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Abstract. We present Mapped Separation Logic, an instance of Separa-
tion Logic for reasoning about virtual memory. Our logic is formalised in
the Isabelle/HOL theorem and it allows reasoning on properties about
page tables, direct physical memory access, virtual memory access, and
shared memory. Mapped Separation Logic fully supports all rules of
abstract Separation Logic, including the frame rule.

1 Introduction

Let memory be a function from addresses to values. Many a paper and semantics
lecture start off with this statement. Unfortunately, it is not how memory on
any reasonably complex machine behaves. Memory, on modern hardware, is
virtualised and addresses pass through a translation layer before physical storage
is accessed. Physical storage might be shared between different virtual addresses.
Additionally, the encoding of how the translation works (the page table) resides
in physical storage as well, and might be accessible through the translation. These
two properties make the function model incorrect.

Operating systems can be made to provide the illusion of plain functional
memory to applications. This illusion, however, is brittle. Mapping and sharing
virtual pages are standard Unix system calls available to applications and they
can easily destroy the functional view. What is worse, on the systems software
layer, e.g. for the operating system itself, device drivers, or system services, the
virtual memory subsystem is fully visible: sharing is used frequently and the
translation layer is managed explicitly.

Building on earlier work [10], we show in this paper how Separation Logic [14],
a tool for reasoning conveniently about memory and aliasing, can be extended
to virtual memory. We do this in a way that preserves the abstract reasoning of
Separation Logic as well as its critical locality feature: the frame rule.

The technical contributions in this work are the following:

– a Separation Logic allowing convenient, abstract reasoning about both the
virtual and physical layers of memory, supporting the frame rule for arbitrary
writes to memory (including the page table),
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– a separating conjunction extending to virtually shared memory,
– a framework that makes the core logic independent of particular page table

implementations, and
– a case study on page allocation that demonstrates the logic.

All of the work presented in this paper is formalised in the Isabelle/HOL
theorem prover [11]. For presentation in this paper, we analyse the logic based
on a simple, imperative programming language with arbitrary pointer arithmetic.
It is our intention to connect this logic with earlier work on a precise memory
model of C by Tuch et al. [16].

We currently do not take into account memory permissions beyond whether
a virtual address is mapped/unmapped. Such permissions are merely extra
properties of virtual addresses; they can be easily integrated into our logic.

2 Intuition

Separation Logic traditionally models memory as a partial function from addresses
to values, called the heap. The two central tools of Separation Logic are the
separating conjunction and the frame rule. Separating conjunction P ∧∗ Q is
an assertion on heaps, stating that the heap can be split into two separate
parts on which the conjuncts P and Q hold respectively. It expresses anti-aliasing
conditions conveniently. The frame rule allows us to conclude {P ∧∗R} f {Q∧∗R}
from {P} f {Q} for any R. This expresses that the actions of f are local to the
heaps described by P and Q, and can therefore not affect any separate heaps
described by R. As we shall see below, with virtual memory, both of these tools
break and both can be repaired.

Virtual memory is a hardware-enforced abstraction allowing each executing
process its own view of memory, into which areas of physical memory can be
dynamically inserted. It adds a level of indirection: virtual addresses potentially
map to physical addresses. Memory access is ordinarily done through virtual
addresses only, although hardware devices may modify physical memory directly.

This mapping layer is encoded in the heap itself, in a page table data structure.
There are many flavours of such encodings, using multiple levels, different sizes of
basic blocks (e.g. super pages), dynamically different table depths, and even hash
tables. Usually, the encoding and minimum granularity (page size) is dictated by
the hardware. The anchor of the page table in physical memory is called its root.
Knowing the specific encoding, the full set of virtual-to-physical mappings for a
process can be constructed given the heap and the root.

Given the additional layer of indirection, two different virtual addresses may
resolve to the same physical address, and separating conjunction breaks, because
on these addresses it does not end up providing separation. Additionally, although
a memory update to the page table may only locally change one byte of physical
memory, it might completely change the view the virtual memory layer provides,
affecting a whole number of seemingly unrelated virtual addresses. A local action
might therefore have non-local effects. This breaks the frame rule. We show how
to repair both tools for virtual memory in the remainder of this paper.
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Fig. 1. Maps-to assertions on the heap, virtual map and address space.

