
An Architectural Approach for
Cost Effective Trustworthy Systems

Ihor Kuz, Liming Zhu, Len Bass, Mark Staples, Xiwei Xu
NICTA, Level 5, 13 Garden St, Eveleigh NSW 2015, Australia

School of Computer Science and Engineering, University of NSW, NSW 2052, Australia
firstname.lastname@nicta.com.au

Abstract— We describe a research program on design techniques
to enable the cost-effective construction of trustworthy systems.
The focus is on single-machine systems that can be formally
verified to provide desired system-wide security and safety
properties. Such systems are designed as compositions of small
trusted components and large untrusted components whose
behaviour is constrained by an underlying formally verified OS
kernel. Past work has shown that building these systems is
possible, now we wish to do so in a cost effective way. A key part
of doing this is to design, as early as possible, an architecture that
can provide the required trustworthiness properties. The
research program envisions methods, models, analyses, and
patterns to create and formally analyse such architectures. We
present initial work on this program and discuss the gaps and
research questions that will shape future research.

Keywords - trusted systems, trusted connectors, security
properties, confidentiality, trusted patterns.

I. INTRODUCTION
Constructing trustworthy large-scale systems is one of four

grand challenges in information security enumerated in 2004
[1]. Trustworthiness encompasses functional correctness and
also includes properties of security (confidentiality, integrity,
availability) and safety (it also relates to reliability and
maintainability, which we do not currently consider) [2].
Software is trusted when its failure can break specified
trustworthiness properties.

The reliance of trustworthy systems on the specification of
individual properties is understood in the trustworthy systems
community but not so well outside of that community. As an
example, you may trust an individual to keep a secret but not to
be able to leap tall buildings in a single bound. Keeping a
secret and leaping a building are two distinct properties with
different techniques for verifying and different levels of trust in
the verification techniques.

A common strategy for building trustworthy systems is to
identify the system’s trusted computing base (TCB), separate it
from the rest of the codebase, ensure that it is correct and show
that specific use of the TCB will guarantee trusted properties
for the whole system. Ensuring correctness of the TCB can be
done in a variety of ways, including testing, certification, code
synthesis, and formal verification. The highest levels of
assurance about the trustworthiness of a software system rely
on formal verification, but in practice, when it comes to
functional correctness, it is infeasible to formally verify the

source code of large codebases. The current limit is around
10,000 lines of code. However, system design techniques can
compose large-scale systems from few, small trusted
components and larger, untrusted components [3].

We build on previous work developing the formally
verified operating system microkernel, seL4 [4], and designing
and verifying systems built on top of seL4 [5]. The context of
this work is a single computer running software based on a
formally verified foundation. This previous work demonstrates
the feasibility of developing large trustworthy systems. Our
goal now is to enable the construction of such trustworthy
systems in a cost effective manner. A key part of doing this in a
development project is to design, as early as possible, a system
architecture that can provide the required trustworthiness
properties. This architecture then drives the further
development and verification of the whole system.

In the remainder of this paper, we lay out our vision of how
an architect would construct a trustworthy system. We follow
that with a description of existing results that lead us to believe
that our vision is realisable. We then present preliminary results
of an analysis with AADL and SPIN, ending with a description
of the gaps that must be closed to realise our vision.

II. OUR VISION OF HOW AN ARCHITECT WOULD
CONSTRUCT A TRUSTED SYSTEM

Our vision is that an architect should be able to design for
formally verified trustworthiness properties just as they design
for other properties, such as modifiability, performance, or
interoperability. This will involve design tradeoffs between the
levels of these properties and the levels of assurance in these
properties. Figure 1 shows the process of designing,
implementing, and verifying a trustworthy system. In this paper
we focus on the architectural aspects of this process (steps 1-5),
however, we describe the whole process for completeness and
to provide sufficient context.

In order to accomplish our vision, we see the architect
needing the following:
• A library of trusted patterns for each property, where a

trusted pattern is a pattern that has been shown (e.g., using
formal analysis) to provide a given property;

• Cost models to enable the estimation of the cost portion of
a cost/benefit analysis for the chosen properties;

• Tools that support the verification of chosen properties for
a proposed system architecture.

