
To Preempt or Not To Preempt, That Is the Question

Bernard Blackham, Vernon Tang and Gernot Heiser
NICTA and University of New South Wales, Sydney, Australia
{Bernard.Blackham,Vernon.Tang,gernot}@nicta.com.au

Abstract

Real-time operating systems (RTOSes) are tradition-
ally designed to be fully preemptible. This improves
the average interrupt response time of the system
but increases kernel complexity. An alternative de-
sign is to make the kernel mostly non-preemptible
and only handle pending interrupts at specific pre-
emption points within the kernel. While this poten-
tially worsens interrupt response times, we claim
that for a protected-mode RTOS, as required for
multi-criticality systems, non-preemptible kernels can
achieve worst-case latencies comparable to those of
fully-preemptible kernels.

In order to understand the latency limits achievable
in both approaches, we analyse and compare the worst-
case interrupt latencies of a fully-preemptible commer-
cial RTOS (QNX Neutrino) and a non-preemptible
real-time kernel (seL4). Our results indicate that a
non-preemptible kernel can achieve interrupt latencies
which are within a factor of two from those exhibited
by a fully-preemptible kernel.

1 Introduction

Hard real-time systems demand predictable worst-
case interrupt latencies—their interrupt response
times must be both bounded and short enough for
the application domain. This is especially true for
the real-time operating system (RTOS) that supports
such a real-time system. RTOSes, which tradition-
ally do not employ memory protection or dual-mode

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in the proceedings of APSys ’12 (July 23–24, 2012).

execution, have met these requirements by a fully-
preemptible design, where (almost) all RTOS code
runs with interrupts enabled.

While minimising interrupt latencies, the pre-
emptible design has a cost: RTOS code must be re-
entrant and is full of critical sections, which must
be protected by locks. Not only do locks introduce
run-time overhead (which affects average-case perfor-
mance), the resultant highly-concurrent code is diffi-
cult to reason about and therefore highly error-prone,
significantly increasing the potential for obscure bugs
which can be extremely hard to find and eliminate.

The growing complexity of real-time systems, in
particular the advent of multi-criticality systems,
where multiple functions are provided on a single
processor, necessitates the use of isolation between
components (and the RTOS). In a protected-mode OS,
hardware-imposed overheads significantly increase
the cost of switching between application and OS
operation, and the cost of switching between user
contexts (e.g. to handle an interrupt destined for a
partition different from the one presently executing).

In fact, these hardware costs are in the order of
dozens or even hundreds of cycles, in the same mag-
nitude as the (generally simple) functions performed
by an RTOS. This means that the cost of preempting
the RTOS operation is similar to the time required
for letting it complete uninterrupted, resulting in a
significant shift in performance trade-offs compared
to classical, unprotected RTOSes.

Yet, the belief persists in academia and industry
that an RTOS must be fully preemptible: for example,
commercial RTOSes supporting memory protection,
such as QNX’s Neutrino [QNX], Wind River’s Vx-
Works [Win] and Green Hills Software’s INTEGRITY
[Gre], are fully preemptible.

We claim that the perceived need for a fully-
preemptible design of a protected RTOS is a myth.

mailto:bernard.blackham@nicta.com.au


Specifically, we assert that, for systems employing
dual-mode execution and memory protection, a non-
preemptible design can achieve similar worst-case
performance as a fully-preemptible approach, while
remaining much simpler (and therefore more trustwor-
thy) and providing better average-case performance.

We support this claim by examining the worst-case
execution time (WCET) that can be achieved by a non-
preemptible kernel, our seL4 microkernel [KEH+09].
For comparison, we perform a WCET analysis of a
system using a mature, fully-preemptible design, the
commercial QNX microkernel [QNX]. Our initial
study shows that the worst-case interrupt latencies
achievable by the two systems are at least similar to
those of QNX, suggesting that there is no inherent
advantage to the fully-preemptible design that would
justify the added complexity and reduced average-
case performance.

