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Abstract. In 2011, simple and concise axioms for feature compositions,
interactions and products have been proposed by Batory et al. They were
mainly inspired by Kästner’s Colored IDE (CIDE) as well as by experi-
ence in feature oriented programming over the last decades. However,
so far only axioms were proposed; consequences of these axioms such as
variability in models have not been studied. In this paper we discuss the
proposed axioms from a theoretical point of view, which yields a much
better understanding of the proposed algebra and therefore of feature
oriented programming. For example, we show that the axioms charac-
terising feature composition are isomorphic to set-theoretic models.

1 Introduction

Over the last years Feature Oriented Programming and Feature Oriented Soft-
ware Development (e.g. [7,8]) have been established in computer science as a
general programming paradigm that provides formalisms, methods, languages,
and tools for building maintainable, customisable, and extensible software. In
particular, Feature Orientation (FO) has widespread applications from network
protocols [7] and data structures [9] to software product lines [20]. It arose from
the idea of level-based designs, i.e., the idea that each program (design) can
be successively built up by adding more and more levels (features). Later, this
idea was generalised to the abstract concept of features. A feature reflects an
increment in functionality or in the software development.

Over the years, FO was more and more supported by software tools. Exam-
ples are FeatureHouse [2], the AHEAD Tool Suite [5], GenVoca [11] and Colored
IDE (CIDE) [19]. As shown in several case studies, these tools can be used for
large-scale program synthesis (e.g. [2,20,18,19]).

Although the progress over the recent past in the area of FO was quite impres-
sive, the mathematical structure and the mathematical foundations were studied
less intensively. Steps towards a structural description and analysis are done with
the help of feature models. A feature model is a (compact and) structural repre-
sentation for use in FO. With respect to (software) product lines it describes all
possible products in terms of features. Feature models were first introduced in



the Feature-Oriented Domain Analysis method (FODA) [16]. Since then, feature
modelling has been widely adopted by the software product line community and
a number of extensions have been proposed. A further step towards an abstract
mathematical description of FO was AHEAD [8]. It expresses hierarchical struc-
tures as nested sets of equations. Recently, several purely algebraic approaches
were developed:

(a) Feature algebra [3] captures many of the common ideas of FO, such as in-
troductions, refinements, or quantification, in an abstract way. It serves as
a formal foundation of architectural metaprogramming [6] and automatic
feature-based program synthesis [14]. The central notion is that of a feature
structure forest that captures the hierarchical dependence in large products
or product lines. Features may be added using the operation of forest super-
imposition, which allows a stepwise structured buildup.

(b) Coloring algebra [10] (CA) captures common ideas such as feature inter-
action, products and feature composition. It does not use an explicit tree
or forest structure. Rather, the connection between product parts is made
through variation points at which features or their parts may be inserted or
deleted. Next to product composition, the algebra also takes feature inter-
action into account by defining operators for determining conflicts and their
repairs.

(c) Delta modeling [13] is not centred around a program and its structure.
Rather it describes the building history of a product in the form of a se-
quence of modifications, called deltas, that are incrementally applied to an
initial product (e.g., the empty one). Conflict resolution is performed using
special deltas.

The present paper builds on the second algebraic structure. Starting with a
brief recapitulation of the axioms of CA and their motivation in Section 2, we
derive some basic properties for CA in Section 3, where we also discuss their
relationship to FO. In Section 4, we present one of the main contributions of the
paper, namely that in finite models feature composition as axiomatised in the
algebra is always isomorphic to symmetric difference on sets of basic features.
These basic features are studied more closely in Section 5; we show that many
properties are already determined by them. In the following Section 6, we analyse
small models of CAs and discuss a possible representation theorem for CA.
Before summarising the paper in Section 8, we present a another model of CA,
which is useful for feature oriented software development (Section 7).

2 The Coloring Algebra

Inspired by Kästner’s CIDE [19], CA was introduced by Batory et al. [10]. It
offers operations for feature composition (·), feature interaction (#) as well as
full interaction (cross-product) (×).

