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Abstract. We discuss mechanised proofs of Fermat’s Little Theorem in a variety of styles, focusing
in particular on an elegant combinatorial “necklace” proof that has not been mechanised previously.
What is elegant in prose turns out to be long-winded mechanically, and so we examine the effect of
explicitly appealing to group theory. This has pleasant consequences both for the necklace proof, and
also for the direct number-theoretic approach.

1 Introduction

Fermat’s Little Theorem is a famous result in basic number theory. When p is prime, then

ap ≡ a (mod p) for any natural number a.

Though resources like Wikipedia [15] provide an extensive range of proofs of this result, it seems that
standard practice in interactive proof assistants (e.g. Hurd et al. [9]) is to use Euler’s generalisation, which
is number-theoretic. There is good reason for this: the number theory required is actually quite simple,
making it easy to establish the result without needing a great deal of background theory. This paper shows,
however, how a number of other proofs, some with interesting ideas, can be performed mechanically.

The simplest such proof (the necklace) is based on combinatorics over lists. It is relatively straight-
forward to mechanise (we use the HOL4 proof assistant [13], which has built-in support for lists), but
aspects of the proof become smoother when it is rephrased in the language of group theory. This required
background does not represent a particularly onerous burden for mechanisation. Indeed, the more group
theory one has to hand, the more polished the proof becomes.

We also examine the effect of using group theory in number-theoretic approaches.

Overview The rest of the paper is structured as follows. In Sections 2 and 3, we describe both the standard
number-theoretic proof, and Golomb’s combinatorial necklace proof [4], and their mechanisation. In
Section 4, we discuss how the required (rather basic) group theory is mechanised, before showing how
this theory can be applied to the necklace proof (in Section 5), and to the number-theoretic proof (in
Section 6). We conclude in Section 7, including a comparison of the different approaches in terms of their
complexity.

? NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.
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Fig. 1. Theory dependencies for proofs of Fermat’s Little Theorem. Double-lined boxes indicate significant results
discussed in the corresponding section of the paper. The leftmost Necklace and rightmost Number are direct proofs;
others use group theory. Combinatoric results (in light gray) are of ap ≡ a (mod p), which is equivalent (when
0 < a < p) to number-theoretic results (in dark gray) of ap−1 ≡ 1 (mod p). Euler is aϕ(n) ≡ 1 (mod n).

Figure 1 gives a graphical summary of the logical dependencies underlying all of the proofs we
discuss. The graph falls into three parts:

– The leftmost route shows Golomb’s necklace proof, a combinatorial proof based on rotations of lists.
– The rightmost route shows an elementary number-theoretic proof commonly found in textbooks.
– The central paths are of various group-theoretic proofs. The first path from the left is the application

of group theory (via the notions of action, orbit, and stabilizer) to the necklace proof. The others show
the proof of the group-theoretic analogue of Fermat’s Little Theorem, followed by the derivation of
specific results in the domain of natural numbers.

HOL4 Notation and Theorems All statements appearing with a turnstile (`) are HOL4 theorems, auto-
matically pretty-printed to LATEX from the relevant theory in the HOL4 development. Notation specific to
this paper is explained as it is introduced. Otherwise, HOL4 supports a notation that is a generally pleasant
combination of quantifiers (∀, ∃) and functional programming (λ for function abstraction, juxtaposition
for function application).

Lists are written between square brackets, e.g., [1; 2]. The length of a list ` is written |`|. The con-
catenation of `1 and `2 is written `1 ++ `2 . Sets are written between braces, also allowing comprehen-
sions such as {x | x < 6}. Sets also support standard operations such as cardinality (also written with
vertical bars: |{3; 5}| = 2), union (∪), intersection (∩), and difference (\). We write IMAGE f s
for the image of the set s under function f , and BIJ f s1 s2 means that function f is a bijection be-
tween sets s1 and s2. The term R equiv_on s means that R is an equivalence relation on the set s,
and partition R s denotes the set of subsets of s that are partitions with respect to an equivalence
relation R.

Our Contribution As already noted, Fermat’s Little Theorem has been mechanised a number of times
before, e.g., in Coq [10], ACL2 [12] and HOL Light [6]. The minimal group theory we used and mech-
anised is also very standard.1 Our contribution is the mechanisation of the necklace proof, in direct and

1 The Orbit-Stabiliser theorem has not been mechanised before in HOL, but this is a minor contribution given the
existing work in other systems such as Coq.



group-theoretic styles (we believe both to be entirely novel). We also compare these proofs with the
standard number-theoretic approaches.

Availability HOL4 proof scripts can be found at http://bitbucket.org/jhlchan/hol/src.
The linearised scripts (discussed in Section 7) are those beginning with prefix All in the fermat di-
rectory. Proofs as they were developed (in various separate theories) are laid out in sub-directories below
fermat.

2 The Necklace Proof

Leonard Eugene Dickson, in his authoritative treatise History of the Theory of Numbers [3, Chapter 3],
thoroughly documented all known proofs of this Fermat’s result, up to 1919. Among them was this nice
combinatorial proof by Julius Petersen in 1872:

Take p elements from q with repetitions in all ways, that is, in qp ways. The q sets with
elements all alike are not changed by a cyclic permutation of the elements, while the remaining
qp − q sets are permuted in sets of p [when p is prime]. Hence p divides qp − q.

This idea is the basis of the Necklace proof of S. W. Golomb [4], which has since been re-discovered
or discussed by many others (e.g., Smyth [14], Rouse [11], Evans [7], and Conrad [2]).

