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Abstract. It is a great verification challenge to prove properties of complete computer systems on the
source code level. The L4.verified project achieved a major step towards this goal by mechanising a proof
of functional correctness of the seL4 kernel. They expressed correctness in terms of data refinement with a
coarse-grained specification of the kernel’s execution environment.

In this paper, we strengthen the original correctness theorem in two ways. First, we convert the previ-
ous abstraction relations into projection functions from concrete to abstract states. Second, we revisit the
specification of the kernel’s execution environment: we introduce the notion of virtual memory based on
the kernel data structures, we distinguish individual user programs that run on top of the kernel and we
restrict the memory access of each of these programs to its virtual memory. Through our work, properties
like the separation of user programs gain meaning. This paves the way for proving security properties like
non-interference of user programs. Furthermore, our extension of L4.verified’s proof facilitates the verification
of properties about complete software systems based on the seL4 kernel.

Besides the seL4-specific results, we report on our work from an engineering perspective to exemplify
general challenges that similar projects are likely to encounter. Moreover, we point out the advantages of
using projection functions in L4.verified’s verification approach and for stepwise refinement in general.
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1. Introduction

Computer systems are omnipresent and as they become increasingly complex, traditional means of qual-
ity assurance like testing are pushed to their limits. As an alternative, verification provides the means to
establish rigorous system guarantees. Yet it remains a grand challenge to formally prove properties about
complete computer systems on the source code level. Fortunately, the typical architecture of computer sys-
tems facilitates the division of the overall verification task into more managable components. Most systems
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feature an operating system kernel, which is responsible for resource management and the separation of dif-
ferent software components. The kernel runs in a privileged mode of the hardware, which allows the kernel
to configure a hardware mechanism for the separation. All other software components run in an unprivileged
mode, where separation is enforced but cannot be reconfigured. With this architecture, the correctness of
the computer system hinges on kernel correctness because (only) the kernel has complete control over the
system and thus a kernel bug may affect the entire system.

To this end, the L4.verified project [KEH+09] produced a formal, machine-checked proof of functional
correctness for the seL4 kernel. The kernel comprises about 8,700 lines of C code and its correctness proof
required an effort of about 11 person-years. This achievement is a major step towards verified computer
systems. Though orders of mangitude smaller than commodity kernels, seL4 still features the essential
mechanisms for the implementation of a general-purpose operating system. The straightforward direction
for follow-up research is thus constructing provably secure systems based on seL4. Andronick et al. [AGE10]
propose an overall verification approach for such a system, pointing out the natural fit of a componentised
software architecture that separates trusted (and verified) components from untrusted ones. This approach
hinges on proven non-interference between these components [MMB+12,MMB+13].

We contribute to this vision of formally proven security by strengthening the correctness statement of
seL4. Our contribution is threefold:

1. We exploit the full potential of the auxiliary lemmas that support the original statement of functional
correctness. This result alleviates all further proofs building on seL4’s correctness.

2. We amend the modelled execution environment of the kernel with the hardware mechanism for the
separation of individual programs running in unprivileged mode. We call such an individual program a
process (we further refine this notion in Section 2.1). Separating processes is an important criterion for
kernel correctness, which is related to the formal notion of non-interference. In distinguishing individual
processes, we establish an essential prerequisite for the non-interference proof.

3. We introduce a customisable model of processes. Thereby, we facilitate proofs about a componentised
system and aim to reduce the effort for proving whole-system guarantees.

In detail, our first result improves the original proof architecture. The L4.verified project phrased func-
tional correctness as a data refinement from an abstract kernel specification down to a representation of the
C code. In other words, the correctness statement relates state machines that differ in the representation of
the kernel data structures. To compare the state representations at different levels of abstraction, relevant
information is projected out into a common representation, the so-called observable state. We extend this
observable state to comprise the whole abstract kernel state such that the projection from an abstract kernel
state into the observable state becomes the identity function. L4.verified prepared the grounds for this result
through its notion of correspondence and a plethora of auxiliary lemmas founded on this notion. We describe
L4.verified’s proof techniques in Section 2.2 and return to our extension of the observable state in Section 3.

Our second and main result focusses on distinguishing individual processes. Data refinement is usually
concerned with the behaviour of a programming module in the context of a larger program. For a kernel,
this context mainly comprises the processes. The original refinement centered around the manipulation of
kernel data structures at different layers of abstraction. The kernel’s execution environment, in contrast,
was initially of less concern and was consequently overapproximated. L4.verified collectively regarded all
software running in unprivileged mode as a single entity, referring to it as user code, in contrast to the
kernel. They overapproximated its behaviour by permitting arbitrary changes of the current register file and
of all memory that the kernel has assigned to user code. In practice however, individual processes operate
on virtual memory, which is typically a small fraction of the collective user-accessible memory.

In this paper, we define a notion of virtual memory for the seL4 kernel and distinguish individual processes.
Conceptually, virtual memory is a partial map from so-called virtual memory addresses to pairs of physical
memory addresses and corresponding access permissions. It is this additional layer of indirection that allows
for the hardware-supported separation of several processes running on top of the same kernel. In Section 4.1,
we define an abstract memory-management unit (MMU), i. e. functions that project virtual memory out of
the kernel data structures. These data structures closely model the memory that the actual hardware MMU
accesses when translating a virtual into a physical address. Based on the abstract MMU, we then specify
the transitions of the current process in Section 4.2.

Note that we have not only refined the specification of user transitions but actually strengthened the
correctness statement: where previously the set of user-accessible memory locations was determined based
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Fig. 1. Refinement steps in the L4.verified project

on kernel-internal accounting, we now base this decision on virtual memory, which is closer to the actual
hardware. As a consequence, the original data refinement proof breaks. We have reestablished the proof by
showing that any process-accessible virtual memory maps to memory regions that the kernel has assigned
to user code. This proof is the subject of Sections 4.3–4.5.

Our third result is small but nonetheless valuable. We have added a parameter user -op to user transitions
(cf. Section 4.1). The parameter is a function taking information about the currently running process—
including its virtual memory—and computing the set of possible next process states. The purpose of this
parameter is to customise user transitions separately from the actual kernel refinement. For kernel refine-
ment, we all-quantify over this parameter because the kernel should function independently from the nature
of the individual processes. Subsequently, this parameter can be instantiated with refined models of user
transitions: a coarse-grained overapproximation summarising all possible behaviour or a precise, low-level
model capturing the exact hardware instruction set. With this approach, the abstraction layer for each pro-
cess can be chosen separately. For instance, trusted processes could be modelled precisely while untrusted
processes could be specified as behaving largely non-deterministically [Bil12].

Apart from the immediate results for seL4, this paper makes two more general contributions. First, it
takes an engineering perspective on operating system verification—thus reporting on technical problems that
similar projects in the same application domain will encounter. The most challenging—and most domain-
specific—proofs regard global kernel invariants. Specifically, we exemplify some problems we encountered
when discussing Lemma 4 as well as in Sections 4.3 and 4.4. Second, our extension of the observable state
amends L4.verified’s original proof architecture when proving invariants in stepwise refinement. Its advan-
tages are detailed in Section 4.4.

In the next section, we recapitulate the context of our work: Section 2 acquaints us with the seL4 kernel,
L4.verified’s proof techniques as well as the modelling of the kernel’s states and its execution environment.

2. A Primer on L4.verified and seL4

The L4.verified project proved functional correctness for the seL4 kernel by stepwise refinement using the
interactive theorem prover Isabelle/HOL [KEH+09]. Fig. 1 depicts this overall approach, which we continue
to follow in our work. Most notably, the box labelled “Isabelle/HOL” at the left comprises all formal artefacts:
the different layers of abstraction and the refinement steps relating them. The abstract specification at the top
is an operational model, capturing the system behaviour including the kernel interface without prescribing
a particular implementation. The low-level specification below is auto-generated from a Haskell prototype.
This prototype features the same data structure and implementation details as the high-performance C
implementation of seL4. Cock et al. [CKS08] describe the refinement proof RA between the upper two layers.
Finally, the bottom layer represents the C implementation in the language Simpl [Sch05,Sch06]. Note that
only the translation from C to Simpl is critical for correctness while the translation from Haskell is not. The
refinement proof RC down to the Simpl representation is described by Winwood et al. [WKS+09].

In the remainder of this section, we first sketch the high-level design principles of seL4, then we present
the underlying refinement calculus and finally, we discuss the models of the kernel’s state space and its
execution environment.
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2.1. The seL4 Kernel

The seL4 kernel belongs to the L4 family of microkernels. This family shares a design principle of minimality
[Lie95]: the kernel is minimised to provide only the essential mechanisms for implementing a general-purpose
operating system as unprivileged processes. This design allows different operating systems, implementing
various policies, to co-exist at runtime on the same microkernel.

The security model of seL4 is based on capabilities. A capability is a token of authority combining an object
reference with associated access rights. Capabilities can be communicated but cannot be forged. In seL4,
authority over all kernel objects is conferred by capabilities. Processes obtain kernel services by invoking
capabilities and the kernel accounts, by capabilities to memory regions, for all memory they directly or
indirectly use. A process creates objects by calling the kernel with a capability to a memory region that the
objects should live in. If space permits, the kernel creates the objects together with capabilities to them and
records the new capabilities as descendants of the memory-region capability. To reclaim a region of memory,
a process calls the kernel with the capability to that region, requesting it to destroy all objects in that region.

So far, we have defined a process as “a program running in unprivileged mode”. In fact, this notion is a
combination of different seL4 concepts. More precisely, a process is characterised by three entities: at least
one thread, which is an abstraction for (execution time on) a processor, a virtual address space, which is a
set of virtual addresses mappable to physical addresses, and a capability space, which is a set of capability
entries mappable to pairs of object references and access rights. Thus, the information about a process is
spread over several kernel objects: a thread object carries the current content of the processor registers, a
page directory characterises a virtual address space and a capability node describes a capability space. While
all information about a thread is contained in a single object, page directories and capability nodes can be
the root of an object tree. We expand on virtual address spaces in Section 4.1. For the purpose of this paper,
we regard capability nodes as simple tables.

