
An Architectural Approach for 
Cost Effective Trustworthy Systems 

 

Ihor Kuz, Liming Zhu, Len Bass, Mark Staples, Xiwei Xu  
NICTA, Level 5, 13 Garden St, Eveleigh NSW 2015, Australia 

School of Computer Science and Engineering, University of NSW, NSW 2052, Australia 
firstname.lastname@nicta.com.au 

 
Abstract— We describe a research program on design techniques 
to enable the cost-effective construction of trustworthy systems. 
The focus is on single-machine systems that can be formally 
verified to provide desired system-wide security and safety 
properties. Such systems are designed as compositions of small 
trusted components and large untrusted components whose 
behaviour is constrained by an underlying formally verified OS 
kernel. Past work has shown that building these systems is 
possible, now we wish to do so in a cost effective way. A key part 
of doing this is to design, as early as possible, an architecture that 
can provide the required trustworthiness properties. The 
research program envisions methods, models, analyses, and 
patterns to create and formally analyse such architectures. We 
present initial work on this program and discuss the gaps and 
research questions that will shape future research. 

Keywords - trusted systems, trusted connectors, security 
properties, confidentiality, trusted patterns. 

I.  INTRODUCTION 
Constructing trustworthy large-scale systems is one of four 

grand challenges in information security enumerated in 2004 
[1]. Trustworthiness encompasses functional correctness and 
also includes properties of security (confidentiality, integrity, 
availability) and safety (it also relates to reliability and 
maintainability, which we do not currently consider) [2]. 
Software is trusted when its failure can break specified 
trustworthiness properties.  

The reliance of trustworthy systems on the specification of 
individual properties is understood in the trustworthy systems 
community but not so well outside of that community. As an 
example, you may trust an individual to keep a secret but not to 
be able to leap tall buildings in a single bound. Keeping a 
secret and leaping a building are two distinct properties with 
different techniques for verifying and different levels of trust in 
the verification techniques. 

A common strategy for building trustworthy systems is to 
identify the system’s trusted computing base (TCB), separate it 
from the rest of the codebase, ensure that it is correct and show 
that specific use of the TCB will guarantee trusted properties 
for the whole system. Ensuring correctness of the TCB can be 
done in a variety of ways, including testing, certification, code 
synthesis, and formal verification. The highest levels of 
assurance about the trustworthiness of a software system rely 
on formal verification, but in practice, when it comes to 
functional correctness, it is infeasible to formally verify the 

source code of large codebases. The current limit is around 
10,000 lines of code. However, system design techniques can 
compose large-scale systems from few, small trusted 
components and larger, untrusted components [3].  

We build on previous work developing the formally 
verified operating system microkernel, seL4 [4], and designing 
and verifying systems built on top of seL4 [5]. The context of 
this work is a single computer running software based on a 
formally verified foundation. This previous work demonstrates 
the feasibility of developing large trustworthy systems. Our 
goal now is to enable the construction of such trustworthy 
systems in a cost effective manner. A key part of doing this in a 
development project is to design, as early as possible, a system 
architecture that can provide the required trustworthiness 
properties. This architecture then drives the further 
development and verification of the whole system. 

In the remainder of this paper, we lay out our vision of how 
an architect would construct a trustworthy system. We follow 
that with a description of existing results that lead us to believe 
that our vision is realisable. We then present preliminary results 
of an analysis with AADL and SPIN, ending with a description 
of the gaps that must be closed to realise our vision. 

II. OUR VISION OF HOW AN ARCHITECT WOULD 
CONSTRUCT A TRUSTED SYSTEM 

Our vision is that an architect should be able to design for 
formally verified trustworthiness properties just as they design 
for other properties, such as modifiability, performance, or 
interoperability. This will involve design tradeoffs between the 
levels of these properties and the levels of assurance in these 
properties. Figure 1 shows the process of designing, 
implementing, and verifying a trustworthy system. In this paper 
we focus on the architectural aspects of this process (steps 1-5), 
however, we describe the whole process for completeness and 
to provide sufficient context.  

