequency scaling in a real-time environment [19].

1.6 Worst-Case Execution-Time Analysis

The knowledge of the WCET is a fundamental building block for reliable real-time
systems. The resource allocator requires such values to perform an overall schedu-
lability analysis. The analysis of the WCET needs to be performed on all parts of
the system involved in the delivery of a timely service for soft and hard real-time
systems. This obviously covers the real-time applications, but also the kernel and
services involved in the process.

The fundamental steps of WCET analysis are depicted in Figure 1.8. The code for
which the analysis is to be performed is firstly analysed for its control-flow structure
and operations performed along the nodes of that control-flow graph. In a second
step, the constraint and flow analysis aims at restricting the set of possible flows
through the program to those which are feasible. This is, for example, necessary
to provide bounds on the number of iterations of a loop or to identify nodes in
the control-flow graph which may be structurally executable, but are proven to be
mutually exclusive due to data dependencies.
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In a third step, the execution time of individual nodes in the control-flow graph
are established. This may take into account restrictions developed in the flow analy-
sis, as for example, the identified mutual exclusivity of nodes may imply that certain
hardware states are not possible when one of the nodes is entered, which may avoid
otherwise possible execution paths. Finally, the low-level timing results are com-
bined using the constraints provided by the flow analysis, e.g. to bound the number
of iterations for a given loop.

Code under Test
> ‘ Structural Analysis ‘ = ‘ Low-Level Analysis ‘

I~ 1

= ‘ Computation ‘ => WCET

Constraint/Flow Analysis

Fig. 1.8 Principal Steps of WCET analysis

Academic research on WCET is mostly based on static analysis, which lends it-
self well to the approach shown in Figure 1.8. In contrast, analysis of safety-critical
systems in industry is largely performed using end-to-end measurements augmented
with safety margins. The latter approach works well for simple architectures such
as those employed by most 8- and 16-bit microcontrollers. It fails for more complex
processors, such as the widely-deployed ARM architecture, which features instruc-
tion pipelining, branch prediction and multiple levels of cache.

Static WCET analysis on its own has significant limitations too. For one, it is
dependent on detailed hardware models, which are not available especially for the
more complex architectures. The complexities of modern architectures also mean
that the latency of many instructions is highly dependent on internal processor state,
which is frequently infeasible to model completely, forcing static analysis to adopt
a pessimistic view which leads to gross over-estimation of WCET, often by orders
of magnitude.

Fortunately, debugging interfaces available for modern processors can support
fine-grained execution tracing and latency measurement. This enables an approach
that measures the execution time of small sections of code and combines the results
for these to obtain an estimate of the WCET for the overall program using tech-
niques borrowed from static analysis. This approach works under two assumptions:
Firstly, the variation in execution time for a small section of code without branches
(i.e. a basic block) is small and able to be determined by measurements, even if these
are not exhaustive. Secondly, the dominant variation of execution times is caused by
the variability of executed paths through the program, which is where static analy-
sis helps [4, 8]. For high-end processors, cache analysis is required to augment the
measurements at the basic-block level.

In order to further refine the WCET analysis, it was performed not only on the
maximum execution time observed, but also on the distribution and thus providing
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the frequency of observed execution times. Such execution-time profiles [25] can
be interpreted as probability distributions and subsequently used in performing a
probabilistic analysis [5].

Compared to application code, WCET analysis of an operating-system kernel
presents extra challenges [9, 29], specifically in the structural and flow analysis
depicted in Figure 1.8. Kernel code is highly (manually) optimised, and typically
includes parts written in assembly language for efficiency. The combination of op-
timisation and assembly code means that the complexity of the structural analysis,
which is one of the fundamental steps in WCET analysis, becomes extremely diffi-
cult to automate. Furthermore, OS code presents the challenge that a single point of
entry — an exception-handler address — vectors to many different code paths, such
as interrupt-service delivery, exception handling and a variety of system calls. This
affects structural as well as flow analysis.

Dealing with the challenges especially of system-call vectors would require a
substantial investment into the automatic translation of kernel code into a control-
flow graph. However, such a tool would likely be even more complex than a com-
plete hardware simulator, as it would need to consider a very large state space of
possible input values (in architected registers). Such a complex tool would be al-
most impossible to get right, which undermines the point of determining WCET as
part of the for safety analysis of a system.

The (for now) preferred alternative is to rely heavily on programmer annotations.
While this scales poorly, it is acceptable in the case of a microkernel, owing to its
small size, relatively slow evolution (especially in the case of a formally-verified
kernel) and the fact that the structural and constraint analysis needs to be done only
once. In the case of seL4, there is additional benefit from the many invariants which
have been proved in the course of the formal verification. These can partially replace
manual annotations, and the existing verification framework makes it relatively easy
to add (and prove!) further invariants. In essence, the functional verification provides
(very precise) knowledge about properties of the code way beyond what is normally
available.

1.7 Conclusions

The rising complexity of embedded systems creates challenges in achieving trust-
worthiness in security- or safety-critical deployments. We have provided on overview
of some of these challenges, and indicated ways of addressing them. Recent work
at NICTA is a substantial step towards overcoming these challenges, with contribu-
tions in the areas of proofs of functional correctness of a microkernel, isolation in
resource management and scheduling, and analysis of worst-case execution times.
While our aim has been to create a trustworthy foundation for embedded software
systems in the form of a formally-verified microkernel, this is only the first step to-
wards trustworthy systems. Given a precisely-specified, -behaved, and -analysable
operating system, the challenge becomes how to lift the guarantees of the founda-
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tion to the level of whole systems. This includes systems composed of software
of varying degrees of trustworthiness that rely on the operating system to protect
safety- or security-critical components from malfunctions introduced by other com-
ponents, which may make up the vast majority of the overall code base. Our on-
going research aims at developing frameworks, methodologies, and tools to com-
pose demonstrably trustworthy embedded systems from components of varying crit-
icality and trustworthiness.
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