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Abstract

The AOARD project #FA2386-11-1-4070 aims at providing a provably correct initialiser of
componentised systems. Taking as input a description of the desired components and the desired
authorised communication between them, the initialiser sets up the system and provides a proof
that the resulting concrete machine state of the system matches the desired authority state. Within
the scope of this project, we provide (1) a formal specification of the initialiser, in terms of the
steps needed to create the components and their communication channels; and (2) substantial
progress towards a formal proof that this specification is correct in that it either fails safely or
produces the desired state.

This document is the final report of the project, presenting its scientific outcomes. Namely, we
have completed the initialiser specification, we have created a verification framework enabling
modular reasoning and proofs about the initialiser, and we have progressed substantially on the
proof itself, demonstrating that such proofs are feasible.
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1. Introduction

This final report describes the outcomes of AOARD project #FA2386-11-1-4070, “Formal System
Verification - Extension”. The project ran from 18 May 2011 to 17 October 2012.

This project is part of a larger research vision of building truly trustworthy software systems;
in particular the formal verification of large, complex embedded systems. A first step in this
vision was to provide a formally verified microkernel basis. We have previously developed the
seL4 microkernel, together with a formal proof (in the theorem prover Isabelle/HOL [6]) of its
functional correctness [2]. This means that all behaviours of the sel.4 C source code are included
in the high-level, formal specification of the kernel.

The approach taken to provide formal, code-level guarantees about the security or safety of
systems on top of this kernel is to minimise the trusted computing base by designing the system
architecture in a componentised way, where untrusted components can be isolated from trusted
ones. With suitable architectures, the amount of code to be verified can be reduced from million
of lines of code to tens of thousands. This MILS-style of security architecture [1] enables us to
concentrate the verification effort on the trusted components. In our case, the isolation is provided
by the underlying selL4 kernel, in terms of integrity and authority confinement [9], as well as
confidentiality (in ongoing work).

The project we report on here focuses on the critical step of initialising the system into a state
satisfying the specified architecture. Namely, the project goal is to:

(1) construct a formal, high-level specification of the system initialiser component in
the theorem prover Isabelle/HOL that is connected to the existing formal specification
of the sel4 microkernel and

(2) prove that this specification of the system initialiser component is correct in the
sense that it will always either fail safely at initialisation time or produce a system
state that formally corresponds to the specified target.

We begin the remainder of this report with background information on the sel.4 microkernel
and in particular its access control mechanism, which is critical to the system initialiser. After
introducing notation, we then describe the exact project scope and finally explain in detail our
formal specification of the initialiser and the outcomes of its proof of correctness at the end
of this project. In particular, we describe our instantiation of separation logic that enables the
decomposition of the proof into smaller statements that can be reasoned about independently.

While we did not finish the full proof in the available project time, we have made enough
progress on it to show that this proof is feasible and can be completed in future work. In particular,
we have covered the breadth of the specification with invariant and pre/post condition annotations
on the top level, and we have investigated one deep slice of the proof, connecting one of the



most complex operations in the system initialiser down to the kernel call level. We expect the
remaining operations to be suited for the same kind of reasoning, only with less complexity.

The main outcome of the project is the proof framework that is scalable enough for concrete
state operations yet flexible enough to deal with the complexities of system initialisation. We
managed to abstract significant parts of this framework into a general separation logic framework
that is readily applicable to other applications as well. The separation logic framework has been
published and its Isabelle/HOL sources are available for download from the Archive of Formal
Proofs [4].

We attach the publication describing the separation logic framework at the end of this report.
This framework is then instantiated in the work presented here in Section 6.



2. Background

2.1. selL4

The selL4 microkernel is a small operating system kernel designed to be a secure, safe, and
reliable foundation for a wide variety of application domains. The microkernel is the only
software running in the privileged mode (or kernel mode) of the processor. The privileged mode is
used to protect the operating system from applications and applications from each other. Software
other than the kernel runs in unprivileged mode (or user mode). As a microkernel, seL.4 provides
a minimal number of services to applications: threads, inter-process communication and virtual
memory, as well as a capability-based access control. Threads are an abstraction of CPU execution
that support running software. As shown in Figure 2.1, threads are represented in seL4 by their
thread control blocks (TCB), that store a thread’s context, virtual address space (VSpace) and
capability space (CSpace). VSpaces contain a set of frames, generally organised in a hierarchical,
architecture-dependent structure of page tables and page directories. CSpaces are kernel managed
storage for capabilities. A capability is an unforgeable token that confers authority. In selL4, a
thread may only invoke operations on objects when it has sufficient permissions. This means
that every call to the kernel requires the presentation of a capability with the correct authority to
perform the specified operation. A thread stores its capabilities in its CSpace, which is a directed
acyclic graph of capability nodes (CNodes). These CNodes can be of various sizes and contain
capabilities to other CNodes and objects. When a thread invokes sel4, it provides an index into
this structure, which is traversed and resolved into a real capability. Communication between
components is enabled by endpoints. When a thread wants to send a message to another thread, it
must send it to an intermediate endpoint to which it has send access and to which the receiver has
receive access, as shown in Figure 2.2.

The allocation of kernel objects in seL.4 is performed by retyping an untyped memory region.
Untyped memory is an abstraction of a power-of-two sized, size-aligned region of physical
memory. Possession of capability to an untyped memory region provides sufficient authority
to allocate kernel objects in this region: a user-level application can request that the kernel
transforms that region into other kernel objects (including smaller untyped memory regions). At
boot time, seL4 first pre-allocates the memory required for the kernel itself and then gives the
remainder of the memory to the initial user task in the form of capabilities to untyped memory.

2.2. selL4 Verification

The seL4 microkernel was the first, and is still, to our knowledge, the only general-purpose
operating system kernel that is fully formally verified for functional correctness. This means
that there exists a formal, machine-checked proof that the C implementation of sel4 is a correct
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Figure 2.1.: Internal representation of an application in sel4.
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Figure 2.2.: seL.4-based system with two threads that can communicate via an endpoint.

refinement of its functional, abstract specification. This proof assumes the correctness of the
compiler, assembly code, boot code, management of caches, and the hardware. The technique used
for formal verification is interactive, machine-assisted and machine-checked proof. Specifically,
we use the theorem prover Isabelle/HOL [6].

As shown in Figure 2.3, the verification uses several specification layers. The top-most layer in
the picture is the abstract specification: an operational model that is the main, complete speci-
fication of system behaviour. The next layer down is the executable specification, representing
the design of the kernel. This layer is generated from a Haskell prototype of the kernel, aimed at
bridging the gap between kernel development needs and formal verification requirements. Finally,
the bottom layer is the high-performance C implementation of seL.4, parsed into Isabelle/HOL
using a precise, faithful formal semantics for the C programming language [7, 10].

The correspondence established by the refinement proof enables to conduct further proofs
of any Hoare logic properties (see Section 6) at the abstract level, ensuring that the properties
also hold for the refined model. This means that if a security property is proved in Hoare logic
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Figure 2.3.: The refinement layers in the verification of seL.4 functional correctness.

about the abstract model (not all security properties can be), refinement guarantees that the same
property holds for the kernel source code. Since proofs at the abstract level are easier to perform,
this allows a significant reduction of effort in additional verifications, as illustrated by the proof
that seL.4 enforces integrity and authority confinement [9].

2.3. capDL

One of the design goals of the seL.4 kernel was to capture all access control relevant state by
capabilities. However, despite its capability-oriented design, sel.4, like other microkernels,
contains authority relevant to information flow and access control that is not conferred by
capabilities. For example, the memory mapped into a thread’s address space is not mapped using
capabilities, nor are various hardware accesses such as 10 ports.

Having all the protection state described by capabilities would enable reasoning about the
access control and security of a system through capability distributions alone. It would also
allow components and connections of user-level systems on top of sel.4 to be described by their
capability distribution alone. Such a description is basically a graph with objects as nodes and
capabilities as edges. To reason about such specific graphs, we developed the capability distribu-
tion language capDL [5]. The capDL language unifies all information relevant to information
flow and access control as explicit capabilities. In addition to the language itself, which describes
snapshots of system states, we developed, in previous work, a kernel semantics for this language
that describes the effect of each kernel operation on such states, and showed that it is a formally
correct abstraction of existing models of seL4, with a complete refinement chain to the C code
level, as shown in Figure 2.4. This high-level model of selL4, which will be referred to as the
sel4 capDL model, fully encapsulates the protection state of the system.

Using capDL, we are able to precisely describe the protection state of a system we wish to
run on seLL4. For instance, the example system shown in Figure 2.2 can be formally described
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Figure 2.4.: capDL model in the seL4 refinement chain.

using the capDL specification shown in Figure 2.5. This capDL specification describes all system
objects through a mapping from unique object identifiers to the objects themselves. Each object
contains a set of capabilities, as well as other attributes, referred to as fields. For example, the
object reference 0 maps to a TCB object whose CSpace root is the CNode at reference 2 and
whose VSpace root is the page directory at reference 1. In turn, the CNode at reference 2 contains
a set of capabilities, one of which is a capability to the CNode at reference 3, which itself contains
the capability, with Read right, to the endpoint at reference 4. Other than rights, capabilities may
contain other attributes such as guards or other tags; objects also contain other capabilities or
fields; and the capDL specification itself contains other information than the set of objects; but
these are irrelevant for understanding the initialiser definition and proof.

In the project reported here, we use formal capDL specifications, similar to the one given in
Figure 2.5, to describe the system to be initialised.
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( cdl_objects =
[0+~ Tcb (cdl_tesb_caps = [0 — CNodeCap 2 guard guard_size,

1+ PageDirectoryCap 1 True None,...],
cdl_teb_fault_endpoint = . . .,

cdl_teb_intent = ...,
1 — PageDirectory ...,
2 CNode ( cdl_cnode_caps = [..., 2+— CNodeCap 3 guard guard_size, ...],
cdl_cnode_size_bits = ...,
3 +— CNode ( cdl_cnode_caps = [0 — EndpointCap 4 badge {Read}, . ..],
cdl_cnode_size_bits = ...)),

4 — Endpoint,
5 Teb (cdl_tcb_caps = [0+ CNodeCap 6 guard guard_size,

1 +— PageDirectoryCap 7 True None,...],
cdl_teb_fault_endpoint = . . .,

cdl_teb_intent = ... ),
6 — CNode ( cdl_cnode_caps = [0 — EndpointCap 4 badge {Write}],
cdl_cnode_size_bits = ...,

7 — PageDirectory ...,

s

current_thread = ...

Figure 2.5.: capDL specification of Figure 2.2.
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3. Notation

The Isabelle/HOL notation used in this report largely conforms to everyday mathematical notation
and the conventions of functional programming languages such as Haskell or Standard ML.

The main concepts used in the specification are functions, type declarations and non-recursive
function definitions.