The seL4 kernel supports different hardware architectures. When we describe architecture details in this
paper, we generally refer to the ARMv6 architecture.

2.2. Data Refinement in L4.verified

The L4.verified proof used a formalisation of data refinement [CKS08] that largely follows de Roever and
Engelhardt [dRE98]. In essence, refinement is a binary relation w between state machines. The underlying
idea is a design process creating correct software by construction. The process starts with a formal speci-
fication Ma and gradually transforms it into an executable Mc by adding more and more implementation
details. Data refinement, in particular, is concerned with increasing the level of detail in data structures.
Intuitively, the refinement relation Mc w Ma states that Mc is a correct implementation of Ma. In other
words, the behaviour of Ma should, in some sense, contain the behaviour of Mc. We require auxiliary notions
to turn this intuition into a formal definition.

In a relational semantics, the behaviour of a deterministic program is completely described by pairs of
initial and final states. Similarly, the behaviour of a state machine with inputs can be determined by triples
comprising an initial state, an input sequence, and a final state. For non-deterministic behaviour, we can
simply use a set of final states. These observations lead us to the formal definition of refinement, assuming
a function execution that computes the set of final states for a state machine, an initial state and an input
sequence:

Definition 1 (Refinement). A state machine Mc refines (or implements) another state machine Ma, if for
any initial state σ and finite input sequence seq, the set of final states of Ma is a superset of those of Mc:

Mc wMa ≡ ∀σ seq . execution Mc σ seq ⊆ execution Ma σ seq

Note that this definition implicitly assumes equal state spaces, while it is the very purpose of data
refinement to relate state machines featuring different state spaces. Data refinement solves this problem by
requiring conversions into a common representation, the so-called observable state.

Typically, the overall design process involves multiple transformation steps, where each step focusses on
only one programming module in the context of a larger, surrounding computation. The state is partitioned
into data belonging to that module and data belonging to the surrounding computation. Only the repre-
sentation of data belonging to the module changes in this transformation step. Module operations work on
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module data, and the surrounding computation works on module-external data or accesses module data via
a well-defined interface of module operations. In this setting, the name observable state becomes clearer:
it should contain all information that the surrounding computation can observe—directly or through the
interface operations. Note that, in practice, an implementation might retain some information, for instance
left over from a deleted object, simply for performance reasons. Such left-over information is not observable.
To accomodate the observable state, we refine the notion state machine in the context of data refinement:

Definition 2 (State Machine). Formally, a state machineM is a triple of functions; we use the projections
Init, Step and Fin to access its components. Component Init M converts an observable state into a set of
internal states, Step M takes an input event as argument and returns the corresponding binary relation of
internal states, and Fin M converts an internal state into an observable state.

Now the definition of the execution function for Def. 1 becomes apparent: The execution function converts
the initial observable state σ with Init M into a set of internal states. Then, it reduces the input sequence
seq by recursively applying the transition function Step M with an input from seq to the internal states.
And finally, it element-wise converts the final states with Fin M into observable states.

Refinement is commonly proven by forward simulation (also known as L-simulation). Fig. 2 illustrates
the formal definition below and indicates why refinement is a consequence of forward simulation. In essence,
the figure shows two different ways of computing the final observable state σfin at the right hand side from
the initial observable state σinit at the left. At the top, the computation involves states and transitions of
an abstract state machine Ma and at the bottom those of a concrete machine Mc. Both should result in the
same state σfin.

Definition 3 (Forward simulation). As depicted in Fig. 2, forward simulation assumes a relation SR
between the internal states of two state machines Ma,Mc and comprises three proof obligations:

a) For each observable state σ and each concrete internal state sc in the set of initial states Init Mc σ, there
exists an abstract internal state sa in the set of initial states Init Ma σ such that the pair (sa, sc) is
contained in the state relation SR.

b) The state relation SR must be maintained under parallel transitions of both state machines with the
same input i; in other words, the composition of state relation and concrete transition relation must be
a subset of the composition of the abstract transition relation and the state relation.

c) Two correlated internal states (sa, sc) ∈ SR must convert into the same final, observable state.

Formally:

fw-sim Ma Mc SR ≡ (∀σ. ∀sc ∈ Init Mc σ. ∃sa ∈ Init Ma σ. (sa, sc) ∈ SR) ∧
(∀i. SR ◦ Step Mc i ⊆ Step Ma i ◦ SR) ∧
(∀sa sc. (sa, sc) ∈ SR −→ Fin Mc sc = Fin Ma sa)

where R ◦ S is the composition of the relations R and S.

Proof obligation b) usually requires the most proof effort. In L4.verified, Step Ma and Step Mc consist
of smaller steps expressed in non-deterministic state monads with exceptions and failure. State monads
introduce side effects to a purely functional model of computation. The type of state monads is typically
parametric over a state space S and a result type R. The simplest case is a deterministic state monad mdet,
which we can view as a function from a state to a computation result and a new state: mdet ∈ S → (R×S).
Non-determinism introduces more complexity: there might be several pairs of a result and a new state or none
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(divergence, i. e. failure). To aid compositionality, Cock at al. [CKS08] represent failure with an additional
flag. Their formalisation of monads takes a state s ∈ S and returns either a) the pair of the empty set and
the raised failure flag: (∅,True), or b) a pair of a non-empty set (with pairs of return values and consecutive
states) as well as False for non-failure. In other words, they represent non-deterministic state monads as
functions of type S → (R× S) set× bool.

The bind operator allows for sequential composition of state monads. More specifically, bindm f composes
a new state monad from the state monad m and the function f that takes the result from m and returns
another monad. To aid readability, we write do r ← m; f r od. By repeated composition of state monads,
a monad mbig can be constructed that essentially represents a big step Step M . Disregarding the monad’s
results, mbig can easily be converted into the relational form required for Step M , i. e. Step M essentially
becomes {(s, s′). ∃r. (r, s′) ∈ fst (mbig s)} (where fst denotes the first component of a pair).

The L4.verified project translated the forward simulation problem to state monads and then broke it
down into smaller steps to address scalability concerns (see also Fig. 3 for an illustration):

Definition 4 (Correspondence). Assuming a state relation SR and a return relation RR, we say that
the abstract state monad ma and the concrete state monad mc correspond under the preconditions Pa and
Pc, respectively, if for all states (sa, sc) ∈ SR, the preconditions Pa sa and Pc sc imply the following two
conditions:

a) if the monad mc fails with sc, so does ma with sa.

b) for each pair (rc, s
′
c) in the set of return values and consecutive states of mc sc, there is a pair (ra, s

′
a)

in the set of return values and consecutive states of ma sa, such that the states and return values are
related, i. e. (s′a, s

′
c) ∈ SR and (ra, rc) ∈ RR.

The predicate corres SR RR Pa Pc ma mc captures this notion formally.

In practice, statements of correspondence involve two different kinds of preconditions: global invariants,
which are maintained by the respective big steps mbig

a and mbig
c , and variants, which reflect assumptions on

previous computation along the control flow path. The smaller, monadic steps that constitute a big step,
frequently break and later reestablish global invariants, possibly relying on previously established variants.

Conceptually, the overall approach consists of establishing individual corres statements and composing
them into larger ones until eventually a statement of correspondence is derived that bears the global invariants
Ia and Ic as preconditions and relates two state monads mbig

a and mbig
c representing the big steps:

corres SR {(ra, rc). True} Ia Ic mbig
a mbig

c

The remaining link to refinement is using this corres statement to establish the second proof obligation of
forward simulation. Recall, however, that the above definition of forward simulation does not feature a notion
of global invariants as they appear in the above corres statement. In fact, the assumed global invariants Ia
and Ic and the state relation SR established in correspondence proofs can be combined to form the stronger
state relation SR′ = SR ∩ {(sa, sc). Ia sa ∧ Ic sc}. This leads to the proof obligation that the global
invariants are preserved by mbig

a and mbig
c , respectively.

In L4.verified, Hoare triples were used to express facts about computations of state monads. The Hoare
triple {|λs. P s|} m {|λr s′. Q r s′|} states that if the precondition P holds for an initial state s, for each pair
(r, s′) in the first component of m s, the postcondition Q r s′ holds. We use λ-notation to emphasize that the
precondition P is a unary predicate about the initial state s, and the postcondition Q is a binary predicate
about m’s return value r and the final state s′.

Below, we illustrate the general approach using the example of user transitions. These transitions capture
the behaviour of software running in unprivileged mode. Each layer of abstraction features its own version:
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user-transA and user-transH describe user behaviour on the two specification layers and user-transC on the
Simpl layer. The vast majority of the verification effort in the L4.verified project was split between two
kinds of lemmas: correspondence, on the one hand, and invariant preservation, on the other hand. The
correspondence lemmas relate monads of adjacent layers; we show the according statement between the
specification layers as an example.

Lemma 1. The user transitions at the two specification layers, user-transA and user-transH, respectively,
correspond w. r. t. the state relation SRA and equality of return values:

corres SRA {(ra, rc). ra = rc}
(λs. IA s ∧ ut-preA s) (λs. IH s ∧ ut-preH s)
(user-transA tc) (user-transH tc)

where IA and IH are the global invariants at the respective layers and ut-preA and ut-preH are variants about
the scheduler and the current thread, which hold whenever the system performs user transitions.

Moreover, L4.verified showed invariant preservation for user transitions at each abstraction layer. As an
example, we present the corresponding lemma for the abstract specification.

