
Correct, Fast, Maintainable – Choose Any Three!

Bernard Blackham and Gernot Heiser
NICTA and University of New South Wales, Sydney, Australia

{bernard.blackham,gernot}@nicta.com.au

Abstract

The common-case IPC handler in microkernels, re-
ferred to as the fastpath, is performance-critical and
thus is often optimised using hand-written assembly.
However, compiler technology has advanced signif-
icantly in the past decade, which suggests that we
should re-evaluate this approach.

We present a case study of optimising the IPC fast-
path in the seL4 microkernel. This fastpath is written
in C and relies on an optimising C compiler for good
performance. We present our techniques in modify-
ing the C sources to assist with compiler optimisa-
tion. We compare our results with a hand-optimised
assembly implementation, which gains no extra ben-
efit from hand-tuning.

1 Introduction

Focusing on the common case is the mantra of opti-
misation. For microkernels this is message-passing
inter-process communication (IPC), and as a result,
there has been a strong focus on improving the per-
formance of IPC [LES+97, GCC+05].

Many microkernels achieve good performance by
providing fastpaths for IPC, which improve the per-
formance of IPC operations by an order of magni-
tude. Fastpaths are created in order to perform a
specific operation for the most common set of con-
ditions. If any of these conditions do not hold, a fast-
path reverts back to the standard code path through
the kernel (referred to as the slowpath). A key prop-
erty of a fastpath is that the kernel’s behaviour should

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in the proceedings of APSys ’12 (July 23–24, 2012).

be functionally identical with or without it.
The first L4 microkernels were coded entirely in

assembly, in order achieve the best possible perfor-
mance from the hardware [L4Impl]. Later versions
such as Pistachio and Fiasco were written in C or
C++, however performance-critical sections such as
the IPC fastpaths were still in assembly.

As assembly does not need to comply with any
ABIs (other than at the system-call interface), more
opportunities for optimisation are available. By
hand-crafting fastpaths for specific CPUs, authors
can minimise pipeline stalls by careful instruc-
tion scheduling, avoid cache misses using strategic
prefetching, and craft the control flow to minimise
costly branches. Using these techniques, impressive
IPC times have been achieved – e.g. 151 cycles on the
Intel XScale PXA255 (ARMv5) [L4H] and 36 cycles
on Itanium [GCC+05].

However, these results challenge maintainability.
Assembly code is generally more difficult to read,
write and maintain; fastpaths are extremely fragile,
requiring full knowledge of the system to confidently
make any modifications.

seL4 [KEH+09] is the world’s first general-
purpose microkernel to have a complete machine-
checked proof of correctness. The seL4 code base is
written almost entirely in C, with only a few hundred
lines of assembly code where necessary. The formal
verification currently applies only to the C code, not
assembly.

seL4 similarly has a fastpath which improves the
performance of IPC by an order of magnitude. How-
ever the fastpath is written in C, as our verification
infrastructure could only formally verify C code, not
assembly. As a result, we expected a performance
penalty, but estimated it to be less than 10 %.

We have observed that modern C compilers for
RISC architectures are becoming competitive with

mailto:bernard.blackham@nicta.com.au

assembly crafted by a talented and skillful program-
mer. Using the gcc compiler on ARM, we have been
able to optimise the compiled machine code by mod-
ifying only the C source code.

We have improved the speed of the fastpath by
35 % through tuning of the C code to aid compiler
optimisations. Our fastpath is competitive with hand-
crafted assembly, and with other microkernels on the
same architecture. In this paper, we explore various
techniques for optimising the assembly output of the
compiler by refining the C code used for IPC. We
show that modern compilers can obtain almost all of
the gains attainable with hand-optimised assembly,
even for low-level kernel code.

2 Background

The debate over the merits of optimisation in assem-
bly code vs C (or other higher-level languages) dates
back to the 1970s and continues on today [Hyd].

Clearly, a knowledgeable and talented assembly
developer, given enough time and resources, can out-
perform a compiler. However there is the secondary
issue of maintainability. One can argue that highly-
optimised C code requires just as careful mainte-
nance as an equivalent assembly implementation in
order to preserve correctness and performance. We
contend that a greater level of skill, knowledge and
care is required to maintain an assembly version.