3.1. Types and Functions

Function application follows the convention of functional programming. That means f x, often
written as £ (x) in mathematics, is the function £ applied to argument x. Multiple arguments are
delimited by spaces, i.e. g x (3 + y) is the function g applied to two arguments namely x and
3 + y. Functions can be partially applied, i.e. not all arguments need be given at the call site.
For the function g for instance, the term g x would denote a function that expects one further
parameter. Predicates are functions that return values of type boo1l.

Function types are written with =, for instance ptr = nat = ptr. This denotes a total
function that takes a pt r and natural number of type nat as a parameter and returns a pt r. The
notation £ :: ptr = nat means that function £ has type ptr = nat.

Isabelle allows polymorphic types with variables, distinguished from normal types by a quote
character ’a. For instance, ptr = ‘a = ptr is a function that takes a pt r and a value of
arbitrary type ” a, and delivers a pt r. Finally, functions can be higher-order, i.e. they can again
take functions as arguments. For example, nat = (nat = nat) = nat is a function whose
first argument is a natural number and whose second argument is a function from nat to nat.

New types can be built from existing types by using type constructors. For instance, ptr set
is a set of pointers, “a 1ist is a list of elements of type ”a. Note that “a 1ist is variablein ’a,
but demands that all elements of the list have that same type ”a. The type of pairs is denoted by
X,1.e. (ptr X nat) set is a set of pairs consisting of pt r and natural numbers. A concrete
value of the pair type is written (x, y) as in standard mathematics.

New type constructors can be defined using the datatype command. The option type for
instance is defined as a datatype and often used to add a special element to an existing type to
indicate failure or undefinedness. Its definition is

datatype ’‘a option = None | Some ’a

A lookup function could for instance return None for lookup failure and Some r to indicate a
result r.

A similar type mechanism used in this specification is that of records. A record is a tuple with
named fields. The definition
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record point =
x :: nat
y :: nat
introduces a new type point that contains two fields x, and y, both of type nat. If p is of type
point, the term x pis the x-field of p and y p the y-field of p, that is, record fields names can
be used as accessor functions.
Theterm ( x = 3, y = 7 |) constructs a new record and stands for a point with x-field 3
and y-field 7. To update an existing record p, we write p (x := 4|). This stands for the record
that has the y-field of p and the x-field 4.

3.2. Lambda

In this report we make use of anonymous functions, that is, functions that are used only locally
and are not given a specific name or their own function definition. The notation is the standard
A from functional programming: Ax. t is a function that takes an argument x and returns the
result t (x may occur in t).

An example usage is the definition of the function update notation: £ (a := b) stands for the
function that at position a returns the value b, and otherwise returns what £ would have returned.
Its formal definition is

f(a := b) = Mx. if x = a then b else f x

3.3. State Monad and Do-Syntax

Since the system initialiser in this report is inherently state-based, many functions in the specifi-
cation modify state in some way. Isabelle/HOL provides a convenient specification mechanism
for this that is also known from functional languages such as Haskell, the so-called state monad.
A state monad is merely a function from a state /s to a pair of new state and return value ’s x
7 r. This can be thought of as modelling a usual C function that has a side effect (produces a new
state) and returns a value. The syntax for chaining such functions together is the following:
do

a « f;

b +— g ay

h ab
od

In the example, first function £ is called, returning value a, and potentially changing the
underlying state. In this new state g a executes, producing result b and potentially using £’s
result a. The whole do-block returns whatever h a b returns, and produces the state after
execution of h. This means the state is threaded through the functions implicitly, while the result
values are passed explicitly. The type of each of the single functions is still s = ‘s x “r,
potentially with additional arguments if they make use of previous result values.

13



The idea is to make the syntax reminiscent of an imperative programming style while staying
in a strictly functional setting where the state and its type could be made explicit if convenient.
It also allows the type checker to enforce that certain functions only modify certain parts of the
state.
The library this specification is based on extends such state monads with non-determinism and
a mechanism to raise and check assertions. Non-determinism basically means that functions do
not return only one state and result, but a set of possible new states and results. The type of such
functions is abbreviated as (’s, ‘v) nondet_monad where ’ s is the type of the state and * v
the type of the result value. If the function does not return a result value, the type unit is used
for ’v.
The following example shows a number of basic monad functions and further syntax.
do
X < gets field name;
v < select {v. P x};
z < assert_opt v;
return $§ x + Vv

od

The meaning of these are in order of occurrence:

gets expects a function “s =- ‘v as argument and returns the result of applying this function
to the state. It does not modify the state. It is usually used to extract one field from the state
when the state is modelled as a record.

select nondeterministically picks an element from a set.
assert_opt v fails if the value v is None, and returns x if it is Some x.

return returns its argument and does not modify the state. It is used to perform computations
that are state-independent.

£ $ x applies function f to argument x. This alternative syntax for function application makes
it possible to write fewer parentheses. For example, £ $ x + visequivalentto f (x+v).

14



4. Project Scope

Given a formal capDL specification describing the target system, we need to produce initialiser
code that runs at system startup to give a state where all the components have been created and
their communication channels set up.

As explained in Section 2.1, when a selL4 system starts, the kernel creates an initial user task
— the root task — with access rights to all of the memory not used by the kernel itself. More
precisely, the kernel creates all the objects needed by the root task such as its TCB, capability
space and virtual address space. Capabilities to untyped memory are stored in the capability
space, together with capabilities to allow hardware access. At the end of this booting phase, the
root task is enabled to run and starts executing.

Our work produces a custom root task to perform system initialisation. We provide both a
specification describing its execution and progress towards a proof of its correctness.

The specification describes the code for allocating objects, managing capabilities to the objects,
copying or transferring authority, managing and mapping frames, and setting any required data
(such as thread instruction pointers). Manually performing these tasks for each given system is
complicated, error prone, and inflexible. For instance, creating an object requires possessing a
capability to an untyped memory region of suitable size, which in turn requires possessing a slot
in the root task’s CSpace to store this capability, and so on. A slight change in the desired system
might require storing more capabilities, which may be difficult or impossible if the root task’s
CSpace size is hardcoded. Instead we choose to provide a generic tool, that takes any capDL
specification as input, and automatically produces code to create and initialise the objects.

Together with the code, the tool also generates a proof asserting that after executing the code
from the initial state after kernel booting, the system is in a final state conformant to the original
capDL specification. We use a notion of conformance instead of equality for two reasons. First,
as will be described in detail in Section 7.1, capDL specifications use object identifiers that need
to be mapped to memory addresses. Second, we have not yet examined different options for
deleting the root task after system initialisation. Therefore the root task stays dormant in memory,
but will be provably isolated from the rest of the system. Future work could look into removing
the root task from memory after it has finished initialising the system. In this project, the final
state after initialisation will therefore contain some root task objects in addition to the objects
described in the capDL specification.

As formal proof at the source code level requires significant effort, we follow the approach
successfully used for seL.4 security proofs, by performing the proof at the abstract specification
level, and relating it to the source code through a separate refinement proof. We therefore describe
the behaviour of the initialiser by a set of high-level instructions in the se.4 capDL model. We
call this behaviour description the initialiser specification and we prove conformance with the
capDL specification at the initialiser specification level. Later work (outside the scope of this
project) will involve producing an implementation of the initialisation code in C, and proving a
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Scope of this project
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Figure 4.1.: Overview of initialiser correctness proof.

formal refinement between the initialiser specification and the C implementation, as illustrated in

Figure 4.1.
To summarise, within the scope of this project:

e we have defined a formal specification init_system as a set of high level instructions,
which takes a capDL specification spec as input, and sets up objects and capabilities as

required by spec;

e we have made substantial progress in proving that executing init_system spec from
a state where only the root task’s objects exist results in a final state where each object
mentioned in spec maps to an object in the state’s heap, and the only other existing objects
are the root task’s objects. The desired property is stated formally as:

If well formed specand injective ¢ and
object_ids = dom (cdl_objects spec) then

{]«root_objects»l} init_system spec
{«/\* map (object_done spec ¢) object_ids A" root_objects»}

This statement will be explained in depth in Section 7. It assumes a wellformedness condi-
tion about spec and the existence of an injection ¢ mapping object identifiers to memory
addresses. It uses the predicate ob ject_done stating that a given object is successfully
created according to spec, and iterates this predicate over the list object_ids of all

identifiers of the objects to be created in spec.
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5. Specification of the System Initialiser

In this section, we present the outcome of the first goal of this project, as stated in Section 1,
namely the formal specification init_system of the system initialiser. This specification takes
a capDL specification spec as input and is defined as a set of high level instructions setting up
objects and capabilities as required by spec. The full formalisation of the specification is given
in Appendix A. Here we give an overview of its structure and formalisation of the main steps.

5.1. Top-level definition

The initialiser is the root task running just after kernel booting, i.e. from a state where its TCB,
capability space and virtual address space have been created by the kernel, and where it possesses
capabilities to all of the memory regions not used by the kernel itself. Such a state is illustrated in
Figure 5.1.
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Figure 5.1.: Initial state, after kernel booting.

The top-level definition of the specification is the following:

init_system spec =
do bootinfo <+ get_bootinfo;
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parse_bootinfo bootinfo;
parse_spec spec;
create_objects spec;
duplicate_cnode_caps spec;
init_vspace spec;
init_tchs spec;
init_cspace spec;
start_threads spec

od

The specification is divided into the following well-defined separate phases.

o Firstly, the initialiser processes the information provided by the kernel (in the initial state),
and the capDL specification itself (three first lines of init_system body).

e Secondly it creates all the objects specified in the capDL specification, and then duplicates
all the capabilities to the newly created objects in order to be able to later move some of
those capabilities into some component’s CSpace while keeping a copy of the capability
(fourth and fifth line of init_system body).

o Finally, it initialises each of these objects by type, including installing the capabilities into
the capability storage objects, and sets all threads to be runnable (sixth to ninth lines of
init_systembody).

Each instruction operates on a state of the system, modelled by a record containing the kernel
state, as well as bookkeeping information used by the initialiser:

record user state =

capdl_to_sel4 orig :: cdl_object_id = cdl_cptr option
capdl_to_sel4 copy :: cdl_object_id = cdl_cptr option
capdl_objects :: cdl_object_id list

free _untypeds :: cdl_cptr list

free_slots :: word32 1ist

kernel_state :: cdl_state

The first two fields, capdl_to_seld_orig and capdl_to_sel4 copy, are used to store the
original and duplicates of all the caps in the system. These will be used when initialising the
capability spaces of the system, as we will see in Section 5.4. The field capdl_ob jects stores
the objects of spec that need to be created. This is just a list created from the mapping contained
in spec. The field free_untypeds stores a list of the capabilities to untyped memory regions
that haven’t been used yet. The field free_slots keeps track of the free slots in the initialiser’s
CSpace, to be able to use them as destination slots when creating new objects.

Finally, since we take user_state as the full state of the entire system for this specification,
we also include kernel_state in the record. This state will not directly be changed by the
operations in the specification, but only through seL.4 API calls which connect to our previous
functional specification of the seL.4 kernel.

