
Formally Verified System Initialisation

Andrew Boyton1,2, June Andronick1,2, Callum Bannister1,2,
Matthew Fernandez1,2, Xin Gao1, David Greenaway1,2, Gerwin Klein1,2,

Corey Lewis1, and Thomas Sewell1,2

1 NICTA, Sydney, Australia?

2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{first-name.last-name}@nicta.com.au

Abstract. The safety and security of software systems depends on how
they are initially configured. Manually writing program code that estab-
lishes such an initial configuration is a tedious and error-prone engineering
process. In this paper we present an automatic and formally verified
initialiser for component-based systems built on the general-purpose mi-
crokernel seL4. The construction principles of this tool apply to capability
systems in general and the proof ideas are not specific to seL4. The
initialiser takes a declarative formal description of the desired initialised
state and uses seL4-provided services to create all necessary components,
setup their communication channels, and distribute the required access
rights. We provide a formal model of the initialiser and prove, in the
theorem prover Isabelle/HOL, that the resulting state is the desired one.
Our proof formally connects to the existing functional correctness proof
of the seL4 microkernel. This tool does not only provide automation,
but also unprecedented assurance for reaching a desired system state. In
addition to the engineering advantages, this result is a key prerequisite
for reasoning about system-wide security and safety properties.

Keywords: System Initialisation, seL4, Isabelle

1 Introduction

Verification and validation of embedded software systems usually concentrate on
the operational running state of the system. For example, the recent proof of
non-interference for the seL4 microkernel [7] assumes the presence of a system
state that corresponds to a high-level access control and information flow policy.
It then shows that all executions from this state satisfy the non-interference
property. Clearly, this operational running state is the interesting case for such
proofs, but the question remains how to satisfy the initial assumption that the
system is in a well-known state that corresponds to some specific policy.

?
NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program. This work was in part funded by AOARD grant #FA2386-11-1-4070

More generally, this is the question of system initialisation: how does one
bring a system from an empty power-off or boot state into a well-defined desired
configuration from which it can operate normally, and how does one prove that
this state is reached? For traditional operating systems, initialisation is mostly
a question of initialising devices, loading binary code images, and running a
manually created start-up script. For system security, the access control protection
state of the initialised system is obviously critical. Such protection states can be
large and intricate. Security policy descriptions in SELinux systems for instance,
can have over 100,000 access control rules. Such policy descriptions are coarse
grained compared to capability-based systems that control access to individual
kernel objects. While the system is already constrained by a given security policy
during operation, the initial startup code usually runs with elevated access and
possesses the power to violate the policy. Its purpose is to bring the system
into a state that conforms to the policy and then to relinquish its own access.
Manually writing such a program for a sizeable policy is a daunting engineering
task. Formally verifying that it does so correctly is even less appealing.

The main contribution of this paper is to demonstrate a technique for auto-
matic and formally verified initialisation of capability-based systems. In particular,
we show (a) an automatic initialiser for systems based on the formally verified
seL4 microkernel, (b) a formal Isabelle/HOL model of this initialiser and its
interaction with the kernel, (c) a formal Isabelle/HOL proof that this model
leads to correctly initialised system states, (d) a formal connection of the system
description that the initialiser takes as input to existing security policy formalisa-
tions and proofs for seL4 [7,12], and (e) a formal proof that the seL4 invocations
used by the initialiser model are refined by the exisiting functional specification
of seL4 [4].

The initialiser takes as input a declarative description of the desired protection
state in capDL [6], a capability distribution language, and automatically brings
the system from the boot state into an initialised state that conforms with this
desired protection state. While capDL descriptions can be large and complex,
they can be generated from higher-level descriptions of the system, for instance
from a component setup for MILS-style security architectures [1].

Our initialiser theorem is crucial for instantiating the existing seL4 security
theorems [7,12] that show the kernel enforces isolation of components running
on top. This isolation allow us to establish that such MILS architectures are
enforced correctly by the microkernel [3], which in turn enables us to reason
modularly about user-level applications in the system.

The initialiser model directly connects to the seL4 API specification, which
the binary of the kernel is proven to implement correctly [4, 11]. This is to our
knowledge the first proof of a user-level model that directly links to a formally
verified kernel implementation. This shows that such full realistic kernel API
formalisations are usable for application-level proofs. The initialiser model has
been implemented by straightforward translation into C code. We plan to prove
that this translation is a correct implementation in future work. The focus in
this paper is on the correctness of the algorithm and its use of the seL4 API.

TCBA
CNODEA1

EP

TCBBCNODEB1

CNODEA2

VSpace

VSpace

CSpace CSpace

W RPDAPTA1
FRAME

FRAME

...

...... ...

...

...CO
NT
EX
T

CO
NT
EX
T

UTA

Fig. 1. seL4-based system with two threads that can communicate via an endpoint.

We begin the remainder of this paper in Sec 2 with a short overview of the
seL4 kernel. Sec 3 describes the capDL [6] language and associated proofs. Sec 4
presents the formalisation of the initialiser itself, while Sec 5 summarises the
correctness proof. Sec 6 discusses experience and limitations.