In order to accomplish our vision, we see the architect 
needing the following: 
• A library of trusted patterns for each property, where a 

trusted pattern is a pattern that has been shown (e.g., using 
formal analysis) to provide a given property; 

• Cost models to enable the estimation of the cost portion of 
a cost/benefit analysis for the chosen properties; 

• Tools that support the verification of chosen properties for 
a proposed system architecture. 
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The architect starts by choosing the properties that must be 
provided by the system, and constructs an architecture taking 
advantage of the library of trusted patterns (step 1 of Figure 1). 
The cost of building an assurance case for the chosen properties 
can be estimated using the architect’s existing cost modelling 
tools and the cost models associated with the chosen properties. 
The cost/benefit of the chosen trustworthy properties are traded 
off against other desired properties of the system (step 2 of 
Figure 1). 

The architect then represents the architecture in an 
architecture description language and uses formal analysis 
(such as model checking) to verify that the architecture could 
support the desired properties. The verification relies on 
assumptions provided by an underlying trusted computing 
infrastructure, such as the formally proven microkernel (step 3 
of Figure 1). This part of the process is iterative, as results of 
analyses and tradeoffs may require re-architecting the system to 
achieve the right balances (step 4 of Figure 1). 

 
Figure 1. The process of developing a trustworthy system 

Next, the development team elaborates the architecture by 
partially synthesising components, glue code and proofs (step 5 
of Figure 1). These are combined with implementations of 
trusted and untrusted components to produce the final system 
(step 6 of Figure 1) and a proof (using formal verification) of 
the desired properties of the whole system (step 7 of Figure 1). 
The architecture, verified by the formal analysis and 
constrained by the underlying trusted infrastructure, dictates the 
isolation and communication between components. To achieve 
formal verification of the whole system, the architect will only 
need to verify the correctness of each new trusted component, 
and, due to the use of the trusted patterns and previously 
verified infrastructure, will be able show how the trusted 
components lead to the system’s trustworthiness properties.  

III. EXISTING RESULTS 
We describe a pattern for ensuring a confidentiality 

property as an example of how we see the general problem 
being solved. It is a generalisation of previous work in our 
group of designing, implementing and verifying sel4-based 

systems [5]. The TCB in such systems includes seL4, the 
architecture framework, and all trusted components. Our 
interest here is twofold. First, the use of a security pattern in a 
system that has been implemented and whose design has been 
formally verified is evidence that our research agenda is 
achievable. Second, we identify the assumptions we are 
making about the trustworthiness of the infrastructure without 
which the pattern does not guarantee its security property. 

This pattern, as illustrated in Figure 2, is for a connector 
between several data sources (e.g., networks) and a data sink, 
and ensures mutual confidentiality of the sources. 

 
Figure 2. A trusted pattern for confidentiality 

The pattern has two components and four data sources or 
sinks. The components are: 
• An untrusted Data Mover that is responsible for moving 

data from a source to the sink. As implemented in [5] this 
was a virtualised instance of a Linux-based network router 
(which consists of millions of lines of code). 

• A trusted Connector Manager. This is the component that 
manages the internal connections and the permissions that 
enable us to show the confidentiality property. In the 
implementation this was a small component consisting of 
approximately 1500 lines of code. 

There are two data sources (A and B), one data sink, and 
one source of switching signals (Switch Source). 

The connector is responsible for routing traffic from the 
active source to the Data Sink. The active source can be 
switched between Data Source A and B by sending a signal on 
the Switch Source. The security property is that the connector 
will not cause any messages entering (or leaving) through Data 
Source A to flow to Data Source B and vice versa.  