2 Background

While the traditional RTOS design is generally re-
ferred to as fully preemptible, this notion has to be
taken with a grain of salt: there is always some code
in the kernel which needs to execute atomically, and
thus cannot be preempted. Atomicity is achieved by
disabling interrupts momentarily, which on a multi-
processor is combined with spin locks. Uninterrupt-
ible sequences include kernel entry and exit, interrupt
dispatching, and accesses to data structures shared
between multiple execution contexts.

The alternative design, referred to as non-preempt-
ible, disables interrupts while the kernel is executing,
resulting in a much simpler kernel design and imple-
mentation, as concurrency issues are avoided. The
resulting RTOS code is easier to understand, debug
and reason about. It also simplifies the process of for-
mally proving the functional correctness of the code,
something that is presently considered infeasible for
preemptible programs given their high levels of con-
currency [KEH+09]. The simplicity also tends to
result in better average-case performance, which is
the reason this approach has traditionally been taken
in L4 microkernels.

RTOS designers, even when targeting high-
performance processors typically used for protected-
mode systems, aim to achieve worst-case interrupt

latencies of the order of tens of microseconds or less.
While this allows for a fair amount of computation, it
is difficult (if not impossible) to design an practical
RTOS where all system calls are so short. However,
interrupt latency be reduced by adding preemption
points in long-running kernel operations. Preemption
points respond to any pending interrupts immediately,
introducing a limited amount of concurrency. The
approach requires that kernel data structures be in
consistent states when these points are encountered.
Furthermore, the designer must ensure that the inter-
rupted operations are eventually completed, and that
high interrupt rates do not impede progress. These
requirements complicate and limit the placement of
preemption points.

Note that we do not claim that a non-preemptible
approach is always the right choice. System calls
in monolithic operating systems, such as Windows,
Linux or Mac OS, can execute for a long time. Lim-
iting the WCET in such a case would require a very
large number of preemption points, resulting in neg-
ligible gain over a preemptible approach due to the
added complexity. In a well-designed microkernel,
however, most kernel operations are very short, and
are dominated by entry/exit and context-switching
costs. Protected-mode RTOSes are inevitably micro-
kernels, which is why we target this class of system
in our study.

At the other extreme, the fully-preemptible design
makes sense for a classical, unprotected RTOS, where
most interrupts can be handled with minimal switch-
ing of state. Such RTOSes can achieve interrupt la-
tencies of up to a few hundred cycles. Hofer et al.
have achieved latencies bordering on the limits of
the hardware by taking advantage of the CPU’s inter-
rupt dispatcher for scheduling [HLSSP09], well below
what is feasible in a protected-mode kernel.

The classical RTOS is the best choice in a deeply-
embedded system, where a small microcontroller runs
relatively simple control software. However, real-time
systems are becoming highly complex, running large
software stacks, which are hard to debug and assure
when using a flat address-space model, increasing the
attraction of protected-mode RTOSes. Furthermore,
mixed-criticality systems require strong isolation be-
tween subsystems, which call for hardware-enforced
memory protection.

These developments drive the uptake of protected



RTOSes, and it makes sense to think about the best
approach to their design. We have already mentioned
the difficulty in reasoning about highly-concurrent
code, which results from a fully-preemptible design.

Given the safety-critical nature of many hard real-
time systems, trustworthiness of the OS is an issue
of growing importance. The recent formal proof of
functional correctness of the seL4 microkernel shows
that it is a promising platform for building safety-
critical systems. This formal verification was only
feasible due to the non-preemptible design of seL4
[KEH+09].

On the other hand, a fully-preemptible kernel,
where interrupts are only disabled for short pieces
of code, is far easier to analyse for the worst-case
interrupt latency, which is a possible reason why this
approach is generally used in industry. However, as
we have recently shown on seL4 [BSC+11], it is feasi-
ble to perform a complete and sound WCET analysis
of a non-preemptible kernel.

Despite significant effort invested into reducing the
WCET of seL4, it is still in the hundreds of microsec-
onds [BSH12], which is at least an order of magnitude
larger than what is achievable by preemptible kernels,
even protected ones. However, the work on seL4 was
subject to the additional constraint that the resulting
kernel code can still be functionally verified, some-
thing that is presently not achievable at all for pre-
emptible kernels. We are facing a trade-off between
assurance and timeliness.