2 seL4

The seL4 microkernel is a general-purpose operating system (OS) kernel designed
as a secure and reliable foundation for a wide variety of applications. An OS
kernel is the only software running in the privileged mode of the processor. The
seL4 microkernel is formally verified for full functional correctness to the binary
level [4, 11]. This means that there exists a machine-checked proof that the
C code and binary of seL4 are a correct refinement of its functional, abstract
specification.

As a microkernel, seL4 provides a minimal number of OS services: threads,
inter-process communication, virtual memory, and capability-based access control.
Fig 1 shows a trivial example system on seL4, composed of two threads, a sender
A and a receiver B, communicating via an endpoint EP. Each thread is represented
by its thread control block (TCB), which stores its context, virtual address space
(VSpace) and capability space (CSpace). A VSpace defines the memory accessible
to the thread; it is represented by a set of frames, generally organised in a
hierarchical, architecture-dependent structure of page tables and page directories.
CSpaces are kernel managed storage for capabilities. A capability is an unforgeable
token that confers authority and that is stored in a graph of capability nodes
(CNodes). In seL4, when a thread invokes an operation on an object, it needs
to provide an index into its CSpace pointing to a capability for that object
with sufficient authority. For instance, sender A needs a write capability to the
endpoint, while receiver B needs a read capability to the same endpoint.

The allocation of kernel objects in seL4 is performed by retyping untyped
memory, an abstraction of a region of physical memory. Possession of a capability
to untyped memory confers the authority to allocate kernel objects in this region:
sender A can request the kernel to transform UTA into, say, a new CNode.

At boot time, seL4 first pre-allocates memory for itself and then gives the
remainder to the initial user task in the form of capabilities to untyped memory.
This user task is the initialiser we are targeting in this paper. Its aim is first to use

these untyped capabilities for creating the required objects, such as TCBA, TCBB,
CNodeA1, and then to initialise them appropriately, e.g. to set TCBA’s CSpace
field to CNodeA1. This includes setting up communication channels, e.g. storing
the write capability to EP in TCBA’s CSpace.

3 CapDL

We formally specify the desired initial system configuration as a capDL system
description. The aim of the capability distribution language capDL [6] is to
unify all aspects of the protection state of the system as explicit capabilities,
allowing us to describe complete access control system configurations by capability
distributions alone.

Binary

Abstract Spec

Isabelle/HOL

capDL

Access Control
Policy

Fig. 2. CapDL model in the
seL4 refinement chain (where ar-
rows denote formal proof).

A capDL system description is both the in-
put of our initialiser and its target: our initial
user task must terminate in an initialised state
corresponding to the description given as input.
In the example of Fig 1, the description would
be a formal and complete enumeration of all the
kernel objects and the capabilities between them.

In addition to the language itself, which de-
scribes snapshots of system states, we have de-
veloped kernel semantics for this language that
describes the effect of each kernel operation on
such states, and showed that this capDL kernel
model is a formally correct abstraction of exist-
ing models of seL4, with a complete refinement
chain to the binary level, as shown in Fig 2. This
ensures that the seL4 operations in the capDL
model behave as the real kernel does.

We have also shown that capDL descriptions
can be mapped to a corresponding access control
policy: Let s be a kernel state from the abstract kernel specification level by Klein
et al [4], transform be the state relation from abstract states to capDL states
used in the refinement between these levels, pas_refined P s be the predicate
that decides if s satisfies the access control policy P by Sewell et al [12], and
pcs_refined P c be the predicate that decides whether a capDL state c satisfies
the same policy P.

Theorem 1. If the kernel invariants inv hold on s, then pas_refined P s =

pcs_refined P (transform s).

The theorem implies that a capDL state description captures all information
relevant to the protection state of an access control policy, i.e. instead of having
to know the precise memory content of the machine, it is enough to reason about
the information present in a capDL description.

init_system spec bootinfo obj_ids ≡
do (ut_cpts, free_cpts) ← parse_bootinfo bootinfo;

(orig_caps, free_cpts) ← create_objs spec obj_ids ut_cpts free_cpts;

dup_caps ← duplicate_caps spec orig_caps obj_ids free_cpts;

init_vspace spec orig_caps obj_ids;

init_tcbs spec orig_caps obj_ids;

init_cspace spec orig_caps dup_caps obj_ids;

start_threads spec dup_caps obj_ids

od

Fig. 3. The top-level definition of the system initialiser model.

4 System Initialisation

In this section, we present an overview of our formal model of the system initialiser
in Isabelle/HOL, and examine in detail the initialisation of the capability spaces
as a representative example. Recall that the initialiser is the first user task to run
after boot time, with access to all available memory. We model it as a sequence of
high-level instructions, taking a capDL specification spec as input, and creating
and initialising all objects and capabilities as specified by spec. Formally, spec
has the type cdl_state, i.e. a full state of the capDL kernel model. Its most
important component is the kernel heap of type obj_id ⇒ cdl_object. CapDL
objects are formalisations of the TCBs, CNodes, Endpoint, and other objects
mentioned in the previous section. They consist of a map from capability slots to
capabilities and potentially additional payload such as further TCB data.