Whether compilers would ever catch up to the level
of a talented assembly developer is an old question.
Massalin investigated the idea of finding not just an
optimised sequence of instructions, but an optimal
sequence for a given loop-free construct [Mas87].
He wrote a brute-force compiler called a superop-
timiser to exhaustively search for the optimal se-
quence. Given the exponential nature of the super-
optimiser, it is limited to short sequences of code (a
dozen instructions in Massalin’s work).

Liedtke states that a microkernel should place em-
phasis on IPC performance above all other consid-
erations [Lie93]. For the Pentium, MIPS and Al-
pha architectures, the inherent architectural costs of
IPC have been shown to range between 45 and 121
cycles [LES+97]. On the ARM architecture, IPC
times as low as 151 cycles have been demonstrated
on the ARMv5 Intel XScale PXA255 [L4H]. Our
work focuses on the ARM11 (ARMv6) CPU core,

which has a deeper 8-stage pipeline. On this core,
L4 kernels have achieved 206 cycles for a one-way
IPC [KEH+09].

Gray et. al. describe their experience optimis-
ing the IPC fastpath for the Itanium processor
[GCC+05], with a complex VLIW pipeline. They
could reduce their IPC time from 508 cycles to 36
cycles by hand-optimising their assembly. We be-
lieve that on simpler pipelines common to RISC ar-
chitectures, modern compilers can achieve closer to
optimal output.

3 Microkernel IPC

IPC is often provided in both synchronous and asyn-
chronous forms, and seL4 is no exception. Syn-
chronous IPC transfers a message only when both
the sender and receiver are at a “rendezvous” point
– specifically, the sender must be ready to send and
the receiver must be ready to receive. This allows for
a direct transfer of data from sender to receiver. On
the other hand, asynchronous IPC does not require
the coordination of threads, as messages are buffered
in the kernel until the receiver is ready receive.

In L4-derived microkernels, synchronous IPC is
typically provided by five basic primitives:

• Send is a one-way message transfer to another
thread. The send will block until the recipient
thread is ready to receive.
• Wait receives a message from any thread that is

ready to send data to it, or blocks if no threads
are ready to send.
• Call is a combined send and receive operation

to another thread, and will run to completion
or fail with an error. It is often used by a
client to request an operation be performed by a
server. These semantics guarantee to the server
that it can respond without waiting or needing
to buffer the response.
• Reply is a non-blocking send, used to a re-

spond to a message received with Wait. If the
sender had used Call, then it is guaranteed to be
blocked and ready to receive the response.
• ReplyWait combines the effects of Reply and

Wait together. This sequence is frequently used
by servers, and in most cases allows for a direct
context switch.

Slowpath

Fastpath

 0 500 1000 1500

gcc

armcc

1776

308

1441

281

Figure 1: One-way cycle counts of the IPC slowpath
compared to the original IPC fastpath.

This synchronous IPC model is best suited to a
priority hierarchy such that servers always have a
higher priority than their clients. This allows both
Call and ReplyWait operations to directly transfer
data and control flow from clients to servers and vice-
versa, significantly improving IPC efficiency. As
a result, optimising these two operations offers the
largest benefit to real systems. The remainder of this
paper focuses on optimising these two synchronous
IPC operations within the seL4 microkernel.

Anatomy of an IPC fastpath In many
performance-critical applications, the focus of
optimisation is commonly on tight loops found in
computation kernels or memory copying. However,
in a microkernel-based system, the IPC path, unlike
typical hotspots, has very few tight loops and is
largely composed of conditional branches. This
precludes many of the usual optimisation techniques.

Although there are a large number of branches, the
majority of these handle exceptional circumstances.
The most common scenario for a synchronous IPC,
and the one that reaps the most benefit in optimising
for, is where a thread A sends a message to a thread
B, and:
• thread B is ready and waiting for a message;
• thread B can begin executing immediately under

the current scheduling discipline; and
• no error conditions occur.
In such a case, we can pass control flow directly

from thread A to thread B, copying the message di-
rectly between the two threads with no buffering.