!000111! JJJoooiiinnnttt WWWooorrrkkkiiinnnggg CCCooonnnfffeeerrreeennnccceee ooonnn SSSoooffftttwwwaaarrreee AAArrrccchhhiiittteeeccctttuuurrreee &&& 666ttthhh EEEuuurrrooopppeeeaaannn CCCooonnnfffeeerrreeennnccceee ooonnn SSSoooffftttwwwaaarrreee AAArrrccchhhiiittteeeccctttuuurrreee

!777888---000---777666!555---444888222777---222///111222 $$$222666...000000 ©©© 222000111222 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///WWWIIICCCSSSAAA---EEECCCSSSAAA...222111222...555444

333222555

The architect starts by choosing the properties that must be
provided by the system, and constructs an architecture taking
advantage of the library of trusted patterns (step 1 of Figure 1).
The cost of building an assurance case for the chosen properties
can be estimated using the architect’s existing cost modelling
tools and the cost models associated with the chosen properties.
The cost/benefit of the chosen trustworthy properties are traded
off against other desired properties of the system (step 2 of
Figure 1).

The architect then represents the architecture in an
architecture description language and uses formal analysis
(such as model checking) to verify that the architecture could
support the desired properties. The verification relies on
assumptions provided by an underlying trusted computing
infrastructure, such as the formally proven microkernel (step 3
of Figure 1). This part of the process is iterative, as results of
analyses and tradeoffs may require re-architecting the system to
achieve the right balances (step 4 of Figure 1).

Figure 1. The process of developing a trustworthy system

Next, the development team elaborates the architecture by
partially synthesising components, glue code and proofs (step 5
of Figure 1). These are combined with implementations of
trusted and untrusted components to produce the final system
(step 6 of Figure 1) and a proof (using formal verification) of
the desired properties of the whole system (step 7 of Figure 1).
The architecture, verified by the formal analysis and
constrained by the underlying trusted infrastructure, dictates the
isolation and communication between components. To achieve
formal verification of the whole system, the architect will only
need to verify the correctness of each new trusted component,
and, due to the use of the trusted patterns and previously
verified infrastructure, will be able show how the trusted
components lead to the system’s trustworthiness properties.

III. EXISTING RESULTS
We describe a pattern for ensuring a confidentiality

property as an example of how we see the general problem
being solved. It is a generalisation of previous work in our
group of designing, implementing and verifying sel4-based

systems [5]. The TCB in such systems includes seL4, the
architecture framework, and all trusted components. Our
interest here is twofold. First, the use of a security pattern in a
system that has been implemented and whose design has been
formally verified is evidence that our research agenda is
achievable. Second, we identify the assumptions we are
making about the trustworthiness of the infrastructure without
which the pattern does not guarantee its security property.

This pattern, as illustrated in Figure 2, is for a connector
between several data sources (e.g., networks) and a data sink,
and ensures mutual confidentiality of the sources.

Figure 2. A trusted pattern for confidentiality

The pattern has two components and four data sources or
sinks. The components are:
• An untrusted Data Mover that is responsible for moving

data from a source to the sink. As implemented in [5] this
was a virtualised instance of a Linux-based network router
(which consists of millions of lines of code).

• A trusted Connector Manager. This is the component that
manages the internal connections and the permissions that
enable us to show the confidentiality property. In the
implementation this was a small component consisting of
approximately 1500 lines of code.

There are two data sources (A and B), one data sink, and
one source of switching signals (Switch Source).

The connector is responsible for routing traffic from the
active source to the Data Sink. The active source can be
switched between Data Source A and B by sending a signal on
the Switch Source. The security property is that the connector
will not cause any messages entering (or leaving) through Data
Source A to flow to Data Source B and vice versa.

The action of the trusted Connector Manager (assuming an
existing connection between Data Source A, the untrusted Data
Mover, and the Data Sink) is as follows.
• Delete the existing instance of the untrusted Data Mover.
• Zero out all memory that was accessible by the untrusted

Data Mover (including any memory in the Data Sink).
• Create a new instance of the untrusted Data Mover.
• Allow it to read from Data Source B and write to the Data

Sink.

333222666

As long as the base operating system can be trusted to
enforce isolation between the components in the system, to
enforce appropriate memory access control, and to perform
system setup correctly, we can show that the desired
confidentiality property is achieved. Note that while the whole
connector has a large codebase, its TCB remains small (only
the Connector Manager) and is within the bounds of formal
verification.

The runtime cost of using this pattern instead of just the
untrusted Data Mover is the performance overhead of starting,
stopping and running the Data Mover (for example, in the
implementation this was the cost of virtualising Linux). The
benefit is that now the whole connector can be trusted to
enforce the confidentiality property and can be used as a trusted
component to construct larger systems.

