
Formal Specifications Better Than Function Points
for Code Sizing

Mark Staples, Rafal Kolanski, Gerwin Klein, Corey Lewis, June Andronick, Toby Murray, Ross Jeffery, Len Bass
NICTA, 13 Garden St, Eveleigh NSW 2015, Australia

School of Computer Science and Engineering, University of New South Wales 2052, Australia
email: firstname.lastname@nicta.com.au

Abstract—Size and effort estimation is a significant challenge
for the management of large-scale formal verification projects.
We report on an initial study of relationships between the sizes
of artefacts from the development of seL4, a formally-verified
embedded systems microkernel. For each API function we first
determined its COSMIC Function Point (CFP) count (based on
the seL4 user manual), then sliced the formal specifications and
source code, and performed a normalised line count on these
artefact slices. We found strong and significant relationships
between the sizes of the artefact slices, but no significant
relationships between them and the CFP counts. Our finding
that CFP is poorly correlated with lines of code is based on
just one system, but is largely consistent with prior literature.
We find CFP is also poorly correlated with the size of formal
specifications. Nonetheless, lines of formal specification correlate
with lines of source code, and this may provide a basis for size
prediction in future formal verification projects. In future work
we will investigate proof sizing.

I. INTRODUCTION

For development projects, size and effort estimates can
determine available resources, and are a criterion for judg-
ing their success. So accurate estimation is critical. We are
developing approaches to enable the cost-effective develop-
ment of dependable embedded systems, backed by code-level
formal verification of an embedded system microkernel [1]
and key trusted components. However, as discussed in a prior
paper [2], estimation for formal methods projects is hard [3].
They create and use new kinds of artefacts, follow different
process lifecycles, use different development and verification
technologies. It is not known how to calibrate measures of
formal methods work to traditional metrics approaches [4], and
this is exacerbated by limited data on formal methods projects
[5]. We are investigating software sizing methods to develop
validated artefact size models for embedded systems formal
verification projects. We plan to use these sizing models to
create effort estimation models for such projects.

In this paper, we report on an initial study of relation-
ships between size measurements of artefacts from the formal
verification of the seL4 embedded systems microkernel. We
compare normalised line counts of specification and code
artefacts in the project with each other and with COSMIC
Function Points (CFP) counts. CFP is a simple measure of
software functional size designed to be broadly applicable,
including for embedded and real-time software [6]. We find
poor correlations between CFP counts and the size of both

code and formal specifications. However, we do find that the
size of formal specifications have a strong and significant
relationship to the size of the C source code.

II. BACKGROUND

A. seL4 and Large-Scale Formal Verification

The L4.verified project completed the code-level formal
verification of the full functional correctness of the seL4 em-
bedded systems microkernel [1]. seL4 is a security-enhanced
microkernel in the L4 family [7]. We previously described [2]
a middle-out lifecycle model and timeline for this project.
The first artefact to be developed was an executable speci-
fication. This was written in Haskell, and served as a design
prototype. It was later automatically transliterated to higher-
order logic in the Isabelle/HOL theorem prover [8] for use
as a design-level formal specification. The next artefact was
the abstract specification, written directly in Isabelle/HOL.
The executable specification describes the algorithms and data
structures used, whereas the abstract specification describes
higher-level behaviour without reference to any specific low-
level algorithms or data-structures. Finally, the source code,
in C, was developed and captured in an operational semantics
for C represented in Isabelle/HOL. Isabelle/HOL was used to
check proofs of correctness of the C source code with respect
to the abstract specification (via the executable specification).

This project was relatively large, taking around 25 person-
years to complete the formal specification, development, and
formal verification of seL4 [1]. The size and complexity of this
effort has revealed challenges in managing large-scale formal
verification projects. A basic challenge is how to size artefacts
in such projects [2], to inform cost and effort estimation, and
to validate and calibrate process simulation models [9].

B. Software Size Measures

Measuring the size of software is a long-standing challenge
in software engineering. The most widespread measure re-
mains line counts, usually normalised by excluding comments
and whitespace. However, source code is often only available
late in the project lifecycle, and so is not a good target for
early lifecycle estimation.

Other artefacts, such as requirements and designs, can also
be used to size software. The COSMIC Function Point (CFP)
method [10] is an internationally standardised way of sizing

978-1-4673-3074-9/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

1257

software based on its requirements. The method has been
successfully applied in a number of industrial settings [11]–
[13]. The method typically starts with a Functional User Re-
quirements document, from which a number of event-triggered
functional processes are identified. The functionality of these
is represented by a sequence of data movement operations
(sub-processes): Entry, Exit, Read, or Write operations. The
CFP count is the number of these operations.