The clear separation into phases is designed to assist in the formal proof of the initialiser’s
correctness, as it makes it relatively easy to specify the state of the system at any given point. Each
phase is now described in detail, illustrated by the example given in Figure 2.2 and Figure 2.5.

18



5.2. Information processing

In a first phase, the initialiser analyses the boot information provided by seL.4. The function
parse_bootinfo initialises the bookkeeping information by setting free_untypeds to the
list of capabilities to all the untyped memory regions, and setting free_slots to all of the
available slots in the initialiser’s capability space. The number of free capability slots provided
to the root task is specified at compile time for seL4. It is therefore possible to make sure that
there will be enough free slots available for initialisation of a specific system. Finally, the fields
capdl_to_seld4_origand capdl _to_sel4 copy are set to empty mappings.

The specification spec is then parsed to extract the list of objects that need to be created and
this is stored in the capdi_objects field of the state.

5.3. Object creation and capability duplication

In a second phase, the initialiser creates all the objects required by the capDL specification spec.
Objects are created sequentially from the untyped memory regions, as illustrated in Figure 5.2.
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Figure 5.2.: Creation of objects for the system described in Figure 2.2 and Figure 2.5.

Each untyped memory region can be retyped incrementally to create new objects. Any ordering
of the creation of objects, and any choice of the untyped memory region they are created from, is
safe. Some orderings may however make inefficient use of space as seL4 requires all objects to be
aligned to their size. Ordering the creation of objects from the largest object to the smallest, and
from the largest untyped memory region to the smallest, is conjectured to be optimal, but proving
it is outside the scope of this work. At this stage, the creation is just done in order of appearance
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in the list capdl_objects (extracted from the mapping in spec). The create objects
function is therefore just applying a function create_object to each of the element of the list:

create_objects spec =

do objects <+ get_capdl_objects;
mapM_x (create_object spec) objects

od

where mapM_x runs the given operation on each element of the given list, and where create_object
is defined as:

create_object spec object_id =
do free_slot < get_free_slot;
object <4 get_spec_object spec object_id;
object_type < return $ object_type object;
object_size <
return $ of_nat $ object_at_pointer_size bits spec object_id;
retype_untypeds free_slot object_type object_size;
add_sel4 _cap object_id OrigCap free_slot;
next_free_slot
od

The capabilities to each of these newly created objects are stored in the free capability slots of the
initialiser. The creation is done using the function retype_untypeds, which in turn calls the
sel4 service seL4 _Untyped Retype:

retype_untyped free_slot free untyped type size bits =
do root < return selL4_CapInitThreadCNode;
node_index < return 0;
node_depth < return 0;
node_offset 4 return free_slot;
no_objects_to_create 4 return 1;
seL4_Untyped Retype free_untyped type size bits root node_index
node_depth node_offset no_objects_to_create
od

The seL4 Untyped Retype kernel call takes as input a capability to an untyped memory
region (here the first available in free_untypeds), the size and type of object to be created, and
information about where the capability to this newly created object should be stored, given by a
CSpace root (here the root task’s CSpace root), and slot in this CSpace (here the next available in
free_slots).

The create_object function then calls add_sel4 cap function which simply stores the
locations of the capabilities to the newly created object into capdl_to_sel4_orig field of
the state. This bookkeeping will be used later when initialising the capability spaces: if spec
specifies that a given thread needs to possess a capability to a given object, the initialiser needs
to copy its own capability to that object into the thread’s CSpace. In some cases, the original
capability should be moved (instead of copied) into a thread’s CSpace. There is a distinction in
seL4 between master capabilities (which are the original capabilities acquired at object creation),
and derived capabilities (which are copies of these original capabilities). Master capabilities
confer more authority as they allow for the complete deletion of an object. When initialising a
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system, we may want to provide some of the objects with master capabilities. In this case, if
the initialiser moves its own (master) capability to a CNode A into another CNode, it can no
longer access CNode A to add more capabilities to it. Rather than defining a complex dependency
ordering between the various moves of CNode capabilities, the initialiser duplicates all its CNode
capabilities by copying them into its own CSpace. The master capabilities can then be moved
where needed in the system’s CNodes and the initialiser can still access all the CNodes using the
duplicated capabilities.

This operation is done by the duplicate_ cnode_caps function, which in turn calls the seL4
service seL4_CNode_Copy and updates the capdl_to_sel4 copy field of the state.

5.4. Object initialisation

Objects are created by the kernel in a default state. To make the system state match the desired
capDL specification, the content of created objects must be initialised, which is done per object
type: the virtual address spaces are first initialised, then the thread control blocks, and finally the
capability spaces.

As explained in Section 2.1, the virtual address space of each thread in sel.4 consists of a page
directory containing either page tables or large frames. Each page table in turn contains a number
of frames. The initialisation of virtual address spaces consists of mapping the required page
tables and large frames into the page directories, and mapping the frames into the page tables,
as directed by the capDL specification. The formalisation init_vspace is straightforward: it
iterates (using the mapM x function) over all the page directories specified in spec, then for
each such page directory, iterates over all of its slots; for each page directory slot, it first maps
the required page tables and large frames using the sel.4 services seL4_PageTable_Map and
selL4 _Page_Map respectively. It then iterates over all the slots in each page table and maps the
required framed, using selL. 4 _Page_Map again.

Thread initialisation init_tcbs consists mainly of setting the VSpace root and CSpace root
of all TCBs, as well as other information about the thread’s context (such as the address of the
IPC buffer for communication). This is done by iterating over the list of TCBs specified in spec:
init_tcbs spec = do tcbhs 4 get_tchs spec;

mapM_x (init_tcb spec) tcbs
od

where each TCB is initialised using sel.4 service seL.4 TCB_Configure.

The most complex initialisation operation, which we also investigated most closely in the
formal proof, is the one of capability spaces init_cspace. Capability spaces are initialised
similarly to the virtual address spaces, with the complication of needing to distinguish between
capabilities that are moved and the ones that are copied. Moreover, unlike virtual address spaces
which are fixed, two-level data structures, capability spaces can be arbitrary directed acyclic
graphs.

At this stage, the initialiser would have created all the CNodes objects in a default state and it
now needs to fill them with the desired capabilities as specified in the capDL specification. This
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is done one CNode at a time and, in each CNode, one slot at a time. For example, take the spec
instance given in Figure 2.2 and Figure 2.5, in particular:

cdl_objects spec 3 —
CNode(]cdl_cnode_caps = [0+ EndpointCap 4 badge {Read} ... ],
cdl_cnode_size_bits = ......)

Additionally, for the following assume we are initialising the slot number 0 of the CNode of
reference 3, i.e. we want the newly created CNode at the address corresponding to the reference
3 to contain, at its slot number 0, the capability to the already created endpoint at the address
corresponding to reference 4.

First we need to find, in the root task’s CSpace, the capability to the actual newly created
CNode object. We need to look for the duplicated capability in case the original capability to
this CNode has already been moved. We use the capdl_to_sel4 copy field of the state to get
where this duplicated capability is stored in the root task’s CSpace. Then we need to find, in the
root task’s CSpace, the capability to the targeted object of the capability (here the endpoint of
reference 4). We need to know if this capability should be copied or moved into the CNode. This
is indicated in the specification by a mechanism (not explained here) which specifies what is the
parent of each capability (i.e. what is the capability it has been derived from). If a capability
has no parent, then it is the original capability. In that case, the initialiser needs to move its own
original capability to the object into the CNode. Of course, the specification might require that
some other CNode also contain that same capability. It can not be the original anymore, so a
copy will be enough. It is technically easier for the initialiser to locate and copy its own original
capability. This means that it should not have moved it yet. For these reasons, the init_cspace
function proceeds in two steps: first it initialises the CNodes with the capabilities that need to be
copied, and only afterwards it handles the ones that need to be moved:

init_cspace spec =
do cnodes <+ get_cnodes spec;
mapM_x (init_cnode spec Copy) cnodes;
mapM_x (init_cnode spec Move) cnodes
od

where each CNode is initialised by iterating over its slots:

init_cnode spec mode cnode =

do cnode_slots 4 return $ slots_of_list spec cnode;
mapM_x (init_cnode_slot spec mode cnode) cnode_slots

od

Now each slot is initialised as explained above. The formalisation is the following, explained just
after.

init_cnode_slot spec mode dest dest_slot =

do src_cap <+ assert_opt § opt_cap (dest, dest_slot) spec;
assert (— 1is_untyped_cap src_cap);
src < return $ cap_object src_cap;
dest_obj < get_spec_object spec dest;
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dest_size 4 return $ object_size bits dest_obj;
rights 4 return $ cap_rights src_cap;
orig < return $ is_none $ opt_parent (dest, dest_slot) spec;
data <+ return $§ cap_data src_cap;
dest_root < get_sel4d cap dest DerivedCap;
dest_index < return S dest_slot;
dest_depth < return $ dest_size;
src_root < return seL4 _CapInitThreadCNode;
src_index < get_sel4 _cap src OrigCap;
src_depth < return 0x20;
if src_cap = NullCap then return True
else if mode = Move A orig
then selL4 CNode Mutate dest_root dest_index dest_depth src_root
src_index src_depth data
else if mode = Copy A - orig
then selL4_CNode Mint dest_root dest_index dest_depth src_root
src_index src_depth rights data
else return True
od

We explain the formalisation starting from the end. The move or copy is done using the sel.4
API call seL4 _CNode_Mutate and seL4_CNode_Mint respectively. These functions take
information (root, index and depth) about the destination (the CNode which the capability should
be moved/copied into), and about the source (the capability that needs to be moved/copied), as
well as some data (for endpoints, this would be badges, for CNodes, that would be a potential
guard). In the case of a copy, the specification might require that the capability only confer
some specific rights (instead of the maximum rights the original capability confers). Therefore
seL4 CNode_Mint takes rights as an extra argument.

In our case, the destination information (dest_root, dest_index and dest_depth) is
computed from the (derived) capability that the root tasks holds for the CNode identified by
dest in the specification. The source information (src_root, src_index and src_depth) is
computed from the (original) capability that the root tasks holds for the object identified by src,
where src is the target object of the capability src_cap that spec requires to be in CNode dest
at slot dest_slot. The rights and data are also computed from what src_cap requires in
spec.

The last action of the initialiser is to set each thread state to runnable. It then becomes dormant
in memory, isolated from the rest of the system.
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6. Separation Logic

When reasoning about the system initialiser specification, we wish to precisely capture the
semantics of each operation. Axiomatic semantics are commonly represented in Hoare logic,
using Hoare triples. These triples, written {P} £ {Qf express that if P is true before an operation
£, then 0 will be true afterwards.’