The necklaces of Golomb’s proof are the p elements drawn from a set of cardinality q. Where Peterson
has cyclic permutations, Golomb’s version adds the image of rotating beads on a necklace (Figure 2).

Fig. 2. Necklaces with 3 beads in 2 colours. The first and last are monocoloured necklaces. The other multicoloured
necklaces are divided into 2 parts: those with one white bead and those with two white beads. Multicoloured necklaces
in each part can cycle only among themselves. Note that, for 3 beads, each part consists of 3 necklaces. Hence the
number of multi-2-coloured necklaces with 3 beads (which is 23 − 2 = 8− 2 = 6) is divisible by 3.

2.1 Necklaces and Colours

Consider the set N of necklaces of length n (i.e., n beads) with a colours (i.e., a choices for a bead’s
colour). Since a bead can have any of the a colours, and there are n beads in total, the total number of
necklaces is |N | = an, or |N | = an . Of these necklaces, the monocoloured necklaces are those with the
same colour for all beads; the others are multicoloured necklaces.

Let S (for single) denote the set of monocoloured necklaces, and M (for multiple) denote the multi-
coloured necklaces. Clearly, N = S ∪M , and S ∩M = ∅ — that is, S and M are disjoint, and they
form a partition of the set of necklaces N . Since there is only 1 monocoloured necklace for each colour,
the number of monocoloured necklaces |S| is just a. Given that the two types of necklaces partition the
whole set, the number of multicoloured necklaces |M | is equal to |N |−|S| =an−a .



HOL Implementation Let (necklace n a) be the set of necklaces of length n with a colours. The
HOL definition is

` necklace n a = {` | |`| = n ∧ set ` ⊆ count a }

Our necklaces’ beads are just natural numbers, and the definition requires that the “colours” of the neck-
lace are simply drawn from the set (count a): the set of natural numbers less than a.

Simple properties of the set (necklace n a) readily follow from the definition:

` FINITE (necklace n a)
` |necklace n a| = an

The monocoloured and multicoloured necklaces are defined thus:

` monocoloured n a = {` | ` ∈ necklace n a ∧ (` 6= [] ⇒ SING (set `))}
` multicoloured n a = necklace n a \ monocoloured n a

where SING (set `) means that the set of list elements (set `) is a singleton. The cardinality results
for these sets are straightforward:

` 0 < n ⇒ |monocoloured n a| = a
` 0 < n ⇒ |multicoloured n a| = an−a

In order to show that the last expression an−a is divisible by n when length n is prime, we need to know
something more about the multicoloured necklaces, especially how an equivalence relation involving
cyclic permutations partitions the set.

2.2 Cycles

Necklaces are represented by lists of length n. Following the imagery, it is natural to think of them as
being joined from end to end. We define a cycle operation on lists:

` cycle n ` = FUNPOW (λ `. DROP 1 ` ++ TAKE 1 `) n `

The expression DROP n ` discards the first n elements of list `, returning whatever remains, while
TAKE n ` returns the first n elements (for the empty list [], TAKE and DROP both return []). By
putting n = 1, this is chopping off the first bead, shifting it to the other end and adding it back. Therefore
DROP 1 ` ++ TAKE 1 ` represents a rotation by 1 bead position. Then FUNPOW just repeats this
operation n times.2 These elementary facts about cycle follow immediately:

` cycle 0 ` = ` (CYCLE_0)
` cycle n (cycle m `) = cycle (n + m) ` (CYCLE_ADD)

Applying cycle on a necklace results in another necklace, of the same length and colours:

` ` ∈ necklace n a ⇒ ∀ k . cycle k ` ∈ necklace n a
` |cycle n `| = |`|
` set (cycle n `) = set `

As a result, cycle of a monocoloured necklace is still monocoloured, and cycle of a multicoloured
necklace is still multicoloured, as expected.

2 This definition of cycle n ` using FUNPOW makes sense for all n, whereas a definition using TAKE n and
DROP n would only work when n ≤ |`|.



We can reason about cycles with modular arithmetic:

` ` 6= [] ⇒ cycle n ` = cycle (n mod |`|) ` (CYCLE_MOD_LENGTH)
` ` 6= [] ⇒ cycle m (cycle n `) = cycle ((m + n) mod |`|) `

And ultimately, a cycle can come full-circle, in multiples, or can be undone by another cycle:

` cycle |`| ` = ` (CYCLE_BACK)
` cycle n ` = ` ⇒ ∀m. cycle (m ×n) ` = ` (CYCLE_MULTIPLE_BACK)
` n ≤ |`| ⇒ cycle (|`|−n) (cycle n `) = ` (CYCLE_INV)

Already, one can see the possible connections to group theory.

2.3 Similarity and Partitions

We shall say two necklaces `1 , `2 are similar, denoted `1 == `2 , when:

` `1 == `2 ⇐⇒ ∃n. `2 = cycle n `1

That is, `1 can cycle to `2 because they consist of the same beads in cyclic order.
The following properties of (==) follow from properties of cycle:

` ` == [] ∨ [] == ` ⇐⇒ ` = []
` `1 == `2 ⇒ |`1 | = |`2 |

With a little more effort, the fact that (==) is an equivalence relation can be proved:

` ` == `
` `1 == `2 ⇒ `2 == `1
` `1 == `2 ∧ `2 == `3 ⇒ `1 == `3

The key for reflexivity is CYCLE_0, for symmetry is CYCLE_INV, for transitivity is CYCLE_ADD.
Let us denote the equivalence classes under (==) by associates:

` associates x = {y | x == y }

As (==) is an equivalence relation, the associates partition the set of necklaces. This partitioning
has a particularly simple structure when the necklace length n is prime.