III. METHOD

Our primary goal was to investigate whether CFP is a good
candidate as a predictor for the size of the major artefacts in
the L4.verified project. We examined the size of the artefacts at
three different levels: the abstract specification, an executable
specification, and the source code.

For our unit of analysis, we used the functions in the
microkernel API as documented in the seL4 user manual [14].
The manual describes a conceptual model for seL4 and doc-
uments the API functions. We identified 31 API functions:
25 architecture-independent functions, and 8 architecture-
dependent functions. We considered only the functions in the
verified ARM version of seL4. Below we detail our method
for sizing the project artefacts and deriving the CFP counts.

A. Sizing Project Artefacts with Line Counts

To measure the size of artefacts we use line counts nor-
malised by excluding white space and comments. The layout
of files is not fully normalised, such as with the use of a
pretty-printer, but there is a largely consistent format, and
prior research has indicated that formatting differences do not
usually cause significant variation in line counts [15]. For C,
line counting occurred after macro expansion and was per-
formed by the same C parser used in the L4.verified project. A
locally-developed Isabelle specification line counting program
was used for the abstract and executable specifications.

To measure the size of each API function in each artefact,
we computed the set of internal functions that are (transitively)
called for that function, termed the API slice, and then took
the sum of the normalised line count of each function in the
slice. We first manually determined the top-level functions for
each API call, and then automatically computed the slice by
taking the transitive closure over the callgraph of the artefact.
The manual step was performed by different researchers for
each of the artefact types, who later cross-checked each other’s
results for consistency. Because each API function was sliced
independently, shared sub-functions are double-counted across
functions. This arguably matches the measure of functionality
captured by CFP counts.

B. Sizing APIs with COSMIC Function Point Counts

CFP counts are notionally performed on a Functional User
Requirements (FUR) document, which can be made available
near the beginning of a project. However, the CFP standard [6]
recognises that CFP counts sometimes have to rely on other
sources: the important thing to measure is functionality de-
livered to users. There is no FUR for seL4, and so instead

we used the seL4 user manual [14], which has a similar
target audience (users) and level of abstraction as a FUR.
This manual was produced towards the end of the L4.verified
project, but could in principle have been documented very
early in the project timeline.

The seL4 API functions are a reasonable target for CFP
counting. Each function can be seen as a CFP functional
process triggered by external events, with a set of inputs,
internal behaviours (involving reads and writes), and outputs.

According to the CHAR method [16], seL4 is a Data Driven
Control System. Its functionality is dominated by control and
communication functionality, but it also has some level of data
complexity functionality associated with its capability-based
access control mechanisms. There is no scientific or adaptive
functionality directly within seL4, and the data manipulation
functionality is related more to the complexity of internal data
structures rather than complex processing of that data. CFP is
intended to be applicable to real-time systems [6] and has been
successfully applied to embedded systems in this functional
domain [17], [18].

As recommended by prior authors [19], we ran initial pilot
counting sessions to agree on a consistent CFP counting
methodology, including agreement on suitable level of abstrac-
tion and objects of interest. The objects and level of abstraction
were those described in the user manual. We recorded the
functionality of each API function as scripts of CFP oper-
ations. In our CFP scripts, we distinguished special opera-
tions. We identified Resolve operations that performed two
levels of dereferencing of capability references to microkernel-
protected kernel objects, which we took as sugar for two Read
operations. We also identified Create and Delete operations
which we took as sugar for Write operations. For consistency,
one researcher documented all of these CFP scripts, and
for reliability, the scripts were independently reviewed. The
operations were cross-checked with a UML class diagram that
defined entities and data attributes in a conceptual model for
seL4. The CFP counts were calculated from the scripts.

IV. RESULTS

Figure 1 shows the scatterplot relationships between the size
(in lines) of the major artefacts. All are statistically significant
at the 0.05 level, and all have strong correlations near 0.9.
Figure 2 shows similar scatterplots for the relationship be-
tween CFP and each of the major artefacts. We used version
20 of SPSS to analyse the data. None of the CFP relationships
are statistically significant at the 0.05 level, and have much
weaker correlations in any event. The CFP and line counts
all satisfy the Kolmogrov-Smirnoff test of normality, except
for the abstract specification line counts (p = 0.025). So
we have reported Pearson’s correlation coefficient, except for
relationships involving the abstract specification for which we
report Spearman’s rho.