There are numerous steps and checks involved in
handling a common IPC operation in seL4, such as
testing that all objects involved in the operation are
valid and in the correct state for the fastpath. If any of
the checks fail seL4 reverts to the slowpath. Assum-
ing all the checks succeed, the fastpath can proceed
to transfer the data and control to the new thread.

Figure 2: Control flow graphs of the slowpath (left)
and fastpath (right) of seL4. Each node in the graph
is a basic-block or a call to a function. The shaded
node in the fastpath leads into the slowpath.

Figure 1 shows the performance difference be-
tween the slowpath and the fastpath in seL4 – the
fastpath is 5.6 times faster. Figure 2 (left) shows the
control flow graph of the slowpath and offers some
insight into why it takes so much time to perform
precisely the same operation as the fastpath: it must
handle all exceptional circumstances, which results
in a larger cache footprint as well as incurring many
branches and potential branch mispredictions.

Focusing on the common case, we obtain a fast-
path with a control flow graph shown on the right of
Figure 2. The shaded node represents a call out to
the IPC slowpath. There are two loops to decode the
address of the destination and to transfer the message
data. A typical IPC in this fastpath would have al-
most no branching, except in the message copy. Even
decoding the address requires only a single loop iter-
ation in most systems. We use this fastpath as our
starting point for further optimisation.

4 Optimisation techniques

There is a plethora of “collective wisdom” for op-
timising C code, often given as simple tips or rules
which may allow a compiler to generate better per-
forming code. These techniques should obviously
not be applied blindly, as what performs better on
some architectures may be detrimental on others.
Additionally, many of these techniques, such as loop

reversal and unrolling, are performed automatically
by modern compilers.

Our improvements focused on using the gcc com-
piler (4.6.1), from Mentor Graphics’s CodeBench
Lite 2011.09-69. We also evaluated our improve-
ments with ARM’s own compiler (armcc 5.01).

The essence of our fastpath optimisation work is to
analyse the compiled machine code from the C com-
piler and search for missed optimisation opportuni-
ties. Opportunities may arise in the form of pipeline
stalls, redundant calculations, or sub-optimal data
packing. We found that almost all of these can be
resolved by modifications to the C code which give
the compiler more scope for optimisation.

In doing this step-by-step comparison, we per-
formed several simple optimisations which are com-
monly a part of the collective wisdom of optimisa-
tion, including:
• avoiding unnecessary use of char, short, and

signed types to avoid superfluous sign-extension
and zero-extension;
• avoiding unnecessary bit-masking, e.g. when it

is known that unused bits will be zero;
• giving branch hints to achieve straight-line code

for the common case;
• avoiding complex expressions which may result

in many live registers, leading to stack spilling.
We also employed some lesser known techniques,

described in the following sections, in order to assist
the compiler. We note that even a “smarter” com-
piler could not have performed most of these optimi-
sations automatically, as they depend on code invari-
ants which cannot be detected by static code analysis.

4.1 Avoiding pipeline stalls

The IPC fastpath is heavily control-oriented – there
are many conditional branches to ensure the condi-
tions for the fastpath are satisfied. Many of these
branches depend on values loaded from memory, and
form load-test sequences that create pipeline stalls.

For example, Figure 3(a) lists a portion of the seL4
fastpath that contains consecutive branches. Each
test depends on loading a value from memory. The
generated assembly code is shown in Figure 3(c). On
the ARM1136, each load instruction (LDR) has a 3-
cycle latency for its result. As the results here in r0
and r3 are required immediately, the CPU is stalled
for two cycles after both loads.

With knowledge of the pipeline and the intent of
the C code, a human can observe that the second load
can be issued earlier. This speculative loading cannot
be performed by the compiler, as there is no hint to
suggest that it is safe to do so – the validity of the sec-
ond pointer could depend on the result of the branch.

By “lifting” the load for the second memory access
above the first branch, we tell the compiler that it is
safe to issue the memory access earlier. This is shown
in Figure 3(b). The compiler may still choose to de-
fer the load until it is required. However in this case,
the compiler can see the optimisation opportunity to
avoid the pipeline stall, and has sufficient spare reg-
isters which can be utilised. The resulting assembly
code in Figure 3(d) has only one stall cycle, saving
three cycles off the execution of the fastpath.