We will henceforth restrict our use of the word heap to refer to physical
memory, and we will call the virtual-to-physical translation the virtual map. This
virtual map provides the first abstraction layer in our model of virtual memory:
for the development of Separation Logic on virtual memory, we do not need to
know how the encoding works precisely. We only need to know that there exists
a way of decoding, and, as we shall see later, that there is a way of finding out
which page table entries contribute to looking up a particular virtual address. As
the rest of the development is independent of the encoding, we use only a very
simple implementation for the case study presented here: a one-level page table.

For reasoning about virtual memory we wish make statements on three
levels, shown in Fig. 1: physical-to-values, virtual-to-physical, and virtual-to-
values. Given our two partial functions (heap and vmap), this may appear
straight forward. The central question that arises is: which part of the heap
should a virtual-to-physical lookup occupy? This question determines the notion
of separation from lookups to other parts of the heap. Assuming for the example
a one-level page table where byte x is responsible for encoding the lookup of
virtual address vp1 to physical address p2, there are two cases: (a) the lookup
consumes x, or (b) it does not. In case (a) we cannot use separating conjunction
any more to specify separation of an address vp2 that happens to use the same
page table entry x as there may be many virtual addresses sharing an entry in
the encoding. This is a common case, and we clearly do not want to exclude it.
The other extreme would be to say the lookup consumes no resources. In earlier
work [10] we came to the result that this model cannot support the frame rule
for arbitrary programs: a physical write to the page table would be separate to
any virtual-to-physical lookup, but the write might have the non-local effect of
changing that apparently separate mapping.

In this paper, we are therefore proposing a solution in between: a page table
lookup consumes parts of all the entries in the page table that are involved in
the lookup. This can be seen as slicing heap entries up into sub-byte addressing.
If a page table lookup, i.e. a virtual-to-physical mapping, consumes parts of the
page table entries involved in the lookup, we can make all memory updates local.
We only need to demand that the physical address being changed is fully owned,
such that no virtual-to-physical mappings that involve the updated location are
separate under separating conjunction.
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This idea is similar to the model of permissions by Bornat et al. [2] for
concurrent threads. The difference is that in our case we extend the domain of
the heap to slices, whereas in the permission model, the range is extended. This
has the advantage that the development of heap disjointness, merging, separating
conjunction and the other standard operators remains unchanged, and therefore
should be easy to instantiate to our target model of C [16]. The memory footprint
of page table lookups has a direct formulation in our model.

The next section will briefly summarise our formal abstract interface to page
table encodings, before Sect. 4 introduces the model and shallow Isabelle/HOL
embedding of the assertion language for virtual memory.

3 The Virtual Memory Environment

In this section, we describe the page table abstraction our logic is based on as
well as an instantiation to a simple, one-level page table.

As in previous work [10], we write VPtr vp and PPtr p to distinguish virtual
and physical pointers by type in Isabelle/HOL, and provide a destructor ptr-val
(PPtr x ) = x when we need to talk about the physical/virtual address directly.

The abstract concepts of heap, virtual map, and address space are in Isabelle:
types heap = pptr ⇀ val addr-space = vptr ⇀ val

vmap = vptr ⇀ pptr

These types do not include slicing yet. The type of pointers is a parameter to
the development. To keep the presentation simple, we use 32-bit machine words
for pointers as well as values of memory cells in examples.

For the development of the logic in the remainder of the paper, we require
the following two functions.

ptable-lift :: heap ⇒ pptr ⇒ vmap
ptable-trace :: heap ⇒ pptr ⇒ vptr ⇒ pptr set

Both functions take the physical heap and page table root as parameters. The
result of ptable-lift is the vmap encoded by the page table, whereas ptable-trace
returns for each virtual address vp the set of locations in the page table that are
involved in the lookup of vp. In contrast to our earlier work, we do not require
an explicit formulation of the page table area in memory.

We will later require five constraints on these two functions. We defer the
presentation of these to Sect. 5 when the associated concepts have been introduced.