Lemma 2. User transitions at the abstract specification layer maintain the invariants:

{|λs. IA s ∧ ut-preA s|} user-transA tc {|λr s. IA s|}

Given the highly non-deterministic nature of the original user transitions, the proofs for the above lemmas
are simple. We return to user transitions in Section 4. In the two remaining subsections, we introduce the
kernel’s state space at different levels of abstraction and the model of the kernel’s execution environment.

2.3. Modelling Kernel State

Essentially, seL4 is a C program. The code is represented in the language Simpl, where a program state
is a tuple2 combining the values of all program variables; C types are mapped to Isabelle/HOL types. To
this end, Tuch [TK05,Tuc08] developed a heap model that accurately captures the low-level semantics of C
pointer types, including pointer arithmetic, pointers into substructures and unions. In particular, the heap
is a state component consisting of two functions, which assign an 8-bit value and a C type, respectively, to
each 32-bit address. Furthermore, the partial function cliftt h ptr dereferences pointer ptr on heap h for C
type t. If dereferencing is not type safe, the function returns the value None. For example, the kernel uses a
specific type umt to access user memory. Hence, we can use cliftumt on Simpl states to extract the contents
of all memory that the kernel has assigned to user code. Notably, this approach allows us to interpret the
same heap at the same address with many different types.

In general, the two specification layers MA and MH follow the same state layout and represent the
state as a tuple of variable values. Only the representation of the kernel heap changes. In particular, the
heap is split into two separate components: on the one hand, there is an abstract kernel heap for kernel
objects like page tables or thread control structures; on the other hand, there is the physical memory of
the underlying machine. The abstract heap h is a partial function from 32-bit addresses to values of a more
abstract, fixed type of kernel objects. A page table on the abstract specification, for instance, is a function
from an 8-bit index to page table entries (PTEs). The kernel object representing an empty page table is
PageTable (λi. InvalidPTE). Although kernel objects generally occupy more than 8 bits in C, the whole object
value is associated with the starting address. The contents of the physical memory only matter if assigned
to user code. This assignment is marked by special kernel objects (DataPage size) in the abstract heap.

2.4. Modelling the Execution Environment of seL4

The seL4 kernel is responsible for managing resources on behalf of user code, which naturally means that
user code and kernel share state. Thus, the state machines for data refinement must include state changes

2 Strictly speaking, program states are Isabelle/HOL records—special types that are internally represented by tuples and
feature read and update functions for each of their components.
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from the execution environment of the kernel. Moreover, hardware events like device interrupts can disrupt
the user code’s normal control flow. To capture the generic data structures and control flow of the kernel’s
environment, the L4.verified project defined a single system automaton, serving as a framework for state
machines at all abstraction layers with parameters accounting for differences in abstraction.

Definition 5 (System Automaton). The system automaton is defined by its state space and its transition
relation.

The state space is a set of triples, parametrized over the underlying kernel state K. The first component
s of each triple is a pair (r, k) with the register context r of the currently running thread and the kernel
state k ∈ K; The second component represents the machine control mode, one of UserMode, KernelMode
or IdleMode. The third component is an optional hardware event to be processed, which can be a device
interrupt (Interrupt), system call, or fault. We write None if there is no event and Some e for an event e to
be processed.

The transition relation takes two parameters: user -trans describes a local computation of user code
and kernel -call describes a computation from entering kernel mode until leaving it again. More specifically,
user -trans is a function that takes a register context and yields a kernel monad returning a register context.
The kernel transition kernel -call is a function from an event to a set of triples, each consisting of a starting
state, a machine mode, and a final state.

The transition relation distinguishes four kinds of transitions t between the machine control modes (cf.
Fig. 4): a) a KernelTransition performs a computation of the kernel and afterwards returns control to a user
or the idle thread, b) a UserTransition remains in user mode, c) a UserEventTransition traps from user mode
into the kernel, and d) an IdleEventTransition traps from the idle mode into the kernel because of a device
interrupt.

sys-trans-rel user -trans kernel -call t ≡
case t of KernelTransition⇒ {((s,KernelMode,Some e), (s′,m,None)). (s,m, s′) ∈ kernel -call e}
| UserTransition⇒ {((s,UserMode,None), (s′,UserMode,None)). s′ ∈ fst (split user -trans s)}
| UserEventTransition⇒ {((s,UserMode,None), (s,KernelMode,Some e)). True}
| IdleEventTransition⇒ {((s, IdleMode,None), (s,KernelMode,Some Interrupt)). True}

where split takes a function f and a pair (r, k) and returns the function application f r k.

Instantiated with the respective kernel state space and with the corresponding user and kernel transitions,
this automaton defines the internal states as well as the transition relations Step M of the state machines
MA, MH, and MC.

The original work in the L4.verified project was mostly concerned with showing forward simulation for
the different representations of kernel -call , while computation of user code (user -trans) was originally of
less concern. Our focus is the opposite: in Section 4, we revisit the different instantiations of the user -trans
parameter to introduce virtual memory and distinguish individually running processes. In contrast, we do
not alter the modelling of kernel transitions kernel -call—although we have proven new properties about
these transitions.

The next section is concerned with the projections Fin M from the internal to the observable state. This
effort simplifies some of our proofs about the changed user transitions, as we discuss in Sections 4.4 and 4.5.
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3. Extending the Observable State

In this section, we improve L4.verified’s general proof architecture (cf. Section 2.2) such that our data
refinement statement reflects the full strength of the auxiliary correspondence lemmas (cf. Def. 4) that
L4.verified proved to support their original refinement statement.

Recall that the strength of a data refinement statement hinges on the size of the observable state.
When data refinement correlates two state machines, the Fin-projections can filter out parts of the states at
both abstraction layers. Although the name observable state indicates that it should contain all information
that the surrounding computation can directly access or acquire by interacting with the module under
refinement, the refinement calculus does not require this to be the case—taken to the extreme, the space of
observable states could just contain a single element, which would render the according refinement statement
meaningless. It is the very nature of refinement that properties can be shown at the abstract layer (where
the proof is typically simpler) and then transferred down to the concrete layer. This transfer only works if
the property of interest can be expressed in terms of the observable state.

The original state machines MA, MH and MC in the initial L4.verified project featured Fin-projections
such that the common, observable state comprised only those parts of the kernel state that were encoded
almost identically at all three layers of abstraction. In short, these parts comprised all directly user-visible
information—like processor registers and the memory content that the kernel assigned to user code—but
almost no information about kernel-managed data structures. This is not enough to determine the future
behaviour of the system.

Among many other things, the behaviour of kernel and processes depends on kernel objects like page
directories (mapping virtual to physical memory), page objects (accounting for physical memory assigned to
user code) and capabilities (unforgeable references to kernel objects). Moreover, many invariants shown at
the abstract layer MA are concerned with kernel objects. We would like to rely on refinement to infer that
equivalent invariants hold at the lower layersMH andMC. Section 4 presents an example for this approach:
after introducing virtual memory mappings to user transitions, we require a complex state invariant about
the respective kernel objects on the low-level specification MH. Once proven for the abstract specification,
we would like to transfer it down to MH using refinement. This is only possible when the observable state
comprises kernel objects.

At the same time, it is the very purpose of refinement to discard irrelevant information. In the implemen-
tation, such information might be kept for performance reasons. A typical example is object deletion in the
kernel: when the C implementation deletes an object, it simply marks the memory as free but does not reset
the memory content. Changing the contents is deferred to when a new object is created. In the meantime,
the content of this memory region is irrelevant. The Fin-projections are intended to discard precisely this
kind of information.

Concluding, performance is a good reason to keep information at the lower abstraction layers MC and
MH although it has no influence on the future behaviour of the system. However, it should disappear in
the abstract specification MA to improve clarity. Following that argument, states of MA should comprise
precisely the information relevant for system behaviour. This means, FinMA should be the identity function.

The remainder of this section deals with finding two projections, ΠC from Simpl states to low-level
specification states and ΠH from low-level specification states to abstract states, such that we can use them
to export the full abstract state as the observable state:

Definition 6. The state machine’s projections from internal states to the observable state are:

FinMA ≡ (λs. s)
FinMH≡ ΠH

FinMC ≡ ΠH ◦ΠC

where ◦ denotes function composition.

Our main concern is fitting ΠH and ΠC retroactively into the original proof architecture. As Section 2.2
describes, L4.verified originally expressed forward simulation between MA and MH with a state relation

SR′
A ≡ SRA ∩ {(sA, sH). IA sA ∧ IH sH}

composing a deliberately weak state relation SRA with state invariants IA and IH about the internal states
of the respective layers. Extending the observable state mainly affects the third proof obligation of forward
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simulation: for any abstract specification state sA and any low-level specification state sH correlated by SR′
A,

the observable states projected out by FinMH and FinMA should be equal:

∀(sA, sH) ∈ SR′
A. FinMH sH = FinMA sA

Or using Def. 6:

∀(sA, sH) ∈ SR′
A. ΠH sH = sA

Thus, the function ΠH should return the abstract state sA that is correlated to the low-level specification
state sH given as function argument. This implicitly assumes that SR′

A is injective (also called left-unique),
i. e. that there is at most one sA correlated with sH:

(sA, sH) ∈ SR′
A ∧ (s′A, sH) ∈ SR′

A −→ s′A = sA

Unfortunately, this assumption does not hold for the original SR′
A. To make SR′

A injective, we have to
strengthen the state invariants IA and IH. Once injective, we could theoretically define ΠH directly as the
function that takes a state sH and returns the unique abstract state sA such that the pair (sA, sH) is in
SR′

A. Isabelle/HOL provides the definite choice operator3 to state this definition formally but requires us to
show the wellformedness of this definition (i. e. the uniqueness of sA for any given sH) each time we use the
operator. Practically, spelling out an explicit definition for ΠH is easier to use and has the additional benefit
of documenting the correlation between low-level specification states sH and abstract states sA. Hence, we
manually defined the state projection function and then proved the following lemma:

Lemma 3 (Correctness of Projection ΠH). If an abstract specification state sA and a low-level specifi-
cation state sH are correlated and the respective invariants hold, the projection ΠH of sH yields sA:

IA sA ∧ IH sH ∧ (sA, sH) ∈ SRA −→ ΠH sH = sA

The same holds respectively for the projection ΠC and the state machines MH and MC: L4.verified
originally expressed forward simulation between the two state machines with a composed state relation
SRC ∩{(sH, sC). IH sH ∧ IC sC}. Again, this relation was not injective and we have strengthened the original
state invariant IH to be able to define ΠC such that the following lemma becomes true:

Lemma 4 (Correctness of Projection ΠC). If a low-level specification state sH and an implementation
state sC are correlated and invariant IH holds for sH, the projection ΠC of sC yields sH:

IH sH ∧ (sH, sC) ∈ SRC −→ ΠC sC = sH

Although conceptually simple, the formal definitions of ΠH and ΠC as well as the proofs of correctness
w. r. t. the state relations are technically quite involved—and certainly specific to the seL4 kernel. Hence, we
do not present details but summarise typical problems at a more general level that are likely to appear in
similar contexts. In particular, we describe the following three problems in more detail:

• missing information at lower abstraction layers,

• multiple representations of the same semantic value, and

• differences in the granularity of heap entries.

Finally, we summarise our insights at the end of this section.

Missing information at lower abstraction layers. Originally, the states of the abstract specification
MA contained additional information that we could not infer from the states at the lower abstraction layers
MH and MC. This additional information stemmed from two sources: a) irrelevant information, which has
been left over after the removal of a kernel object, and b) static configuration data, which is only used to
state some invariants at the abstract layer.

The irrelevant information is certainly dispensable, so we have changed the abstract specification to
erase the information together with the kernel object. The configuration data mentioned above partitions
the virtual address space into regions reserved for special purposes, on the one hand, and memory regions
available to the user, on the other hand. The abstract invariant IA refers to this data and, among other

3 The definite choice operator The is axiomatised as The (λx. x = a) ≡ a.
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Fig. 5. An example kernel object with its heap entries at different abstraction layers and their correlation

things, states that the kernel indeed complies with this partitioning. Thus, the data is necessary to transfer
the invariant IA down to the lower layers. Hence, we have amended the lower layers with it and strengthened
the state relations SRA and SRC accordingly.

Multiple representations of the same semantic value. A problem similar to the above is that the
data representation on the abstract layer occasionally uses wider types than on the more concrete layers,
resulting in multiple representations of the same semantic value. We illustrate this general problem by
a concrete example: the mappings from virtual to physical addresses are stored in page tables together
with access permissions for the mapped region of memory. Page tables are data structures shared between
processor and hardware MMU; hence, their data format is prescribed by the hardware architecture.

Consequently, the Simpl layer MC uses this data format, where access permissions are determined by
a combination of three bits. Not all combinations are meaningful and not all hardware-supported permis-
sions are used by the seL4 kernel. The low-level specification MH introduces its own data type and limits
permissions to only four values: VMNoAccess, VMKernelOnly, VMReadOnly and VMReadWrite. The abstract
specification MA, in contrast, reuses the same type for memory access permissions as for capability rights,
which contains more values than necessary for permissions. Namely, capability rights are any subset of
{Read,Write,Grant}. However, the Grant right is meaningless in the context of memory; moreover, the hard-
ware does not allow for mapping a region of memory as write-only (corresponding to {Write}).

Originally, the abstract specification had multiple representations for memory access permissions, where
meaningless rights in the set were disregarded (e. g. {Read,Grant}=̂{Read}). Naturally, the state relation SR′

A
cannot be injective in this case. Thus, we have changed the abstract specification to use one representation per
permission consistently. We have strengthened the abstract invariant IA to allow only these representations
and proved that the invariant holds.

Note that our problem mainly arises from a redundancy at the abstract specification layer: capability
rights and memory access permissions coincide. In other words, we could theoretically reconstruct the memory
access permissions from capability rights. In practice, this reconstruction is a complex operation and removing
the redundancy would invalidate a substantial fraction of the original refinement proof.

Differences in the granularity of heap entries. This problem is more specific to seL4, although other
capability-based systems are likely to have similar issues. Recall that as kernel, seL4 is responsible for resource
management: it creates, manipulates and eventually deletes kernel objects like page tables or communication
channels on behalf of user threads. Since kernel objects can be created and deleted during runtime, the kernel
stores the respective data structures at the kernel heap. User threads refer with capabilities to existing objects
(cf. Section 2.1). A layer of indirection protects capabilities against forgery: a capability just refers to a row
within a kernel-managed capability table, which itself contains a pointer to the kernel object.

With these prerequisites in place, we can now focus on the kernel models. At the implementation, many
kernel objects comprise a collection of equally typed data structures: a page table, for instance, comprises
256 page table entries. Thus the Simpl layer MC treats each of these small data structures as a separate
entry in the heap (cf. Section 2.3). For simplicity, the low-level specification MH preserves this granularity
of heap entries. The abstract specification MA, in contrast, combines all entries into one large entry in the
heap that corresponds with the user’s notion of a kernel object.

Fig. 5 shows heap entries of different granularity representing a single kernel object: at the lower layers
MC (left) and MH (center), the object consists of several heap entries o0C, . . . , o

n
C and o0H, . . . , o

n
H while at

the abstract specification layer MA (right), there is only a single heap entry oA for the whole kernel object.
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We see that capabilities only point to the first heap entry of each layer (o0C, o0H, oA) because from the user’s
perspective, there is only one kernel object. From the kernel’s perspective, however, pointers (illustrated to
the left) refer to the different heap entries belonging to this object. Braces and arrows between the abstraction
layers illustrate how the state relations SRC and SRA relate the heap entries at adjacent layers: while the
relation is one to one between oiC and oiH for all i, the collection of all heap entries o0H, . . . , o

n
H is related to

the one abstract heap entry oA. Dotted lines illustrate that heap addresses are equal at all three abstraction
layers; for instance, the pointer value for o0C is the same as for o0A.

Kernel objects are aligned to their size, i. e. the size of the kernel object divides the pointer value for
o0C. Thus, we can compute the pointer value for o0A from the one for any oiH by dividing it by the kernel
object’s size—assuming the latter is known. Unfortunately, some kernel objects can have different sizes;
namely, capability tables and memory pages. For kernel objects of variable size, the object size is stored in
the capability table entry. Recall that users can only refer to a kernel object by capabilities; consequently,
an object is useless unless a capability points to it. Thus, we could in theory reconstruct the object size from
the capabilities pointing to it. In practice, this approach poses two challenges: a) the relationship is rather
indirect and b) we would rely on complex invariants to correlate states.

The relationship is indirect because we need two stages to correlate kernel heaps at the two abstraction
layers: first, scanning through the kernel heap of MH to fetch all capability table entries and to reconstruct
the size for variable kernel objects, and second, comparing the objects of corresponding types and sizes in
the kernel heaps of MA and MH pairwise with each other.

More importantly, reconstructing the object sizes from capabilities would intertwine the state relation
SRA with two complex invariants: first, there is always at least one capability to each kernel object, and
second, capabilities always point to a valid kernel object. Although these properties are part of the overall,

abstract invariant IA, this invariant is only preserved by big steps mbig
A . For a short fraction of such a big

step, objects may outlive their capabilities. Thus, correlating intermediate states would become a challenge
if we were relying on capabilities to reconstruct object sizes.

We have circumvented the problems above by amending the lower layers with ghost state and code that
explicitly records the object sizes.

Conclusion. In this section, we have strengthened the top-level refinement statement by extending the
observable state to the entire abstract state. This is the strongest, achievable data refinement between an
abstract specification MA and a Simpl representation MC. In fact, Lemma 4 facilitates a data refinement
between a low-level specificationMH and a Simpl representationMC, where the entire low-level specification
state is observable: it discharges the third proof obligation of forward simulation, while the second proof
obligation is independent of the observable state (and already proven). The only remaining effort lies in the
definition of suitable Init M functions and discharging the first proof obligation of forward simulation.

Our effort has immensely profited from the earlier L4.verified project. The overall proof architecture
and an uncounted number of auxiliary lemmas have from the project’s start aimed at the strong top-level
statement that we have finally proven. Thus, we initially expected that reworking the abstract specification
and strengthening the state invariants would require a proof effort of only a few months. Ultimately, we
estimate our overall effort for the extension of the observable state with 7–8 person-months. Although
considerably higher than expected, this effort is still small compared to about 11 person-years that the
original refinement proof did cost. The prediction of the proof effort has been so difficult because of many
subtle interdependencies between the different predicates that contribute to the overall invariant. These
subtleties often emerge at only one place in an otherwise very large proof such that the process of discovering
a suitable invariant involves many iterations.

In principle, we could have reduced the required proof effort by defining FinMA as a lightweight projection
from abstract states to abstract states instead of the identity. This projection could eliminate information
from the abstract state that is missing in the lower layers and consistently choose one of multiple encodings
per semantic value. Thus, we could have circumvented the first two problems mentioned above (information
missing from lower layers and multiple representations of one semantic value).

We did not take this approach for several reasons. First, we estimate that these problems required at
most a forth of our total effort. Second, even if Fin MA is a lightweight projection, any projection comes
at the cost of an additional layer of indirection, which requires additional effort to formally establish that
properties shown at the abstract layer can be transferred down to the implementation layer. Third, the
stronger invariants and an unambiguous state encoding improve readability and clarity of the specification
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and simplify further proofs at the specification layer. Hence, we are confident that our additional effort for
identifying the abstract state with the observable state will eventually pay off.