The abstract specification line counts appear bimodal, and
one might imagine that the CFP versus line count scatterplots
have two clusters, separated at line counts for executable
specification > 1500, abstract specification > 1000, and C

1258

(a) Executable Spec. vs. Abstract Spec. (rho =
0.89, p = 0.00)

(b) Executable Spec. vs. C (R = 0.95, p = 0.00) (c) Abstract Spec. vs. C (rho = 0.92, p = 0.00)

Fig. 1. Artefact Size Relationships. Each point is an seL4 API function.

(a) Functionality vs. Abstract Spec. (rho = 0.31,
p = 0.09)

(b) Functionality vs. Executable Spec. (R = 0.15,
p = 0.42)

(c) Functionality vs. C (R = 0.19, p = 0.32)

Fig. 2. COSMIC Function Point versus Artefact Size. Each point is an seL4 API function.

> 1500. The API functions in these top-most potential clusters
are the same for the C and executable specifications, and are a
super-set of those for the abstract specification. The top-most
API functions in Figure 2a are exactly those which contain
a call to a large complicated conditional recursive deletion
sub-function within seL4. However, even after removing the
contribution of this shared sub-function, and also manually
removing one remaining outlier, we get a correlation of only
rho = 0.37, with p = 0.04.

V. DISCUSSION

Prior authors have found only weak-to-moderate relation-
ships between CFP and source code line counts, and concluded
that CFP should not be used as a predictor of source code line
counts unless validated by local experiments [13]. For seL4,
we found no significant relationship between CFP counts and
C line counts. We also found no significant relationship be-
tween CFP counts and the line counts for formal specifications.

The most complicated internal function in seL4 is a re-
cursive deletion function. Data management complexity and
algorithmic complexity are not well addressed by CFPs [11],
[16]. Our results support this, with low CFP counts for those
APIs that call this recursive deletion function.

Although CFP counts were not well related to line counts,

we did find very strong correlations between line counts for
the formal specifications and code in the L4.verified project.
Formal specifications would typically be defined later than
FURs, because they are much more precise. Nonetheless they
are defined relatively early in the project lifecycle, and so
appear to be a promising target for size estimation.

A. Threats to Validity

Our results are from one project, and so we have no basis to
claim they will generalise. Nonetheless our finding that CFP
counts do not have a strong relationship to source code line
counts is broadly consistent with prior studies.

A potential threat concerns the reliability of our CFP counts
and line counts. One author is a measurement and estimation
expert who has taught function point counting in industry, and
has published research on function point methods. However,
none of the authors are certified CFP measurers, and this
study was the first time that the authors had performed CFP
counting. A prior study [19] found that the reliability of
CFP measurements increased with experience after conducting
pilot studies. We partially addressed this threat by initial
group tutorial studies of CFP, and by then conducting a pilot
CFP counting exercise, as recommended, with independent
counting followed by group review and discussion. This helped

1259

us to define and agree on the level of abstraction and objects of
interest to be counted. We also addressed reliability by creating
explicit CFP scripts of the CFP operations for each API
function, and by having those scripts independently reviewed.

We have used CFP counts piecewise per API call, rather
than summing them to create a system-level count, but this
is consistent with a summary conclusion of the literature that
function points should not be treated additively [11].

The line counting itself is straightforward and so its reliabil-
ity is not a particular threat to validity, but the manual slicing
of the specifications and code base into pieces reachable by
each API function is a possible threat. After agreeing on an
approach, the slicing of each project artefact was performed
by separate researchers. These researchers then cross-checked
their slices, confirming that their implementations were also
consistent. As a further cross-check, we investigated outliers
in the initial three-way scatter plots of relationships between
line counts. This identified inconsistent counting of four API
functions, because of errors in a few of the lists of functions
contributing to the API slices. These were then corrected.

B. Related Work

There has been some prior work on size metrics and
estimation for formal methods including size and complexity
metrics for Event-B [20] and for algebraic specifications [21].
Prior authors have also proposed an automated calculation of
function points (not CFP) from VDM-SL specifications [22]
and B [23], but only compared manual and automated counts.

VI. CONCLUSIONS AND FUTURE WORK

We studied size relationships between artefacts developed
during the large-scale project that developed and formally
verified the seL4 embedded systems microkernel. We found
that CFP counts were poorly correlated with the size of
implementation code and formal specifications. However, we
did find strong and significant relationships between the sizes
of the formal specifications and the implementation code. The
Haskell executable specification, produced first in the project,
were highly correlated with the size of the Isabelle/HOL
abstract specification, produced second, and both of these were
highly correlated with the size of the C source code, produced
last.