As mentioned above, we use a simple one-level page table as an example
instantiation. It is a contiguous physical memory structure consisting of an array
of machine word pointers, where word 0 defines the physical location of page
0 in the address space, word 1 that of page 1 and so forth. While inefficient in
terms of storage, its simplicity and contiguity allows for fast experimentation
with particular memory layouts. The table is based on an arbitrarily chosen page
size of 4096, i.e. 20 bits for the page number and 12 for the offset. Page table
lookup works as expected: we extract the page number from the virtual address,
go to that offset in the page table and obtain a physical frame number which
replaces the top 20 bits of the address:
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get-page vp ≡ ptr-val vp >> 12
ptr-remap (VPtr vp) pg ≡ PPtr (pg AND NOT 0x0FFF OR vp AND 0x0FFF )

ptable-lift h r vp ≡ case h (r + get-page vp) of None ⇒ None
| baddrc ⇒

if addr !! 0 then bptr-remap vp addrc else None

ptable-trace h r vp ≡ case h (r + get-page vp) of None ⇒ ∅
| baddrc ⇒ {r + get-page vp}

AND, OR and NOT are bitwise operations on words. The operator >> is bitwise
right-shift on words. The term x !! n stands for bit n in word x. We use bit 0 to
denote whether a mapping is valid. The optional value type has two constructors:
None for no value and bvaluec otherwise.

4 Separation Logic Assertions on Virtual Memory

In this section, we describe how the classical Separation Logic assertions can be
extended to hold for a model with virtual memory.

As mentioned in Sect. 2, the idea is to extend the domain of the heap to
slices. The smallest useful granularity of heap cells is that of virtual addresses.
One page table entry can at most be responsible for all virtual addresses in the
machine. Thus, the domain of the heap becomes pptr × vptr and (p, vp) stands
for the vp-slice of physical address p. In our shallow embedding, Separation Logic
assertions are predicates on this new heap and the root of the page table:

types fheap = (pptr × vptr) ⇀ val
map-assert = (fheap × pptr) ⇒ bool

With this model, the basic definition of heap merge (++), domain, and
disjointness (⊥) remain completely standard:

h1 ++ h2 ≡ λx . case h2 x of None ⇒ h1 x | byc ⇒ byc
dom m ≡ {a | m a 6= None}
h1 ⊥ h2 ≡ dom h1 ∩ dom h2 = ∅
The Separation Logic connectives for empty heap, true, conjunction, and

implication stay almost unchanged. We additionally supply the page table root.

� ≡ λ(h, r). h = empty
> ≡ λs. True
P ∧∗ Q ≡ λ(h, r). ∃ h0 h1. h0 ⊥ h1 ∧ h = h0 ++ h1 ∧ P (h0, r) ∧ Q (h1, r)
P −→∗ Q ≡ λ(h, r). ∀ h ′. h ⊥ h ′ ∧ P (h ′, r) −→ Q (h ++ h ′, r)

Since the definitions are almost unchanged it is unsurprising that the usual
properties such as commutativity and associativity and distribution over lifted
normal conjunction continue to hold.

The interesting, new assertions are the three maps-to statements that we
alluded to in Fig. 1. Corresponding to the traditional Separation Logic predicate
is the physical-to-value mapping:

p 7→ v ≡ λ(h, r). (∀ vp. h (p, vp) = bvc) ∧ dom h = {p} × U
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For this assertion, we require that all slices of the heap at physical address p map
to the value v and that the domain of the heap is exactly the set of all pairs with
p as the first component (U is the universal set). This predicate would typically
be used for direct memory access in devices or for low-level kernel operations.

The next assertion is the virtual-to-physical mapping:
vp 7→v p ≡ λ(h, r).

let heap = h-view h vp; vmap = ptable-lift heap r
in vmap vp = bpc ∧ dom h = ptable-trace heap r vp × {vp}

where h-view fh vp ≡ λp. fh (p, vp). Here, we first lift the page table out of the
heap to get the abstract vmap which provides us with the translation from vp
to p. Additionally, we assert that the domain of the heap is the vp slice of all
page table entries that are involved in the lookup. With h-view we project out
the vp slice for all addresses so that the page table lift function can work on a
traditional pptr ⇀ val heap.

Putting the two together, we arrive at the virtual-to-value mapping that
corresponds to the level that most of the OS and user code will be reasoning at.

vp 7→ v ≡ b∃ cp. vp 7→v p ∧∗ p 7→ v

where b∃ cx . P x ≡ λs. ∃ x . P x s. The predicate implies that the lookup path
is separate from the physical address p the value v is at. This is the case for
all situations we have encountered so far and, as the case study shows, works
for page table manipulations as well. It is possible to define a weaker predicate
without the separation, but this creates a special case for the assignment rule: if a
write changes the page table for the address the write goes to, the post condition
would have to take the change in the translation layer into account directly.