If we are willing to lower our expectation of assur-
ance to a level closer to that of present commercial
systems (meaning we appease ourselves with the tra-
ditional approaches of testing and code inspection,
augmented with model checking) then the WCET of
a non-preemptible kernel can be greatly reduced, to
the point where it approaches the WCET achievable
with the preemptible approach. Even if not formally
verified, the resulting non-preemptible kernel is much
less complex, and as such easier to assure, than a
fully-preemptible one.

3 Approach

We perform our analysis by adapting the tools and
techniques developed for our previous work in the tim-
ing analysis of seL4 [BSC+11]. Our process involves

performing a static analysis to determine the worst-
case execution time between two given points in a pro-
gram, using a model of the hardware to conservatively
estimate the timing of cached and pipelined execution
(based on a modified version of Chronos [LLMR07]).

We refer the reader to our previous work for further
details on our toolchain and method to analyse seL4.

3.1 Analysis targets

A non-preemptible kernel Most L4 kernels use a
non-preemptible design. We focused on the seL4
microkernel as representative of such a design, as we
already have a comprehensive WCET analysis of the
entire microkernel [BSC+11].

As seL4 runs with interrupts disabled during ker-
nel execution, preemption points are used to limit
interrupt latency. Therefore, the worst-case interrupt
latency of seL4 is given by the sum of the WCETs of
the longest non-preemptible path and the interrupt de-
livery path to a user process. seL4’s preemption points
have so far been placed within routines that traverse
unbounded data structures, and hence are potentially
long-running.

In order to achieve good performance, microkernel-
based systems rely on very fast IPC operations, typi-
cally provided by IPC fastpaths [Lie93]. A fastpath
usually improves IPC times by orders of magnitude,
as it handles only the most commonly executed oper-
ations, deferring other operations to the conventional
slowpath. As adding preemption points in a code path
increases its uninterrupted execution time, making
the IPC fastpath preemptible would significantly de-
grade average-case performance. Furthermore, given
the very limited functionality of the IPC fastpath, it
would be very difficult (if not impossible) to preempt
it while still guaranteeing progress.

For these reasons, we left the IPC fastpath non-
preemptible, and use the WCET of the fastpath as the
target latency for all other non-preemptible code paths
in seL4. This is based on our experience with reduc-
ing the WCET of seL4 [BSH12]. There we found that
it was generally possible to space preemption points
almost arbitrarily closely in the longer kernel opera-
tions, but in many such cases the re-verification effort
would have been too high for the time being. While
we have not applied such changes to the kernel yet,
we are confident that all code paths can be modified to



limit their non-preemptible parts to run for no longer
than the WCET of the IPC fastpath.
A fully-preemptible kernel There are several fully-
preemptible, general-purpose kernels used in real-
time systems today, including QNX’s Neutrino
[QNX], Wind River’s VxWorks [Win] and Green Hills
Software’s INTEGRITY [Gre].

We analysed the QNX Neutrino microkernel as a
representative of the fully-preemptible approach due
to its maturity and broad real-world adoption. QNX
source was made publicly available in 2008. Although
our WCET analysis works on a compiled binary, the
availability of source code was important to us in order
to help direct the analysis. The manual intervention
steps benefit substantially from a detailed knowledge
of the program’s internals.

We based our analysis on a QNX source snapshot
from approximately July 2009, as QNX source code
is unfortunately no longer generally available to the
public. We performed a cursory comparison between
the compiled assembly of our snapshot and the latest
QNX Neutrino 6.5.0 binary, and concluded that the
intervening changes were insubstantial to our results.

3.2 Analysing QNX

Characterising the interrupt latency of a fully-
preemptible kernel requires analysing two groups of
code: (1) all regions where interrupts are disabled in
the kernel; and (2) the kernel’s interrupt dispatch rou-
tine which processes incoming interrupts and delivers
them to a user-space interrupt handler. The worst-case
interrupt latency for the highest-priority interrupt is
the sum of these two.
Control-flow graph extraction As QNX was not
written with the same emphasis on verifiability as
seL4, its construction was less amenable to static anal-
ysis. This called for a number of changes to our anal-
ysis tools, in particular our control flow graph (CFG)
extraction tool, Quoll.