With the extended observable state in place, we can now focus on our main contribution: basing user
transitions on virtual memory. The projection functions ΠH and ΠC will not only help us in redefining user
transitions in Section 4.2, but our revised proof architecture also alleviates necessary invariant proofs in
Section 4.4.

4. User Transitions with Virtual Memory

This section introduces a notion of virtual memory to seL4, thereby distinguishing different processes, and
thus remodelling L4.verified’s original user transitions. In Section 4.1, we elaborate on the definition of an
abstract MMU based on the kernel data structures. With the MMU in place, we can model user transitions
more precisely (Section 4.2) and thus strengthen the top-level refinement statement. We reestablish this
refinement statement by strengthening the invariants at both specification layers (Sections 4.3 and 4.4) and
adjusting the correspondence (Section 4.5) proofs accordingly.

4.1. Abstract Memory-Management Unit

Most processors facilitate the separation of individual processes with virtual memory: when executing as-
sembly instructions, the hardware MMU transparently translates virtual memory addresses into physical
addresses. The translation is directed by data structures stored in physical memory; the MMU finds a
pointer to them in a special register. This special register is protected, i. e. only the kernel can access it.
Hence, each process can have a different address space—a particular mapping from virtual to physical ad-
dresses. The seL4 kernel runs on the ARMv6 architecture, which features a MMU that supports two stages
of translation: the special register points into a page directory, a table that might itself contain pointers to
another table, the page table, which finally maps virtual to physical addresses.4

Like other resources, seL4 manages the mapping data structures of the hardware; i. e. it creates, ma-
nipulates and deletes page directories and page tables (cf. Section 2.3). Thus, there is no need for adding
state to our kernel models; we can simply project the virtual memory mappings out of the existing state,
which already models these hardware data structures. Given that we need a model of user transitions for
each abstraction layer, we require a notion of virtual memory mappings at each layer. We achieve this by
defining an MMU on an abstract specification state and use the projections ΠC and ΠH from Section 3 to
inherit equivalent definitions at the lower abstraction layers.

More specifically, we aim at functions virt-to-phys and vm-perms. Both take an abstract kernel state and
a virtual address. Provided there is a translation of this virtual address for the current thread, virt-to-phys
returns the corresponding physical address, and vm-perms returns the access permissions associated with the
virtual address. These functions provide a convenient interface for user transitions. Internally, both functions
perform the same lookup (in fact, their formal definitions utilise the same auxiliary functions) to provide
their respective functionality: at first, they find the respective page directory, and then, they look up the
mapping data structures just like the hardware does.

In the following, we first describe how both lookup stages work and then formally define the functions
virt-to-phys and vm-perms as the interface for user transitions.

Page directory search. Using Fig. 6, we explain how the page directory for the current thread is found
in the abstract specification. The figure depicts the relevant parts of an abstract kernel state; the names
of the kernel state variables are on the left and their structured values on the right. Three variables of
the kernel state are involved in a successful search: the address-space table asid-table, the current thread
pointer cur-thread and the abstract kernel heap kheap. At first, we dereference cur-thread using kheap to
find the thread object for the current thread. If there is a valid thread object in the kernel heap, we check
the respective entry for the page directory (called vtable) for a capability (cap) with some page directory
pointer pd and mapping data (p, i). The mapping data provides a pointer p into the asid-table, which itself

4 The seL4 kernel uses the ARMv6 coarse page table format with subpages disabled.
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might contain a pointer into the kernel heap. We dereference the latter in search for an address-space pool
(asid-pool). If the address-space pool is present, we use the i of the capability’s mapping data as index
into the pool. If the entry found in the pool is the same page directory pointer pd as the one stored in the
vtable-capability, then we return it as the pointer to the page directory of the current thread. If the search
fails in any of the above stages, we resort to the master page directory (master-pd), another kernel variable
pointing to a page directory with minimal, static mappings for kernel-only access. We formally capture this
search in the function get-mmu-info but omit its definition here.

The original model of seL4’s execution environment did not specify this search; we have now added it
to our new model. Technically, there is still a slight deviation from the hardware’s behaviour: on hardware,
the kernel searches for the page directory pointer only once at kernel exit and then activates it by storing it
in a special register; we, in contrast, defer the search to the time when we actually need the page directory.
As far as the C code is concerned, this difference is irrelevant because accessing the special register requires
assembly. Thus, we postpone the refinement of this aspect for translation validation of the compiled kernel
binary. Myreen and Sewell [SMK13] have achieved first results on this although their hardware model does
not yet include a MMU.

Mapping-data lookup. Fig. 7 illustrates how a 32-bit virtual address va is translated into a physical
address once the page directory is known. Again, the figure shows the names of the relevant variables of the
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abstract kernel state on the left and their structured values on the right. We assume a known pointer pd
into the kernel heap kheap, referring to a page directory. Then we use the highest thirteen bits of the virtual
address va [31..20] as an index into this page directory. A directory might contain three kinds of entries: invalid
entries (in which case the memory access fails), entries for so-called sections (pointing to large contiguous
memory regions) and entries for page tables (pointing to tables for the second stage of translation).

An entry for a section contains a pointer to a section object in the kernel heap. Section objects only serve
as placeholders; the memory content at va is found at the corresponding offset in state variable phys-mem.
Note that a section entry also contains access permissions rs, which might restrict memory access to read-only
or kernel-only (we came across permissions already in Section 3 when discussing multiple representations of
one semantic value).

An entry for a page table contains a pointer to a page table object in the kernel heap. The next eight
bits of the virtual address va [19..12] are used as an index into the page table, which has invalid entries and
entries for pages. Similarly, entries for pages contain a pointer to page objects as well as access permissions.
And again, the actual memory content is found in phys-mem.

We formally capture this mapping-data lookup in the function get-pd-for-thread but omit its defini-
tion here. It finds the mapping data for a given kernel heap h, a page directory pointer pd and a virtual
address va. If the lookup finds an invalid entry, the function returns None; otherwise it returns a triple
Some (base, bits, perms), where base is a pointer to the page or section object, 2bits is the size of the object
in bytes and perms is a set representing the access permissions associated with va. Possible values are ∅,
{Read} and {Read,Write}.

MMU Interface. Based on the internal functions get-pd-for-thread and get-mmu-info, we can finally define
the external interface of the MMU:

Definition 7 (Address Translation). The function virt-to-phys computes the physical address that is as-
sociated in an abstract specification state sA with a given virtual address va (if any). It uses get-pd-for-thread
to find out the page directory pd of the current thread and with that, it interprets the result of get-mmu-info:
if None, the address is not mapped and virt-to-phys returns None; otherwise, virt-to-phys returns the offset
into phys-mem, where the memory content is located.

virt-to-phys sA va ≡
let pd = get-pd-for-thread (kheap sA) (asid-table sA) (master-pd sA) (cur-thread sA)
in case get-mmu-info (kheap sA) pd va of

None⇒ None
| Some (base, bits, perms)⇒ Some (base + (va && (2bits − 1)))

where && denotes bitwise and.

Definition 8 (Virtual-Memory Permissions). The function vm-perms computes the access permissions
associated with a given virtual address. For unmapped virtual addresses, it returns the empty set; otherwise
the set of permissions perms determined by get-mmu-info.

vm-perms sA va ≡
let pd = get-pd-for-thread (kheap sA) (asid-table sA) (master-pd sA) (cur-thread sA)
in case get-mmu-info (kheap sA) pd va of

None⇒ ∅
| Some (base, bits, perms)⇒ perms

With these definitions in place, we can now base user transitions on virtual memory.

4.2. Changing the Definition of User Transitions

Using the above abstract MMU, we can now introduce virtual memory to user transitions and thus distinguish
individual processes. To do so, we first take a closer look at how user transitions were defined originally.

Recall that the L4.verified project originally overapproximated user transitions, assuming that the current
thread has read and write access to all memory that the kernel has assigned to user code. The kernel marks
memory assigned to user code by page and section objects, which we have mentioned in our discussion of the
mapping-data lookup (cf. Section 4.1). Formally, L4.verified modelled reading and writing to user-assigned
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memory by the two functions user-memory and user-memory-upd. The function user-memory takes an abstract
specification state sA and a physical address pa and returns the corresponding memory content for pa iff
it is assigned to user code. In particular, user-memory inspects the kernel heap kheap to find a page or
section containing pa. If successful, it retrieves the memory content from the kernel state variable phys-mem;
otherwise, it returns None. Note that we might perceive user-memory sA as a partial function from physical
addresses to memory contents. Conversely, the function user-memory-upd takes such a partial function um
and updates variable phys-mem at all physical addresses for which um is defined with the corresponding
value of um. Based on these functions, L4.verified defined user transitions of the abstract specification as
follows:

Definition 9 (Original Abstract User Transition). A user transition user-transA of the abstract spec-
ification consisted of four steps: First, it projected the contents um of all user-assigned physical memory out
of the kernel state. Second, a select command non-deterministically chose the new register context tc′ and
the new memory contents um ′ such that the domains of um and um ′ are equal. Third, user-transA partially
updated the physical memory according to um ′. Fourth, it returned the new register context.

user-transA tc ≡ do
um ← gets user-memory;
(tc′, um ′)← select {(tc′, um ′). dom um = dom um ′};
modify (user-memory-upd (λs. um ′));
return tc′

od

When we amend user transitions with virtual memory, we preserve this general structure but we restrict
the domain of user memory to translated addresses. This restriction is twofold: on the one hand, we limit
the non-determinism of the select statement—it should not depend on memory content that the current
thread cannot read—and on the other hand, we constrain the effects of the modify statement—it should not
change memory that the current thread cannot write to. The former restriction ensures confidentiality of
user threads, the latter preserves their integrity. Confidentiality and integrity are the two complementing
concepts underlying non-interference, the formal concept of process separation.