The usual variations on the maps-to predicate can be defined in the standard
manner again. We let the arrow notation apply both to the physical-to-value and
the virtual-to-value mapping and rely on context and type inference picking the
correct underlying definition.

p 7→ − ≡ b∃ cv . p 7→ v
p ↪→ v ≡ p 7→ v ∧∗ >
S 7→ − ≡ fold op ∧∗ (λx . x 7→ −) � S

The latter definition refers to a finite set S of addresses. It states that all of
the elements hold separately.

We have proved that both x-to-value mappings are intuitionistic [14]. Note
that, although the virtual-to-value mapping is not domain exact [14] due to the
existential quantifier on p, the mapping is still precise [12]:

precise P ≡ ∀Q R. P ∧∗ Q b∧c R = (P ∧∗ Q) b∧c (P ∧∗ R)

That is, it distributes over conjunction in both directions. We write P b∧c Q for
the lifted conjunction of assertions P and Q.

5 The Logic

This section introduces a simple, heap based programming language with pointer
arithmetic to analyse how the assertions presented above can be developed into
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datatype aexp =
HeapLookup aexp
| BinOp (val ⇒ val ⇒ val) aexp aexp
| UnOp (val ⇒ val) aexp
| Const val

datatype com =
SKIP
| aexp := aexp
| com; com
| IF bexp THEN com ELSE com
| WHILE bexp DO com

datatype bexp =
BConst bool
| BComp (val ⇒ val ⇒ bool) aexp aexp
| BBinOp (bool ⇒ bool ⇒ bool) bexp bexp
| BNot bexp

Fig. 2. Syntax of the heap based WHILE language.

[[Const c]] s = bcc
[[HeapLookup vp]] s = case [[vp]] s of None ⇒ None

| bvc ⇒ if (VPtr v ↪→ −) s then as-view s (VPtr v) else None

[[BinOp f e1 e2]] s = case ([[e1]] s, [[e2]] s) of
(bv1c, bv2c) ⇒ bf v1 v2c | - ⇒ None

[[UnOp f e]] s = case [[e]] s of None ⇒ None | bvc ⇒ bf vc

[[BConst b]]b s = bbc
[[BComp f e1 e2]]b s = case ([[e1]] s, [[e2]] s) of

(bv1c, bv2c) ⇒ bf v1 v2c | - ⇒ None

[[BBinOp f e1 e2]]b s = case ([[e1]]b s, [[e2]]b s) of
(bv1c, bv2c) ⇒ Some bf v1 v2c | - ⇒ None

[[BNot b]]b s = case [[b]]b s of None ⇒ None | bvc ⇒ b¬ vc

Fig. 3. Semantics of arithmetic and boolean expressions.

a full Separation Logic. For the meta-level proofs in this paper, we provide a
deep embedding of the language into Isabelle/HOL. The language is standard,
with skip, if, while, and assignment. The WHILE and IF statements potentially
read from virtual memory in their guards. Assignment is the most interesting: it
accesses memory through the virtual memory layer and can potentially modify
this translation by writing to the page table. We leave out the simpler physical
write access for the presentation here. It would be easy to add and does not
increase the complexity of the language.

Fig. 2 shows the Isabelle datatypes that make up the syntax of the language.
Note that the left hand side of assignments can be an arbitrary arithmetic
expression. For simplicity, we identify values and pointers in this language and
admit arbitrary HOL functions for comparison, binary, and unary arithmetic
expressions. The program states are the same states the separation assertions
work on, but to the user, only the usual view of (translated) memory is available.

The semantics of boolean and arithmetic expressions is shown in Fig. 3. We
write [[B ]]b for the meaning of boolean expression B as a partial function from
program state to bool. Analogously [[A]] is a partial function from state to values.
All of these are straightforward, only heap lookup deserves more attention.
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Heap lookup only succeeds if the address the argument of the lookup evaluates
to virtually maps to a value. This means that the appropriate slices that are
involved in the page table lookup as well as the full cell of the target in physical
memory must be available in the domain of the heap. In any execution, there will
always be full memory cells available, but using our assertions from above we
are able to make finer-grained distinction during program proofs. The function
as-view (fh, r) vp = (let hp = h-view fh vp in ptable-lift hp r B hp) vp uses h-view
as defined above to read the value from the heap after the address has been
translated, and f B g ≡ λx . case f x of None ⇒ None | byc ⇒ g y to compose
the two partial functions.