2.4 Multicoloured Necklaces with Prime Length

First, an important result about values that “cycle back” and their greatest common divisor:

Theorem 1. If two values m,n can cycle back, the value gcd m n can also cycle back.

` cycle m ` = ` ∧ cycle n ` = ` ⇒ cycle (gcd m n) ` = `

Proof. If n = 0, then cycle (gcd m 0) ` = cycle m ` = ` by assumption. Otherwise, we
can use Bézout’s identity, called LINEAR_GCD in HOL library, which states that if n 6= 0, then there
exist p and q such that p× n = q ×m+ gcd m n , and reason:

cycle (gcd m n) `
= cycle (gcd m n) (cycle (q × m) `) by CYCLE_MULTIPLE_BACK
= cycle (gcd m n + q × m) ` by CYCLE_ADD
= cycle (p × n) ` by LINEAR_GCD
= ` by CYCLE_MULTIPLE_BACK

ut



A distinguishing feature of monocoloured necklaces is:

Theorem 2. A necklace ` is monocoloured iff cycle 1 ` = `.

` 0 < n ∧ 0 < a ∧ ` ∈ necklace n a ⇒
(` ∈ monocoloured n a ⇐⇒ cycle 1 ` = `)

Proof. A monocoloured necklace ` has all beads the same colour, so shifting 1 bead makes no difference,
hence cycle 1 ` = `. Conversely, given cycle 1 ` = `, applying CYCLE_MULTIPLE_BACK,
` = cycle 2 ` = cycle 3 ` = . . . . As lists, head of ` is the first bead, head of cycle 1 ` is
the second bead, head of cycle 2 ` is the third bead, etc. Since these cycle lists are all the same, and
equal lists mean equal heads, all beads have the same colour, making the necklace ` monocoloured. ut
We proceed to find the size of associates of multicoloured necklaces with prime length:

Theorem 3. For multicoloured necklaces ` with prime |`| = p, the cycle map from count p to
associates ` is injective.

` prime p ∧ ` ∈ multicoloured p a ⇒
INJ (λn. cycle n `) (count p) (associates `)

Proof. This is to show that, for all x < p and y < p, cycle x ` = cycle y ` ⇒ x = y . Suppose
this is not the case. Then there are x 6= y such that there is a common `′ = cycle x ` = cycle y `.
Note that both necklaces `′ and ` are multicoloured with same length p (Section 2.2). Without loss
of generality, assume x < y. Then y = d + x, where difference d > 0 and d < p (since both
x < p and y < p). Hence cycle d `′ = cycle d (cycle x `) = cycle (d + x) ` =
cycle y ` = `′. With cycle d `′ = `′, and from CYCLE_BACK we have cycle p `′ = `′,
hence cycle (gcd d p) `′ = `′ by Theorem 1. But gcd d p = 1 for prime p, 0 < d < p.
This implies the multicoloured necklace `′ has cycle 1 `′ = `′, which is a contradiction in view of
Theorem 2. ut
Theorem 4. For multicoloured necklaces ` with |`| = n (prime or non-prime), the cycle map from
count n to associates ` is surjective.

` ` ∈ multicoloured n a ⇒ SURJ (λ k . cycle k `) (count n) (associates `)

Proof. This is because, if a necklace `′ is similar to `, there is a k such that `′ = cycle k `. By
CYCLE_MOD_LENGTH, `′ = cycle (k mod n) `, and so it is in the range of count n . ut
Theorem 5. For multicoloured necklaces ` with prime |`| = p, their associates have size p.

` prime p ∧ ` ∈ multicoloured p a ⇒ |associates `| = p

Proof. Since the cycle map is surjective in general (Theorem 4), and injective when the necklace length
is prime (Theorem 3), there is a bijection between count p and associates ` for multicoloured
necklaces ` when |`| = p is prime. The result follows from this bijection between finite sets. ut
This leads directly to the following mechanisation of the necklace proof of

Theorem 6. Fermat’s Little Theorem.

` prime p ⇒ p divides ap−a
Proof. For prime p, the multicoloured necklaces ` ∈ multicoloured p a are “permuted in sets of
p”, as claimed by Julius Petersen (Section 2), since |associates `| = p by Theorem 5. Recall that
associates ` are the equivalence classes of (==) on multicoloured p a (Section 2.3). Since
equivalence classes form a partition, and here they all have the same size p, we have:

|multicoloured p a| = p× |partition (==) (multicoloured p a)|

As p is prime, 0 < p, and |multicoloured p a| = ap−a (Section 2.1). Combining these results we
have p divides ap−a by definition of divides. ut



3 Direct Number-Theoretic Proof

The proof of Fermat’s Little Theorem given in most textbooks, and also that given in various theorem-
proving systems, is number-theoretic, based on properties of modulo arithmetic. In particular, modulo
prime multiplication has some special properties. The first one, usually referred to as Euclid’s Lemma, is
that a prime divides a product iff the prime divides a factor. In terms of modulo arithmetic, this is:

` prime p ⇒ (x × y ≡ 0 (mod p) ⇐⇒ x ≡ 0 (mod p) ∨ y ≡ 0 (mod p))

Thus, left-cancellation of a non-zero factor is possible in prime modulo arithmetic:

` prime p ∧ x × y ≡ x × z (mod p) ∧ x 6≡ 0 (mod p) ⇒ y ≡ z (mod p)

Definition 1. Let the residues of prime p be the non-zero numbers less than p: {1. . . p−1}.