To illustrate the main idea behind these operations we give an example named
fire-and-flood control [10]. Assume a library building that is equipped with a
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fire control (fire). When a sensor of the control detects a fire, the sprinkling
system gets activated. Later the library owner wants to retrofit a flood control
system (flood) to protect the books and documents from water damage. When the
system detects water on the floor, it shuts off the water main valve. If installed
separately, both features operate as intended. However, when both are installed,
they interact in a harmful way. fire activates the sprinklers, after a few moments
the flood control shuts off the water and the building burns down. Algebraically
the described system can be expressed by flood · fire. When using both systems,
the interaction flood#fire of both features has to be considered. The entire system
is then established by the cross-product

flood× fire = (flood # fire) · flood · fire .

One possibility to resolve the interaction flood#fire is to prioritise fire over flood.

Feature Composition Every program offers a set of features, which (hopefully)
satisfy a stakeholder’s requirements. By this informal description a feature can be
nearly everything: a piece of code, part of some documentation, or even an entire
program itself. Such “basic” features may be composed to form a program. In CA
the order of composition does not matter4. Moreover, CA assumes an “empty
program” 1, which does not contain any features. Let F be an abstract set of
features. Then feature composition is a binary operator · : F ×F → F , which is
associative and commutative.

A crucial point for algebras covering FO is the handling of multiple instances
of features. There are three possible solutions:

(a) multiple occurrences are possible, but do not add more information;

(b) removing duplicates and guaranteeing that each feature only occurs once; or

(c) remove a feature if it is already present, i.e., is involutory :

∀f : f · f = 1 . (1)

The latter is the design decision taken in CA.5

In a monoid satisfying Equation (1) every element is its own inverse; therefore
such a monoid is also known as Boolean group (e.g., [12]). In particular we have
f = g ⇔ f ·g = 1 and · is cancellative, i.e., f ·g = f ·h ⇔ g = h. Every Boolean
group is commutative:

f · g = 1 · f · g · 1 = (g · g) · f · g · (f · f) = g · (g · f) · (g · f) · f = g · f .

Hence the axiom of commutativity can be skipped.
4 This is a design decision and in contradiction to some other approaches such as [4],

but follows approaches such as CIDE.
5 A discussion on the usefulness of this axiom is given in [10]; the aim of the present

paper is to discuss consequences of CA and not the axioms.
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Feature Interaction is a commutative and associative operator # : F×F → F .
On the one hand it might add additional features to end up with a “consistent”
and “executable” program. On the other hand, it might also list features of f
and g that have to be removed. This is for example the case if f and g contradict
each other.
CA assumes that, next to commutativity and associativity, feature interaction
satisfies the following two axioms:

f # 1 = 1 , (2) f # f = 1 . (3)

Intuitively, f #g describes conflicts between f and g and offers a “repair”. Equa-
tion (2), also called strictness, expresses that no feature is in contradiction with
the empty one; Equation (3), also called absorption, states that every feature is
consistent with itself.

Moreover, CA assumes that feature interaction distributes over composition:

f # (g · h) = (f # g) · (f #h) . (4)

Full Interaction is the “real” composition of two features, i.e., two features
are composed under simultaneous repair of conflicts. In sum, full interaction is
defined as f × g =df (f # g) · f · g . For the remainder of the paper we assume
that # binds stronger than ·.

Coloring Algebra Putting all these requirements together, a CA is a struc-
ture (F, ·,#, 1) such that (F, ·, 1) is a (commutative) involutive group and (F,#)
is a commutative semigroup satisfying Equations (3) and (4). Note that Equa-
tion (2) follows from the other axioms, in particular distributivity. Elements of
this algebra are called colors. An element h is called a repair iff ∃ f, g : h = f#g.

Lemma 2.1. Assume a CA (F, ·,#, 1) and f, g, h ∈ F , then the following equa-
tions hold: (g · h) # f = (g # f) · (h # f) , f × 1 = f , f × g = g × f , and
(f × g)× h = f × (g × h).

The proofs are straightforward, can be automated by any first-order automated
theorem prover or can be found in [10]. We will freely use them in the remainder
of the paper. More consequences are discussed in the next section.

3 First Consequences

We now list a couple of interesting properties of the axioms and explain their
interpretations in FO. All proofs were found by Prover9 [21]; a proof template is
given in Appendix B. Due to this, we skip most of the proofs and only list those
which help to understand the structure of CA.