Finally, Fig. 4 shows a big-step operational semantics of commands in the
language. We write 〈c,s〉 −→ s ′ for command c, started in s, evaluates to s’. As
usual, the semantics is the smallest relation satisfying the rules of Fig. 4. Non-
termination is modelled by absence of the transition from the relation. In contrast
to this, we model memory access failure explicitly by writing 〈c,s〉 −→ None, and
we do not allow accessing unmapped pages. On hardware, this would lead to a
page fault and the execution of a page fault handler. This can also be modelled by
making the assignment statement a conditional jump to the page fault handler, or
with an abstraction layer showing that the page fault handler always establishes
a known good state by mapping pages in from disk. An example of the latter
has recently been shown by Alkassar et al. [1] for a kernel page fault handler,
albeit not on the Separation Logic level. For the verification of the seL4 micro-
kernel [5,6] (the larger context of this work), we intend to show absence of page
faults in the kernel itself, hence our stricter model. Excluding the conditional
jump is no loss of generality as we already have IF statements in the language.

As with arithmetic expressions, the most interesting rule in Fig. 4 is assignment
which involves heap access and which we will explain below. In the other rules,
we abbreviate [[b]]b s = bTruec with <b> s, and [[b]]b s = bFalsec with ¬<b> s.
Failure in any part of the execution leads to failure of the whole statement.

The assignment rule in the top right corner of Fig. 4 requires that both the
arithmetic expressions for the left and right hand side evaluate without failure.
The left hand side is taken as a virtual pointer, the right hand side as the value
being assigned. The assignment succeeds if the virtual address vp is mapped and
allocated. We use the notation s [vp,− 7→ v ] to update all slices in the heap
belonging to the physical address that vp resolves to with the new value v. Since
heap writes always update full cells, all heaps in executions will only ever consist
of full cells and are thus consistent with the usual, non-sliced view of memory.
Slices are a tool for assertions and proofs only.

Having shown the semantics, we can now proceed to defining Hoare triples.
Validity is the usual:

{|P |} c {|Q |} ≡ ∀ s s ′. 〈c,s〉 −→ s ′ ∧ P s −→ (∃ r . s ′ = brc ∧ Q r)

We do not define a separate syntactic Hoare calculus. Instead, we define
validity only and then derive the Hoare rules as theorems in Isabelle/HOL
directly. Fig. 5 shows the rules we have proved for this language. Again, the rules
for IF, WHILE, etc., are straight forward and the same as in a standard Hoare
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〈SKIP,s〉 −→ bsc
[[lval]] s = bvpc [[rval]] s = bvc (VPtr vp ↪→ −) s

〈lval := rval ,s〉 −→ bs [VPtr vp,− 7→v v ]c

[[lval]] s = None ∨ [[rval]] s = None

〈lval := rval ,s〉 −→ None

[[lval]] s = bvpc ¬ (VPtr vp ↪→ −) s

〈lval := rval ,s〉 −→ None

〈c0,s〉 −→ bs ′′c 〈c1,s
′′〉 −→ s

′

〈c0 ; c1,s〉 −→ s
′

〈c0,s〉 −→ None

〈c0 ; c1,s〉 −→ None

<b> s 〈c0,s〉 −→ s
′

〈IF b THEN c0 ELSE c1,s〉 −→ s
′

¬<b> s 〈c1,s〉 −→ s
′

〈IF b THEN c0 ELSE c1,s〉 −→ s
′

[[b]]b s = None

〈IF b THEN c0 ELSE c1,s〉 −→ None

¬<b> s

〈WHILE b DO c,s〉 −→ bsc

<b> s 〈c,s〉 −→ bs ′′c 〈WHILE b DO c,s
′′〉 −→ s

′

〈WHILE b DO c,s〉 −→ s
′

<b> s 〈c,s〉 −→ None

〈WHILE b DO c,s〉 −→ None

[[b]]b s = None

〈WHILE b DO c,s〉 −→ None

where

(h, r) [vp,− 7→v v ] ≡ case vmap-view (h, r) vp of bpc ⇒ (h [p,− 7→ v ], r)
vmap-view (h, r) vp ≡ ptable-lift (h-view h vp) r vp
h [p,− 7→ v ] ≡ λp ′. if fst p ′ = p then bvc else h p ′

Fig. 4. Big-step semantics of commands.

calculus. We write P b−→c Q ≡ ∀ s. P s −→ Q s for lifted implication, and
�b� s to denote that [[b]]b s 6= None. The precondition P in the IF and WHILE
case must be strong enough to guarantee failure free evaluation of the condition
b. The lifting rules for conjunction and disjunction, as well as the weakening
rule are easy to prove, requiring only the definition of validity and separating
conjunction. The interesting cases are the assignment rule and the frame rule.