Take any a from the residues of p, and consider the various values of a × x mod p, for all x also a
residue of p. In HOL, this is denoted by a row operation:

Definition 2. ` row p a x = a × x mod p

Theorem 7. The row products form a permutation of the residues for prime modulo.

` prime p ∧ a ∈ {1. . . p−1} ⇒ {1. . . p−1} = IMAGE (row p a) {1. . . p−1}

Proof. The IMAGE on the right-hand side is equivalent to {a × x mod p | 1 ≤ x ∧ x < p }.
The possible remainders under modulo p are 0, 1, . . . p − 1. Since a prime p has no proper factors, and
both a and x are less than p, the product a × x cannot be the prime p, nor any multiple of the prime p.
Hence the remainder, a × x mod p cannot be zero, making this result one of the residues of p. The
possible values are distinct because if a × x ≡ a × y (mod p), then x ≡ y (mod p) by left-
cancellation of non-zero a. So the right-hand side, the row products, is just a permutation of the left-hand
side, the residues of p. ut

This is the key for the number-theoretic proof of

Theorem 8. Fermat’s Little Theorem (equivalent form3)

` prime p ∧ a ∈ {1. . . p−1} ⇒ ap−1 ≡ 1 (mod p)

Proof. Consider multiplying all numbers (denoted by the symbol
∏

) from each of these finite sets:
(1) the residues {1. . . p−1} and (2) its row products IMAGE (row p a) {1. . . p−1}.
Clearly, the first one is a factorial:

`
∏
{1. . . p−1} = (p−1)!

For the second one, since for numbers the order of multiplication does not affect the product, all the
factors a of (row p a) (Definition 2) can be collected together, so we have:

` prime p ∧ a ∈ {1. . . p−1} ⇒∏
(IMAGE (row p a) {1. . . p−1}) ≡ ap−1×(p−1)! (mod p)

As the underlying sets are the same due to permutation (Theorem 7), the two products under modulo p
are identical:

` prime p ∧ a ∈ {1. . . p−1} ⇒ (p−1)! ≡ ap−1×(p−1)! (mod p)

A prime p has no proper factor, and (p−1)! has of all the numbers less than p, so (p−1)! 6≡ 0 (mod p).
Applying non-zero left-cancellation of modulo p multiplication gives Fermat’s Little Theorem. ut

3 To show ap ≡ a (mod p) for all a, it is sufficient to show this for 0 ≤ a < p, the possible remainders under
modulo p. The case a = 0 is trivial. The case 0 < a < p has gcd a p = 1, since p is prime. This allows
left-cancellation of non-zero a on both sides, giving the equivalent form ap−1 ≡ 1 (mod p).



4 Group Theory

The combinatorial necklace proof and the number-theoretic proof may appear unrelated, but there is an
underlying algebra behind both proofs, that of group theory. The algebra gives us:

– the cycles and similarities in the necklace proof;
– the factor cancellation in the number-theoretic proof; and
– an insight, allowing a modest generalisation.

The discussion that follows is an expansion of this theme.

We mechanise the necessary theorems from group theory following an existing mechanisation in the
HOL distribution by Joe Hurd [9].4 We have a predicate Group g on a record of four fields (the group
operation (x × y), the inverse (x−1), the identity (e) and the carrier set). We abuse notation to allow G and
H to stand for the carrier sets of groups g and h respectively:

` Group g ⇐⇒
e ∈ G ∧ (∀ x y::(G). x × y ∈ G) ∧ (∀ x::(G). x−1 ∈ G) ∧
(∀ x::(G). e× x = x) ∧ (∀ x::(G). x−1× x = e) ∧
∀ x y z::(G). x × y × z = x ×(y × z)

The double-colon notation (e.g., ∀ x y::(G). P x y) is a restriction on all the preceding bound vari-
ables (x and y here) requiring them to be in the set G.

Typical results in this mechanisation appear with the Group predicate as a side-condition.

` Group g ⇒ ∀ x y z::(G). x × y = x × z ⇐⇒ y = z
` Group g ⇒ ∀ x y z::(G). x × y = z ⇐⇒ x = z × y−1

` Group g ⇒ ∀ x::(G). (x−1)−1 = x

This is perhaps not the slickest possible presentation of abstract algebra, even within the constraints of
HOL4’s simple type theory, but it is both well-understood and sufficient for our purposes.

Group exponentiation is defined via primitive recursion, giving us the usual properties:

` Group g ∧ x ∈ G ⇒ x0 = e
` Group g ∧ x ∈ G ⇒ x1 = x
` Group g ∧ x ∈ G ⇒ xm ×n = (xm)n

` Group g ∧ x ∈ G ⇒ (xn)−1 = (x−1)n

We write h ≤ g to mean that h is a subgroup of g, and define the coset of a set X with respect to a
group element a (normally written aX) to be

` coset g X a = IMAGE (λ z . a × z) X

The cosets of a subgroup’s carrier are important because of these standard results:

Theorem 9. Subgroup cosets partition the group’s carrier set, by the following equivalence relation:

` Group g ∧ h ≤ g ⇒ coset g H equiv_on G

Theorem 10. Each coset of a subgroup is in bijection with the subgroup itself.