Quoll was initially written with the express purpose
of performing a WCET analysis on seL4. This meant
that it implemented little more than what was needed,
so we had to extend it to support machine instructions
that were used in QNX but not in seL4.

We also extended Quoll to allow the user to manu-
ally specify the destination of indirect calls to function
pointers, which were not present in seL4. Fortunately,

these could all be resolved statically.
As the QNX code base is far larger than that of seL4,

the initially-generated CFG was prohibitively large
and complex. We tackled this by adding features to
Quoll to support analysing only specific subsets of the
CFG. This was achieved by forcing specific branches
to be marked as taken or ignored in this early stage of
the analysis. We ensured that our analysis remained
sound by ensuring that the subset analysed contained
part of the critical path for interrupt delivery.

Our tools are still limited in what they can analyse,
and we had to take a few shortcuts. To ensure the
validity of our hypothesis, we took, where necessary,
an optimistic approach to the analysis of QNX (i.e.
we under-estimate its WCET) and a pessimistic one
with seL4 (i.e. over-estimation).

For instance, we ignored QNX’s support for spo-
radic scheduling, as this would have significantly
complicated our analysis; by ignoring this we under-
estimate the WCET of QNX. Furthermore, we found
that QNX has a suboptimal implementation of a prior-
ity queue (a sorted linked list with O(n) complexity);
we ignored this as there is obviously a betterO(log n)
implementation.
Analysing runtime-generated code The QNX Neu-
trino RTOS follows a generic pattern in its design.
For each supported processor architecture (ARM, x86,
etc.), QNX provides a single procnto binary (modulo
options such as instrumentation). QNX also provides
generic board support package (BSP) code. System
integrators provide their own machine-specific code
(for booting, hardware control, etc.) using the QNX
BSP code as a base.

A large proportion of the interrupt-handling code
depends on the specifics of the machine. Unfortu-
nately, QNX accomplishes this in a way that compli-
cates the static analysis process. At boot time, the
interrupt vector code is dynamically generated based
on the system’s interrupt topology, and is interspersed
with integrator-provided code to interface with the
interrupt controllers. While this has allowed QNX to
ship a single binary that does not need static reloca-
tion or other build-time transformations, it also means
that the interrupt vector code is not directly available.

We had observed that the generated interrupt vector
code in memory did not change after booting and so
we were able to simply dump the generated code from
a running system. We proceeded with our analysis by



re-assembling and linking the dumped code with the
rest of the procnto image. In this way, we were able
to preserve symbols, aiding in the maintenance of our
manual annotations.
Event handling Although QNX provides a number
of different interrupt delivery methods to userspace,
we focus on one mechanism provided by QNX,
namely using the InterruptWait system call. This
mechanism is functionally equivalent to that used in
seL4. More importantly, of the different interrupt
delivery methods available, it represents a best case
and therefore a lower bound on the time required to
dispatch an interrupt to userspace code. Other meth-
ods, such as signal delivery or thread creation, require
significantly more work to process an interrupt, com-
pared with waking an existing blocked thread.

3.3 Improving seL4’s WCET

We have previously shown that the WCET of many
long-running operations in seL4 can be reduced while
preserving verifiability [BSH12]. Here we describe
several improvements to seL4 that can reduce the
worst-case interrupt latency further, if we drop the
requirement for formal verification. This enables opti-
misations which reduce WCET or allow more liberal
use of preemption points.

The longest path through seL4 corresponds to a
worst-case IPC operation. It is triggered by sending
a full-length message, accompanied by a number of
capability transfers that are used to delegate access
to kernel objects. seL4 uses capabilities [DVH66] for
access control, and allows system designers to specify
the “address” of a capability in a 32-bit capability
space, represented internally as a directed graph. Al-
though this provides a large degree of flexibility to
system designers, it impacts negatively on real-time
performance, as decoding the address of a capability
requires traversing up to 32 edges of a directed graph.
Within a single kernel invocation, this may occur up to
11 times, generating an immense number of potential
cache misses.
Removing capability addressing We can begin im-
proving the WCET for seL4 by forgoing its flexible
capability addressing scheme, ensuring that all capa-
bilities can be resolved by traversing only a single
level within the capability space. Most RTOSes, in-
cluding QNX, do not offer anything comparable to

the flexible addressing scheme of seL4. At worst this
makes seL4’s addressing on par with other RTOSes,
where a single level of indirection is typically used to
address kernel objects.