The top-level definition init_system, shown in Fig 3, is purposely divided
into well-defined separate phases which simplifies reasoning as we will see in
Sec 5. The additional input bootinfo is given by the kernel to the initial user
task and specifies the location of untyped memory and free capability slots in
the initialiser’s CSpace. The final parameter to the initialiser is the list of object
names obj_ids mentioned in spec. The do x← f; g x od notation is syntactic
sugar for the monadic binding f >>= (λx. g x) where f is executed, potentially
changing the underlying state, with its return value passed into g, bound to the
variable x.

In the first phase of the initialiser, we extract from bootinfo the list ut_cpts

of pointers to the untyped memory regions the initialiser has access to and can
use to create new objects, as well as the list of free slots free_cpts in its CSpace
it can use to store capabilities to these new objects.

In the second phase, we create all objects listed in the capDL specification
by invoking seL4’s retype operation on the provided untyped memory. During
this operation, the kernel will create a capability to each object and store it in
the provided free slot in the initialiser’s CSpace. This original capability can
then be given to other threads, either by moving it or by copying it (with full or
diminished rights). Note that an original capability confers more authority than
derived ones; it allows the revocation of derived capabilities and full destruction of

the object. This creates a subtle dependency for the order in which the initialiser
has to distribute capabilities: it eventually needs to give away original capabilities,
and at the same time keep access to the objects to finish their initialisation.

For this reason, we duplicate, in a third phase, all original capabilities
orig_caps into dup_caps, also stored in the initialiser’s CSpace.

At this stage we can start the initialisation, per object type, including installing
the capabilities into the capability storage objects. VSpaces are initialised by
mapping in the required entries in page directories, and then page tables; TCBs
are each initialised atomically; CSpaces are initialised similarly to VSpaces with
the added complication of needing to distinguish between capabilities that are
moved and the ones that are copied; Moreover, unlike VSpaces which are fixed,
two-level data structures, CSpaces can be arbitrary directed acyclic graphs.

The final step of the initialisation is to set all threads to be runnable, from
which point the initialiser becomes dormant and the system is ready to run.

We describe the initialisation of CSpaces more deeply and use it as a running
example in this paper. The initialisation of CSpaces consists of putting the desired
capability in every slot of every CNode appearing in spec. This occurs in two
phases, depending on whether spec requires the capability to be the original one
or not. For all capabilities that need not be originals, we copy the initialiser’s
original capability into the target CNode (we actually mint it, diminishing the
access rights to those specified in spec). For the ones that need to be original,
we move the initialiser’s original capability (we actually mutate it with the
appropriate rights specified in spec, except for endpoint capabilities which cannot
be mutated in seL4). Each phase maps over the full list of all CNode slots, but
does nothing to slots not concerned with that phase.

init_cspace spec orig_caps dup_caps obj_ids ≡
do cnode_ids ← return [obj←obj_ids. cnode_at obj spec];

mapM (init_cnode spec orig_caps dup_caps Copy) cnode_ids;

mapM (init_cnode spec orig_caps dup_caps Move) cnode_ids

od

The return function just returns its argument without modifying the state;
[a←xs. P a] denotes a filter returning all elements of the list xs for which P a

holds; mapM f xs is the standard map function over state monads, executing a
monadic function f on each element of the list xs in order.

In each phase, we initialise the capability slots one by one.

init_cnode spec orig_caps dup_caps mode cnode_id ≡
do cnode_slots ← return $ slots_of_list spec cnode_id;

mapM (init_cnode_slot spec orig_caps dup_caps mode cnode_id) cnode_slots

od

The initialisation of a single capability slot cnode_slot of a CNode cnode_id is
shown in Fig 4. This could for instance be the first slot of CNodeA1 in our example of
Fig 1, which needs to contain a (not necessarily original) capability to the endpoint
EP with a write right. In this definition, we first extract the target capability

init_cnode_slot spec orig_caps dup_caps mode cnode_id cnode_slot ≡
do target_cap ← assert_opt (opt_cap (cnode_id, cnode_slot) spec);

target_cap_obj ← return (cap_object target_cap);

target_cap_rights ← return (cap_rights target_cap);

target_cap_data ← return (cap_data target_cap);

is_orig_cap ← return (is_orig_cap spec (cnode_id, cnode_slot));

dest_obj ← get_spec_object spec cnode_id;

dest_size ← return (object_size_bits dest_obj);

dest_root ← assert_opt (dup_caps cnode_id);

dest_index ← return cnode_slot;

dest_depth ← return dest_size;

src_root ← return seL4_CapInitThreadCNode;

src_index ← assert_opt (orig_caps target_cap_obj);

src_depth ← return 0x20;

if target_cap = NullCap then return True

else if mode = Move ∧ is_orig_cap

then if ep_related_cap target_cap

then seL4_CNode_Move dest_root dest_index dest_depth

src_root src_index src_depth

else seL4_CNode_Mutate dest_root dest_index dest_depth

src_root src_index src_depth target_cap_data

else if mode = Copy ∧ ¬ is_orig_cap

then seL4_CNode_Mint dest_root dest_index dest_depth

src_root src_index src_depth target_cap_rights

target_cap_data

else return True

od

Fig. 4. Initialisation of a single capability slot.