` Group g ∧ h ≤ g ∧ a ∈ G ⇒ BIJ (λ x . a × x) H (coset g H a)

4 The source code of a prior HOL mechanisation of group theory by Elsa L. Gunter [5] is not generally available.



This bijection allows determination of the size of subgroup cosets:

Theorem 11. For a finite subgroup, the size of its coset equals the size of subgroup itself:

` Group g ∧ h ≤ g ∧ a ∈ G ∧ FINITE H ⇒ |coset g H a| = |H|

Therefore the subgroup cosets partition consists of equal-size chunks, leading to Lagrange’s Identity:

` FiniteGroup g ∧ h ≤ g ⇒ |G| = |H| × |partition (coset g H) G|

and Lagrange’s Theorem on cardinality of subgroups:

` FiniteGroup g ∧ h ≤ g ⇒ |H| divides |G|

5 Group Theory Applied to the Necklace Proof

The group-theoretic version of the necklace proof requires a little more theory than the basic development
of the preceding section. We shall use the group Z+

n , which is the additive group over the natural numbers
less than n. This group’s binary operation is addition modulo n, and its identity is zero.

5.1 Group Actions

Definition 3. Let g be a group over a set of elements of type α, X be a set of elements of type β, and
(infix) ◦ a function of type α -> β -> β. The mapping (◦) is called a group action from g to X ,
(written action (◦) g X ), if these three conditions are satisfied:

– Closure: a ∈ G ∧ x ∈ X ⇒ a ◦ x ∈ X
– Identity: x ∈ X ⇒ e ◦ x = x
– Composition: a, b ∈ G ∧ x ∈ X ⇒ a ◦ (b ◦ x) = (a× b) ◦ x

The HOL definition is

` action (◦) g X ⇐⇒
∀ x .

x ∈ X ⇒
(∀ a::(G). a ◦ x ∈ X) ∧ e ◦ x = x ∧
∀ a b::(G). a ◦ b ◦ x = (a × b) ◦ x

The set X above is called the target. We can picture a target point x ∈ X being acted upon by the group
elements. Alternatively, we say that point x can reach another point a ◦ x for some a ∈ G. If a ◦ x = x,
we say that the group element a leaves the point x fixed. This leads to the following:

Definition 4. For x ∈ X , the set of target points it can reach form its orbit.

Definition 5. For x ∈ X , the set of group elements that leave it fixed form its stabilizer.

For example, Z+
n acts on the set of necklaces of length n, with cycle being an action from Z+

n to the
necklaces. Each monocoloured necklace always cycles to itself. Thus its orbit consists of itself only, and
its stabilizer is all of the group’s carrier. For each multicoloured necklace, cycling brings it to another
(similar) multicoloured necklace. Since |Z+

n | = n, its orbit contains at most n reachable points in the
target. Generally, more reachable points give a larger orbit, and the corresponding stabilizer is smaller. In
the extreme case when the orbit has n distinct target points, the stabilizer contains just the group identity.

This is a hint that the sizes of orbits and stabilizers may have a relationship — an issue we shall explore.



HOL Implementation The HOL definitions of these concepts pick up multiple parameters, so that, for
example, the reach relation is not simply a binary notion but has to include explicit parameters for the
action and the governing group. Similar extra parameters are required for orbit and stabilizer
definitions:

` reach (◦) g x y ⇐⇒ ∃ a. a ∈ G ∧ a ◦ x = y
` orbit (◦) g X x = {y | y ∈ X ∧ reach (◦) g x y }
` stabilizer (◦) g x = {a | a ∈ g .carrier ∧ a ◦ x = x }

For presentational reasons, we shall assume fixed operation (◦), group g and target setX in much of what
follows, and use the following abbreviations in prose and HOL theorems:

– orbit x for orbit (◦) g X x , and
– stabilizer x for stabilizer (◦) g x .

5.2 Action Basics

Properties of group actions blend nicely with properties of groups, as shown by these basic results.

Theorem 12. Reachability is an equivalence relation on the target set.

` Group g ∧ action (◦) g X ⇒ reach (◦) g equiv_on X

Proof. Let x ∼ y stand for reach (◦) g x y . By action identity: e ◦ x = x, hence x ∼ x, or reach
is reflexive. If a ∈ Gmoves point x to y: a◦x = y, then a−1 ∈ Gmoves y to x: a−1 ◦y = a−1 ◦(a◦x) =
(a−1 × a) ◦ x = e ◦ x = x, hence x ∼ y ⇒ y ∼ x, or reach is symmetric. If a ◦ x = y, b ◦ y = z, then
by action composition: (b× a) ◦ x = b ◦ (a ◦ x) = b ◦ y = z, hence x ∼ y ∧ y ∼ z ⇒ x ∼ z, or reach
is transitive. Thus reach is an equivalence relation. ut

The orbits are equivalence classes of reach, and they form a partition of the target set X . Another
characterisation of orbit using the action mapping (◦) is:

` Group g ∧ action (◦) g X ∧ x ∈ X ⇒ orbit x = {a ◦ x | a ∈ G}

Theorem 13. The stabilizer of a point in the target set forms a subgroup.