3.1 Basic Properties of Interaction

For the following lemmas, we assume a CA (F, ·,#, 1) and f, g, h ∈ F .
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Lemma 3.1 A repair cannot introduce new conflicts, i.e., f#g = h⇒ f#h = 1.

Lemma 3.2 The repair of three elements f, g, h satisfies an exchange law:

(f · g) # (f · h) = (f · g) # (g · h) = (f · h) # (g · h) = (f # g) · (f #h) · (g #h) .

It is easy to see that 1 is the unique fixpoint of f # x = x. From this we get

Lemma 3.3 A repair does not delete one of its components entirely, i.e., if
f 6= 1 then f # g 6= f and if f · g 6= 1 then f # g 6= f · g.

Note that the precondition of the second statement is equivalent to f 6= g.
Moreover, if the CA has a greatest element > then f #> 6= >.

Lemma 3.4 Features cannot repair each other in “cycles”, i.e.,

(a) No non-trivial feature is its own repair: f # g = f ⇒ f = 1.
(b) Repairs are mutually exclusive: f #h1 = g ∧ g #h2 = f ⇒ f = 1.
(c) Part (b) can be extended to finite chains:

f #h1 = h2 ∧
( n∧
i=1

h3i−1 #h3i = h3i+1

)
∧ h3n+1 #h3n+2 = f ⇒ f = 1 .

Proof.

(a) From f # g = f we infer f # g # g = f # g. By absorption and strictness the
left hand side reduces to 1, so that we have 1 = f # g = f . The claim also
follows from Lemma 3.3.

(b) Plugging in the assumptions we obtain f = g#h2 = f #h1 #h2 and Part (a)
shows the claim.

(c) Straightforward induction on n. ut

Moreover, pluggin the consequence f = 1 into the antecedents of Parts (b) and
(c) by strictness implies that all colors involved are equal to 1.

The absence of cycles gives raise to define a partial order on colors. Assume
a CA (F, ·,#, 1) and f, g ∈ F . We define a strict partial order < over F −{1} by

f < g ⇔df ∃h ∈ F : f #h = g ,

i.e., < is irreflexive and transitive. The proof follows immediately from Lemma 3.4,
is straight forward and can again be automated.

3.2 Interaction Equivalence

It is useful to group colors according to their behaviour under interaction. To
achieve this we define an equivalence relation ∼ by

f ∼ g ⇔df ∀h : f #h = g #h .

The equivalence class of g under ∼ is denoted by [g] =df {f | f ∼ g}.
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Lemma 3.5

(a) Composition is cancellative w.r.t. ∼, i.e., f · g ∼ f · h ⇔ g ∼ h.
In particular, f ∼ f · g ⇔ g ∼ 1.

(b) f ∼ g · h ⇔ f · g ∼ h. In particular, f ∼ g ⇔ f · g ∼ 1.
(c) ∼ is a congruence w.r.t. · and #.

4 Models—Feature Composition

So far we have only looked at some basic foundations and properties for FO. Let
us now turn to some concrete models. Looking at the literature, we note that a
concrete model has only been sketched [10].

Let us first look at feature composition (F, ·, 1). Involution (Equation (3))
expresses that every element has an inverse, namely itself, therefore every ele-
ment has order 2. By the classification of finitely generated Abelian groups, any
finite 2-group is a power of ZZ 2 (the two element group); hence there is exactly
one finite model satisfying these axioms for each of the cardinalities 2, 4, 8, . . . .
This immediately follows from the Kronecker Basis Theorem (e.g. [17]).

Theorem 4.1 Every finite algebra satisfying the axioms for feature composition
is isomorphic to a model that can be obtained by using symmetric difference on
a power set of a finite set.

Proof. Although Kronecker’s result already provides a proof, we give an indepen-
dent one that can later partially be re-used for the analysis of the # operation.

Assume an algebra (F, ·, 1) with the properties required by the theorem.
We call G ⊆ F a generating system if every element of F can be obtained as
a product

∏
i∈I gi of a finite family (gi)i∈I of elements gi ∈ G. For instance,

setting G = F provides a generating system.
A product

∏
i∈I gi is reduced if there are no indices i 6= j with gi = gj , i.e., if

every element of G occurs at most once in it. Since · is assumed to be associative,
commutative and involutory, every product has the same value as a reduced one
and hence can be represented by a set rather than a family of G-elements.