We discovered many places where this simple op-
timisation could be used in the fastpath, giving the
compiler more flexibility to schedule instructions.

It should be noted that lifting accesses may not
always offer better optimisation opportunities to the
compiler. Due to the possibility of pointer aliasing,
a compiler is not always able to safely reorder a read
and a write to memory, even if the developer knows
it to be safe.1 Therefore, lifting a memory load may
actually result in increased register pressure, so this
optimisation should be used with care.

4.2 Expressing memory layout

In seL4, the thread object is composite, formed of
two smaller objects which are positioned adjacently
in memory – a CNode and a thread control block
(TCB), each 256 bytes. Thread objects are always
aligned to their size (512 bytes). Often, seL4 is re-
quired to access the CNode given a pointer to the
TCB. The address for the CNode was computed by
clearing the 8th bit of the TCB address.

This can be optimised by instead of clearing
the 8th bit, simply subtracting 28. By doing so,
the compiler is made aware of the actual memory
layout of these objects, which it could not infer
when we only cleared the bit (it is possible that
the bit may not have been set in the first place).

1Many compilers support strict aliasing, which guarantees
that pointers of different types will never overlap, however the
possibility for aliases of pointers of the same type still exists.
The restrict keyword can assist in excluding aliases in this case.

...

/* Check endpoint is not in send state. */

endpoint = *endpointPtr;

if ((endpoint & 0x3) == 0x1) goto slowpath;

/* Check that the caller cap is valid. */

callerCap = *callerCapPtr;

if (callerCap == 0) goto slowpath;

...

(a) A sample of C code without lifting optimisation.

...

endpoint = *endpointPtr;

callerCap = *callerCapPtr;

/* Check endpoint is not in send state. */

if ((endpoint & 0x3) == 0x1) goto slowpath;

/* Check that the caller cap is valid. */

if (callerCap == 0) goto slowpath;

...

(b) Code with callerCap load lifted.

ldr r0, [r4]

and r3, r0, #3

cmp r3, #1

beq slowpath

ldr r3, [ip, #-208]

cmp r3, #0

beq slowpath

(c) Generated assembly without lifting optimisation.

ldr r0, [r4]

ldr r3, [ip, #-208]

and r5, r0, #3

cmp r5, #1

beq slowpath

cmp r3, #0

beq slowpath

(d) Generated assembly with callerCap load lifted.

Figure 3: A sample code snippet where explicitly lifting memory accesses for the compiler aids optimisation.

In particular, it can optimise memory loads from
the CNode given the TCB address by negatively-
indexing the TCB address when performing the
memory load. In ARM assembly, this can be ex-
pressed as LDR r0, [r1, #-256], where r1 is the
TCB address. Although this only saves one cycle, it
also reduces register pressure, allowing the compiler
to use the register for other optimisations.

4.3 Usage of inline assembly

We use assembly code only for hardware-specific op-
erations which cannot be expressed in C. As the IPC
fastpath entails a context switch, it requires access-
ing CPU-specific registers which have no C equiva-
lent. By utilising inline assembly instead of function
calls to external assembly routines, the compiler is
not constrained to use the C ABI at these boundaries.
This allows for better register allocation, stack usage
and alias analysis. As we inline all assembly rou-
tines, including the return to userspace, the resulting
code has no branches in the case of a 0-length IPC.

4.4 Limitations of compiled C

Almost all of the optimisations that we were able
to identify could be expressed equivalently at the C
level. Some further optimisations required using as-
sembly, yet did not give a measurable gain to the IPC
fastpath. In particular, we were able to remove the

need for a valid stack. This potentially saves sev-
eral cycles, by avoiding unnecessary register loads
and memory accesses, and reduces register pressure.
However, despite removing all these superfluous in-
structions, the overall cycle count of the IPC fastpath
was not reduced, as removing these instructions left
bubbles in the pipeline where it was already stalled.

The extra register was not useful in the fastpath
either, as there were already two registers going
unutilised. For code with more register pressure, the
results may be quite different.