Many of the operations in the initialiser specification either iterate over a list of objects, or
over the capability slots of an object. Expressing that an operation affects only a single capability
slot, and chaining such operations together is difficult in traditional Hoare logic. For instance, to
express the fact that a loop correctly initialises all the thread control blocks, we need to express
that the initialisation of each TCB is correct and that it does not affect the other TCBs. We also
need to express that the composition of these operations performs as expected. Similarly, when
reasoning about the initialisation of specific capability slots within an object, we need to express
that the capability slots are correctly initialised and that the other capability slots in the object are
unaffected. Such reasoning in Hoare logic requires explicitly description of the unmodified parts
of the state.

Separation logic — an extension to Hoare logic first introduced by Reynolds [8] — is designed
for modular reasoning about operations that only manipulate portions of the state. In this work
we have defined a separation logic to reason independently about various objects of a system
state and various parts within objects. This separation logic is an instantiation of an abstract
separation algebra we developed [3]. We partition all the objects of the logical abstract state —
the memory heap — into smaller disjoints heaps, to allow us to specify that an operation affects
only a portion of the memory heap. We also allow partitioning within objects to specify that an
operation affects only a particular slot of an object and leaves other slots and fields unchanged.
For example, we can partition a thread control block into three portions, as shown in Figure 6.1.
This logical partitioning allows modular reasoning about the initialisation specification, that is we
can effectively initialise each part separately.

Formally, we express that P and © are true for separate parts of a heap by separation conjunction
P A* 0.2 We also define the lifted separation conjunction operator A* Ps which joins a list of
separation predicates Ps with separation conjunction (i.e. A* [P1, P2] =P1 A* PI).

This definition of separation conjunction allows us to prove concise rules about loops, such as
the following rule about mapM_x, which runs the operation £ on each object in the list xs.

(NR x. x € xs = {«P x A" R} £ x {«0 x A" R»}) =
{«A\* map P xs A" R»} mapM x f xs {«/\" map Q xs A" R»|

"Hoare logic is normally used to prove partial correctness — if £ terminates, then Q will be true. Termination can be
proven separately, if desired.

P A* Qs defined as (P A* Q) h = (3p gq. p ## g AN h =p + g AP p A Q q),
that is, there exists two disjoint memory heaps, p and q, that add to give h, and for which P is true of p and Q is
true of q.
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Figure 6.1.: The decomposition of a thread control block into three parts, one containing capa-
bility slots 0 and 5, another containing the fields (the fault endpoint and intent) and
capability slots 1 and 3 and another containing capability slots 2 and 4.

The arbitrary R in this rule specifies that any predicate on the rest of the state is preserved, which
means that the rest of the heap must be unchanged.

The state used in separation logic predicates has two parts, the memory heap containing the
objects, and an additional component map, which states which parts of an object are “owned”
by an object (and which is used in the definition of the heap partitioning). To apply separation
predicates to the kernel state we use the syntax <P>, and to apply separation predicates to the
initialiser state we use the syntax «P».

By allowing partitions within objects, we can specify that an operation like set_ cap changes
only a single slot, and leaves everything else (all other objects and all other slots) unchanged. We
express this property using the following Hoare triple.

{<ptr —c old_cap A" R>} set_cap ptr cap {<ptr +c cap A* R>}

We have defined predicates that express when an object identifier maps to an object (ptr +—o
object), when a capability reference maps to a capability in an object (cap_ref +—c cap),
and also when an object identifier maps to an object containing just slots and no fields (ptr
—S obj), fields and no slots (ptr —f obj), or just a single slot (cap_ref —s obj). This
allows us to decompose the reasoning about the initialisation of an object into reasoning about
initialising the capabilities for an object separately from initialising the fields of an object.

We use this separation logic to reason about the semantics of the initialiser specification and
about the capDL model of sel4 itself. We proved the above rule for set_cap about the sel.4
capDL model and other leaf functions of the kernel, and used these to prove concise semantics
for the behaviour of the sel.4 kernel operations in specific contexts. These semantics, which are
preserved by refinement and thus hold for the seL4 C code by our previous functional correctness
proof for selL4, are used when proving properties about the initialiser specification.

6.1. Separation State

The separation algebra we use for these proofs is defined on a separation state that is lifted from
the capDL state.

Since in our previous formalisation, objects are defined in Isabelle as records and datatypes, and
since Isabelle does not allow a natural definition of “partial” records, we encode the partitioning
of objects by associating an additional ownership set with each object. The objects can then be
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divided into their individual capability slots, and their fields.> This ownership set can consist
of capability slots (which are natural numbers) and/or fields. We encode this using the type

cdl_component.
datatype cdl_component = Slot nat | Fields

This object ownership is added to our previous seL4 capDL model as ghost state.*
We define the separation state, which is a projection from the capDL kernel state, as an object
heap and a function of object ownerships.

datatype sep_state = SepState cdl_heap cdl_component_map
where cdl_heap = cdl_object_id = cdl_object option

and cdl_component_map = cdl_object_id = cdl_component set

6.2. Definition of separation state addition and disjunction

To create a separation algebra, we define state addition and state disjunction, and show that these
definitions obey the axioms of our abstract separation algebra. Two states are defined as being
disjoint, if, wherever they both have objects in the same address, these objects have the same
type and the corresponding ownerships are neither empty nor colliding. Empty ownerships for an
object are not allowed because they would allow the construction of a predicate which constrains
the type, but does not consume ownership, which would preclude the construction of a predicate
specifying total ownership of an object, as is needed to retype an object. Thus, we do not allow
such predicates by making them always disjoint from any other predicate.

State addition is defined by the addition of object heap and the addition of object ownerships.
Object addition adds the fields and capabilities owned by the two objects (using a right-override?).
Any unowned fields and capabilities are reset to a default value, thus always given a “cleaned”
object. This is necessary to ensure commutativity of addition. Ownership addition is defined as
the union of the ownerships of the objects.

Using these definitions of state addition and state disjunction we instantiate our abstract
separation algebra, and show that these definitions obey the axioms of the algebra. This gives us
a separation algebra for capDL.

3Even though the framework would be general enough to handle this case, we do not decompose the different fields
of an object, since it is not necessary in this proof.

* Ghost state are variables that are only written to, and can be removed without changing the operation of a program.
They are useful for referring to intermediate state properties in annotations.

SRight-override is associative and commutative when the objects are disjoint, as required by the abstract separation
algebra axioms described in [3].
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7. Proof

In this section, we describe the verification framework we have developed for reasoning about
the system initialiser, as well as describe the proof outcomes so far.

We explain the top-level correctness theorem of the system initialiser in Section 7.1, the
wellformedness assumptions on the input specification in Section 7.2, and the invariants needed
in Section 7.3.

Section 7.4 explains how we use separation algebra for this proof, and Section 7.5 explains
how we use it to describe predicates about separate parts of objects.

Finally, we describe how we subdivide the proof of the initialiser in Section 7.6, how we
specify that the system initialiser sets up capabilities correctly in Section 7.7, and go into detail
about the proof of init_cspace and local reasoning about loops in Section 7.8.

These proofs of the initialiser are built on and connect to previous work in which we formally
proved that the capDL kernel model is a correct abstraction of the seL.4 C code. This means, the
model and proof presented here are firmly grounded on the real seL.4 system call API.

7.1. Top-Level Theorem

The aim of this proof is a theorem about the initialiser specification stating that, at the end of
the initialisation, all objects in the system either existed at the start (those for the root task itself,
created during kernel booting), or that they are in conformance with the capDL specification.

In capDL specifications, systems are described as a mapping from object identifiers (names) to
objects. We treat these object identifiers simply as identifiers, rather than as memory addresses.
When objects are created, their location in memory is decided by an allocator that runs at system
initialisation. The initialiser ensures that there is an injective function ¢ between the identifiers
of the objects in the capDL specification and the memory addresses of corresponding objects in
the initialised system. In other words, no two objects are mapped to the same memory address.
The use of an online allocator allows more adaptability to hardware and specification changes.
However, it also means that the capDL specification cannot specify the memory addresses for
objects. The only time where physical memory addresses are relevant for user-level execution is
when mapping device frames into memory and for DMA. The verified version of sel.4 currently
does not support DMA, and provides special pre-allocated pages for known devices, so this no
new restriction. In a potential extension of the seL.4 kernel that supports DMA and memory
allocation by physical address, this kernel mechanism could be used by the system initialiser to
enable mapping physical memory precisely when desired. However, this is presently outside the
scope of this work.

To reason about the relation between the capDL specification and the concrete kernel state, the
injection between object identifiers and memory addresses maps the object graph of the capDL
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Figure 7.1.: Diagrammatic representation of ob ject_done definition.

specification to the one of the kernel state. Technically, such a mapping is called an injective
homomorphism, or monomorphism. This monomorphism is used to map all object identifiers
in the capDL specification, as well as all object identifiers within the capabilities of each object
— the latter defined by the function spec2s (which takes the injection ¢ as a parameter). Each
of the objects in the capDL specification will be created at a particular memory address and the
capabilities in the kernel will refer to the memory addresses of the corresponding objects, not the
identifiers used in the capDL specification.

To be able to phrase the top-level correctness property, we define the function ob ject_done
that indicates that a given object in the capDL specification has been created, and that it corre-
sponds to the respective object in the kernel state as illustrated in Figure 7.1. The formal definition
is the following.

object_done spec ¢ spec_object_id =
As. dkernel_object_id kernel_object spec_object.
¢ spec_object_id = Some kernel object_id A
(kernel_object_id w0 kernel_object) s A
cdl_objects spec spec_object_id = Some spec_object A
intent_reset (specZs ¢ spec_object) = intent_reset kernel_ object

It can be read as: the object identified by spec_object_id in the capDL specification spec
is said to be done in state s if there exists a corresponding kernel_object_id mapped to
spec_object_id via the injection ¢ such that the object pointed to by spec_object_idis
(almost) the same as the one pointed to by kernel object_id. It is only almost the same
because each thread control block contains an intent field in the specification, used to encode
the kernel instruction that the thread wishes to execute, and which our proof does not make
any guarantee about its content. The intent is therefore overwritten to a default value through
intent_reset before comparing objects.

An alternative to the intent_reset formulation in this definition would be to include the
reset into the projection from the kernel state into the separation logic state. Under the additional
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(reasonable) assumption that the initial specification has all intents set to default, the statement of
the top-level theorem could be simplified at the cost of making the proof framework slightly more
complex. Our initial experiments in this direction have been encouraging, but are not completed
yet.

With either version of this definition, the top-level result of the system initialiser is:

Proposition.

If well_formed specand injective o and
object_ids = dom (cdl_objects spec) then

{]«root_objects»l} init_system spec
{«/\* map (object_done spec ¢) object_ids A" root_objects»]}

It states that each object of the capDL specification has been correctly initialised, and that the
other objects created by the kernel booting remain unchanged.

7.2. Assumptions on the capDL Specification

This section explains in more detail the assumptions of the top-level theorem, in particular the
wellformedness constraints on input specifications.