The assignment rule is more complex looking than the standard rule of
Separation Logic. Here, both the left and right hand side of the assignment
are arbitrary expressions, potentially including heap lookups that need to be
evaluated first. This is the reason for the additional P conjunct separate from
the basic pointer mapping. It is not an artifact of virtual memory, but one of
expression evaluation only. In essence, this is a rule schema. P can be picked
to be just strong enough for the evaluation of the expressions to succeed. For
instance, if the left hand side were to contain one heap lookup for location x only,
we would chose P to be of the form x 7→ r. The rule is sound for too small and
too large P : either the precondition is false and the triple trivially true, or the
precondition is merely stronger than it needs to be.

The proof of the assignment rule proceeds by unfolding the definitions and
observing that the postcondition is established by the memory update, noting the
fact that the ptable-trace from the precondition fully accounts for all page table
entries that are relevant in the postcondition and that P is preserved, because it is
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{|P |} SKIP {|P |}
{|P |} c {|Q |} P ′ b−→c P Q b−→c Q ′

{|P ′|} c {|Q ′|}

{|P b∧c <b>|} c1 {|Q |} {|P b∧c ¬<b>|} c2 {|Q |}
{|P b∧c �b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b∧c <b>|} c {|P |} P b−→c �b�

{|P |} WHILE b DO c {|P b∧c ¬<b>|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b∧c R|} c {|Q b∧c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b∨c R|} c {|Q b∨c S |}

{|(VPtr vp 7→ − ∧∗ P) b∧c [[l ]] = vp b∧c [[r ]] = v |} l := r {|VPtr vp 7→ v ∧∗ P |}

{|P |} c {|Q |}
{|P ∧∗ R|} c {|Q ∧∗ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not affected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value
mapping and lets us talk about the physical address p:

{|(VPtr vp 7→v p ∧∗ p 7→ − ∧∗ P) b∧c [[l ]] = vp b∧c [[r ]] = v |}
l := r

{|VPtr vp 7→v p ∧∗ p 7→ v ∧∗ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation
is heap merge lifted to the heap × pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:
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ptable-lift (h0 ++ h1) r vp = bpc h0 ⊥ h1

ptable-lift h0 r vp = bpc ∨ ptable-lift h0 r vp = None

ptable-lift h0 r vp = bpc h0 ⊥ h1

ptable-lift (h0 ++ h1) r vp = bpc

get-page vp = get-page vp
′ ptable-lift h r vp = bvalc ptable-lift h

′
r vp

′
= bval ′c

ptable-trace h r vp = ptable-trace h
′
r vp

′

p /∈ ptable-trace h r vp ptable-lift h r vp = bpc
ptable-lift (h(p 7→ v)) r vp = bpc

p /∈ ptable-trace h r vp ptable-lift h r vp = bpc
ptable-trace (h(p 7→ v)) r vp = ptable-trace h r vp

Fig. 6. The page table interface.

Lemma 1 (Safety Monotonicity). If a small state provides enough resources
to run a command c, then so does a larger state. If 〈c,(h ++ h ′, r)〉 −→ None
and h ⊥ h ′ then 〈c,(h, r)〉 −→ None.

Lemma 2 (Frame Monotonicity). Execution of a command can be traced
back to a smaller part of the state as long as the command executes at all on the
smaller state. If ¬ 〈c,(h0, r)〉 −→ None and 〈c,(h0 ++ h1, r)〉 −→ b(h ′, r)c
and h0 ⊥ h1 then ∃ h0

′. h ′ = h0
′ ++ h1 ∧ 〈c,(h0, r)〉 −→ b(h0

′, r)c.

We have not formalised the full abstract, relational treatment of the framework
by Calcagno et al., but shown the above two properties and the implied frame
rule directly by induction on the evaluation of commands.