Consider now a generating system M ⊆ F of minimal cardinality (which
exists by finiteness of F ). Then 1 6∈ M (if F = {1} then M = ∅, since 1
can always be represented as the empty product). We now show that the set
representation of F -elements by reduced M -products is unique.

To this end we denote the product of a finite subset H ⊆ F by
∏
H, which

by associativity and commutativity of · is uniquely defined (note that
∏
∅ = 1).

Suppose now
∏
H =

∏
K for two subsets H,K ⊆M , but H 6= K. Let L =df H∩

K and l =df

∏
L. We multiply both sides of the above equation by l and obtain∏

(H−L) =
∏

(K−L). Now one of H−L and K−L must be non-empty, otherwise
we would have H = L = K and hence H = K. Assume w.l.o.g. that H −L 6= ∅,
choose some m ∈ H − L and m /∈ K − L and set n =df

∏
(H − (L ∪ {m})). By

multiplying both sides of the equation
∏

(H − L) =
∏

(K − L) by n and using
involution we obtain m =

∏
(K − L) ·

∏
(H − (L ∪ {m})) =

∏
((K − L) ∪ (H −
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(L ∪ {m})). But then m could be eliminated from the generating system H to
obtain another generating system of smaller cardinality, contradicting the choice
of H.

In sum,
∏

: 2M → F is a bijection, so that F is isomorphic to a power set.
Finally, again by associativity, commutativity and involutivity of ·, we have for
H,K ⊆ M that (

∏
H) · (

∏
K) =

∏
((H ∪K) − (H ∩K)) =

∏
(H ∆K), which

shows that · corresponds to symmetric difference. ut

Due to the nature of software engineering, the set F of all possible combi-
nations of features is always finite, so that the assumption of Theorem 4.1 is
satisfied in that context.

The theorem states that there are generic models: assume a set A of base
colors. Then (2A, ∆ , ∅) satisfies the axioms for feature composition, where ∆
is defined, for M,N ∈ 2A as

M ∆N =df (M ∪N)− (M ∩N) .

By this we can use ⊆ , ∩ and ∪ in every finite model of CA. We will freely
do this in the remainder of the paper. The greatest element A of 2A is denoted
by >.

Lemma 4.2 In general, neither ·, # nor × is isotone w.r.t. ⊆. Therefore, none
of these operations distributes over ∪ or ∩ .

Proof. The claim concerning · can be shown by Mace4 within no time.
f ⊆ g ; f # h ⊆ g # h could not be found by automation; we show a proof by
contraposition. Consider a finite model of CA. Assume that the above implication
holds and that # is not trivial, i.e., there are base colors a, b with a#b 6= 1. Then,
since a, b ⊆ a · b, by isotony we would have

a# b ⊆ (a · b) # (a · b) = 1 ,
i.e., a contradiction. ut

We can enrich the set algebra to a first (albeit not very interesting) model
for CA by assuming that there are no interactions at all between sets, i.e., for
sets M,N ∈ 2A, we define M # N =df ∅. Then (2A, ∆ ,#, ∅) forms a CA. In a
later section we will discuss more sophisticated models and will show how these
could be constructed systematically.

5 Base Colors

By Theorem 4.1, we can use set-theoretical knowledge for FO. In particular we
can assume that every element of a finite CA is finitely generated, i.e., there is
a set A of base features from which all other features are built. In general we
call an element f of a CA F base iff it is isomorphic to a singleton set6; the set

6 In set theory singleton sets of base colors are also called atoms.
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of all base colors is again denoted by A. In case F is finite, every element is a
product of base colors, i.e., for all f ∈ F

f =
∏
i∈I

ai

for an index set I and base colors ai ∈ A.
In the remainder of the paper we use a, b, c to denote base colors and f, g, h, . . .

for arbitrary colors. Moreover we assume that products (of base colors) are re-
duced , i.e., if f =

∏
i∈I ai then ai 6= aj for all i, j ∈ I with i 6= j.

Due to distributivity of # over · it is possible to reduce general interaction to
the one between atoms only. More precisely, assume two finite-generated colors
f =

∏
i∈I ai and g =

∏
j∈J bj , then

f # g = (
∏
i∈I

ai) # (
∏
j∈J

bj) =
∏
i∈I

∏
j∈J

(ai # bj). (5)

Hence only the interaction (conflicts) of base colors has to be considered. This
reduces the number of possible models.