The action of the trusted Connector Manager (assuming an 
existing connection between Data Source A, the untrusted Data 
Mover, and the Data Sink) is as follows. 
• Delete the existing instance of the untrusted Data Mover. 
• Zero out all memory that was accessible by the untrusted 

Data Mover (including any memory in the Data Sink). 
• Create a new instance of the untrusted Data Mover. 
• Allow it to read from Data Source B and write to the Data 

Sink. 
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As long as the base operating system can be trusted to 
enforce isolation between the components in the system, to 
enforce appropriate memory access control, and to perform 
system setup correctly, we can show that the desired 
confidentiality property is achieved. Note that while the whole 
connector has a large codebase, its TCB remains small (only 
the Connector Manager) and is within the bounds of formal 
verification. 

The runtime cost of using this pattern instead of just the 
untrusted Data Mover is the performance overhead of starting, 
stopping and running the Data Mover (for example, in the 
implementation this was the cost of virtualising Linux). The 
benefit is that now the whole connector can be trusted to 
enforce the confidentiality property and can be used as a trusted 
component to construct larger systems.  

IV. AADL AND PROMELA/SPIN 
In our initial exploration of appropriate languages and tools 

for modelling and analysis of trusted patterns we have used 
AADL (Architecture Analysis and Design Language) [6] and 
PROMELA [7] (for the SPIN model checker). Here we outline 
this work. 

 
Figure 3. AADL model of the confidential connector 

pattern 
AADL introduces formal modelling concepts for distinct 

components and their interactions. It provides the mode 
abstraction, to explicitly define different configurations of 
components and connections. Figure 3 shows the AADL model 
of the pattern from Figure 2. We used modes to represent the 
dynamic configuration of components in the pattern. Mode A 
(black) and Mode B (grey) represent states in which Data 
Source A is connected or Data Source B is connected, 
respectively. Mode None represents the transitional state while 
switching between Data Sources, where the Data Mover 
instance has been deleted. 

Transitions between the modes are triggered by events 
emitted by the Connector Manager. The triggering of 
Connector Manager events is described using the AADL 
behaviour annex [8], as shown in Listing 1. This defines the 
behaviour of the Connector Manager as a state machine. Events 
(switch[1] and switch[2]) cause mode changes as part of the 
state transitions. The state transitions themselves are triggered 
by events from the Switch Source (switch_in). 

 

Listing 1 
annex behavior_specification {** 
states  
  s0: initial complete state; 
  s_clear: state 
transitions 
  s0-[switch_in?(x)]->s_clear{switch_clear!;};  
  s_clear-[]->s0{switch[x]!;}; 
**}; 

Our goal in modelling this pattern is to analyse whether it 
can support the confidentiality property of preventing messages 
from one Data Source flowing to the other. We employed 
model checking using PROMELA and the SPIN tool. 

In our PROMELA model, all components in the pattern are 
modelled as active processes running concurrently in the initial 
state, except for Data Mover, which is started and stopped 
dynamically. The Connector Manager can create a Data Mover 
by running its process, and delete a Data Mover by terminating 
its process. Synchronous channels are used for control flow 
(connect/disconnect messages), while asynchronous channels 
are used for data flow. In particular, memory that is accessible 
to the Data Mover is modelled by a buffer of the asynchronous 
data channels. Clearing such memory is modelled by flushing 
the appropriate buffer. The behaviour of the Connector 
Manager trusted component is modelled by a set of explicitly 
sequenced instructions, shown in Listing 2, while the behaviour 
of untrusted components are modelled using a do clause that 
allows the components to perform allowed actions in any 
sequence, as shown in Listing 3. 