` action (◦) g X ∧ x ∈ X ∧ Group g ⇒ StabilizerGroup (◦) g x ≤ g

Proof. If two elements a, b ∈ G fix a point x ∈ X , i.e., a ◦ x = x and b ◦ x = x, then by action
composition: (a× b) ◦ x = a ◦ (b ◦ x) = a ◦ x = x. Therefore, the stabilizer is a closed subset of G. The
identity e is in the stabilizer by action identity: e ◦ x = x. If a is in the stabilizer, its inverse a−1 is also
in the stabilizer since a−1 ◦ x = a−1 ◦ (a ◦ x) = (a−1 × a) ◦ x = e ◦ x = x. Hence the stabilizer is a
subgroup. ut

5.3 Orbit-Stabilizer Theorem

Consider a point x ∈ X . Its orbit is the set of points reachable through the action of all group elements
a ∈ G. If all action points a ◦ x are distinct, only e ◦ x = x fixes x, hence its stabilizer consists of the
group identity e only, the smallest possible subgroup. For example, let G = {a, b, c, d, e, f} with e being
the identity, and X = {x, y, z, . . . }. An example of such a group action is shown in Figure 3.

What happens if not all action points are distinct? This is interesting:

Theorem 14. If action points coincide: a ◦ x = b ◦ x, the quotient a−1 × b lies in the stabilizer of x.

` Group g ∧ action (◦) g X ∧ x ∈ X ⇒
∀ a b::(G). a ◦ x = b ◦ x ⇐⇒ a−1× b ∈ stabilizer x
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Fig. 3. If a group action, shown on the left, maps a point x ∈ X to distinct reachable points, each reachable point
corresponds to only one element in G. These reachable points can be joined together by arcs, shown on the right,
giving the orbit x. The “balloon” over each y ∈ orbit x contains the group element which acts on x to reach y.
Note the balloon over x is stabilizer x, in this case just {e}, corresponds to the self-loop over x on the left.
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Fig. 4. If stabilizer x , shown on the left as self-loops over x, has two elements {e, c}, then every z ∈ orbit x is
reachable by two group elements: z = a ◦ x = a ◦ (c ◦ x) = (a× c) ◦ x = b ◦ x where b = a× c, and b 6= a since
c 6= e. On the right are shown the two group elements for every point in orbit x inside its “balloon”. The balloon
over x is stabilizer x; the other balloons are cosets of stabilizer x.

Fig. 5. Orbits of necklaces with 3 beads in 2 colours under cycle action by Z+
3 are shown as background round

rectangles. Light gray orbits of monocoloured ones always have size = 1. Dark gray orbits of multicoloured ones
always have size > 1. By Orbit-Stabilizer theorem, orbit size divides |Z+

3 | = 3, hence multicoloured orbit size = 3.



Proof. From left to right, apply the action a−1 to both sides of a ◦ x = b ◦ x. Thus x = (a−1 × b) ◦ x.
From right to left, we have (a−1 × b) ◦ x = x. Apply the action a to both sides of this equation, deriving
b ◦ x = a ◦ x as required. ut
Furthermore a−1 × b is some c ∈ G by closure property of the group. By uniqueness of group inverses,
c 6= e if a 6= b. Hence for distinct a, bwith a◦x = z = b◦x, there is an element c 6= e and c ∈ stabilizer x.
Note that a−1 × b = c implies b = a× c. So if, for example (Figure 4), stabilizer x is indeed just {e, c},
then the set of group elements enabling x to reach z, i.e. {a, b} = {a× e, a× c} = a {e, c}, is a coset of
stabilizer x .

Similar reasoning shows that, for any point y ∈ orbit x, the set of group elements {a ∈ G | a ◦ x = y}
that enables x to reach y will be a coset of stabilizer x . In HOL, this is expressed as:
Theorem 15. The set of group elements enabling x to reach point y ∈ orbit x is a coset of stabilizer x .

` Group g ∧ action (◦) g X ∧ x ∈ X ∧ y ∈ orbit x ⇒
{a | a ∈ G ∧ a ◦ x = y } =
coset g (stabilizer x) (actionElement (◦) g x y)

where (actionElement (◦) g x y) is a group element that acts on x, generating y.

Such an element exists when x and y are in the same orbit, as assumed. Since the choice made by
actionElement may not be drawing on a singleton set, this association of a point y ∈ orbit x with
a coset is only meaningful if the coset is independent of this choice. This follows from a standard result
about subgroup cosets:
Theorem 16. Two cosets of a subgroup are equal when it has the quotient of their generating elements.

` Group g ∧ h ≤ g ⇒
∀ b a::(G). coset g H b = coset g H a ⇐⇒ a−1× b ∈ H

Proof. For the if-part (⇒), since b ∈ bH , bH = aH implies there is a c ∈ H such that b = a × c.
Solving for c in a group: c = a−1 × b ∈ H . For the only-if part (⇐), since (a−1 × b) ∈ H , so for any
c ∈ H , (a−1 × b)× c equals to some d ∈ H , by closure property of a subgroup. Now (a−1 × b)× c = d
implies b × c = a × d, for any c ∈ H . This shows bH ⊆ aH . Repeating the same argument with
b−1 × a = (a−1 × b)−1 ∈ H , as a subgroup includes all inverses, gives aH ⊆ bH . Thus bH = aH . ut
This matching condition is used to prove the association of stabilizer cosets to orbit points (Theorem 15).
Together with the matching condition of reachable points (Theorem 14), both are crucial in establishing:
Theorem 17. The points of x’s orbit are in bijection with the cosets of x’s stabilizer.