IV. AADL AND PROMELA/SPIN
In our initial exploration of appropriate languages and tools

for modelling and analysis of trusted patterns we have used
AADL (Architecture Analysis and Design Language) [6] and
PROMELA [7] (for the SPIN model checker). Here we outline
this work.

Figure 3. AADL model of the confidential connector

pattern
AADL introduces formal modelling concepts for distinct

components and their interactions. It provides the mode
abstraction, to explicitly define different configurations of
components and connections. Figure 3 shows the AADL model
of the pattern from Figure 2. We used modes to represent the
dynamic configuration of components in the pattern. Mode A
(black) and Mode B (grey) represent states in which Data
Source A is connected or Data Source B is connected,
respectively. Mode None represents the transitional state while
switching between Data Sources, where the Data Mover
instance has been deleted.

Transitions between the modes are triggered by events
emitted by the Connector Manager. The triggering of
Connector Manager events is described using the AADL
behaviour annex [8], as shown in Listing 1. This defines the
behaviour of the Connector Manager as a state machine. Events
(switch[1] and switch[2]) cause mode changes as part of the
state transitions. The state transitions themselves are triggered
by events from the Switch Source (switch_in).

Listing 1
annex behavior_specification {**
states
 s0: initial complete state;
 s_clear: state
transitions
 s0-[switch_in?(x)]->s_clear{switch_clear!;};
 s_clear-[]->s0{switch[x]!;};
**};

Our goal in modelling this pattern is to analyse whether it
can support the confidentiality property of preventing messages
from one Data Source flowing to the other. We employed
model checking using PROMELA and the SPIN tool.

In our PROMELA model, all components in the pattern are
modelled as active processes running concurrently in the initial
state, except for Data Mover, which is started and stopped
dynamically. The Connector Manager can create a Data Mover
by running its process, and delete a Data Mover by terminating
its process. Synchronous channels are used for control flow
(connect/disconnect messages), while asynchronous channels
are used for data flow. In particular, memory that is accessible
to the Data Mover is modelled by a buffer of the asynchronous
data channels. Clearing such memory is modelled by flushing
the appropriate buffer. The behaviour of the Connector
Manager trusted component is modelled by a set of explicitly
sequenced instructions, shown in Listing 2, while the behaviour
of untrusted components are modelled using a do clause that
allows the components to perform allowed actions in any
sequence, as shown in Listing 3.

Listing 2
active proctype CM(){
 mtype receive;
 do
 ::SS_CM?receive ->
 if

::(receive == A) -> ctrl_CM_DM!disconnect;
ctrl_CM_B!disconnect;ctrl_CM_T!disconnect;
flush(data_DM_B); flush(data_B_DM);
flush(data_DM_DS); flush(data_DS_DM);

 run DataMover(data_DM_A, data_DM_R);
 ctrl_CM_A!connect; ctrl_CM_DS!connect;
 mode = A;
 ::(receive == B) -> …;
 fi
 od
}

Listing 3
active proctype DataSourceA(){
 int data;
idle: ctrl_CM_A?connect; goto connected;
connected:
 do
 :: ctrl_CM_A?disconnect -> goto idle;
 :: data_DM_A?data; data_A = data;
 assert(data_A!=b);
 :: data_A_DM!a;
 od
}

333222777

Given the PROMELA model we use SPIN to simulate the
system’s execution and verify the confidentiality property. We
represent the confidentiality requirement as a taint property1.
We use two constants a and b to model the data from Data
Source A and Data Source B respectively. The Data Sink either
forwards the data it received from the Data Source (a or b), or
sends its own data (modelled by a third constant s). Basic
assertions (e.g., shown in line 8 of Listing 3) are used to check
whether A is tainted by data flows from B or vice versa.

We have performed an analysis of this model, with the
result that the confidentiality property relies on the specific
behaviour of the trusted Connector Manager. For example, if
we flush the memory after creating the Data Mover (lines 9 and
10 in Listing 2), the assertion would be violated.

The conclusions from our initial modelling and analysis
attempt are the following. Firstly, AADL on its own does not
support the necessary modelling of component behaviour. The
behaviour annex models the low-level behaviour, but does not
directly support the dynamic manipulation (creation and
deletion) of the components. Secondly, AADL does not have
sufficient capability to enable the type of formal analysis that
we wish to perform and, consequently, we relied on a mapping
of AADL to PROMELA for subsequent analysis of the
confidentiality property.