target_cap that spec requires in cnode_slot. The function opt_cap returns an
option type, i.e. either Some cap or None. The function assert_opt asserts that
this value is of the form Some cap and returns cap ; otherwise it fails. From
target_cap, we extract the target object target_cap_obj (say EP), the desired
rights target_cap_rights (say write), and additional data target_cap_data (e.g.
for endpoints, a so-called badge). We store in is_orig_cap whether spec requires
the capability to be original for that slot.

In order to be able to invoke seL4’s seL4_CNode_Move, seL4_CNode_Mutate and
seL4_CNode_Mint operations, the initialiser needs to hold, in its CSpace, both the
target capability to be moved or copied, and a capability to the destination slot.
We compute the destination information (dest_root, dest_index and dest_depth)
from the (duplicated) capability that the initialiser holds for the destination slot.
(We use the duplicate capabilities in case the original capability to the destination
slot has already been given away.) We compute the source information (src_root,
src_index and src_depth) from the (original) capability that the initialiser holds
for the target capability. We then can invoke the appropriate seL4 operation

depending if the target capability needs to be original or not. These operations
directly connect to the capDL-level API model of the kernel.

5 Correctness

In this section, we summarise the proof of system initialiser correctness. We
present the separation logic we instantiated for this proof, state the top-level
theorem, show how the proof is decomposed, and describe how it is connected to
the seL4 kernel proofs.

5.1 Separation Logic Instance

We begin by setting up the basic reasoning framework we use in the proof of
the initialiser. As described in Sec 4, we initialise each object in isolation, and
within an object, each capability slot in isolation. Ideally, the proof about these
executions follows the same pattern. Separation logic [10] is a good fit for this
style of reasoning, at least if the specific flavour of separation logic allows us
to decompose heaps, and objects within heaps, across exactly these boundaries.
In addition to the local state of the user-level initialiser, we will have to reason
about the internal state of the kernel comprising the various objects we create.
This means, if we want to use a specific style of separation logic, we will have to
retro-fit it onto the existing capDL-level kernel model.

Usually, a separation logic is defined in terms of a heap and the concepts of
disjointness and separating conjunction. We can shortcut this stack of definitions
by building on an Isabelle type class for abstract separation algebra [5]. This
previous development allows us to merely define the concepts of a heap, heap
addition, and heap disjointness. After proving their basic axioms, we get the
development of separation logic for free, including basic Isabelle/HOL automation.

As mentioned, we want the heap in our separation algebra to be fine-grained
enough to split objects into individual capability slots and other object data.
The heap in the existing kernel model had no such requirement and therefore
has no such concept. Instead of enriching the state space of the existing model
with partial object ownership as described in [5] (and then having to re-prove
refinement to the code), we lift the existing state space into a larger one that
allows us to perform the desired decomposition easily. Our lifted heap is of type

sep_state = obj_id × cdl_component ⇒ sep_entity option

The obj_id is the same as in the heap mentioned in Sec 4. The cdl_component

specifies which part of an object we are addressing — a single capability slot of
an object, or the fields (non-capability data) of an object. A sep_entity is either
a single capability, or an object with payload only. In the lifting from obj_id

⇒ cdl_object to sep_state, we also set the so-called intent field of TCBs to a
default value. The intent models the contents of a thread’s IPC buffer storing
the parameters of the next kernel call it is about to make — a detail we can
ignore, because the initialiser is the only thread that can make system calls.

In terms of separation algebra, the resulting sep_state is a standard heap
structure and is instantiated in the standard manner [5]. The tradeoff is that we
are not reasoning about the real state of the system, but about the lifted state.
The lifted state space is larger than the original state space, and due to resetting
the intent field, the mapping is not even injective. Neither effect impacts our
verification: our predicates only talk about well-formed states that exist in reality
and the states that are identified only differ in TCB intent which we can ignore.

To apply this lifting to the kernel state and phrase separation predicates
about it, we use the syntax <P>. To apply separation predicates to the user-level
initialiser state, which subsumes the kernel state, we use the syntax �P�.

Given this lifted heap and the automatic setup for separating conjunction ∧∗

etc, we can define the classic maps-to predicates of separation logic. For instance,
we define the predicate ptr 7→o object that specifies that the state consists of
the object object at position ptr. We can divide it into two predicates that
extract the fields and capability slots of an object separately:

ptr 7→o object = (ptr 7→f object ∧∗ ptr 7→S object)

Following our heap structure, we can further divide the predicate 7→S on the
capability storage of an object into predicates 7→c about its individual capability
slots.