6 Models for Coloring Algebra

6.1 Small Models

Let us now look at some possible models; we will construct them systematically.
The most trivial one was already given at the end of Section 4; it had no interac-
tion at all. The next example has exactly one non-trivial repair h. Formally, we
calculate in a CA (2A, ·,#, 1) with distinguished base colors a, b ∈ A and h ∈ 2A

satisfying a# b = h and c# d = 1 for all other base colors c, d ∈ A− {a, b}.
By Lemma 3.4, a, b and h must be different. By Lemma 3.3, h is different

from a · b, hence this example has at least three base colors. Vice versa this
means that all models with at most two base colors can only have the trivial
interaction.

By Equation (5), we can determine all interactions:

f # g =

{
h if C
1 otherwise ,

where C ⇔df


(a ⊆ f ∧ b 6⊆ f ∧ b ⊆ g )∨
(a 6⊆ f ∧ b ⊆ f ∧ a ⊆ g)∨
(a ⊆ g ∧ b 6⊆ g ∧ b ⊆ f )∨
(a 6⊆ g ∧ b ⊆ g ∧ a ⊆ f) .

The first case describes all situations where either a occurs in f and b in g or vice
versa, therefore the repair has to be introduced. However, it forbids the case,
where a and b occur in both f and g: in this setting the repair is “introduced
twice” and therefore does not show up.

Let us now assume that we have two repairs for atoms in our model, i.e., there
are atoms a, b, c, d ∈ A with a#b = h1 ·h2, c#d = h1 ·h3, and a1#a2 = 1 otherwise
(a1 ∈ A−{c, d}, a2 ∈ A−{a, b}). Note that we do not require c, d to be different
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#base colors #elements # composition # interaction # CA
(up to iso.) (up to iso.) (up to iso.)

1 2 1 1 1
2 4 1 2 1
3 8 1 557 2
4 16 1 2
5 32 1

Table 1: Number of Models for CA

from a, b. Moreover, we assume that the repairs contain a common part; the case
of disjoint repairs is just a special case (h1 = 1). Using again Equation (5), we
can determine all interactions:

f # g =


h1 · h2 if (c 6⊆ f ∧ d 6⊆ f) ∨ (c 6⊆ g ∧ d 6⊆ g) ∧ C
h1 · h3 if (a 6⊆ f ∧ b 6⊆ f) ∨ (a 6⊆ g ∧ b 6⊆ g) ∧ C[a/c, b/d]
h2 · h3 if C ∧ C[a/c, b/d]
1 otherwise .

Here the formula C[a/c, b/d] is C with a replaced by c and b by d. These two
examples show how the interaction operation can be derived from interaction on
base colors. Of course one has to keep in mind when defining the interaction on
base colors that some equations such as f#g = f are not possible (see Section 3).

However, the examples give also rise to the conjecture that there cannot be
many different models for CA, since everything can be reduced to base colors
and the variety there is limited. To underpin this conjecture, we generated all
models of a particular size using Mace4, a (counter)example generator [21]. The
results are presented in Table 1. Of course generation of algebras with Mace4
requires isomorphism checking; although this is offered by the tool suite, it is
resource intensive. Hence we could also determine numbers up to algebras of size
16. The table shows the number of possible algebras (up to isomorphism) when
(a) only the axioms for composition (·) are considered, (b) when only the axioms
for interaction (#) are used and finally (c) the number of CAs. This experiment
verifies that the actual number of algebras is really limited and suggests looking
for a general representation theorem for CA.

6.2 Towards a General Representation Theorem

Since (F, ·, 1) is a commutative group and (F,#, 1) is a commutative semigroup
CA (F, ·,#, 1) also forms a commutative semiring with annihilator 1 but without
a multiplicative neutral element. To take advantage of this structure, particularly
semiring ideals, we first have a look at special elements of the semiring.

An element f of a CA is erasive iff

∀ g ∈ F : f # g = 1 .

It turns out that erasive elements play a central role for the construction of
models for the # operator. First, we set up a connection with the strict order <
from Section 3.1.
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Lemma 6.1 An element f 6= 1 is erasive iff it is maximal with respect to <.