All attempts to further reduce the cycle count of
the IPC fastpath resulted in changes which could eas-
ily be expressed in C. There still remained 14 cycles
in which the pipeline was stalled due to data depen-
dencies, however it became increasingly difficult to
eliminate these stalls without significantly penalis-
ing non-fastpath IPC operations. Although we do not
claim our final assembly to be optimal, the time spent
optimising it further had well and truly reached the
point of diminishing returns.

5 Evaluation

We evaluated the results of our optimisations by mea-
suring the execution time on an ARM11 core on
the Freescale i.MX31 processor. We used the per-
formance monitoring unit to measure precise cycle
counts for 160 000 iterations of a ping-pong bench-

Original

C-optimised

Asm-optimised

Theoretical limit

 0 100 200 300

g
c
c

308

200

200 a
rm

c
c

281

246

240

163

Figure 4: Cycle counts of a one-way IPC via the
fastpath for a 0-length IPC message between threads
in different address spaces.

mark between two address spaces. We computed the
one-way IPC as half the average round-trip time. The
results are shown in Figure 4.

The “theoretical limit” is what we would achieve if
we could eliminate all unnecessary pipeline stalls in
the existing assembly, assuming it is otherwise opti-
mal. There are practical limitations to achieving this,
but this number is a lower bound, given the design
of seL4. The difference between “C-optimised” and
“Asm-optimised” reflects optimisations which could
not be performed at the C level (e.g. discarding the
stack and repurposing the stack pointer).

The best results were obtained using the gcc com-
piler. Although armcc often generates better op-
timised code than gcc, it was unable to optimise
our fastpath as effectively. We found that armcc
did not order code optimally, despite hints using
__builtin_expect(). As a result, there were 7
more branch mispredictions in the armcc version
compared to the result from gcc. These mispredic-
tions account for over 90 % of the difference between
gcc and armcc fastpaths.

We also measured the effect of compiling seL4
for ARM’s size-optimised Thumb instruction set.
Thumb reduced the size of the compiled fastpath (in
bytes) by 20 %, but increased the cycle count by over
80 %, as significantly more instructions were needed.

6 Discussion

Using optimisations at the C level has allowed us to
reduce the one-way IPC times by 35 %. Using mod-
ifications to the assembly code, we were able to re-
move superfluous instructions, but we were unable

to reduce the execution time further. Given our ex-
periences, we claim that for heavily control-oriented
code such as the fastpath, and for our register-rich
RISC platform, human-guided compilers can achieve
almost as good a result as hand-optimised assembly.

Our experiments were performed on a single-
issue pipeline, common to many embedded systems.
Multiple-issue (e.g. superscalar or VLIW) pipelines
pose interesting optimisation challenges both for
compilers and humans.

There may be situations where the compilers are
not aware of (or are unable to generate) instructions
that would lead to more optimised output. Inline as-
sembly may be able to assist in some of these cases,
whilst keeping the majority of the code in C.

Optimisation effort We dedicated around two
person-weeks of work to optimising the C fastpath.
Like many optimisation efforts, we achieved the ma-
jority of our gains within the first 30 % of the work,
rapidly reaching the point of diminishing returns. We
estimate that optimising an assembly implementation
would require at least twice as much effort, and sig-
nificantly increase the subsequent maintenance bur-
den.

Maintenance There are two distinct aspects to
maintaining code such as the fastpath: performance
and correctness. One disadvantage of a C-optimised
fastpath is that the performance is highly sensitive to
changes in the compiler. Vigilant performance re-
gression testing is required to ensure that the optimi-
sation efforts do not bit rot.

However, we claim that C code is significantly eas-
ier to understand, and to maintain correctness of, than
the equivalent assembly implementation. Changes to
data structures are much easier to incorporate into C
than in assembly.

Portability The majority of our optimisations do
not target a specific architecture or compiler – they
simply present further optimisation opportunities for
the compiler. For example, if there existed a super-
optimiser capable of scaling to produce optimal ma-
chine code for the fastpath, it too would be assisted
by our optimisations.