To accomplish this, we need not modify seL4; in-
stead, system designers can use seL4’s built-in au-
thority model to prevent untrusted code from creating
more than one level of addressing. This allows us to
reduce the number of potential cache misses caused
by address lookups by a factor of 32.
Atomic send-receive seL4’s IPC path latency can
also be improved by making certain IPCs preemptible.
As mentioned earlier, we do not wish to make the IPC
fastpath preemptible as it would impact on system per-
formance. However, the IPC slowpath can be made
preemptible in one specific case—the ReplyWait op-
eration, which atomically performs the functionality
of two operations commonly called together: Reply
and Wait. The IPC fastpath relies on the atomicity of
these operations in order to attain a significant per-
formance benefit. However, if an IPC operation falls
back to the slowpath, there is a negligible penalty
in adding a preemption point between the send and
receive phases.
Global kernel mapping copy The seL4 kernel is
mapped into virtual memory in the top 256 MiB of
every address space on the system. This mapping is
represented by 1 KiB of data in every page directory,
which must be copied each time a new page directory
is created. The process of copying these mappings is
currently non-preemptible. Two possible solutions are
to (a) simply add preemption points to the copy oper-
ation, or (b) move the entire seL4 kernel into its own
32-bit address space. The latter solution simplifies
the kernel, avoiding the address space copy entirely.
However, it also impacts negatively on overall perfor-
mance, as a context switch is then required for every
kernel entry and exit. Although more complex to im-
plement, we assume the first approach is used in our
analysis.
Cache pinning Although CPUs have increased in
speed significantly in the past 30 years, memory has
not kept the same pace. As a result, operations which
are inherently memory-intensive have not seen a great
improvement from increased CPU speed. The in-
creased disparity between CPU and memory speeds
have pushed hardware manufacturers to include one
or more levels of caches even in embedded systems.



QNX seL4
Code region WCET WCET
Longest D-I region >4 441 ∼22 000
Interrupt to userspace >17 413 ∼10 000
Total: >21 854 ∼32 000

Table 1: The upper-bound WCET of seL4, and a
subset of code paths in QNX which directly affect
interrupt latency, in cycles.

These caches can be accessed significantly faster than
main memory. For example, our test platform has
two levels of caches—the first can be accessed in a
single cycle and the second in 26 cycles, compared
with external memory latency of 96 cycles. However,
these fast caches are typically much smaller than main
memory.

As microkernels are intended to provide the bare
minimum functionality for ensuring security of a sys-
tem, they are typically very small. An seL4 microker-
nel binary can fit into 36 KiB. The L2 cache on our
platform is 128 KiB, which means that it would be
possible to fit almost the entire kernel code into 1/4

of the L2 cache. Our analysis therefore assumes the
kernel is pinned in the L2 cache, reducing the latency
of L1 instruction cache misses by 73 %.

4 Results

Using our WCET analysis tools, we computed the
WCET of a subset of the QNX interrupt handling
paths. There are other paths through QNX which
we know to have a longer interrupt delivery time,
however they proved more difficult to analyse. Thus
the results presented for QNX are not absolute worst
cases but instead lower bounds on the worst case,
which we believe to be suitably representative of a
fully-preemptible kernel.

Table 1 shows the results of our analysis of both
QNX and seL4. On both QNX and seL4, the worst-
case interrupt latency is the sum of both the longest
region with interrupts disabled, and the time to dis-
patch an interrupt to a user thread. For QNX, this
would lead to a minimum worst case of about 22 k
cycles. The longest disabled-interrupt (D-I) region
actually corresponds to a portion of the interrupt dis-
patch routine which must execute with interrupts off.