Our restriction relies on information about the current kernel state. More specifically, we use the functions
cur-thread, virt-to-phys, and vm-perms to project out the current thread t, the partial function conv translating
virtual to physical addresses, and the corresponding access permissions perms. As mentioned in Section 1, we
furthermore introduce a parameter user -op to user transitions, which is a function computing a set of new
thread states from various information about the current state. In particular, user -op takes as parameters
t, conv and perms and the current thread state (register and memory contents). To restrict the domain of
the thread’s memory contents, we use the Isabelle/HOL function restrict-map, which takes a partial function
f and a set R as parameters and computes the restriction of f to R. We thereby ensure that the result of
user -op can only depend on memory the user has Read access to, and can only modify memory it has Write
access to.

Formally, we replace Def. 9 by:

Definition 10 (New Abstract User Transition).

user-transA user -op tc ≡ do
t← gets cur-thread;
conv ← gets virt-to-phys;
perms ← gets vm-perms;
um ← gets user-memory;
(tc′, um ′)← select (user -op t conv perms

(tc, restrict-map um {pa. ∃va. conv va = Some pa ∧ Read ∈ perms va}));
modify (user-memory-upd

(λs. restrict-map um ′ {pa. ∃va. conv va = Some pa ∧ Write ∈ perms va}));
return tc′

od

We apply effectively the same changes to the low-level specification and the Simpl representation. Note
that we need the projections ΠH and ΠC to convert virt-to-phys and vm-perms to the respective states. On
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the Simpl layer, for instance, the second and third command thus read as follows:

conv ← gets (virt-to-phys ◦ΠH ◦ΠC);
perms ← gets (vm-perms ◦ΠH ◦ΠC);

Apart from such syntactic differences, the user transitions are defined analogously at all three abstraction
layers.

Summarising, the original modelling of user transitions assumed that any user transition might potentially
change all physical memory that the kernel has assigned to user threads. This original modelling amounts
to bypassing the page directory search (cf. Fig. 6) and the mapping-data lookup (cf. Fig. 7) and assuming
that all page and section objects in the kernel heap might potentially be reached by any user thread.
We have revised the user transitions such that they now examine, which thread is currently running, and
limit memory accesses according to the permissions of virtual memory. Thus, our modelling allows us to
distinguish individual threads and their address spaces. Moreover, we can now express non-interference of
(i. e. isolation between) individual processes. Our new modelling is also more precise: it turns a previously
implicit assumption of the original modelling into three proof obligations. This aspect will be the topic of
the subsequent three sections.

4.3. Strengthening the Invariants about Abstract States

The overall proof architecture of L4.verified establishes data refinement by subdividing the problem into
correspondence proofs between state monads of adjacent layers (e. g. Lemma 1) and proofs about state
monads preserving invariants (e. g. Lemma 2). By changing the definitions of the user transitions user-transA,
user-transH and user-transC, we have implicitly changed the lemmas about these transitions, which causes
their respective proofs to break. Below, we reestablish these lemmas for the revised definitions. In this section,
in particular, we aim for invariant preservation of user-transA:

Lemma 5. The new user transitions at the abstract specification layer preserve the invariants:

{|λsA. IA sA ∧ ut-preA sA|} user-transA user -op tc {|λr sA. IA sA|}

Concluding from the previous section, the main intention of replacing Def. 9 by Def. 10 has been refine-
ment; so, ideally, we would be able to establish correspondence with identity relations for states and results

between user-transorig
A tc and user-transnew

A user -op tc for all user operations user -op and register contents tc
when assuming IA and ut-preA for the respective states:

corres {(sa, sc). sa = sc} {(ra, rc). ra = rc}
(λsa. IA sa ∧ ut-preA sa) (λsc. IA sc ∧ ut-preA sc)

(user-transorig
A tc) (user-transnew

A user -op tc)

If this were the case, we could easily infer Lemma 5 from Lemma 2. Unfortunately, however, we need a

stronger precondition on the states sc for user-transnew
A to correspond to user-transorig

A .
In more detail, Def. 9 explicitly restricts the domain of the new user memory um ′ to be equal to the

one of the initial user memory um. Thus, the modify statement only affects physical memory addresses pa
assigned to user code (i. e. pa ∈ dom um). In other words, the original modelling implicitly assumed that the
collective memory accessibe by all threads via virtual memory were indeed captured by the kernel-internal
accounting as user memory.

Def. 10, in contrast, restricts memory updates to those physical addresses, to which the current thread
has Write permission. Thus, the new modelling turns the above assumption into a proof obligation: for
Lemma 5 to hold, the set of user-writable physical addresses must not be larger than the domain of the
physical memory assigned to user code; otherwise, user transitions could update physical memory assigned
to kernel objects and thereby break kernel invariants. The following lemma formally reflects our informal
considerations.

Lemma 6 (Correctness of Memory Assignment). If the current thread can access a physical memory
address pa through virtual memory, the kernel has assigned it to user code.

IA sA ∧ vm-perms sA va 6= ∅ ∧ virt-to-phys sA va = Some pa −→ user-memory sA pa 6= None
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Fig. 8. Invariant: mapping structures are backed by capabilities

Unfortunately, the original invariant IA was not strong enough to prove this lemma. Our verification
work flow was an iterative process: we strengthened predicates contributing to IA and tried to prove that
the new, overall predicate IA is indeed invariant. In fact, strengthening the invariant to prove this lemma
induced most of the effort resulting from the changed user transitions. We estimate that we spent about
seven person-months to show it. We exemplify the two most elaborate strengthened predicates.

Page Table Entries are backed by Page Objects. Fig. 7 already hints at this property: when a thread
object points to a page directory, all its entries referring to a section must indeed point to a section object
in the kernel heap, and respectively, if there is a page directory entry to a page table, all entries of the page
table referring to a page must indeed point to a page object in the heap. Note that this predicate only applies
to page directories that a thread object points to and to page tables that these page directories point to. We
collectively call them reachable mapping structures.

The original abstract invariant IA stated that if an entry in a reachable page directory refers to a page
table, there must be a page table object in the kernel heap at the respective address. However, there was
originally no requirement that a user-accessible page referred to by an entry of a reachable page table is
backed by a page object in the kernel heap. In other words, there was no requirement that the physical
memory user-accessible through virtual memory is actually assigned to user code. We strengthened the
validity predicate for page tables such that user-accessible page entries are backed by page objects. This
change by itself spawned almost a quarter of our proof work for Lemma 6.

Pages Objects are Backed by Capabilities. Similarly, the original invariant required that for each
reachable mapping structure up to page tables, a) there exists a capability referring to it and b) all capabilities
referring to it contain correct mapping information. Fig. 8 illustrates both properties—as usual, the names
of the relevant state variables are to the left and the structured values to the right. Solid lines mark the
original constraints and dashed lines our new additions.

First, starting from the entries of the address-space table asid-table, we recursively follow the pointers
in the mapping structures, and for each mapping structure that we find along the path—namely address-
space pools, page directories and page tables, we require that there is a capability referring to it. For easier
reference to capabilities, the figure presumes a function caps-of, projecting the set of all capabilities out of
a given kernel heap (capabilities can be stored in thread objects as well as in capability tables).

Second, capabilities for mapping structures can carry mapping information, which is intended for recov-
ering the mapping path. The capability pointing to the page table in the center of Fig. 8, for instance, carries
the pair (p, i) and a virtual address va. Thus, we can eventually find the page table by first using p as index
into the address-space table, following this pointer, we find an address-space pool, in which we use i as an
index to find a pointer to a page directory, in which we use the upper 12 bit of va to find a pointer to the
page table. For any reachable mapping structure, the mapping information in all capabilities pointing to it
must be correct. This is important upon object deletion, which we explain with an example.

Consider the state as shown in Fig. 8 and assume, we are to remove the last capability to the page table.
In seL4, if the last capability to an object is removed, the object is destroyed because the user cannot refer to
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it any more. However, there might still be kernel-internal references to the object. To avoid them becoming
dangling references, the kernel needs to find and remove them before it reclaims the object’s memory. For
the page table in the example, this reference is stored in an entry of the parent page directory (to the left
in the figure). The kernel finds this entry by following the mapping information (p, i) and va in the page
table’s capability and removes the reference, thereby unmapping the page table. Condition b) ensures that
this lookup leads to the correct entry.

Note that after this unmap operation, the page in Fig. 8 becomes unreachable. Yet, the kernel has
not removed the now invalid mapping data in the page’s capability. Doing so could be a costly operation
because a page table typically refers to many pages and many capabilities may in turn refer to these pages.
As Conditions a) and b) are required for reachable mapping structures only, we can avoid this runtime
overhead. Hence, the kernel ignores incorrect mapping data upon deletion—it starts following the mapping
data, finds out that it is incorrect and assumes that an entry in its ancestors has previouly been cleared,
making the object at hand unreachable. Consequently, incorrect mapping data for a reachable object could
lead to a state violating Lemma 6 because the kernel might reclaim the object’s memory without clearing
the entries in the parent mapping structures—thus, for instance, leaving a page table entry dangling while
the page object it once pointed to has been removed.

Originally, the absence of dangling references has only been shown up to page tables; we now extend it
to pages and sections. In other words, we strengthened the original invariant IA to additionally require that
if a reachable page directory refers to a section or a reachable page table refers to a page, there must be a
capability referring to the respective object, and all capabilities referring to a reachable section or page must
bear the correct mapping information. About three quarters of our proof effort for Lemma 6 is related to
this added requirement.

There were two factors which made extending this predicate even more involved for sections and pages
than it had been for page directories and tables. First, seL4 allows page directories and page tables to be
mapped only once while sections and pages can be mapped at multiple virtual addresses and into multiple
address spaces. Consequently, we may have page capabilities with disagreeing mapping information because
the page is mapped twice.