One key reasoning principle in separation logic is the frame rule. Because
the kernel API model is a shallow Isabelle/HOL embedding, we cannot prove
the frame rule as a generic rule of the logic. We can, however, bake-in the frame
rule to any statement we make about the kernel API, proving it about the leaf
functions and then passing it up through to the API top level. For instance,
we proved the following Hoare triple for the kernel-internal operation set_cap,
which bakes in the frame rule by adjoining ∧∗ R. The rule states that set_cap

changes only a single capability slot of a single object, and leaves everything else
unchanged, including other parts or other capability slots of the same object.

{|<ptr 7→c old_cap ∧∗ R> |} set_cap ptr cap {|<ptr 7→c cap ∧∗ R> |}

Making sure that our flavour of separation logic matches the verification problem
gives us a convenient tool for reasoning about loops — a common operation
in the system initialiser. We can reduce a global map of an operation such as
set_cap over a list of capability slots to local reasoning about each slot simply
by using the following rule.

(
∧
R x. x ∈ xs =⇒ {|�P x ∧∗ R�|} f x {|�Q x ∧∗ R�|}) =⇒

{|�
∧∗ map P xs ∧∗ R�|} mapM f xs {|�

∧∗ map Q xs ∧∗ R�|}

In this rule, the big
∧

is universal quantification and the big
∧∗ is separating

conjunction over a list of predicates in the usual way.
In the following sections we will see how these predicates and rules are applied

to make statements about the initialiser behaviour.

5.2 Top-Level Statement

The correctness statement for the system initialiser is that, at the end of the
initialisation, all objects in the system either belong to the initialiser itself and
are inactive, or are initialised in conformance with the capDL specification.

In capDL specifications, systems are described as a mapping from object
identifiers to objects. An object, identified by spec_object_id in the capDL
specification spec, is said to be initialised in conformance to spec, defined by the
predicate object_initialised spec ϕ spec_object_id, if the object spec_object

it points to in the resulting state is the one spec requires it to point to.

object_initialised spec ϕ spec_object_id ≡
λs. ∃ kernel_object_id spec_object.

ϕ spec_object_id = Some kernel_object_id ∧
(kernel_object_id 7→o spec2s ϕ spec_object) s ∧
cdl_objects spec spec_object_id = Some spec_object

The injection ϕ captures the subtlety that the kernel decides memory ad-
dresses at runtime. It maps names in spec to these memory addresses. There-
fore the predicate object_initialised requires that spec_object_id maps to
a kernel_object_id via the injection ϕ and that kernel_object_id points to
spec_object where all object identifiers have been renamed by ϕ — including
those within the capabilities of each object, defined by spec2s. The function
cdl_objects spec extracts the mapping from obj_id to object from spec.

The top-level theorem of the system initialiser is:

Theorem 2. If well_formed spec and obj_ids = dom (cdl_objects spec) and
distinct obj_ids then

{|�valid_boot_info bootinfo spec ∧∗ R�|}
init_system spec bootinfo obj_ids

{|λs. ∃ϕ. �
∧∗ map (object_initialised spec ϕ) obj_ids ∧∗

si_objects spec ϕ ∧∗ R� s ∧
injective ϕ ∧ dom ϕ = obj_ids |}

It states that, given a well_formed capDL specification, the system initialiser,
if it terminates, transforms a boot state described by boot_info, into a state
containing (a) each object in the specification correctly initialised and (b) the
data structures of the initialiser.3 Additionally, it states that the mapping ϕ is
injective and covers all specification objects.

The assumptions about the capDL system description encoded in the predicate
well_formed exclude infeasible specifications by describing constraints on seL4-
based system configurations. The formal definition of these constraints is too
long for this paper but are summarised as follows.

– There is only a finite number of objects in the system.
– Every object is of the correct size, with the correct number of capability slots.

3 The initialiser presently does not delete the capabilities it duplicated.

– Every capability points to an object, and there is a capability in the system
for every object. The types of the object and corresponding capability match.

– Each object only possess capabilities of the right type, e.g. page tables only
store Frame capabilities, whereas CNodes can contain most capability types.

– Capability rights are well formed, e.g. frames cannot have write without read
permissions.

– Each capability has a unique original capability that it is derived from.
– Page tables cannot be shared.
– Page tables must be empty, or mapped in a page directory.

There are further constraints in well_formed that encode current limitations of
the initialiser, not fundamental constraints. We describe these in Sec 6.

5.3 Decomposition

The key to this proof is the ability to decompose it along the functionality of
the initialiser. There are two aspects to this decomposition — decomposing the
proof itself along function boundaries and decomposing predicates about objects
such as object_initialised into smaller predicates. The former is provided by
the frame rule, the latter by our heap structure.

The proof of the system initialiser is divided into three sections. The first part
ensures that parsing the kernel provided bootinfo structure correctly extracts
information about untyped memory and free capability slots in the boot state. The
second part ensures that the create_objs function creates all objects described
by the specification in their default state and stores the corresponding capabilities
in the slots that later parts of the initialiser expect. This involves some internal
book-keeping and looping over the collection of untyped capabilities.