For comparison, we investigated the limits of
WCET of a mostly non-preemptible kernel, our mod-
ified seL4. We estimated the WCET of the longest
disabled-interrupt region by adapting our previous
analysis [BSH12] to model the effects of the modifica-
tions described in Section 3.3. The interrupt dispatch
time is the worst-case execution time of the interrupt
delivery path in seL4.

The totals in Table 1 show the worst-case interrupt
latencies of a representative fully-preemptible kernel
and non-preemptible kernel as roughly 22 k cycles
and 32 k cycles, respectively. These results suggest
that the worst-case interrupt latency achievable by
a well-designed non-preemptible kernel is no more
than a factor of 1.5 from that of a fully-preemptible
kernel. If we consider that QNX’s interrupt dispatch
to userspace could be improved to be on par with our
estimate for seL4, the non-preemptible kernel is still
only a factor of 2.2 worse-off than a fully-preemptible
one.

5 Conclusion

We have explored the differences between the worst-
case interrupt latencies of (mostly) non-preemptible
and (almost) fully-preemptible kernels. Low worst-
case interrupt latencies are one crucial aspect of build-
ing mixed-criticality systems supporting hard real-
time applications.

We have presented strong evidence to suggest that a
non-preemptible kernel design can provide worst-case
interrupt latencies competitive with that of a fully-
preemptible kernel. Although these are preliminary
results, it is promising for system builders who are
seeking to create trustworthy systems with enhanced
levels of assurance enabled by the relative ease of
reasoning about non-preemptible systems.

Our future work aims to implement the modifica-
tions to seL4 to reduce the interrupt response time to
approximately 30 k cycles. We also plan to examine
more deeply the reasons for the interrupt latencies
applicable to both types of systems, and explore the
feasibility of reducing worst-case interrupt latencies
even further.



Acknowledgements

NICTA is funded by the Australian Government as
represented by the Department of Broadband, Com-
munications and the Digital Economy and the Aus-
tralian Research Council through the ICT Centre of
Excellence program.

References

[BSC+11] Bernard Blackham, Yao Shi, Sudipta
Chattopadhyay, Abhik Roychoudhury,
and Gernot Heiser. Timing analysis of
a protected operating system kernel. In
32nd RTSS, Vienna, Austria, Nov 2011.

[BSH12] Bernard Blackham, Yao Shi, and Ger-
not Heiser. Improving interrupt response
time in a verifiable protected microker-
nel. In 7th EuroSys Conf., pages 323–
336, Bern, Switzerland, Apr 2012.

[DVH66] Jack B. Dennis and Earl C. Van Horn.
Programming semantics for multipro-
grammed computations. CACM, 9:143–
155, 1966.

[Gre] Green Hills Software. INTEGRITY real-
time operating system. http://www.ghs.
com/products/rtos/integrity.html.

[HLSSP09] Wanja Hofer, Daniel Lohmann, Fabian
Scheler, and Wolfgang Schröder-
Preikschat. Sloth: Threads as interrupts.
In 30th RTSS, 2009.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Ger-
not Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch,
and Simon Winwood. seL4: Formal ver-
ification of an OS kernel. In 22nd SOSP,
pages 207–220, Big Sky, MT, USA, Oct
2009. ACM.

[Lie93] Jochen Liedtke. Improving IPC by ker-
nel design. In 14th SOSP, pages 175–
188, Asheville, NC, USA, Dec 1993.

[LLMR07] Xianfeng Li, Yun Liang, Tulika Mitra,
and Abhik Roychoudhury. Chronos: A
timing analyzer for embedded software.
In Science of Computer Programming,
Special issue on Experimental Software
and Toolkit, volume 69(1-3), Dec 2007.

[QNX] QNX. Operating systems. http://www.
qnx.com/products/neutrino-rtos/.

[Win] Wind River. Wind River VxWorks
RTOS. http://windriver.com/products/
vxworks/.

http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
http://www.qnx.com/products/neutrino-rtos/
http://www.qnx.com/products/neutrino-rtos/
http://windriver.com/products/vxworks/
http://windriver.com/products/vxworks/

	Introduction
	Background
	Approach
	Analysis targets
	Analysing QNX
	Improving seL4's WCET

	Results
	Conclusion