The capDL language allows the description of infeasible systems, for instance systems with
objects having infinite number of capability slots, or more slots than the object size allows. The
initialiser can obviously not configure systems described by such capDL specifications. The proof
of correctness therefore assumes that the capDL specification is well_formed. In addition to
these obvious restrictions, the proof has extracted a number of more subtle constraints on system
architectures that are formalised in this section.

In addition to these necessary constraints on the input specification, we have additional
assumptions that express current limitations of the system initialiser, such as not allowing objects
to access untyped memory. We aim to remove these in future work.

We formalise all of these constraints with the predicates well formed, well formed_caps
and well_formed_ cap.

well formed spec =
Yobj id.
case cdl_objects spec obj_id of None = True
| Some obj =
well formed_caps spec obj A
object_size bits obj < 32 A
object_size bits (object_default_state obj) = object_size bits obj A
dom (object_slots (object_default_state obj)) =
dom (object_slots obj) A
(is_cnode obj — 0 < object_size bits obj)

This predicate says: Objects must have well formed capabilities, they must be less than 32 bits
in size (as the verified version of seL.4 runs on a 32 bit system), the size must match the default
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size of the object (or positive for CNodes, which do not have a default size)!, and the domain
of the capability map must be the same as the default for the type of object. The capability map
for an object is a partial mapping, and objects can have real capabilities, NullCaps, or None in
each slot, so the domains of the capability maps mean that an object’s capabilities will only occur
in the correct slots. The capDL language distinguishes between real capabilities which directly
correspond to seL.4 API capabilities, and virtual capDL capabilities that are used to represent
implicit authority or virtual memory mappings.

well formed_caps spec obj =
Vslot.
slot € dom (object_slots obj) —
(dcap_obj cap.
object_slots obj slot = Some cap A
(cap # NullCap —
well formed_cap cap N
- 1is_untyped_cap cap N
cdl_objects spec (cap_object cap) = Some cap_obj A
cap_type cap = object_type cap_obj A
(is_cnode obj — — vm_cap_has_asid cap N — 1is_fake_vm _cap cap)))

Well formed capabilities must be of the same type as the object they point to. As mentioned,
capDL distinguishes between the “real” sel.4 API capabilities for virtual memory that are
installed in a capability space, and artificial capabilities that denote the presence of virtual
memory mappings in the hardware. All capabilities in a capability space must be such real
capabilities, and cannot have a hardware ASID associated with them yet. ASID stands for address
space identifier and is a hardware feature that the kernel manages for user-space. Each virtual
memory mapping, when it becomes active, must be mapped to an ASID. The restriction basically
expresses that the pages described in the capDL state must not already be previously mapped.

well formed_cap cap = case cap of
UntypedCap _ = True
| EndpointCap _ b _ = b < 2 © badge_bits
| AsyncEndpointCap _ b r = (b < 2 » badge_bits) A

(r C€C {AllowRead, AllowWrite})

| CNodeCap _ g gs = (gs < guard_bits) N (g < 2 * gs)
| TchCap _ = True

| FrameCap _ r _ _ _ = r € {vm_read write, vm_read _only}
| PageTableCap o = True

| PageDirectoryCap _ _ _ = True

/| _ = False

Each type of capability has particular constraints, which are requirements of sel.4 (or the
underlying hardware) — the badges of endpoint and asynchronous endpoints cannot be too
large, asynchronous endpoints cannot have grant rights (as they cannot transfer capabilities), a
CNode’s guard cannot be bigger than a predefined size and the guard must be smaller than the
gguardsize and frames must be read-only or read-write. At present, the system initialiser is unable
to initialise hardware IRQ or ASID control capabilities. The latter two are intended for trusted

L 1 obj is a CNode, then object_size bits (object_default_state obj) =
object_size bits objisalways true.
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supervisor components only. Since the system initialiser is intended for setting up a static system
configuration, this is not a practical restriction. Nevertheless, we think this constraint can be lifted
in future work to enable the initialisation of dynamic systems with trusted supervisor components.

7.3. Invariants

This section starts going into the proof of the top-level theorem itself and describes the two main
global invariants that are needed for the proof. The invariant demands

o that the root task is the only thread that runs, and

o that the capabilities held by the root task point to the correct kernel objects.

While these are reasonably lightweight invariants to prove, we eventually aim to eliminate the
need for global invariants altogether to reduce proof effort. Using separation logic, we believe we
can achieve this and use local, compositional reasoning instead.

The latter invariant we were already able in an experiment to describe using separation logic
predicates as described in Section 7.7, the former we believe can be captured by the separation
algebra itself as described in Section 7.4, by extending the separation logic state to include the
scheduling data structures of the kernel.

Eliminating these global invariants in favour of local reasoning would simplify the proof
further.

7.4. Local reasoning

This section describes the key reasoning feature that makes the proof tractable: local reasoning.

To prove results about the capDL model of seL.4 using the separation logic we defined in
Section 6, we prove what is known as the frame rule explicitly for the leaf functions of the kernel.
Because we use a shallow embedding of capDL within Isabelle, we need to prove this frame rule
manually for each leaf function of the kernel, but can then use these for proving similar rules for
more complicated functions.

The frame rule states that the effects of a function are local, i.e. that the effects of a function are
constrained to the domain of the separation logic predicate in the precondition. If that is the case,
then any predicate that is separate from this precondition will remain unaffected by the function.
We can use this to implicitly state which parts of the state remain invariant without naming these
parts of the state explicitly each time. The following shows an example of this technique.

By allowing partitions within objects, we can specify that an operation such as set_cap
changes only a single capability slot, and leaves everything else (all other objects and all other
slots) unchanged. We express this property using the following Hoare triple.

{<ptr —c old _cap A" R>} set_cap ptr cap {<ptr —c cap A* R>}

The arbitrary R in this rule specifies that any predicate on the rest of the state is preserved, which
means that the rest of the heap must be unchanged. In standard separation logic, there is one frame
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rule that applies to all functions. In a shallow embedding such as ours, we bake the statement of
the frame rule into each basic hoare triple by attaching an arbitrary R as above.

We proved this implicit frame rule for the the leaf functions of the kernel, i.e. for setting of
an object’s slots or fields, object creation and object deletion. These rules depend on the exact
instantiation of the separation algebra, and were used to motivate the definition of the separation
algebra instantiation for this proof.

At present, the only remaining non-local operation in the kernel is the scheduling of threads in
the system. This is because the scheduler can globally choose the next thread and set its state to
running, i.e. in this setting scheduling appears as an inherently global operation. However, we
believe we will be able to modify the capDL specification slightly together with the separation
algebra instantiation to model the same behaviour in a local way by making the set of runnable
threads an explicit object in the system. This change will of course require an update to the
existing functional correctness proof to re-establish the connection to the C code of seL4.

We have used a similar technique to make another behaviour of the sel.4 capDL model local:
at various point in the kernel, the so-called intent of a thread is reset to a nondeterministic value.
The intent models the system call a thread is about to make. Certain operations the kernel can
perform, such as changing registers in a thread, can change this intent. On the abstraction level of
capDL, we do not model what the precise effect of such a register change is. Instead, we demand
that such operations are only executed when safe.

7.5. Object predicate decomposition

To make use of local reasoning as introduced in the previous section, we need to be able to
decompose properties of objects into small pieces that single operations transform locally. This
section describes such predicates.

As described in Section 6, we have predicates that specify that an specific object exists in the
state at a particular position (ptr —o object).

The separation algebra we defined allows us to decompose this predicate into predicates
describing partitions of objects. We can divide a predicate about an object into two predicates
about the fields and the capability slots of an object.

p +o obj = (p —f obj A" p —S obj)

Each of these object predicates specify that the separation state consists of an object with the
specified properties (and that the unspecified parts of the object are in a default state), and the state
ownership correspond the the ownerships of the particular predicate. Thus, (ptr —f object)
s specifies that the object heap of s consists of an object with fields the same as object at
address pt r, the capabilities of the object in the heap has an empty capability map, and that the
state ownership is that this object owns its fields (and nothing else).

Since, in capDL, an object’s capability slots are a partial mapping from slots to capabilities,
an object can have a theoretical infinite number of slots. Whilst the type does not constrain the
number of capability slots of an object, the domain of the capability map of a wellformed object
is determined by the size and type of the object. This wellformedness constraint is described in
detail in Section 7.2. Such wellformed objects will have either real capabilities or NullCaps

32



in the expected slots, and no caps in the other slots. We use this to define the ownership of the
empty slots of an object (ptr —E object) which is used for the decomposition of the predicate
describing the slots of an objects.

[dom (object_slots obj) = slots; distinct slots; slots # UNIV]
= obj _id —S obj =
(N* map (Aslot. (obj_id, slot) ws obj) slots A obj_id +E obj)

These predicate decompositions are used to decompose the predicate defined in Section 7.6
that defines when an object is correctly initialised.

The difficulty in setting up the framework is to find the sweet spot between local behaviour of
the kernel, the separation algebra instantiation, and simple object decomposition rules as above.

7.6. Decomposition of the Final Theorem

This section describes how the predicates defined above can be used to decompose the top-level
correctness theorem of the system initialiser into its parts.

The separation algebra we defined in Section 6 has two main properties that allow the proof
of the system initialiser. Firstly, as explained in Section 7.4, because it is a separation algebra,
we are able to reason separately that the different phases turn a particular type of object (such
as virtual memory objects, or capability space objects), from being in an empty, default state
(object_empty), to being in an initialised state (object_done). These results, once proven,
compose in the obvious manner.

The second advantage of this particular separation algebra, is the decomposability of the
predicates describing the initialisation of an object (such as object_empty and object_done)
into predicates such as when the object’s fields are done (object_rfields_done), or when an
object slot is done (object_slot_done). This proof is built on the decomposition of the object
predicates such as ptr —o object as explained in Section 7.5. As p —o0 obj = (p —f
obj A* p +S obj), the property object_done can be similarly decomposed into stating
that an object’s fields are correctly initialised, and that its capability slots are correctly initialised.

object_done spec specls_ids spec_object_id =
(object_fields_done spec spec2s_ids spec_object_id A*
object_slots_done spec specls_ids spec_object_id)

The definition that an object’s capability slots are initialised can be similarly decomposed into
stating that each individual capability slot is initialised.

[dom (slots _of obj_id spec) = slots; distinct slots; slots # UNIV]
=—> object_slots_done spec ¢ obj_id =
(\* map (object_slot_done spec ¢ obj_id) slots A"
object_empty_ slots_done spec ¢ obj_id)

Such a decomposition is generally a difficult result to prove and not necessarily true, but
our separation algebra gives us this result with relative ease. To prove this lemma, we observe
that the definition of object_slots_done specifies that there exists kernel_object_id,
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kernel_object and spec_object satisfying a particular property. The left hand side contains
only one kernel_object_id, kernel_object and spec_object, but the right hand side
folds the predicate object_slot_done over a list of slots, and thus we have a list of potentially
different kernel_object_id, kernel_object and spec_object satisfying the right hand
side.