Listing 2 
active proctype CM(){  
  mtype receive; 
  do 
  ::SS_CM?receive -> 
    if 

::(receive == A) -> ctrl_CM_DM!disconnect; 
ctrl_CM_B!disconnect;ctrl_CM_T!disconnect;  
flush(data_DM_B); flush(data_B_DM);  
flush(data_DM_DS); flush(data_DS_DM);    

    run DataMover(data_DM_A, data_DM_R);   
    ctrl_CM_A!connect; ctrl_CM_DS!connect;  
    mode = A; 
    ::(receive == B) -> …; 
    fi 
  od 
} 

Listing 3 
active proctype DataSourceA(){ 
          int data; 
idle:     ctrl_CM_A?connect; goto connected;    
connected:   
  do  
  :: ctrl_CM_A?disconnect -> goto idle;      
  :: data_DM_A?data; data_A = data; 
     assert(data_A!=b);      
  :: data_A_DM!a;                            
  od                   
} 
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Given the PROMELA model we use SPIN to simulate the 
system’s execution and verify the confidentiality property. We 
represent the confidentiality requirement as a taint property1. 
We use two constants a and b to model the data from Data 
Source A and Data Source B respectively. The Data Sink either 
forwards the data it received from the Data Source (a or b), or 
sends its own data (modelled by a third constant s). Basic 
assertions (e.g., shown in line 8 of Listing 3) are used to check 
whether A is tainted by data flows from B or vice versa.  

We have performed an analysis of this model, with the 
result that the confidentiality property relies on the specific 
behaviour of the trusted Connector Manager. For example, if 
we flush the memory after creating the Data Mover (lines 9 and 
10 in Listing 2), the assertion would be violated. 

The conclusions from our initial modelling and analysis 
attempt are the following. Firstly, AADL on its own does not 
support the necessary modelling of component behaviour. The 
behaviour annex models the low-level behaviour, but does not 
directly support the dynamic manipulation (creation and 
deletion) of the components. Secondly, AADL does not have 
sufficient capability to enable the type of formal analysis that 
we wish to perform and, consequently, we relied on a mapping 
of AADL to PROMELA for subsequent analysis of the 
confidentiality property.  

V. FURTHER RESEARCH 
We have presented some of the preliminary results in 

pursuing our research vision. In order to successfully achieve 
our goals we will need to also do the following: 
• Expand the trusted pattern set. We have described with our 

example pattern one of a collection of patterns for 
trustworthy systems. We must develop a library of such 
patterns, building on prior work by others (e.g. [9]). 

• Develop technical guidance and cost guidance to enable 
the architect to select and perform architectural analysis. 
Existing work on modelling and analysing architecture for 
security properties [10][11] will be used where possible. 

• Develop techniques to compose trusted patterns and to 
reuse previously verified properties of these patterns in 
analysing the resulting architecture. 

• Define how architectural analyses relate to the code-level 
formal verification of the resulting implementation. In 
particular, the models used for architectural analysis 
should correspond to models used for verification of the 
resulting system and thus drive subsequent proof efforts. 

• Implement and formally verify the glue code by which 
components are composed. This is an important part of the 
work, since, on the one hand, it provides a framework with 
implementation-specific properties that we can rely on 
when analysing and verifying the architecture, and on the 
other hand, it is one of the links from the architecture 
analysis to the full system verification. 

                                                           
1 This is a weaker form of the confidentiality property. Colleagues are 
working on a stronger form based on non-interference, which we aim 
to adopt at a later date. 

• Create a cost model for the development and formal 
verification of individual trusted components and of whole 
systems. We have previously developed a detailed 
descriptive model of the middle-out development and 
verification process used for seL4 [12] and will build on 
this experience in developing an architecture-level model. 

VI. SUMMARY 
Constructing large trustworthy systems has been a goal for 

at least four decades. In this paper we have outlined our 
research program for making this goal a reality and presented 
initial results that we have achieved in pursuing this goal for 
specific security properties. It is feasible to leverage a formally 
verified TCB to establish assurances for large systems 
containing large untrusted components. We believe software 
architecture can enable system design and analyses to make 
this more cost effective.  While we currently tackle single-
computer systems, solving the problems discussed in this paper 
will form the basis for examining even more complex, 
distributed, trustworthy systems. 
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