Fig. 6 gives the page table interface constraints that we promised in Sect. 3.
These rules need to be proved about ptable-lift and ptable-trace for a new page
table instantiation in order to use the abstract logic presented before. The first
two rules are the frame and monotonicity property on ptable-lift. The third rule
states that if the domain of ptable-lift does not change, neither does ptable-trace.
The last two rules state that updates to the heap outside the trace affect neither
the lifting nor the trace of the page table. We have proved the rule in Fig. 6 for
the one-level page table instantiation in the examples.

6 Case Study

In this section, we present a small page allocation and assignment routine one
might see in operating system services, mapping a frame, the physical equivalent
of a page, to some address in virtual memory. The program appears in Fig. 7
with simplified syntax. Frame availability information is stored in a frame table,
which contains one entry per frame in the system, marking it as used or unused.
In our program, line 1 attempts to find a free frame’s entry in the free frame list.
An empty list causes an erroneous return at line 7. Line 3 removes the head of the
list. Line 4 calculates the number of the frame from its entry. Upon successfully
allocating a frame, line 5 updates the page table with the appropriate entry
mapping page-addr to the new frame.

We have proved that the program conforms to the following specification:
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1. fte := ft_free_list;

2. IF fte != NULL THEN

3. ft_free_list := *ft_free_list;

4. frame := &fte - &frame_table;

5. *(ptable + (a2p page_addr)) := f2a frame OR valid_pmask;

6. ret_val := 0

7. ELSE ret_val := -1

Fig. 7. A simple page table manipulating program.

{|vars ∧∗ in-pt page-addr ∧∗ frame-list (f ·fs) ∧∗ pt-alloc page-addr ∧∗ ret-valv 7→ −|}
program page-addr

{|vars ∧∗ in-pt page-addr ∧∗ frame-list fs ∧∗ VPtr f 7→ − ∧∗ ret-valv 7→ 0 ∧∗ page-mapped page-addr|}

where:

vars ≡ ptablev 7→ pt ∧∗ framev 7→ − ∧∗ frame-tablev 7→ frame-table ∧∗ ftev 7→ −
in-pt page-addr (h, r) ≡ ((VPtr pt + a2p page-addr) 7→v (r + a2p page-addr)) (h, r)
pt-alloc page-addr ≡ λ(h, r). ((r + a2p page-addr) 7→ −) (h, r)
frame-list xs ≡ list xs ft-free-listv (fte-property frame-table)
list [] h P ≡ h 7→ 0
list (x ·xs) h P ≡ λs. x 6= 0 ∧ (h 7→ x ∧∗ list xs (VPtr x ) P ∧∗ P x ) s
fte-property start ptr ≡ entire-frame (PPtr (f2a (ptr − start))) 7→ −
entire-frame p ≡ {p..PPtr (pptr-val p + 0x0FFF )}

The functions a2p and f2a convert addresses to page numbers and frame
numbers to addresses by respectively dividing and multiplying by 4096.

Since the language in this paper is purely heap based, we use varv 7→ var to
denote that a variable var has a specific value and to represent var in Fig. 7. We
assume that the page table is accessible from ptable, and the frame table lies at
frame-table. Further, we have a non-empty free list starting at first-free, where
each address in the list indicates the presence of a frame. Finally, we require that
the page table entry that is used to resolve a lookup of page-addr is allocated,
and accessible from our address space. We additionally require that page-addr is
aligned to the page size. As a result of executing the program, the free frame list
becomes shorter and the page at page-addr is fully accessible. The latter is:

page-mapped vp ≡ entire-page vp 7→ − ∧∗ consume-slices vp (U − entire-page vp)
consume-slice vp slc ≡ λ(h, r). dom h = ptable-trace (h-view h slc) r vp × {slc}
consume-slices vp S ≡ fold op ∧∗ (consume-slice vp) � S
entire-page vp ≡ {vp..VPtr (vptr-val vp + 0x0FFF )}

Our separation logic statements all work on heaps of a precise size. Using up
the entire page table entry in our precondition means we must likewise use it all
in the postcondition. A page table entry maps 4096 addresses, but is made up of
more slices. Stating that those addresses are mapped does not consume all the
slices. The difference in heap size is made up by consume-slices.