Lifting kernel object_id and spec_object outside the folding is simple because there
can be only one given a constant ¢ and spec. We can lift the kernel object outside the fold
by noting that

((obj_id, sloti) —+s obji A* (obj_id, slots) wss objz) s —>
Jdobj. ((obj_id, sloti) +s obj A" (obj_id, slots) ++s obj) s

We use this decomposition of the predicates object_empty and ob ject_done in Section 7.8
to decompose the proof that init_cspace correctly initialises the capability spaces of the objects
from the specification.

7.7. Initialiser’s CSpace

This section prepares the proof of connecting one of the initialiser operations to the kernel API
level. A key specification problem in this proof is to formalise the contents of the initialiser data
structures and how they relate to each other.

After the initialiser has created all of the objects required in the second phase of operation, it
stores the master capabilities to each of these objects within its own capability space, saving the
information about which capability slot contains the master capability to a particular object in its
own data structure opt_sel4 cap. As described in Section 5, the initialiser keeps a duplicate
copy of CNode capabilities for its own addressing. The information about these OrigCaps and
DerivedCaps are both stored in the data structure opt_sel4_cap.

To specify that the initialiser has the necessary capabilities stored in the correct slots (as
specified by the initialiser’s internal bookkeeping in opt_sel4 cap), we define the predicate
seL4_cap_at, which takes an injection ¢ mapping object identifiers to memory addresses, a
mapping from object identifiers to cap pointers (to be taken from opt_sel4_cap), and the object
identifier of the CNode being initialised (ob;j_1id), and specifies that a capability exists in the
root task’s capability space at the specified slot points to the CNode being initialised.

selL4 _cap_at ¢ selL4 _caps spec obj_id =

As. dcap_ptr slot obj kobj id.
((root_cnode_1id, slot) wrc default_cap (object_type obj) {kobj_id}) s A
seL4_caps obj_id = Some cap_ptr A

unat cap_ptr = slot N
cap_ptr < 2root_cnode_51ze A

cdl_objects spec obj_id = Some obj AN ¢ obj_id = Some kobj_id

A similar predicate seL4_spec_obj_caps_at specifies that for a given CNode, the capa-
bility required to initialise the specified slot exists in the root capability space at the specified
location.
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seL4_spec_obj _cap_at ¢ seL4 caps spec obj_id slot =

As. dspec_cap.
selL4 _cap_at ¢ seL4_caps spec (cap_object spec_cap) s A
opt_cap (obj_id, slot) spec = Some spec_cap AN
- 1s_untyped _cap spec_cap

We define a predicate seL4 null_cap_at to describe the empty capability slots of the root
capability space after the capabilities have been moved into the required CNodes.

We lift the predicates seL4 cap _at and seL4 null cap_at to work on lists of objects,
sel4 _spec_obj_caps_at to work on both objects, and lists of objects.

7.8. Initialising the capability spaces

This section looks at connecting one of the operations in the initialiser specification to the seL.4
kernel API formalisation. It draws together the results of the sections above.

The most complicated objects to initialise are the capability storage objects, because they
can be arranged in a graph, potentially with loops, and because they are initialised in a two
phases process to ensure the distinction between original capabilities and derived capabilities as
described in Section 5.

Due to its complexity, this operation of the initialiser is the one we have investigated in detail,
as its proof should ensure that the proof framework developed is sufficient to express and prove
the desired properties for the entire initialiser. We believe that the proof of the initialisation of
other objects will be similar to the initialisation of capability spaces, only simpler.

As mentioned, the initialisation of capability spaces is divided into two phases — copying the
capabilities that should be derived capabilities first, then moving the capabilities that should be
master capabilities second.

init_cspace spec =
do cnodes < get_cnodes spec;
mapM_x (init_cnode spec Copy) cnodes;
mapM_x (init_cnode spec Move) cnodes
od

The detailed pre/post specification of the copy phase of init_cspace is the following.

{As. «/A\* map (object_empty spec t) objects A*
/\* map (selL4_spec_obj caps_at t (S OrigCap) spec) objects A*
N\* map (selL4_cap_at t (S DerivedCap) spec) objects A*
root_cspace A" R»
s A
S = (Atype obj_id. opt_sel4d cap obj_id type s) A
well formed spec N objects = cnodes spec s]}

mapM_x (init_cnode spec Copy) objects

{As. «/A\* map (cnode_half done spec t) objects A"
N\* map (selL4_spec_obj_caps_at t (S OrigCap) spec) objects A*
N\* map (seL4_cap_at t (S DerivedCap) spec) objects A*
root_cspace N* R»
s A
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S = (Atype obj_id. opt_sel4 cap obj_id type s) A
well formed spec N objects = cnodes spec sl}

This theorem states that iterating init_cnode over each of the CNodes of the specification
spec transforms each of these CNodes from being in a default state, to being half-initialised (that
is, having the derived capabilities, but not the master capabilities required).

For this to be true, the initialiser needs all of the original master capabilities required to copy
into the CNodes (seL4_cap_at), and derived capabilities to address the CNodes themselves
(seL4_spec_obj_caps_at). These lookups require the data structure opt_sel4_cap which
is taken from the initialiser’s state, and this theorem proves that the data structure remains
unchanged by the operation.

Proving this property requires reasoning about complex loops. Thankfully, the separation
algebra makes reasoning about such loops possible using rules such as the follow, which work for
iteration over objects, and iteration over the capability slots of an object.

(AR t x.

X € XS5 —

{As. «P t x A" I s A" R» s ANt =g s} f x

{As. «0 t x A" I s A" R» s ANt =g s}) =
{As. «\* map (P t) xs A" I s A" R» s At =g s} mapM x f xs
{As. «A\* map (0 t) xs A\* I s A" R» s At = g s}

Recall that init_cspaceiterates the function init_cnode thatinitialises each signle CNode,
which in turn iterates init_cnode_slot which initialises a single slot in a CNode by extracting
and transforming the necessary information from the capDL specification of the desired system
state and then calling the seL.4 API function seL.4_CNode_Mint.

The proof of init_cspace simply reduces the problem using the mapM_x rule above first to
a single CNode initialisation, and then to a single slot initialisation. Due to the compositionality
of this rule and with the additional help of the decomposition rules of Section 7.6, this doubly
nested loop that would otherwise need complex invariant specifications becomes easily tractable.
The decomposition rules and object predicates are designed such that the decomposition happens
precisely along the same boundaries.

To connect the proof to the low-level seL.4 API function, we then transform our lemma about
the initialisation of a CNode slot into a specification of the state required for the seL4 API call
selL4 CNode_Mint by expanding the definitions of seL4 cap_at and seL4 spec_obj caps_at
and observing that these provide sufficient information for local reasoning about the kernel call.
This local reasoning is what makes the complexity reduction in mapM_x rule possible.

In total, this gives us a formal link between the system initialisation specification and the
functional correctness proofs of sel4.
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8. Conclusion and Future Work

This report has presented the outcomes so far of our work on proving correctness of user-level
system initialisation.

The critical task of initialising components and communication channels is tedious and error
prone when conducted manually. This work addresses this task by providing a generic initialiser,
able to automatically build seL.4-based componentised systems from precise configuration de-
scriptions, and by conducting a formal proof of specification correctness.

In this report, we have described in detail our formal Isabelle/HOL specification of the initialiser,
which takes a capDL description of the desired initial system state as input and then iterates
over this description to produce that desired system state. We have shown a general separation
logic framework that can be used to reason about such user-level systems, we have produced a
proof framework to reason about user-level executions on top of a formally verified microkernel
API, and we have made significant progress towards a mechanised Isabelle/HOL proof of the
correctness of the system initialiser specification.

In more detail, the outcomes of the project are the following.

e a complete formal specification of system initialisation;

e a separation algebra suitable for compositional reasoning about the semantics of both sel.4
and the initialiser specification;

e the formal instantiation of the separation algebra to system-initialiser and kernel state;
e a formal definition of the correctness property required from the initialiser;

e a decomposition of the correctness property of the whole initialisation into properties about
the various phases focusing on smaller parts of the system, including precise pre/post
annotations for each phase, enabling compositional verification;

e a formal description of wellformed desired initial system states that is practically usable
and can be automatically checked;

e global invariants on user and kernel state that hold during system initialisation, encoded in
local separation logic reasoning;

e substantial progress on the correctness proof of the initialiser specification itself, both in
breadth over the whole specification as well as in depth towards connecting with the kernel
correctness proof.
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While the full specification correctness proof has not been achieved in the time frame of
this project, it is close enough to completion and has covered enough of the complexity of the
specification to clearly demonstrate the feasibility of its completion in future work.

A side effect of the formalisation and proof effort was the explicit extraction of assumptions
which initial system states can be safely achieved, and which state descriptions are malformed.
This explicit formal wellformedness condition on the capDL description of initial system states
embodies system-architecture assumptions the initialiser must make to successfully create the
desired state. These wellformedness conditions are executable and can be automatically checked
before the system initialiser runs. This means system architects without formal methods expertise
can get design-time feedback on whether a system can be safely initialised or not.

The work in this project shows that the formal verification of user-level components on top
of a microkernel API with a fully formal connection between kernel correctness and user-level
specification is feasible.
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A. System Initialiser Specification

definition
parse_bootinfo :: cdl_bootinfo = unit u_monad
where
parse_bootinfo bootinfo = do
modify (As. s (capdl_to_seld4_orig := emptyl));
modify (As. s (capdl_to_seld _copy := emptyl);

(untyped_start, untyped _end) < return $ bi_untypes bootinfo;

untyped_list < return $ set [untyped_start .e. (untyped_end - 1)];

ordered_untyped_list < select {xs. set xs = untyped_list &
distinct xs};

modify (As. s (free_untypeds := ordered untyped list]));