In the last, most complex part of the proof, we show that each object is
transformed from this default state (object_empty) to its fully initialised state
(object_initialised). We further divide this last part into separate proofs about
the initialisation of each type of object by showing the following rewrite rule.

[[well_formed spec; obj_ids = dom (cdl_objects spec)]]
=⇒ �

∧∗ map P obj_ids ∧∗ R� =
�
∧∗ map P [obj←obj_ids. table_at obj spec] ∧∗∧∗ map P [obj←obj_ids. tcb_at obj spec] ∧∗∧∗ map P [obj←obj_ids. cnode_at obj spec] ∧∗∧∗ map P [obj←obj_ids. stateless_at obj spec] ∧∗ R�

Expanding this map of an arbitrary predicate over all objects into maps by type
allows us to use the frame rule for looking at each type in isolation. As an example,
consider the rules in Fig 5 for init_tcbs and init_cspace. It is not important to
understand these predicates in detail. However, we can note that each of them
talk about a separate part of the overall object map, both mention some side
conditions about the presence of capabilities in the initialiser itself (si_cap_at ϕ

caps spec obj_id and si_cspace), and both have a frame condition R than can
be suitably instantiated to join them up.

[[well_formed spec; obj_ids = dom (cdl_objects spec); distinct obj_ids]]
=⇒ {|�objects_empty spec ϕ [obj←obj_ids. tcb_at obj spec] ∧∗∧∗ map (si_cap_at ϕ orig_caps spec) obj_ids ∧∗ si_cspace ∧∗ R�|}

init_tcbs spec orig_caps obj_ids

{|�objects_initialised spec ϕ [obj←obj_ids. tcb_at obj spec] ∧∗∧∗ map (si_cap_at ϕ orig_caps spec) obj_ids ∧∗ si_cspace ∧∗ R�|}

[[well_formed spec; obj_ids = dom (cdl_objects spec); distinct obj_ids;

distinct free_cptrs; orig_caps = map_of (zip obj_ids free_cptrs);

length obj_ids ≤ length free_cptrs]]
=⇒ {|�objects_empty spec ϕ [obj←obj_ids. cnode_at obj spec] ∧∗∧∗ map (si_cap_at ϕ orig_caps spec) obj_ids ∧∗∧∗ map (si_cap_at ϕ dup_caps spec)

[obj←obj_ids. cnode_or_tcb_at obj spec] ∧∗

si_cspace ∧∗ R�|}
init_cspace spec orig_caps dup_caps obj_ids

{|�objects_initialised spec ϕ [obj←obj_ids. cnode_at obj spec] ∧∗∧∗ map (λcptr. (si_cnode_id, cptr) 7→c NullCap)

(take (length obj_ids) free_cptrs) ∧∗∧∗ map (si_cap_at ϕ dup_caps spec)

[obj←obj_ids. cnode_or_tcb_at obj spec] ∧∗

si_cspace ∧∗ R�|}

Fig. 5. Individual rules for init_tcbs and init_cspace.

Continuing in this trend, we decompose the problem of initialising a single
object into the separate parts of an object, namely its fields and its individual
capability slots. This is embodied in the following rule.

[[dom (slots_of obj_id spec) = slots; distinct slots]]
=⇒ object_initialised spec ϕ obj_id =

(object_fields_initialised spec ϕ obj_id ∧∗∧∗ map (object_slot_initialised spec ϕ obj_id) slots ∧∗

object_empty_slots_initialised spec ϕ obj_id)

Such a decomposition is not necessarily true for any separation logic and any
concept of partly initialised object. Being able to prove the rule above as an
equality was one of the design goals of our separation logic. In particular, the
definition of object_initialised (see Sec 5.2) contains an existential quantifier
over kernel_object_id and spec_object which needs to be well-behaved enough
to lift over the separating conjunction on the right hand side of the rule.

The proof of CNode initialisation is representative of the proofs of other
object types. Capability slots in CNodes are initialised in a two-step process as
described in Sec 4. We define a predicate cnode_half_initialised to describe this
intermediate state and use the above decomposition rule for object_initialised,
decomposing cnode_half_initialised in a similar way, combined with the mapM

rule described in Sec 5.1 to reduce reasoning about loops to single capability
slots. Arriving at the leaf kernel calls of the init_cnode function, the initialiser

extracts the capabilities that authorise it to make these calls. These capabilities
are mentioned in Fig 5 as si_cap_at ϕ caps spec obj_id in a map over all such
capabilities. The following rule allows us to extract the specific one we need.

[[x ∈ xs; distinct xs;
∧
R. {|�P ∧∗ I x ∧∗ R�|} f {|�Q ∧∗ I x ∧∗ R�|}]]

=⇒ {|�P ∧∗ ∧∗ map I xs ∧∗ R�|} f {|�Q ∧∗ ∧∗ map I xs ∧∗ R�|}

We join the initialiser proof with formal specifications of the seL4 API that are
explained in the next section.

5.4 seL4 API specification

It is a universal hazard in formal specification that the specification does not
meet requirements, is inconsistent or does not match the code. We narrow the
requirements gap by proving a high-level correctness statement. We address the
latter two by the formal connection of the system initialisation proof to the
capDL model of the seL4 kernel, which formally abstracts the seL4 binary as
illustrated in Fig 2.