The actual mapping-in step from line 5 of our program performs a write to
the page table at pt + a2p page-addr. In addition to our assignment rule, we
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have shown another property that allows us to to conclude from the post-state
of line 5 that the page at page-addr is now completely mapped:

entire-frame (PPtr (f2 frame)) → − ∧∗ pt-map page-addr frame
b−→c page-mapped page-addr

pt-map page-addr frame ≡
λ(h, r). (PPtr (pptr-val r + a2p page-addr) 7→ (f2a frame OR 1)) (h, r)

This rule is the only place in the case study where we had to unfold page table
definitions and reason directly about the encoding. All other reasoning used
Separation Logic rules only.

In order to check successful interaction with the newly mapped page, we
added an extra segment to our program.

*page addr := 0xFF;

*(page addr + 3) := *page addr + 2

If executed on a state with offsets 0 and 3 in the page mapped and allocated:
{|page-addr 7→ − ∧∗ (page-addr + 3) 7→ −|}

it results in those offsets set to 0xFF and 0x101:
{|page-addr 7→ 0xFF ∧∗ (page-addr + 3) 7→ 0x101 |}

These two offsets are part of the page at page-addr; the program fragment does
not change anything else. As we can rewrite

page-mapped p = p 7→ − ∧∗ (p + 3) 7→ − ∧∗ page-mapped {p, p + 3} p

we can invoke the frame rule and include the rest of the state.
Our case study shows that our logic allows abstract reasoning, even in the

presence of page table manipulation. It constitutes approximately 1500 lines of
proof script, on top of a 4500 line framework. Many of those 1500 lines deal with
setting up and dealing with a deep embedding.

7 Related work

The primary focus of this work is enhancement of Separation Logic, originally
conceived by O’Hearn, Reynolds et al. [8,14]. Separation logic has previously
been formalised in mechanised theorem proving systems [17]. We enhance these
models with the ability to reason about properties on virtual memory.

Previous work in OS kernel verification has involved verifying the virtual
memory subsystem [9,4,7]. Reasoning about programs running under virtual
memory, however, especially the operating systems which control it, remains
mostly unexplored. The challenges of reasoning about virtual memory are explored
in the development of the Robin micro-hypervisor [15]. Like our work, the
developers of Robin aim to use a single semantics to describe all forms of memory
access which simplifies significantly in the well-behaved case. They focus on
reasoning about “plain memory” in which no virtual aliasing occurs and split
it into read-only and read-write regions, to permit reading the page table while
in plain memory. They do not use Separation Logic notation. Our work is more
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abstract. We do not explicitly define “plain memory”. Rather the concept emerges
from the requirements and state.

As mentioned previously, Alkassar et al. [1] have recently proved the correct-
ness of a kernel page fault handler. As in our setting, they use a single level page
table and prove that the page fault handler establishes the illusion to the user
of a plain memory abstraction, swapping in pages from disk as required. The
proof establishes simulation between those two abstraction layers, with the full
complexity of the page table encoding visible at the lower level for the whole
verification. The work presented in this paper focuses on a logic for reasoning
about virtual memory instead. The aim is to make verifications such as the above
easier and more productive.

Tuch et al. demonstrated the extension of Separation Logic to reasoning
about C programs involving pointer manipulation [16]. Presently, our work uses
a simplified machine model with only one type. We believe our framework is
orthogonal and can be instantiated readily to the C model.

8 Conclusion and Future Work

We have presented an extension of Separation Logic which allows reasoning about
virtual memory and processes running within. The logic fully supports the frame
rule as well as the other Separation Logic proof rules and allows for a convenient
representation of predicates on memory at three levels: the virtual map, the
physical heap and the virtual address space. We have presented a small case
study that demonstrates the applicability of the logic to OS level page table code
as well as client code using the page table mechanism.

For analysing and presenting the logic in this paper we chose a simplified
machine and page table implementation. The logic does not depend on the
implementation of either. Although our framework does not presently take access
rights into account, it can be easily extended to encompass them.

We have significantly extended our previous work on virtual memory and
have managed to fully hide the complexity of virtual memory reasoning for code
that does not directly modify the page table. We also have shown that reasonably
high-level reasoning is still possible for code that does. The concepts in the logic
are close to the mental model kernel programmers have of virtual memory.

The next steps are to fully instantiate this model to the C programming
language and apply it to the verification of the seL4 microkernel.
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