` Group g ∧ action (◦) g X ∧ x ∈ X ⇒
BIJ (λ z . coset g (stabilizer x) (actionElement (◦) g x z))

(orbit x) {coset g (stabilizer x) a | a | a ∈ G}
The last set comprehension is a special form marking a as the only variable that varies in the leftmost
expression, coset g (stabilizer x) a . This bijection provides the key for:
Theorem 18. Orbit-Stabilizer Theorem.

` FiniteGroup g ∧ action (◦) g X ∧ x ∈ X ∧ FINITE X ⇒
|G| = |orbit x | × |stabilizer x |

Proof. There are |orbit x | points in x’s orbit. Each point is associated with a coset of stabilizer x . Since
stabilizer x is a subgroup (Theorem 13), each coset is the same size as stabilizer x (Theorem 11). The
cosets form a partition of the carrier set G (Theorem 9), which is counted by the bijection of Theorem 17:

|G| =
∑
a∈G
|a(stabilizer x )| = |orbit x | |stabilizer x |

ut



5.4 Applying Action to Necklaces

The Orbit-Stabilizer theorem is the key to classifying necklace orbits, especially when the necklace length
is prime. First we identify the action:

Theorem 19. cycle is an action from Z+
n to the set of necklaces:

` 0 < n ∧ 0 < a ⇒ action cycle Z+
n (necklace n a)

Proof. For necklace ` ∈ necklace n a , |`| = n . Each element k ∈ Z+
n , i.e. 0 ≤ k < n, maps a

necklace ` to the cycle result: cycle k `, i.e. cycling of the necklace by k beads. Recall these earlier
results about cycle (Section 2.2):

` ` ∈ necklace n a ⇒ ∀ k . cycle k ` ∈ necklace n a
` cycle 0 ` = `
` ` 6= [] ⇒ cycle x (cycle y `) = cycle ((x + y) mod |`|) `

The first shows cycle is closed for necklaces. The second shows cycle has an identity. The third shows
cycle composes under modulo n addition. Hence cycle is an action from the group Z+

n . ut

Since length and colours are invariants for cycle (Section 2.2), a multicoloured necklace cannot be
cycled to a monocoloured necklace. This shows cycle is also closed for those sets respectively:

` 0 < n ∧ 0 < a ⇒ action cycle Z+
n (monocoloured n a)

` 0 < n ∧ 0 < a ⇒ action cycle Z+
n (multicoloured n a)

The classification of orbits for necklaces is simple:

Theorem 20. Only monocoloured necklaces have orbit size equal to 1.

` 0 < n ∧ 0 < a ∧ ` ∈ monocoloured n a ⇒
|orbit cycle Z+

n (monocoloured n a) `| = 1
` 0 < n ∧ 0 < a ∧ ` ∈ multicoloured n a ⇒

|orbit cycle Z+
n (multicoloured n a) `| 6= 1

Proof. Only a monocoloured necklace ` has cycle 1 ` = ` (Theorem 2), i.e. for all multiples k ,
cycle k ` = ` by CYCLE_ADD. Hence only such orbit collapses to a singleton, with cardinality 1. ut

Theorem 21. For multicoloured necklaces of length p, a prime, the orbit size of each necklace equals p.

` prime p ∧ 0 < a ∧ ` ∈ multicoloured p a ⇒
|orbit cycle Z+

p (multicoloured p a) `| = p

Proof. When the necklace length is prime p, the action group is Z+
p . By the Orbit-Stabilizer theorem

(Theorem 17): |orbit `| × |stabilizer `| = |Z+
p | = p for any necklace `. A prime p has only trivial

factorization: p = 1×p = p×1. By Theorem 20, the orbit of a multicoloured necklace is not a singleton,
so its size must be p. ut

Recall that reach is an equivalence relation (Theorem 12). Orbits are the equivalence classes of reach,
so they form a partition of the target set. From Theorem 21, the target is (multicoloured p a) with
size (ap−a) (Section 2.1). Theorem 21 also specifies an equal-size partition, giving the visual image of
division (Figure 5). Hence, p divides ap−a , which in modulo p is Fermat’s Little Theorem:

` prime p ⇒ ap ≡ a (mod p)



6 Group Theory applied to the Number-Theoretic Proof

Having applied group theory to the necklace proof, it is interesting to try the “same trick” with the number-
theoretic proof. The subsequent results are not novel, but allow a fuller comparison of approaches when
we conclude.

It is straightforward to recast the number-theoretic proof of Fermat’s Little Theorem (Section 3) in
the context of finite Abelian groups, the structure that naturally mimics prime modulo multiplication. The
factor rearrangement and cancellation are direct consequences of commutativity and cancellation laws
in Abelian groups. However, this is not very illuminating, and unnecessarily restrictive, as the group-
theoretic version of Fermat’s Little Theorem holds for all finite groups (not just the Abelian ones):

` FiniteGroup g ∧ a ∈ G ⇒ a |G| = e

Assuming this result (which will be proved later, see Theorem 22), to derive Fermat’s Little Theorem it is
sufficient to show that prime modulo multiplication, i.e. Z∗p for prime p, does indeed form a group — with
|Z∗p| = |{1. . . p−1}| = p−1, and the multiplicative identity is 1. Critically, we need to show that any
x ∈ {1. . . p−1} has a multiplicative inverse in Z∗p. This can be done by appeal to Bézout’s identity, a
property of gcd already used in Theorem 1:

` x 6= 0 ⇒ ∃ k q . k × x = q × p + gcd p x

With p a prime and 0 < x < p, gcd p x = 1. Taking modulo p on both sides of the equation, the
right-hand side becomes 1, and the k on the left gives k (mod p) as the multiplicative inverse of x in Z∗p.