Proof. By contraposition of Equation (2), we get f # g 6= 1 ⇒ f 6= 1 ∧ g 6= 1.
(⇒) Assume f 6= 1 to be maximal but not erasive. Then there is an element g
with f # g 6= 1. The above remark yields g 6= 1 and therefore f < f # g, which is
a contradiction to the maximality of f .
(⇐) Assume f 6= 1 to be non-maximal but erasive. That means that there is an
element g 6= 1 with f < g, and by definition ∃h : f # h = g. Since f is erasive,
we get g = 1, which yields a contradiction. ut

For finite F 6= {1} there exists at least one maximal and hence erasive ele-
ment, which is not equal to 1.

Lemma 6.2 The set E of erasive elements is closed under composition · and
interaction # with arbitrary elements of F and hence is a semiring ideal.

Proof. Assume two erasive elements f, g and an arbitrary element h. By dis-
tributivity we get (f · g) #h = (f #h) # (g #h) = 1 · 1 = 1.

Now let f be erasive and g arbitrary. Then, for h ∈ F , (f#g)#h = f#(g#h) = 1
follows by associativity. ut

Lemma 6.3 The set E even forms a subtractive ideal (e.g. [1]), i.e., f ∈ E ∧
f · g ∈ E ⇒ g ∈ E.

Proof. Assume f, f ·g ∈ E and h ∈ F −E. Then 1 = (f ·g)#h = (f#h) ·(g#h) =
1 · (g #h) = g #h and therefore g ∈ E. ut

Lemma 6.4 If f · g is erasive, then f # g = 1 and f #h = g #h for any h ∈ F .

Proof. The first claim can be shown by 1 = (f · g) # g = (f # g) · (g # g) = f # g.
The second one by 1 = (f · g) #h = (f #h) · (g #h) ⇔ (f #h) = (g #h). ut

Next we link erasive elements with the equivalence relation ∼ from Sec-
tion 3.2. Remember that [x] denotes the equivalence classes w.r.t. ∼.

Lemma 6.5 The set of all erasive elements forms an equivalence class: E = [1].
Hence e is erasive iff e ∼ 1.

Next we investigate generating systems w.r.t. the interaction operator #, i.e.,
subsets G ⊆ F such that every element in the image set of # equals a combina-
tion g1 # · · · # gn for some n ∈ IN and gi ∈ G. A generating system is minimal
if no proper subset of it is a generating system. In a finite algebra such systems
always exist.

Lemma 6.6 Let G be a minimal generating system for #. Then no distinct
elements of G can be related by ∼ .
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Proof. A relation g1 ∼ g2 would mean that in every #-product of the above
form product g1 could be replaced by g2 without changing its value. Hence one
of g1, g2 could be omitted from G while still yielding a generating system, in
contradiction to the choice of G. ut

This admits the following.

Theorem 6.7 Let G be a minimal generating system for #. Then the elements
of G form a system of representatives for the equivalence classes of ∼. Since ∼
is a congruence, the set of these classes can be made into a quotient semiring by
defining [f ] · [g] =df [f · g] and [f ] # [g] =df [f # g].

Proof. Every element lies in its own equivalence class, while, by the previous
lemma, different generators lie in different classes. This shows the first claim.
The second one is standard semiring theory. ut

When analysing the constructed and the generated models, we also looked
more closely at the structure of the equivalence classes generated by the rela-
tion ∼. We made the following observations that are underlying our conjecture
of the representation theorem:

(a) The smallest element (w.r.t. ⊆ ) of each class is a product of non-erasive
base colors, e.g., b = b · 1 or b · c · e = (b · c) · e.

(b) 1 is the empty product of such colors; and
(c) All other elements are formed by composition with every possible combina-

tion of the erasive base colors.

This motivates us to state the following,

Conjecture The image of # is isomorphic to the power set of the erasive base
colors. Let further N be the set of all non-erasive base colors. Then the elements
x ∈ 2N form a system of representatives for the equivalence classes, where [x] =
x · E =df {x · y | y ∈ E}.

The last part of the conjecture is partially substantiated by the following
property:

Lemma 6.8 The equivalence classes [x] under ∼ are closed under composition
with erasive elements:

∀ e ∈ E : x.e ⊆ [x] .