(free_slot_start, free slot_end) < return $ bi_free_slots bootinfo;

modify (As. s (free_slots := [free slot_start .e. (free_slot_end - 1)]|)
od
definition
parse_spec :: cdl_state = unit u_monad
where
parse_spec spec = do

cdl_object_list 4 select {xs. set xs = dom (cdl_objects spec) &
distinct xs};

modify (As. s (capdl_objects := cdl_object_list)))
od
definition
retype_untyped :: cdl_cptr = cdl_cptr = cdl_object_type =

word32 = bool u_monad
where
retype_untyped free_slot free untyped type size bits = do
root < return selL4_CapInitThreadCNode;
node_index <4 return (0::word32);
node_depth < return (0::word32);
node_offset 4 return free_slot;

no_objects_to_create < return 1;
seL4 _Untyped Retype free_untyped type size bits root node_index

node_depth node_offset no_objects_to_create
od
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function
retype_untypeds :: cdl_cptr = cdl_object_type = word32 = unit u_monad
where
retype_untypeds free_slot type size_bits s = (do
free_untyped < get_free_untyped;
success 4 retype_untyped free_slot free_untyped type size bits;
if success
then return ()
else (do
next_free_untyped;
retype_untypeds free_slot type size bits

od)
od) s
definition
create_object :: cdl_state = cdl_object_id = unit u_monad
where

create_object spec object_id = do
free_slot < get_free_slot;
object < get_spec_object spec object_id;
object_type < return $ object_type object;
object_size 4 return $ of_nat $ object_at_pointer._size_bits spec object_id;
retype_untypeds free_slot object_type object_size;
add_sel4 _cap object_id OrigCap free_slot;
next_free_ slot
od

definition create_objects :: cdl_state = unit u_monad
where
create_objects spec = do
objects <+ get_capdl_objects;
mapM_x (create_object spec) objects
od

definition duplicate cap :: cdl_state = cdl_object_id = unit u_monad
where
duplicate_cap spec cap = do
rights < return S UNIV;
free_slot < get_free_slot;

dest_root < return free slot;
dest_index < return (0::word32);
dest_depth < return (0::word32);
src_root < get_seld _cap cap OrigCap;
src_index < return (0::word32);

src_depth <+ return (0::word32);

success 4 selL4 _CNode_Copy dest_root dest_index dest_depth
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assert success;

src_root src_index src_depth rights;

add_seld4 _cap cap DerivedCap free_slot;

next_free_slot
od

definition duplicate cn
where

ode_caps :: cdl_state = unit u_monad

duplicate_cnode_caps spec = do

cnodes <4 get_cn
mapM_x (duplicat
od

definition init_tch
where
init_tcb spec tch

cdl_tch
cdl_cspace_root
cdl_vspace_root
cdl_ipcbuffer
ipcbuf_addr
priority

seld tch

selq4 cspace_root
sel4d _vspace_root
seld4 ipchuffer
selq4 fault_ep

sel4 _cspace_root
sel4d _vspace_root

success <+ selL4d

assert success
od

definition init_tcbs
where

_data < return 0;

odes spec;
e_cap spec) cnodes

cdl_state = cdl_object_id = unit u_monad

Q.
o

assert_opt $ opt_thread tcb spec;

assert_opt $ opt_cap (tcb, tcb_cspace_slot) spec;
assert_opt $§ opt_cap (tchb, tcb_vspace_slot) spec;
assert_opt $§ opt_cap (tchb, tcb_ipcbhuffer_slot) spec;
return $§ tcb_ipc_buffer._address cdl_tch;

return $ tcb_priority cdl_tcbh;

T

< get_sel4d cap tcb OrigCap;

< get_seld4d cap (cap_object cdl_cspace_root) OrigCap;
< get_sel4_cap (cap_object cdl_vspace_root) OrigCap;
< get_seld cap (cap_object cdl_ipcbuffer) OrigCap;
< return $ cdl_tchb_fault_endpoint cdl_tcb;

data < return $ guard_as_rawdata cdl_cspace_root;
TCB_Configure sel4_tcb sel4 _fault_ep priority
seld _cspace_root sel4d_cspace_root_data

seld _vspace_root sel4d_vspace_root_data
ipcbuf_addr sel4 ipcbhuffer;

cdl_state = unit u_monad

init_tcbs spec = do

tcbs < get_tchs

spec;

mapM_x (init_tch spec) tcbs

od

definition set_asid

cdl_state = cdl_object_id = bool u_monad
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where

set_asid spec page = do
seld4 _asid_pool < return seL4 CapInitThreadASIDPool;
seld _page <+ get_sel4 _cap page OrigCap;
seL4 ASIDPool_Assign sel4_asid pool sel4d _page

od

definition map_page

where

cdl_state = cdl_object_id = cdl_object_id
= cdl_right set = word32 = bool u_monad

map_page spec page pd rights vaddr = do
assert_opt $ opt_object page spec;
get_seld cap page OrigCap;
get_seld4_cap pd OrigCap;

cdl_page <
selqd _page <
sel4d _pd —

vmattribs <

assert_opt § opt_vmattribs cdl_page;

if (pt_at page spec) then

selL4 _PageTable Map sel4 _page sel4d_pd vaddr vmattribs
else if (frame_at page spec) then

selL4 _Page Map seld _page seld4d _pd vaddr rights vmattribs

else
return False
od
definition map page table slot :: cdl_state = cdl_object_id = cdl_object_id
= word32 = cdl_cnode_index = bool u_monad
where
map_page_table_slot spec pd pt pt_vaddr pt_slot = do
page_cap < assert_opt $§ opt_cap (pt, pt_slot) spec;
prage < return $ cap_object page_cap;
page_vaddr < return $ pt_vaddr + (of_nat pt_slot >> small_frame_size);

page_rights

<

return (cap_rights page_cap);

map_page spec page pd page_rights page_vaddr

od

definition map_page directory_slot :: cdl_state = cdl_object_id

where

= cdl_cnode_index = unit u_monad

map_page_directory_slot spec pd pd_slot = do

page_cap
page
page_slots

page_vaddr
page_rights

<
<
—

<
—

assert_opt § opt_cap (pd, pd_slot) spec;
return $§ cap_object page_cap;
return $ slots_of_list spec page;

return $§ of_nat pd_slot >> (pt_size + small_frame_size);
return (cap_rights page_cap);

map_page spec page pd page_rights page_vaddr;
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mapM_x (map_page_table_slot spec pd page page_vaddr) page_slots

od

definition map_page directory

where

cdl_state = cdl_object_id = unit u_monad

map_page_directory spec pd = do
pd_slots ¢ return $§ slots_of_list spec pd;

set_asid spec

pd;

mapM_x (map_page_directory_slot spec pd) pd_slots

od

definition init_vspace

where

init_vspace spec = do
pds < get_pds spec;
mapM_x (map_page_directory spec) pds

od

cdl_

state = unit u_monad

datatype init_cnode_mode = Move | Copy

definition init_cnode_slot
= cdl_object_id = cdl_cnode_index = bool u_monad

where
init_cnode_slot
src_cap —
assert (—
src —

dest_obj —
dest_size <

rights —
orig —
data

dest_root <
dest_index <—
dest_depth <

sSrc_root —
src_index <
src_depth <+
if (src_cap =

return True
else 1f (mode

cdl_state = 1init_cnode_mode

spec mode dest dest_slot = do
assert_opt $ opt_cap (dest, dest_slot) spec;
is_untyped _cap src_cap);

return $

get_spec_
return $

return $

return $

< return S

get_sel4q
return $
return $

cap_object src_cap;

object spec dest;
object_size_bits dest_obj;

cap_rights src_cap;

(is_none S opt_parent (dest, dest_slot) spec);
cap_data src_cap;

cap dest DerivedCap;
of _nat dest_slot;
of_nat dest_size;

return seL4_CapInitThreadCNode;

get_seld_
return (3
NullCap)

= Move A

cap src OrigCap;

2::word32);
then
orig) then

seL4 _CNode_Mutate dest_root dest_index dest_depth
src_root src_index src_depth data

else 1f (mode

= Copy A

— orig) then

seL4 _CNode_Mint dest_root dest_index dest_depth
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src_root src_index src_depth rights data

else
return True
od
definition init_cnode :: cdl_state = init_cnode_mode = cdl_object_id
= unit u_monad
where

init_cnode spec mode cnode = do
cnode_slots < return $ slots_of_list spec cnode;
mapM_x (init_cnode_slot spec mode cnode) cnode_slots
od

definition init_cspace :: cdl_state = unit u_monad
where
init_cspace spec = do
cnodes < get_cnodes spec;
mapM_x (init_cnode spec Copy) cnodes;
mapM_x (init_cnode spec Move) cnodes
od

definition start_thread :: cdl_state = cdl_object_id = unit u_monad
where
start_thread spec tcb = do
cdl_tcb < assert_opt S opt_thread tcb spec;
seld _tcb < get_sel4 cap tcb OrigCap;
ip < return $ tcb_ip cdl_tch;
Sp < return $ tcb_sp cdl_tcb;
regs < return [ip, spl;
success < selL4 TCB WriteRegisters sel4d _tcb True 0 2 regs;
assert success
od

definition start_threads :: cdl_state = unit u_monad
where
start_threads spec = do
tchs 4 get_tchs spec;
mapM_x (start_thread spec) tcbhs

od
definition init_system :: cdl_state = unit u_monad
where
init_system spec =
do

bootinfo <+ get_bootinfo;
parse_bootinfo bootinfo;
parse_spec spec;
create_objects spec;
duplicate_cnode_caps spec;
init_vspace spec;
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od

init_tcbs spec;
init_cspace spec;
start_threads spec
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Attachments

e Short paper Mechanised Separation Algebra, published at the 3rd International Conference
on Interactive Theorem Proving (ITP’12).
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Abstract. We present an Isabelle/HOL library with a generic type class
implementation of separation algebra, develop basic separation logic
concepts on top of it, and implement generic automated tactic support
that can be used directly for any instantiation of the library. We show
that the library is usable by multiple example instantiations that include
structures such as a heap or virtual memory, and report on our experience
using it in operating systems verification.

Keywords: Isabelle, Separation Logic

1 Introduction

The aim of this work is to support and significantly reduce the effort for future
separation logic developments in Isabelle/HOL by factoring out the part of
separation logic that can be treated abstractly once and for all. This includes
developing typical default rule sets for reasoning as well as automated tactic
support for separation logic. We show that both of these can be developed in the
abstract and can be used directly for instantiations.

The library supports users by enforcing a clear axiomatic interface that defines
the basic properties a separation algebra provides as the underlying structure for
separation logic. While these properties may seem obvious for simple underlying
structures like a classical heap, more exotic structures such as virtual memory
or permissions are less straight-forward to establish. The library provides an
incentive to formalise towards this interface, on the one hand forcing the user to
develop an actual separation algebra with actual separation logic behaviour, and
on the other hand rewarding the user by supplying a significant amount of free
infrastructure and reasoning support.

Neither the idea of separation algebra nor its mechanisation is new. Separation
algebra was introduced by Calcagno et al [2] whose development we follow, trans-
forming it only slightly to make it more convenient for mechanised instantiation.
Mechanisations of separation logic in various theorem provers are plentiful, we
have ourselves developed multiple versions [5,6] as have many others. Similarly a

* NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program. This work was in part funded by AOARD grant #FA2386-11-1-4070



number of mechanisations of abstract separation algebra exist, e.g. by Tuerk [7]
in HOL4, by Bengtson et al [1] in Coq, or by ourselves in Isabelle/HOL [5].

The existence of so many mechanisations of separation logic is the main
motivation for this work. Large parts of developing a new separation logic
instance consist of boilerplate definitions, deriving standard properties, and
often re-invented tactic support. While separation algebra is used to justify the
separation logic properties of specific developments [5], or to conduct a part of
the development in the abstract before proceeding to the concrete [1,7], the
number of instantiations of these abstract frameworks so far tends to be one.
In short, the library potential of separation algebra has not been exploited yet
in a practically re-usable way. Such lightweight library support with generic
interactive separation logic proof tactics is the contribution of this paper.