Second, the used ARM hardware supports pages of different sizes while there is only one size for page
directories and page tables. In particular, the hardware MMU supports so-called super sections and large
pages, which occupy the space of 16 regular sections or small pages, respectively. Hence, the MMU requires
us to repeat the corresponding entries in the page directory (for super sections) or the page table (for large
pages). Fig. 9 illustrates this situation.

Originally, these mapping entries were replicated on the abstract specification as well. The replicated
actual entries for one logical entry, however, posed a contradiction in the way we phrased our earlier require-
ment that there should be a capability with the correct mapping information because there are technically
16 mapping paths, although logically regarded as one.

There are two alternatives to work around the replicated page entries; either we remove the replication
in the abstract specification or we weaken the invariant to make an exception for replicated entries. We
considered the former to be much cleaner; hence, we kept the stronger invariant and removed the replicated
entries.

Choosing this approach, we were able to abandon a predicate about correctly replicated entries in the
abstract specification, which had originally been required as part of the invariant. Instead, we have strength-
ened the state relation between the specifications, on the one hand, by relating the replicated entries at the
low-level to the originals on the abstract specification layer, and the invariant of the low-level specification,
on the other hand, by stating that entries for super sections and large pages are correctly replicated.
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The work related to removing replicated entries alone accounted for about a quarter of our proof effort
for Lemma 6 (i. e. a third of proving that page objects are backed by capabilities). This fact raises the
question of whether treating replicated entries as a special case and weakening our requirements for them
would have required less effort. Although this is possible, it is by far not obvious because introducing a
special case for replicated entries would make the formulation of our requirements more complicated and
consequently harder to work with. For similar reasons as avoiding a projection ΠA in Section 3, we chose to
remove replicated entries, thus improving readability and clarity of the abstract specification and simplifying
further proofs about it.

Since we now know that seL4’s memory assignment works correctly (Lemma 6), the proof of invariant
preservation (Lemma 5) for our new user-transA is straightforward. In the next subsection, we discuss the
corresponding proof for our new user-transH at the low-level specification.

4.4. Strengthening the Invariant of the Low-Level Specification

When proving invariant preservation for our new user transition user-transH at the low-level specification
MH, we have in principle the same problem as with the abstract specification MA above (Lemma 5): the
original invariant IH is not preserved by our new user transition user-transH. We need a stronger invariant
and the additional proof requirement looks very similar to Lemma 6.

Note that the predicate IH is deliberately weak and mainly comprises statements about encoding details
of the low-level specification states that are not present in the abstract specification any more. We would
like to keep it that way. Recall, however, that we have added quite complex predicates to the invariant IA of
the abstract specification. It would be tedious to add equivalent predicates on low-level specification states
and repeat the proof effort on this layer. Instead, we would like to inherit the necessary properties from the
previous proof because, assuming refinement, any invariant proven on the abstract specification also holds
on the low-level specification.

Unfortunately, this reasoning is circular: we intend to use invariant preservation for establishing data
refinement from MA to MH; thus assuming this refinement to establish invariant preservation is pointless.
Fortunately, the refinement calculus we use gives us more fine-grained control, such that we can separate
our concerns. More specifically, we do not change the definition of IH but perceive it as only the part of
the invariant that is specific to low-level states. For the proof of correspondence between user-transA and
user-transH, it is sufficient to assume the strengthened IA invariant and the original IH predicate.

For the actual invariance proof about user transitions user-transH of the low-level specification, however,
we need a stronger invariant. Recall that we have defined the virtual MMU on the abstract layer and use
the projection ΠH to convert them down to the low-level specification states. Drawing from this observation,
we formulate the new invariant about the low-level specification based on the assumption that there exists
a corresponding, abstract state and the abstract invariant holds, i. e. the actual invariant becomes IH sH ∧
(∃sA. (sA, sH) ∈ SRA ∧ IA sA). Apart from this more elaborate term, we state invariant preservation of
our revised user-transH analoguous to user-transA (cf. Lemma 5). Formally, we state (the additions w. r. t.
L4.verified’s original statement are highlighted):

Lemma 7. The new user transitions of the low-level specification preserve the invariants:

{|λsH. IH sH ∧ (∃sA. (sA, sH) ∈ SRA ∧ IA sA) ∧ ut-preH sH|}
user-transH user -op tc
{|λr sH. IH sH ∧ (∃sA. (sA, sH) ∈ SRA ∧ IA sA)|}

Proof. With a correlated, abstract state sA for which the invariant IA holds, we can eventually use Lemma 6
to prove the new proof obligation that arises from the changed user-transH. Recall that we use the projection
ΠH to extend the virtual MMU functions vm-perms and virt-to-phys to states sH of the low-level specification.
We use Lemma 3 to establish that this projection of the low-level state, ΠH sH, is equal to the correlated
abstract state sA. Furthermore, the state relation implies that the domains of the user-memory projections
at both specification layers MA and MH are equal.

Given that we now state the existence of an abstract state to be invariant, we are required to prove it.
This fact follows from the correspondence between the user transitions (cf. Lemma 8 and Section 4.5). This
correspondence relates the abstract states in pre and post condition.

As already mentioned in Section 4.3, we have furthermore strengthened the original predicate IH w. r. t.
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correctly replicated entries for super sections and large pages. This change became necessary after we had
removed the predicate about correctly replicated entries in the abstract invariant and had changed the state
relation between the specification layers.

At the first sight of Lemma 7, it might appear cumbersome to just assume the existence of an abstract
state sA correlating with the pre state sH. In practice, this assumption is harmless because it already is a
proof obligation for forward simulation between the specification layers MA and MH. Hence, adding this
assumption to Lemma 7 has no consequences for the forward-simulation proof. Note that we could also
rephrase the above invariant by instantiating the existential quantifier with ΠH sH:

Proposition.

IH sH ∧ (∃sA. (sA, sH) ∈ SRA ∧ IA sA) ←→ IH sH ∧ (ΠH sH, sH) ∈ SRA ∧ IA(ΠH sH)

Proof. The above statement directly follows from Lemma 3.

An apparent consequence of the added existential quantifier (or equivalently the ΠH projection) is that the
refinement proof between low-level specificationMH and Simpl representationMC is no longer independent
from the refinement between the specifications MA and MH. In practice, this circumstance is harmless as
well because ultimately, we are interested in the fact that MC refines MA, which requires both proofs.

While we lose the independence of the two refinement steps, we save much verification effort by assuming
the existence of an abstract state. Recall that the alternative is an uninspiring repetition: an extensive proof
at the low-level specification MH, which mainly repeats the line of argument from invariant preservation at
the abstract specificationMA. Most notably, we would not only repeat the effort for Lemma 6. In addition,
we would have to show many properties of invariance at MH, which have originally only been shown at
MA. The original refinement proof RA betweenMA andMH required five person-years [CKS08], to a large
extent for invariant preservation atMA. Consequently, the overall proof effort for establishing a self-contained
invariant at MH is likely to comprise two person-years or more. Thanks to the flexibility of the refinement
calculus we use, we can avoid this extensive verification effort.

Summarising this subsection, we have established invariant preservation for our revised user-transH. Thus,
there remains only one problem to be solved for reestablishing data refinement with L4.verified’s proof
architecture: showing correspondence of the revised user transitions. We discuss this problem below.

4.5. Proving Correspondence of User Transitions

By revising the user transitions user-transA, user-transH and user-transC, we have invalidated L4.verified’s
original correspondence lemmas (cf. Def. 4 and Lemma 1). In this section, we prove them anew. Syntactically,
Lemma 1 remains almost unchanged (we only add user -op parameters):

Lemma 8. The new user transitions at the two specification layers, user-transA and user-transH, respectively,
correspond w. r. t. the state relation SRA and equality of return values:

corres SRA {(ra, rc). ra = rc}
(λs. IA s ∧ ut-preA s) (λs. IH s ∧ ut-preH s)
(user-transA user -op tc) (user-transH user -op tc)

Despite the syntactic similarity, the original proof is effectively void because the definitions of the user
transitions have changed in structure. Fortunately, reproving the lemma is straightforward: we unfold the
definitions and show correspondence for each computational step. For the added steps, correspondence follows
from Lemma 3.

The low-level counterpart of Lemma 8 in contrast, the correspondence between the revised user transitions
user-transH and user-transC, hinges on the fact that the modified virtual memory is a subset of the user
memory—just like the invariance proof for user-transH (Lemma 7). Hence, we assume here as well the existence
of a correlated, abstract state sA for which the invariant IA holds:

Lemma 9. The new user transitions on the low-level specification and on the Simpl representation corre-
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spond w. r. t. the state relation SRC and with equality of return values:

corres SRC {(ra, rc). ra = rc}
(λsH. IH sH ∧ (∃sA. (sA, sH) ∈ SRA ∧ IA sA)) (λsC. True)
(user-transH user -op tc) (user-transC user -op tc)

Proof. In principle, this proof is straightforward and much like the one for Lemma 8. A more interesting step,
though, is showing that the user-memory updates at both layers correspond. Recall that at the Simpl layer,
we have a single kernel heap for both, kernel objects and user memory, while on the specification layers,
the kernel objects and the physical memory of the underlying machine are separated. Hence, a user-memory
update could theoretically interfere with kernel objects in Simpl but not in the low-level specification. We
rule this possibility out by showing the equality of the user-memory domains, drawing on the invariant about
the correlated, abstract state, which we transfer down using Lemmas 3 and 4.

This proof concludes our effort in reestablishing data refinement for seL4 after revising user transitions
w. r. t. virtual memory. In the following, we look at related work and then conclude.