Proof. This is immediate from Lemma 3.5(b) and Lemma 6.5. ut

7 A Model of Variation Points

Although the set-theoretic model given in Section 4 is interesting, it is, of course,
not fully adequate for FO, since it does not take details of the program structure,
such as classes and objects, into account. To get a handle on such aspects, in
FO variation points are used. “A variation point identifies a location at which
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a variable part may occur. It locates the insertion point for the variants and
determines the characteristics (attributes) of the variability” [22]. In the liter-
ature variation points are also called extension points (e.g., [19]) or hot spots
(e.g., [15]).

The model we present in this section can be used for FO directly, as it is
based on variation points and code fragments. We assume the disjoint sets VP
of variation points and C of code fragments. Variation points might, e.g., be
given as line numbers before or after which further elements can be inserted.

Fig. 1: The Counted Stack With
Variation Points [10]

An illustrative example showing a
“Counted Stack” is presented in Fig-
ure 1; it was taken from [10]. Due to
lack of space we skip an explanation of
the details; the figure should just give an
impression how things look like.

Our model will be based on the set
model presented before. Therefore we
only consider code fragments that com-
mute with each other. Otherwise com-
mutativity of CA would be lost. For ex-
ample, we could look at entire meth-
ods, i.e., code fragments that start with
something like “void empty(){” and
end with “}” and may contain variation
points from VP as well as code frag-
ments from C. Note that a code frag-
ment can contain variation points again.

A program is now a (total) function
p : VP → 2VP∪C .7 The semantics of the
program is as follows: if, for a variation point vp the value p(vp) is not the empty
set then p(vp) is installed at vp; if p(vp) = ∅, then the variation point remains
empty.

The empty program e is given by the empty function, i.e., e(vp) = ∅, for all
vp ∈ VP . A program white that has one method body at variation point start
is given as

white(vp) =

{{
class Stack{ vp1 vp2 }

}
if vp = start

∅ otherwise .

This function coincides with the “white” part of Figure 1, while the blue fragment
is given by

blue(vp) =



{
int ctr = 0; . . . ctr;}

}
if vp = vp1{

ctr = 0;
}

if vp = vp3{
ctr++;

}
if vp = vp4{

ctr--;
}

if vp = vp5
∅ otherwise .

7 An isomorphic model uses partial functions which are undefined for empty variation
points.
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To build a program from a given function p, we just replace all occurrences of
vp by its value p(vp). This yields a function with no variation points in its values.
Of course, this is only possible if the values of p do not depend on each other
cyclically. If we now choose one variation point as the start point, a program
(with filled variation points) has been derived.

By this simple algorithm for program derivation, the presented model is par-
ticularly interesting for FO. The question that remains is how to define feature
composition and feature interaction.

Similar to the set-theoretic model, feature composition can be defined via
the symmetric difference:

(p · q)(vp) =df p(vp) ∆ q(vp) .

This definition satisfies the laws for feature composition and behaves naturally.
Identical parts of the values p(vp) and q(vp) are deleted, differing parts are
collected in the result set.

Let us explain this with a simple example. Assume two programs p and q:

p(vp) =df


{v2} if vp = vp1
{v3} if vp = vp2
{v2, v4} if vp = vp3
∅ otherwise ,

q(vp) =df


{v3} if vp = vp1
{v3} if vp = vp2
{v1, v4} if vp = vp3
∅ otherwise .

Both programs assign non-trivial information only to the variation points vp1,
vp2 and vp3. The values at variation point vp1 are disjoint; the composition
unites the values. The values at variation point vp2 are identical; the composition
removes them and leaves the variation point “unset”, i.e., it ends up having the
empty set as its value. The values at variation point vp3 are neither disjoint nor
identical—they have a non-empty intersection; the composition deletes all values
occurring in both parts and retains the rest. Formally this means:

(p · q)(vp) =df


{v2, v3} if vp = vp1
∅ if vp = vp2
{v1, v2} if vp = vp3
∅ otherwise .