While we re-use the existing capDL kernel model, we did have to prove new
properties about it. Existing proofs about seL4 mostly concerned global invariants
and all possible, potentially malformed or malicious inputs. Exercising the kernel
API from a user-level proof, however, requires a different perspective: given a
specific good pre-state for an API call, show the effect of the API call on this
state, and determine which other parts of the kernel state are (not) affected.
Separation logic proved a good match for this kind of specification. This style of
proof does not tell us anything about invariant preservation within the kernel, but
it gives us the information we need for user-level proofs. We expect the separation
logic triples we proved about the seL4 API to be useful in other user-level proofs
as well; they were not specific to the initialiser. These triples are typically large,
around 30–50 lines each, because they capture the precise conditions needed for
a specific kernel call to succeed.

The system model we use to connect to the kernel formalisation is somewhat
simplistic: it assumes that only one thread in the system can make kernel calls
and affect the system state. This allows the initialiser model to treat the kernel as
a library that embeds the kernel state in the initialiser state. It also allows us to
avoid reasoning about interleaved user executions. This works for our one-thread
initialiser, but obviously would have to be generalised for more complex systems.

6 Experience, Limitations, and Assumptions

This section describes some of the lessons learnt in this verification and discusses
the limitations and assumptions of the current version of the proof.

The size of the initialiser model is relatively small: roughly 400 lines of Isabelle
definitions. It connects to the seL4 capDL-level kernel model of about 4,150 lines.
This connection to the fully realistic kernel model is the main source of complexity

in the proof. As can be seen in Sec 4, the initialiser has to deal with a full kernel
API with all its real-life complexities and wrinkles.

The proof specific to the user-level initialiser measures 8,100 lines of Isabelle,
the separation logic proofs about kernel functions another 10,500 lines, coming
to a total of 18,500 lines overall. This compares to 25,300 lines for the refinement
proof between the capDL kernel model and the functional specification, and
200,000 lines for the functional specification to the C code of the kernel [4].

Previous verifications based on seL4 were either refinement proofs where
one full specification layer is connected to another such layer [4], or proofs
of global security properties [7, 12]. The use of specific API functions in our
setting, combined with local separation logic statements about them, gives our
proofs a distinctly different flavour. While previous proofs had to show global
invariants that are inconvenient to express in separation logic, we could get away
without stating any global kernel-level invariants at all. The local separation
logic specifications were sufficient.

Our compositional state space and the corresponding separation algebra was
crucial for reasoning about individual components of each object separately.
Another difference between the initialiser and previous seL4 proofs was the heavy
use of nested loops. Again, our separation logic setup enabled us to decompose
these loops into local steps without stating complex invariants.

These benefits of separation logic reasoning were not an accident. We ex-
pended considerable effort fine-tuning and designing the underlying separation
algebra instance such that the higher-level proofs would later fall out relatively
conveniently. This design was iterative, leading through a number of rather
complex instantiations with the simple state space lifting presented here as the
final result. The Isabelle-enforced abstraction layer, which the separation algebra
type class brought, enabled us to change the algebra instantiation and heap
structure several times underneath the kernel proofs. We only had to re-prove
the basic axioms and frame properties of the leaf functions.

We share a frequent experience in separation logic proofs: more automa-
tion would have been welcome. While the generic separation logic setup in
Isabelle/HOL provided basic proof tactics, higher-level automation such as frame
computation/matching would have improved productivity. We are currently
investigating how such support can be implemented.

Despite our comprehensive top-level correctness statement, there are still a
number of limitations in the initialiser and corresponding proof.

A general limitation of this style of proof is that it shows a safety, not a liveness
property: only if the initialiser finishes successfully do we know that the resulting
state is correctly initialised. Since almost all loops in the initialiser are (potentially
nested) maps over finite lists, termination is not an issue. However, the initialiser
may legitimately fail, e.g. because of insufficient memory. This limitation could
be lifted with further explicit assumptions about the bootinfo structure provided
by the kernel. An assumption of the original seL4 verification was that the kernel
boots correctly. We further assume that the bootinfo structure provides correct
information about the layout of memory and capabilities.

Sec 5.2 mentions fundamental constraints on system configurations formalised
in the predicate well_formed on the input specification. We also use this predicate
to encode specific limitations of our current initialiser model. We currently do not
allow the system configuration to mention untyped capabilities, IRQ capabilities
and ASID pool capabilities. This corresponds to static system configurations as
used in a separation-kernel setting [7]. With the basic reasoning framework set
up, we think these limitations can be lifted easily in future work.

At present, capDL only models the protection state of the system, not its
memory content. This means we also do not model the loading of program code.
This limitation is less severe than it may sound, because in the envisioned appli-
cation space, the system image loaded from disk already contains all application
binaries. That is, loading program code is reduced to mapping the right memory
frames into the right virtual address spaces, which we do model.