5. Related Work

The overall context of our work is operating-system verification. We are indebted to Klein [Kle09] for a
comprehensive overview of past verification attempts. Two more recent results are more closely related to
ours: the completed refinement proofs for the small real-time operating system Olos [DSS09], and for the
simple virtualisation platform baby hypervisor [AHPP10]. Despite conceptual differences, both kernels are,
like seL4, implemented in a mix of C and assembly based on an event-driven programming model with a
single kernel stack.

Olos comprises 300 lines of code [Sch11]. Using Isabelle/HOL, Schmidt has verified its correctness in
2 person-years. Thus, Olos is small compared to the 8,700 C lines of seL4 and a proof effort of about 11
person-years. Schmidt’s proof is based on a very detailed computational model including interaction with
and computation of peripheral devices as well as an assembly semantics for user transitions. Though very
detailed, her model of computation is less flexible than ours and assumes that all software in the system
should eventually be verified [DSS10]. We, however, envisage larger trustworthy systems, where only a small
trusted computing base is formally verified. In contrast to the step-wise refinement of L4.verified, the C
code of Olos has been verified in a single refinement step. In addition, In der Rieden and Tsyban [dRT08]
have proven the assembly parts correct but on a lower layer, without formally linking both proofs. The top-
level statement of Olos correctness rests on simulation with a projection function from implementation to
specification states, similar to our FinMC. Although there is no formal notion of an observable state for Olos,
it could be defined as the whole specification state. Processes are modelled as separate assembly machines,
which can invoke the kernel and can be manipulated by the kernel. Thus, process separation is built into the
implementation model. Process separation relies on another proof [dRT08, APST10]; although on a lower
abstraction layer and not formally connected to the first. Furthermore, their hardware platform [BJK+06]
is much simpler (e. g. single-level page tables without memory sharing).

The size of the baby hypervisor is given as “2.5k C code tokens”, which is the same order of magnitude
as Olos. Correctness has been proven using the Verifying C Compiler (VCC) [CDH+09], which is based
on first-order logic and an automated verification backend. The authors specify the proof size with “7.7k
annotation tokens” but refrain from estimating the manual work involved. An interesting aspect of their
work is that they have instrumented VCC, which is tailored for C code verification, to prove mixed-language
system software and formally specify refinement. A drawback of this approach is, however, that the assertion
language is very close to C, which makes data refinement hard to express. The top-level statement expresses
simulation as an infinite loop with 20 lines of C code. Informally, the statement says that the hypervisor
implementation emulates the execution of the base architecture, which is specified by the implementation of
a simulator for that processor. In other words, user transitions are modelled based on an assembly semantics
with virtual memory; however, they deploy the same hardware platform as Olos, which is much simpler
than ours. This is an appropriate specification for a pure hypervisor but certainly not for a microkernel like
seL4, where the majority of the functionality is provided by its API.

Further, there is research related to our particular concern with virtual memory. Vaynberg and Shao
[VS12] have verified a small virtual memory manager for simplified hardware in the interactive theorem
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prover Coq. They advocate a modular approach to kernel verification, assuming a strictly modular software
architecture. Although modularity is a necessity in commodity kernels with millions of lines of source code, it
is atypical in microkernel construction, where the whole kernel compares in size and functionality to one of a
commodity kernel’s modules and where the conflicting goal of maximum performance is essential. Especially
in this respect, it is unfortunate that Vaynberg and Shao chose simplified hardware, making a meaningful
performance comparison of seL4 and their CertiKOS impossible.

Another direction of research is complimentary to ours. Barthe et al. [BBCL11] have formalised an
abstract model of a hypervisor in Coq. Based on this model, they have formally verified properties of
isolation and availability. Their model of virtual memory is more limited than ours; for instance, a page
requires a unique owner in their system while in seL4, a page can be mapped into several address spaces. In
principle, it should be possible to show refinement from their model to our abstract specification.

Similarly, Kolanski and Klein’s mapped separation logic [KK09,Kol11] could be connected to our work.
The mapped separation logic provides a unified view of virtual and physical memory for kernel verification.
Our view of virtual memory exported to the user level should coincide nicely with the abstract interface that
Kolanski and Klein assume in their work. Consequently, we may reuse this logic in future work for user-level
virtual memory to cope with aliasing on page level.

6. Conclusion

Summarising, we have strengthened the original data refinement statement about seL4. Our technical achieve-
ments are threefold:

First, we have exploited the full potential of the original L4.verified proof by extending the observable
state to the full abstract state (cf. Section 3). The original statements of correspondence (cf. Section 2.2),
which have been proven in L4.verified as auxiliary lemmas for top-level statement of data refinement, are
much stronger than the comparatively weak original top-level statement. Our extension of the observable
state fills this previous gap, exploiting the full potential of the auxiliary corres lemmas and reflecting their
strength in the top-level statement.

Second, informal expectations for correctness of an operating system kernel go far beyond a formal
statement of data refinement. An important criterion for kernel correctness is that processes can be isolated.
Our new model of user transitions (cf. Section 4) prepares the ground for a non-interference theorem by
introducing the notion of virtual memory based on the kernel data structures, by distinguishing individual
processes and by restricting the memory accesses of each process to its own virtual memory. Again, this
change strengthens the original data refinement statement.

Third, our model of user transitions is customisable, thus facilitating proofs about a componentised
software architecture with few trusted components in the midst of a largly untrusted code base. Most
notably, the parameter user -op allows for different models of user transitions on a per process basis. Despite
its simplicity, we consider this an important benefit over similar verification efforts that require all software
in the system to eventually be verified, which will not scale to typically deployed code bases with several
millions of lines.

The latter two achievements prepare future work. Most notably, our work has been used in a larger
verification effort around information flow [MMB+12, MMB+13], which demonstrates that we have met
our objective, to prepare the ground for a non-interference theorem, which naturally needs to distinguish
individual processes. Previously, Andronick et al. [AGE10] and Klein [Kle10] laid out a roadmap to a software
system with proven safety guarantees and currently, ongoing work complements general verification results
(our work and the information-flow theorem) with system-specific proofs about small trusted components.

A different direction of future work is the validation of our model with respect to a detailed architectural
model. Currently, our work models virtual memory at the level of the C source code, simply assuming that
our model is correct. The underlying problem is the general tension encountered in low-level programs close to
hardware: while written in a high-level language like C, they depend on low-level properties of the specifically
targeted hardware. Consequently, even a verified compiler proven to adhere to the ANSI C semantics might
break the low-level assumptions. Thus, Myreen and Sewell [SMK13] verify that the compiled binary indeed
complies with the source code and its assumptions. Adding the MMU to their hardware model—which is
validated against real processors—would enable us to link our MMU model to binary level and thus provide
even stronger confidence.

Most publications in the context of L4.verified have focussed on the refinement technology [CKS08,
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WKS+09], high-level reflections on the verification artefact [KEH+09,KAE+10] and more abstract, high-level
properties established using the refinement statement [SWG+11,MMB+13]. This article, in contrast, aims at
complementing these publications by a more in-depth elaboration on the technical details that verification
engineers encounter in their day-to-day work when verifying an operating system kernel. The characteristic of
these problems is that they are quite specific to the application domain. Perhaps the best example is the tight
interdependency between the different parts of invariants—efficient, low-level programs are, for performance
reasons, not written modularly and usually rely on complex invariants. We have presented examples from
our proof at a conceptual level and expect that similar problems are likely to arise with similar verification
projects in this application domain.

Apart from the particular results related to seL4, we have shown that the refinement calculus we use
supports the transfer of invariants from an abstract to a concrete layer, which are themselves required for
the refinement proof (cf. Section 4.4). Furthermore, we substantiate earlier claims [KEH+09, §5.3] regarding
the cost of change for a large, verified code base: Local changes—like changing the user transitions in itself
(the corres proofs were almost trivial) or the added ghost code to record object sizes—cause only little
cost. Strengthening Invariants is significantly more expensive. In fact, the effort reported on in this paper
was almost entirely spent in proving invariants. We estimate the overall effort with about 1.5 person-years,
split almost evenly between invariant proofs for the extended observable state and for Lemma 6. Note that
several of our decisions were guided by the long-term vision of proven trustworthiness. It might be possible
to achieve the immediate results presented herein faster by sacrificing our longer-term goal of a clear and
readable specification with strong, proven invariants that aid further proofs.
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Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors, 21st TPHOLs, volume 5170 of LNCS, pages
167–182, Montreal, Canada, Aug 2008. Springer.

[dRE98] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented Proof Methods and their Compar-
ison. Number 47. United Kingdom, 1998.



Concerned with the Unprivileged:User Programs in Kernel Refinement 25

[dRT08] Tom In der Rieden and Alexandra Tsyban. CVM — A verified framework for microkernel programmers. In 3rd
SSV, ENTCS, pages 137–153, Sydney, Australia, Feb 2008. Elsevier.

[DSS09] Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. Implementation correctness of a real-time operating
system. In IEEE Int. Conf. Softw. Engin. & Formal Methods, pages 23–32, Hanoi, Vietnam, 2009. IEEE Comp.
Soc.

[DSS10] Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. From operating-system correctness to pervasively
verified applications. In IFM, volume 6396 of LNCS, pages 105–120, Nancy, France, 2010. Springer.

[KAE+10] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
verification of an operating system kernel. CACM, 53(6):107–115, Jun 2010.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
verification of an OS kernel. In SOSP, pages 207–220, Big Sky, MT, USA, Oct 2009. ACM.

[KK09] Rafal Kolanski and Gerwin Klein. Types, maps and separation logic. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, 22nd TPHOLs, volume 5674 of LNCS, pages 276–292, Munich, Germany,
Aug 2009. Springer.

[Kle09] Gerwin Klein. Operating system verification — an overview. Sādhanā, 34(1):27–69, Feb 2009.
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