In this paper we have shown that, for a given size, each definition of · is
isomorphic to the set-model; by this we do not have much freedom to define
composition and the presented definition seems to be canonical. In contrast
to that, the interaction-operation # offers much more flexibility. Of course, we
cannot give a compact definition, interaction really depends on implementation
details and therefore on the source code. However, as we have shown in Sec-
tion 5, only the interaction between base colors has to be defined, interaction
for arbitrary elements then lifts by Equation (5). We can even do better and
give the programmer some guide lines on how repairs should be defined by the
lemmas given in Section 3. Most important is Lemma 3.4 which can easily be
implemented and offers a quick sanity check on interactions.
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8 Conclusion and Outlook

We have carried out a careful analysis of coloring algebra (CA) [10]. The study
has yielded several interesting and sometimes surprising results.

First, we have presented a series of properties for FO. Most of them could be
proven fully automatically using an automated theorem prover such as Prover9.

Second, we have used Mace4—a (counter)example generator, which is shipped
together with Prover9—not only to falsify conjectures (as we do regularly), but
also for the generation of finite models. Doing this, and by creating and analysing
models by hand, it turned out that there exist only very few models of CA, up to
isomorphism. This was a surprise: when the algebra was designed, it was believed
that the operation for feature interaction (#) offers a lot of freedom, and prob-
ably the composition operation does so as well. However, we have shown that
composition is always isomorphic to symmetric difference in a set model. By
this representation theorem more operations, such as set union and intersection,
could be introduced in CA for free. This has allowed us the definition of base
colors, which come into play naturally as the “smallest” features available. We
also gave a derivation towards a representation theorem for CA in general. So
far we could not entirely prove our conjecture. This is not surprising since repre-
sentation theorems are generally hard to prove. However, the lemmas presented
indicate that our conjecture holds.

As the last contribution of the paper, we have given a concrete model for
FO. It is based on functions over sets and is more useful for FO than the generic
set-theoretical one. To show this, we have given a simple algorithm to describe
how elements of this model can be transformed into executable programs.

In sum, the analysis, even without the missing representation theorem, has
yielded deeper insights for CA and will hopefully lead to a much better un-
derstanding of the basics underlying feature oriented programming and feature
oriented software development.
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A Omitted Properties

We briefly list a number of properties for feature interaction, which can be
useful for more sophisticated calculations but do not have a nice “semantical
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counterpart” in FOP, hence we did not list them in the main text. For arbitrary
elements f, g, h, i of a CA (F, ·,#, 1) the following holds:

(a) (f · g) # f = f # g,
(b) (f · i) # g = f ⇒ f = i# g,
(c) (f · i) # g = f ⇔ f = (f # g) · (i# g) ⇔ f · (f # g) = i# g,
(d) (f · i) # g = f ⇒ f # g = 1,
(e) f # g = f · i ⇒ g # i = f · i,
(f) f # g = f · i ⇒ f # i = 1,
(g) f # g = h · i ⇒ f # g #h = h# i,
(h) f # g = i ∧ f #h = i · e ⇒ f # (g · h) = e,
(i) f # g = h ∧ h# i = f ⇒ h = 1 ∧ f = 1.

Propositions (a)–(d) deal with the interaction of composed elements, (e)–(f) with
the situation in which the interaction of two elements is a composed element.
Implication (h) can be interpreted as “double reparing is useless”.

B Prover9-Template

In this appendix we give a proof template for CA to be used with Prover9
and Mace4 [21]. Prover9 is an automated theorem prover for first-order and
equational logic and Mace4 searches for finite models and counterexamples, both
are freely available. The template can be used as input file, Prover9 will then
offer a proof for the conjecture when found.

% LANGUAGE SPECIFICATION

op(500, infix, ";"). % composition

op(500, infix, "+" ). % interaction

op(500, infix, "X"). % full interaction

% AXIOMS

formulas(sos).

% --- axioms composition

x;(y;z) = (x;y);z.

x;y = y;x.

x;x = 1.

x;1 = x.

% --- axioms interaction

x+(y+z) = (x+y)+z.

x+y = y+x.

x+x = 1.

x+1 = 1.

x+(y;z) = (x+y);(x+z).

% --- full interaction

x X y = (x+y);(x;y).

end_of_list.

% CONJECTURE

formulas(goals).

%lemma to be proven, e.g.

%(x+y);((y+z);(x+z)) = (x;y)+(x;z).

end_of_list.
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