V. FURTHER RESEARCH
We have presented some of the preliminary results in

pursuing our research vision. In order to successfully achieve
our goals we will need to also do the following:
• Expand the trusted pattern set. We have described with our

example pattern one of a collection of patterns for
trustworthy systems. We must develop a library of such
patterns, building on prior work by others (e.g. [9]).

• Develop technical guidance and cost guidance to enable
the architect to select and perform architectural analysis.
Existing work on modelling and analysing architecture for
security properties [10][11] will be used where possible.

• Develop techniques to compose trusted patterns and to
reuse previously verified properties of these patterns in
analysing the resulting architecture.

• Define how architectural analyses relate to the code-level
formal verification of the resulting implementation. In
particular, the models used for architectural analysis
should correspond to models used for verification of the
resulting system and thus drive subsequent proof efforts.

• Implement and formally verify the glue code by which
components are composed. This is an important part of the
work, since, on the one hand, it provides a framework with
implementation-specific properties that we can rely on
when analysing and verifying the architecture, and on the
other hand, it is one of the links from the architecture
analysis to the full system verification.

1 This is a weaker form of the confidentiality property. Colleagues are
working on a stronger form based on non-interference, which we aim
to adopt at a later date.

• Create a cost model for the development and formal
verification of individual trusted components and of whole
systems. We have previously developed a detailed
descriptive model of the middle-out development and
verification process used for seL4 [12] and will build on
this experience in developing an architecture-level model.

VI. SUMMARY
Constructing large trustworthy systems has been a goal for

at least four decades. In this paper we have outlined our
research program for making this goal a reality and presented
initial results that we have achieved in pursuing this goal for
specific security properties. It is feasible to leverage a formally
verified TCB to establish assurances for large systems
containing large untrusted components. We believe software
architecture can enable system design and analyses to make
this more cost effective. While we currently tackle single-
computer systems, solving the problems discussed in this paper
will form the basis for examining even more complex,
distributed, trustworthy systems.

ACKNOWLEDGMENTS
NICTA is funded by the Australian Government as

represented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

REFERENCES
[1] S. W. Smith & E. H. Spafford, “Grand challenges in information

security: Process and output”, IEEE Security & Privacy, Jan/Feb, 2004.
[2] A. Avizienis, J. C. Laprie, B. Randell & C. Landwehr, “Basic concepts

and taxonomy of dependable and secure computing”, IEEE Transactions
on Dependable and Secure Computing, 1(1), 2004.

[3] J. Alves-Foss, W. S. Harrison, P. Oman & C. Taylor, "The MILS
architecture for high-assurance embedded systems", International
Journal Of Embedded Systems, 2(3-4), 2007.

[4] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H.
Tuch & S. Winwood. “seL4: Formal verification of an OS kernel”,
Proceedings of 22nd SOSP, ACM, 2009.

[5] J. Andronick, D. Greenaway & K. Elphinstone, “Towards proving
security in the presence of large untrusted components”, Proceedings of
the 5th International Conference on Systems Software Verification,
USENIX, 2010.

[6] Architecture Analysis & Design Language (AADL), AS5506 Rev. A,
Society of Automotive Engineers, 2009.

[7] G. J. Holzmann, The SPIN Model Checker, Addison-Wesley, 2004.
[8] R. B. Franca, J. P. Bodeveix, M. Filali & J. F. Rolland, “The AADL

behaviour annex – Experiments and roadmap”, Proceedings of the 12th
IEEE International Conference on Engineering Complex Computer
Systems, IEEE Computer Society, 2007.

[9] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann &
P. Sommerlad, Security Patterns: Integrating Security And Systems
Engineering, Wiley, 2006.

[10] J. Bau & J. C. Mitchell, "Security modeling and analysis", IEEE Security
& Privacy, 9(3), 2011.

[11] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, M.
Roveri, & R. Wimmer, "A model checker for AADL", Proceedings of
the 22nd International Conference on Computer Aided Verification,
2010.

[12] J. Andronick, R. Jeffery, G. Klein, R. Kolanski, M. Staples, H. Zhang, L.
Zhu, “Large-scale formal verification in practice: A process
perspective”, Proceedings of the 34th International Conference on
Software Engineering, 2012.

333222888