Verification The IPC fastpath is a verified part
of the seL4 microkernel – i.e., there is a machine-
checked formal proof that it adheres to the functional
specification and preserves all invariants within the
kernel. By limiting our optimisations to the C code,
we retain the ability to verify the fastpath.

Cache layout The majority of IPC benchmarks are
focused on hot-cache performance. Ideally, all mem-
ory accesses are in the L1 cache, which on our plat-
form can be accessed in a single cycle. However,
even for hot-cache performance, pathological mem-
ory layouts may lead to conflict misses and signifi-
cantly degrade performance.

There are approximately 120 unique instructions
executed by a one-way IPC, giving an instruction-
cache footprint of 18 cache lines. Due to the com-
pactness of the IPC fastpath, and the ease with which
code placement in the microkernel can be manipu-
lated, it is simple to avoid instruction-cache conflicts.

7 Conclusion

We have demonstrated that for heavily control-
oriented code, it is possible to perform significant
optimisations at the C level. Modern compilers are
sufficiently advanced that they can recognise many
optimisation opportunities. Where optimisations are
missed by the compiler, it is often due to a lack of
insight available to the compiler, and can be resolved
through modifications to the C sources.

Using carefully guided optimisations on the IPC
fastpath, we were able to attain all of the possible
optimisations we could conceive without resorting to
hand-crafting assembly code. On RISC platforms
such as ours, the need to write fastpaths in assembly
to get maximum performance is questionable when
modern compilers can achieve similar results in C.

Although these are preliminary results on two spe-
cific code paths, we believe that the techniques here
can generalise to hot code paths in both kernels and
general userspace code.

In order to achieve these optimisations, we have
had to gain an intricate understanding of the details
of the microarchitecture and closely inspect the gen-
erated assembly code. This is no different to the
depth of knowledge required to optimise an assembly

implementation. However, by performing optimisa-
tions at the C level, we retain expressiveness, reduce
maintenance overhead, and can make use of current
formal verification techniques.

Acknowledgements

We thank James Wilmot for his assistance with
benchmarking seL4’s IPC fastpaths.

NICTA is funded by the Australian Government as
represented by the Department of Broadband, Com-
munications and the Digital Economy and the Aus-
tralian Research Council through the ICT Centre of
Excellence program.

References
[GCC+05] Charles Gray, Matthew Chapman, Peter

Chubb, David Mosberger-Tang, and Gernot
Heiser. Itanium — a system implementor’s
tale. In 2005 USENIX, pages 264–278, Ana-
heim, CA, USA, Apr 2005.

[Hyd] Randall Hyde. The great debate. http:
//webster.cs.ucr.edu/Page TechDocs/
GreatDebate/.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot
Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engel-
hardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal verification of an
OS kernel. In 22nd SOSP, pages 207–220,
Big Sky, MT, USA, Oct 2009. ACM.

[L4H] The L4 headquarters. http://l4hq.org.

[L4Impl] Implementations of the L4 µ-kernel interface.
http://os.inf.tu-dresden.de/L4/impl.html.

[LES+97] Jochen Liedtke, Kevin Elphinstone, Sebastian
Schönberg, Herrman Härtig, Gernot Heiser,
Nayeem Islam, and Trent Jaeger. Achieved
IPC performance (still the foundation for ex-
tensibility). In 6th HotOS, pages 28–31, Cape
Cod, MA, USA, May 1997.

[Lie93] Jochen Liedtke. Improving IPC by ker-
nel design. In 14th SOSP, pages 175–188,
Asheville, NC, USA, Dec 1993.

[Mas87] Henry Massalin. Superoptimizer: a look at
the smallest program. SIGARCH Computer
Architecture News, Oct 1987.

http://webster.cs.ucr.edu/Page_TechDocs/GreatDebate/
http://webster.cs.ucr.edu/Page_TechDocs/GreatDebate/
http://webster.cs.ucr.edu/Page_TechDocs/GreatDebate/
http://l4hq.org
http://os.inf.tu-dresden.de/L4/impl.html

	Introduction
	Background
	Microkernel IPC
	Optimisation techniques
	Avoiding pipeline stalls
	Expressing memory layout
	Usage of inline assembly
	Limitations of compiled C

	Evaluation
	Discussion
	Conclusion