A particular feature of the library presented here is that it does not come with
a programming language, state space, or a definition of hoare triples. Instead
it provides support for instantiating your own language to separation logic.
This is important, because fixing the language, even if it is an abstract generic
language, destroys most of the genericity that separation algebra can achieve. We
have instantiated our framework with multiple different language formalisations,
including both deep and shallow embeddings. The library is available for download
from the Archive of Formal Proofs [4].

In Sec 2 we show the main interface of the separation algebra class in Is-
abelle/HOL and describe how it differs from Calcagno et al. Sec 3 describes the
generic tactic support, and Sec 4 describes our experience with example instances.

2 Separation Algebra

This section gives a brief overview of our formulation of abstract separation
algebra. The basic idea is simple: capture separation algebra as defined by
Calcagno et al [2] with Isabelle/HOL type class axioms, develop separation logic
concepts in the abstract as far as can be done without defining a programming
language, and instantiate simply using Isabelle’s type class instantiations. This
leads to a lightweight formalisation that carries surprisingly far.

Calcagno et al define separation algebra as a cancellative, partial commutative
monoid (X,-,u). A partial commutative monoid is given by a partial binary
operation where the unity, commutativity and associativity laws hold for the
equality that means both sides are defined and equal, or both are undefined. 2]

For a concrete instance, think of the carrier set as a heap and of the binary
operation as map addition. The definition induces separateness and substate
relations, and is then used to define separating conjunction, implication, etc. Since
the cancellative property is needed primarily for completeness and concurrency,
we leave it out at the type class level. If necessary, it could be introduced in a
second class on top. The definition above translates to the following class axioms.

x @ 0 = Some x X By=y P x a++ b ++c = (a++b) ++ ¢

where op ®::’a = ’a = ’a option is the partial binary operator and op ++::’a
option = ’a option = ’a option is the @ operator lifted to strict partiality



with None ++ x = None. From this the usual definitions of separation logic can be
developed. However, as to be expected in HOL, partiality makes the & operator
cumbersome to instantiate; especially the third axiom often leads to numerous
case distinctions. Hence, we make the binary operator total, re-using standard +
as syntax. Totality requires us to put explicit side conditions on the laws above
and to make disjointness ## a parameter of the type class leading to further
axioms. The full definition of separation algebra with a total binary operator is

class sep_algebra = zero + plus +
fixes op ##:’a = ’a = bool
assumes x ## 0 and x # y — y # x and x + 0 =x
assumes x ##y — x +y =y + X
assumes [x ## y; y ## z; x ## z] —= x +y +z =x + (y + 2)
assumes [x ## y + z; y ## z] = x ## y
assumes [x ## y + z; y ## z] = x + y ## z

This form is precisely as strong as Calcagno et al’s formulation above in the sense
that either axiom set can be derived from the other. The last two axioms are
encapsulated in the original associativity law. The more intuitive form x ## y
= x+y ##tz= (x ## z N\ y ## z) is strictly stronger.

While 7 axioms may seem a higher burden than 3, the absence of lifting and
type partiality made them smoother to instantiate in our experience, in essence
guiding the structure of the case distinctions needed in the first formulation.

Based on this type class, the definitions of basic separation logic concepts
are completely standard, as are the properties we can derive for them. Some
definitions are summarised below.

PA*Q =M. dxy. x#y ANh=x+y ANPx ANQy
P —* Q=MAh. Vh’. h ## h> N Ph’ — Q (h + h’)
x Ry =3dz. x#z ANx+z-=y

O =Ah. h =0

A\* Ps = foldl (op A*) O Ps

On top of these, we have formalised the standard concepts of pure, intuitionistic,
and precise formulas together with their main properties. We note to Isabelle that
separating conjunction forms a commutative, additive monoid with the empty
heap assertion. This means all library properties proved about this structure
become automatically available, including laws about fold over lists of assertions.

From this development, we can set up standard simplification rule sets, such
as maximising quantifier scopes (which is the more useful direction in separation
logic), that are directly applicable in instances.

The assertions we cannot formalise on this abstract level are maps-to predicates
such as the classical p — v. These depend on the underlying structure and can
only be done on at least a partial instantiation.

Future work for the abstract development could include a second layer intro-
ducing assumptions on the semantics of the programming language instance. It
then becomes possible to define locality, the frame rule, and (best) local actions
generically for those languages where they make sense, e.g. for deep embeddings.



3 Automation

This section gives a brief overview of the automated tactics we have introduced
on top of the abstract separation algebra formalisation.

There are three main situations that make interactive mechanical reasoning
about separation logic in HOL frameworks cumbersome. Their root cause is that
the built-in mechanism for managing assumption contexts does not work for the
substructural separation logic and therefore needs to be done manually.

The first situation is the application of simple implications and the removal
of unnecessary context. Consider the goal (P A* p — v Ax @) h = (@ A* P
A* p — -) h. This should be trivial and automatic, but without further support
requires manual rule applications for commutativity and associativity of A* before
the basic implication between p — v and p ~ - can be applied. Rewriting with
AC rules alleviates the problem somewhat, but leads to unpleasant side effects
when there are uninstantiated schematic variables in the goal. In a normal,
boolean setting, we would merely have applied the implication as a forward
rule and solved the rest by assumption, having the theorem prover take care of
reordering, unification, and assumption matching.

While in a substructural logic, we cannot expect to always be able to remove
context, at least the order of conjuncts should be irrelevant. We expect to apply
a rule of the form (P A* Q) h = (P’ Ax Q) h either as a forward, destruction,
or introduction rule where the real implication is between P and P’ and @ tells us
it can be applied in any context. Our tactics sep_frule, sep_drule, and sep_rule
try rotating assumptions and conclusion of the goal respectively until the rule
matches. If P occurs as a top-level separation conjunct in the assumptions,
this will be successful, and the rule is applied. This takes away the tedium of
positional adjustments and gives us basic rule application similar to plain HOL.
The common case of reasoning about heap updates falls into this category. Heap
update can be characterised by rules such as (p — - A* @) h = (p — v A*
Q) (a(p — v)) if h is a simple heap map. If we encounter a goal with an updated
heap h(p — v) over a potentially large separating conjunction that mentions
the term p — v, we can now make progress with a simple sep_rule application.

Note that while the application scenario is instance dependent, the tactic is
not. It simply takes a rule as parameter.

The second situation is reasoning about heap values. Again, consider a simple
heap instantiation of the framework. The rule to apply would be (p — v A* @) h
= the (b p) = v. The idea is similar to above, but this time we extend Isabelle’s
substitution tactic to automatically solve the side condition of the substitution
by rotating conjuncts appropriately after applying the equality. It is important
for this to happen atomically to the user, because the equality will instantiate
the rule only partially in h and p, while the side condition determines the value
v. Again, the tactic is generic, the rule comes from the instantiation.

The third situation is clearing context to focus on the interesting implication
parts of a separation goal after heap update and value reasoning are done. The
idea is to automatically remove all conjuncts that are equal in assumption and



conclusion as well as solve any trivial implications. The tactic sep_cancel that
achieves this is higher-level than the tactics above, building on the same principles.

Finally, we supply a low-level tactic sep_select n that rotates conjunct n to
the front while leaving the rest, including schematics, untouched.

With these basic tactics in place, higher-level special-purpose tactics can be
developed much more easily in the future. The rule application and substitution
tactics fully support backtracking and chaining with other Isabelle tactics.

One concrete area of future work in automation is porting Kolanski’s machin-
ery for automatically generating mapsto-arrow variants [5], e.g. automatically
lifting an arrow to its weak variant, existential variant, list variant, etc, including
generating standard syntax and proof rules between them which could then
automatically feed into tools like sep_cancel. Again, the setup would be generic,
but used to generate rules for instances.

4 Instantiations

We have instantiated the library so far to four different languages and variants
of separation logic.

For the first instance, we took an existing example for separation logic that
is part of the Isabelle distribution and ported it to sit on top of the library.
The effort for this was minimal, less than an afternoon for one person, and
unsurprisingly the result was drastically smaller than the original, because all
boilerplate separation logic definitions and syntax declarations could be removed.
The example itself is the classic separation logic benchmark of list reversal in
a simple heap of type nat = nat option on a language with a VCG, deeply
embedded statements and shallowly embedded expressions.

The original proof went through almost completely unchanged after replacing
names of definitions. We then additionally shrunk the original proof from 24 to
14 lines, applying the tactics described above and transforming the script from
technical details to reasoning about semantic content.

While a nice first indication, this example was clearly a toy problem. A more
serious and complex instance of separation logic is a variant for reasoning about
virtual memory by Kolanski [5]. We have instantiated the library to this variant
as a test case, and generalised the virtual memory logic in the process.

The final two instantiations are taken from the ongoing verification of user- and
kernel-level system initialisation in the seL4 microkernel [3]. Both instantiations
are for a shallow embedding using the nondeterministic state monad, but for
two different abstraction levels and state spaces. In the more abstract, user-
level setting, the overall program state contains a heap of type obj_id = obj
option, where obj is a datatype with objects that may themselves contain a map
slot = cap option as well as further atomic data fields. In this setting we would
like to not just separate parts of the heap, but also separate parts of the maps
within objects, and potentially their fields. The theoretical background of this is
not new, but the technical implementation in the theorem prover is nontrivial.
The clear interface of separation algebra helped one of the authors with no prior



experience in separation logic to instantiate the framework within a week, and
helped an undergraduate student to prove separation logic specifications of sel.4
kernel functions within the space of two weeks. This is a significant improvement
over previous training times in sel.4 proofs.

The second monadic instance is similar in idea to the one above, but technically
more involved, because it works on a lower abstraction level of the kernel, where
in-object maps are not partial, some of the maps are encoded as atomic fields,
and the data types are more involved. To use these with separation logic, we had
to extend the state space by ghost state that encodes the partiality demanded
by the logic. The instantiation to the framework is complete, and we can now
proceed with the same level of abstraction in assertions as above.

Although shallow embeddings do not directly support the frame rule, we have
found the approach of baking the frame rule into assertions by appending A* P to
pre- and post-conditions productive. This decision is independent of the library.

5 Conclusion

We have presented early work on a lightweight Isabelle/HOL library with an
abstract type class for separation algebra and generic support for interactive
separation logic tactics. While we have further concrete ideas for automation
and for more type class layers with deeper support of additional separation logic
concepts, the four nontrivial instantiations with productive proofs on top that
we could produce in a short amount of time show that the concept is promising.

The idea is to provide the basis for rapid prototyping of new separation logic
variants on different languages, be they deep or shallow embeddings, and of new
automated interactive tactics that can be used across a number of instantiations.

Acknowledgements We thank Matthias Daum for his comments on this paper.
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