Our overall goal is to increase the efficiency of formal
verification projects through improved project management
models and tools. The prediction of size of formal specifi-
cations from requirements is still an open problem. However,
our next steps will be to investigate measures of the size and
complexity of formal proofs in verification projects, and to
examine their relationship to the size and complexity of formal
specifications, source code, and system invariants. The creation
of these formal proofs can be highly effort-intensive. Further
future work is to investigate effort estimation models, perhaps
based on architectural models of when proof work can be
divided for independent concurrent work, and perhaps using
process simulation techniques [9]. Replicating similar studies

on other formal verification projects may provide a basis to
generalise our findings to other project contexts.

ACKNOWLEDGEMENTS

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

REFERENCES

[1] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in Proc. of 22nd SOSP. ACM, 2009, pp. 207–220.

[2] J. Andronick, R. Jeffery, G. Klein, R. Kolanski, M. Staples, H. J. Zhang,
and L. Zhu, “Large-scale formal verification in practice: A process
perspective,” in Proc. of 34th ICSE. ACM, 2012, pp. 1002–1011.

[3] J. P. Bowen and M. G. Hinchey, “Ten commandments of formal
methods,” Computer, vol. 28, pp. 56–63, 1995.

[4] S. Gerhart, D. Craigen, and T. Ralston, “Observations on industrial
practice using formal methods,” in Proc. of 15th ICSE. IEEE, 1993,
pp. 24–33.

[5] J. P. Bowen and M. G. Hinchey, “Seven more myths of formal methods,”
IEEE Software, vol. 12, pp. 34–41, Jul. 1995.

[6] ISO/IEC 19761:2011, Software engineering — COSMIC: a functional
size measurement method, 2011.

[7] J. Liedtke, “Toward real microkernels,” Communications of the ACM,
vol. 39, pp. 70–77, Sep. 1996.

[8] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Springer, 2002.

[9] H. J. Zhang, G. Klein, M. Staples, J. Andronick, L. Zhu, and R. Kolanski,
“Simulation modeling of a large scale formal verification process,” in
Proc. of ICSSP. IEEE, 2012, p. 10.

[10] The COSMIC Functional Size Measurement Method Version 3.0.1:
Measurement Manual, The COSMIC Consortium, May 2009.

[11] C. Gencel and O. Demirors, “Functional size measurement revisited,”
ACM Transactions on Software Engineering and Methodology, vol. 17,
pp. 15.1–15.36, 2008.

[12] J.-M. Desharnais, A. Abran, P. E. Dikici, M. C. Ilis, and I. N. Karaca,
“Functional size of a real-time system,” in Proc. of IWSM 2009/Mensura
2009. Springer, 2009, pp. 122–129.

[13] C. Gencel, R. Heldal, and K. Lind, “On the relationship between
different size measures in the software lifecycle,” in Proc. of 16th
APSEC. IEEE Computer Society, 2009, pp. 19–26.

[14] Trustworthy Systems Team, seL4 Reference Manual: API version 1.1,
NICTA, 2011.

[15] J. Rosenberg, “Some misconceptions about lines of code,” in Proc. of
4th METRICS. IEEE, 1997, pp. 137–142.

[16] ISO/IEC 14143.5:2004, Functional size measurement, Part 5: Determi-
nation of functional domains for use with functional size measurement,
2004.

[17] L. Lavazza and C. Garavaglia, “Using function points to measure and
estimate real-time and embedded software: Experiences and guidelines,”
in Proc. of 3rd ESEM, 2009, pp. 100–110.

[18] K. Lind and R. Heldal, “Categorization of real-time software compo-
nents for code size estimation,” in Proc. of 4th ESEM, 2010.

[19] O. O. Top, O. Demirors, and B. Ozcan, “Reliability of COSMIC
functional size measurement results: A multiple case study on industry
cases,” in Proc. of 35th SEAA, 2009, pp. 327–334.

[20] M. Olszewska and K. Sere, “Specification metrics for Event-B,” in Proc.
of 13th CONQUEST, 2010, pp. 20–22.

[21] T. E. Hastings and A. S. M. Sajeev, “A vector-based approach to software
size measurement and effort estimation,” IEEE Transactions on Software
Engineering, vol. 27, pp. 337–350, 2001.

[22] T. Miyawaki, J. Iijima, and S. Ho, “Measuring function points from
VDM-SL specifications,” in Proc. of 5th ICSSSM. IEEE, 2008.

[23] H. Diab, M. Frappier, and R. St-Denis, “A formal definition of function
points for automated measurement of B specifications,” in Proc. of 4th
ICFEM. Springer, 2002.

1260