6.1 Euler’s Generalization

When the modulo n is not a prime, the non-zeroes of Zn do not form a multiplicative group; e.g. to
find the multiplicative inverse for 2 in Z6 would require solving 2x = 6y + 1, which is impossible by
parity. However, Euler observed that the Bézout’s identity of the preceding section actually guarantees a
multiplicative inverse for x < n whenever gcd n x = 1, i.e. x is co-prime to n:

` 1 < n ∧ 0 < x ∧ x < n ∧ coprime n x ⇒
∃ y . 0 < y ∧ y < n ∧ coprime n y ∧ y × x mod n = 1

This is then the basis for a group, whose carrier is Z∗n — the set of elements of Zn with multiplicative
inverses. The cardinality of this set is known as its totient, denoted by ϕ(n):

` Z∗n = {x | 0 < x ∧ x < n ∧ coprime n x }
` ϕ(n) = |Z∗n |

Euler’s generalisation of Fermat’s Little Theorem follows:

` 1 < n ∧ 0 < a ∧ a < n ∧ coprime n a ⇒ aϕ(n) ≡ 1 (mod n)

We shall now prove the group-theoretic version of Fermat’s Little Theorem for any finite group, via the
generated subgroup of its elements.

6.2 Generated subgroups

Let a be a group element. Consider the sequence a, a2, a3, . . . . If the group is finite, there must eventually
be a repetition in this sequence. Assumem < n and am = an, then we can use left-cancellation to remove
the common factor am, giving us

` Group g ∧ a ∈ G ∧ m < n ∧ am = an ⇒ an−m = e



Definition 6. Call the least non-zero exponent that maps an element back to the identity, its order:

` order g a = LEAST k . 0 < k ∧ ak = e

The preceding argument shows that order exists for finite group elements, and it satisfies:

` FiniteGroup g ∧ a ∈ G ⇒ 0 < order g a ∧ aorder g a = e
` FiniteGroup g ∧ a ∈ G ⇒ a−1 = aorder g a−1

By properties of group exponentiation (Section 4), the powers of an element a ∈ G form a subgroup:
Generated g a , also written as 〈a〉. This subgroup is related to order by:

` FiniteGroup g ∧ a ∈ G ⇒ |(Generated g a).carrier| = order g a

This result can be deduced by the LEAST property of order, and provides the key for:

Theorem 22. Fermat’s Little Theorem for finite groups.

` FiniteGroup g ∧ a ∈ G ⇒ a |G| = e

Proof. Consider 〈a〉, the generated subgroup of a ∈ G, with |〈a〉| = order g a , and aorder g a = e.
Since 〈a〉 is a subgroup of g, there is a k such that |G| = order g a × k by Lagrange’s Theorem.
Hence,

a |G| = aorder g a × k = (aorder g a)k = ek = e

as required. ut

7 Conclusion

Fermat’s Little Theorem is a very basic and well-known result in number theory. Having attempted its
proof in a slew of different styles, we now attempt to draw some lessons.

For each proof discussed, we have linearised our various script files into one script containing just
the lemmas required for that particular effort. Table 1 includes total line counts for each file. The verdict
is clear: the basic number-theoretic approach is much better in terms of overall lines-of-code. However,
these results can only be suggestive: our HOL scripts may not be the optimal expression of the various
proof strategies, and our own skills may not be uniform across the numerical and algebraic domains.

Type of Proof Approach (Section ref.) Filename Total

Combinatorial Direct via cycles (2) AllFLTnecklaceScript.sml 824

Group via action (5) AllFLTactionScript.sml 1387

Number-theoretic Direct via modulo arithmetic (3) AllFLTnumberScript.sml 473

Group via generated subgroups (6) AllFLTgroupScript.sml 839

Euler via generated subgroups (6) AllFLTeulerScript.sml 871

Table 1. Line counts for theories developing each approach. The filename is that of the linearised script in the
bitbucket.org repository.

Additionally, HOL4’s features make some proofs easier to automate, and some goals easier to express.
Certainly, we believe that our naı̈ve approach to group theory makes the numbers for the group-theoretic



proofs worse than they might be, and the Orbit-Stabiliser theorem is arguably a steeper requirement
than Theorem 22. Sub-types, perhaps best exemplified by their use in Coq (though also approximated
and used for group theory in HOL4 by Hurd [8]), would be an obvious way to approach this issue.
Isabelle’s axiomatic type-classes and locales have also been used to provide appealing mechanisations of
abstract algebra. It would be interesting to see what these other systems made of the directly combinatorial
necklace proof, and of the group-theoretic version of the same.

Future Work The HOL4 source code provides an example of proving Fermat’s Little Theorem using
the Binomial Theorem.5 The proof is by induction, and thus rather different from the proofs in this
paper. Indeed, Fermat’s Little Theorem and the Binomial Theorem are crucial concepts in Agrawal et
al.’s famous result [1] that primality testing can be done in polynomial time. A mechanisation of the AKS
algorithm is certainly an appealing prospect.

Final Verdict Our results show that we have yet to find the sweet spot when it comes to performing com-
binatorial proofs in HOL. Our consolation is to have found that attacking the result via explicit appeals
to group theory gives us two distinct mechanised proofs that are arguably more elegant than their direct
analogues. Our mechanisation of the necklace proofs may be the first; we hope it is not the last, and that
still more beautiful pearls may be found in this vein.
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