Finally, we do not model the kernel scheduler in our proofs, because the capDL
kernel model does not provide enough detail on it. Our underlying execution model
implicitly assumes that the initialiser is the only running thread in the system.
Since the initialiser runs with highest priority and only produces threads with
lower priority this assumption is trivially satisfied until the initialiser terminates.
We do prove that the initialiser always remains runnable.

7 Conclusion and Related Work

Initialising systems according to a given configuration, and guaranteeing that the
initialisation is correct, are both hard and critical tasks. Security requirements
for high-assurance certification of separation kernels (SKPP) for instance include
providing evidence that the initialisation function establishes the system in a se-
cure state consistent with the configuration data [8]. Configuration data describes
high-level partitions and authorised information flows between partitions.

SELinux policies allow fine grained MLS security, but the richness of these
policies makes it difficult to understand them. Hicks et al. [2] developed a formal
semantics for SELinux policies in Prolog and demonstrated that it was possible
to show information flow properties of SELinux policies.

The EROS kernel partially side-steps the initialisation problem by persistence;
it simply restarts at the last saved checkpoint. The initial system image is
constructed by hand and the creation and instantiation of confined subsystems
uses constructors that are part of the trusted computing base [13]. The proof
of the correctness of these constructors is with respect to a high-level model of
EROS only, not formally linked to the EROS code.

The OKL4 microkernel [9] moves the initialisation problem almost entirely
to offline processing and runs the initialisation phase once, before the system
image is built. Similarly to EROS, when the machine starts, it loads a fully
pre-initialised state. While this makes it possible to inspect the initialised state
offline, a full assurance case must be made for each system. In our approach,
assurance about system initialisation is now reduced to reasoning about static,
formal capDL system descriptions.

In this paper we presented the formalisation and correctness proof of a generic,
automatic system initialiser that brings an seL4-based system from boot state
into a desired access control configuration. From such a configuration, we can
then reason with confidence about the security of the resulting system.

We have shown a general separation logic framework that can be used to
reason about such user-level systems, we have produced a proof framework to
reason about user-level executions on top of a formally verified microkernel API,
and we have applied it to show the correctness of the initialiser model.

While the initialiser we present here is specific to seL4, we think that the
general principle and pattern of reasoning would generalise to other capability-
based systems. Future work includes the functional correctness proof down to the
C code level of the initialiser. We expect this proof to be simpler than the seL4
correctness, because the initialiser code itself is much simpler. Its complexity lies
in the interaction with the kernel, which we have treated here.

Acknowledgements We are grateful to Mark Staples and Toby Murray for their
feedback on drafts of this paper.

References

1. J. Alves-Foss, P. W. Oman, C. Taylor, and S. Harrison. The MILS architecture for
high-assurance embedded systems. Int. J. Emb. Syst., 2:239–247, 2006.

2. B. Hicks, S. Rueda, L. S. Clair, T. Jaeger, and P. D. McDaniel. A logical specification
and analysis for SELinux MLS policy. In V. Lotz and B. M. Thuraisingham, editors,
SACMAT, pages 91–100. ACM, 2007.

3. G. Klein. From a verified kernel towards verified systems. In K. Ueda, editor, 8th
APLAS, volume 6461 of LNCS, pages 21–33, Shanghai, China, Nov 2010. Springer.

4. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In 22nd SOSP, pages 207–220. ACM, 2009.

5. G. Klein, R. Kolanski, and A. Boyton. Mechanised separation algebra. In 3rd ITP,
volume 7406 of LNCS, pages 332–337. Springer, Aug 2012.

6. I. Kuz, G. Klein, C. Lewis, and A. Walker. capDL: A language for describing
capability-based systems. In 1st APSys, pages 31–36, New Delhi, India, Aug 2010.

7. T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis,
X. Gao, and G. Klein. seL4: from general purpose to a proof of information flow
enforcement. In IEEE Symp. Security & Privacy, Oakland, CA, May 2013.

8. National Security Agency. U.S. government protection profile for separation kernels
in environments requiring high robustness, version 1.3, Jun 2007.

9. Open Kernel Labs. OKL4 microkernel, reference manual. http://wiki.ok-labs.

com/downloads/release-3.0/okl4-ref-manual-3.0.pdf, Sep 2008.
10. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proc. 17th IEEE Symposium on Logic in Computer Science, pages 55–74, 2002.
11. T. Sewell, M. Myreen, and G. Klein. Translation validation for a verified OS kernel.

In Proc. 34th PLDI, pages 471–481. ACM, Jun 2013.
12. T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick, and G. Klein. seL4

enforces integrity. In 2nd ITP, volume 6898 of LNCS, pages 325–340, 2011.
13. J. S. Shapiro and S. Weber. Verifying the EROS confinement mechanism. In IEEE

Symposium on Security and Privacy, pages 166–176. IEEE Computer Society, 2000.

http://wiki.ok-labs.com/downloads/release-3.0/okl4-ref-manual-3.0.pdf
http://wiki.ok-labs.com/downloads/release-3.0/okl4-ref-manual-3.0.pdf

