Applications of Interactive Proof
to Data Flow Analysis and Security

Gerwin Klein ®, Tobias Nipkow P

aNICTA & UNSW, Sydney, Australia
Y Technische Universitit Miinchen, Germany

Abstract. We show how to formalise a small imperative programming
language in the theorem prover Isabelle/HOL, how to define its seman-
tics, and how to prove properties about the language, its type systems,
and a number of data flow analyses.

The emphasis is not on formalising a complex language deeply, but
to teach a number of formalisation techniques and proof strategies us-
ing simple examples. For this purpose, we cover a basic type system
with type safety proof, more complex security type systems, also with
soundness proofs, and different kinds of data flow analyses, in particu-
lar definite initialisation analysis and constant propagation, again with
correctness proofs.

Keywords. Semantics, Security, Data-Flow Analysis, Isabelle

1. Introduction

These notes present the formalisation of a small imperative programming lan-
guage in the theorem prover Isabelle/HOL [13] together with applications to data
flow analysis and security type systems.

We assume that the reader is familiar with Isabelle/HOL and its basic nota-
tion, which is close to standard mathematics and functional languages. In partic-
ular, we assume familiarity with the concepts of recursive data types, inductive
and recursive definitions, and proofs by rule induction and structural induction.
These are covered in a separate text [13].

2. IMP: A Simple Imperative Language

This section defines a minimalistic imperative programming language called IMP.
We introduce the concepts of expressions and commands with their abstract syn-
tax, and use them to illustrate two styles of defining the semantics of a program-
ming language: big-step and small-step operational semantics. Our first larger
theorem about IMP will be the equivalence of these two definitions of its seman-
tics. As a smaller concrete example, we will apply our semantics to the concept
of program equivalence.

2.1. Arithmetic expressions
We start by defining syntax and semantics for arithmetic and boolean expressions.

2.1.1. Syntax

Programming languages have both a concrete and an abstract syntax. Concrete

syntax means strings. For example, "a + 5 * b" is an arithmetic expression given

as a string. The concrete syntax of a language is usually defined by a context free

grammar. The expression "a + 5 * b" can also be viewed as the following tree:
+

The tree immediately reveals the nested structure of the object and is the right
level for analysing and manipulating expressions. Linear strings are more compact
than two-dimensional trees, which is why they are used for reading and writing
programs. But the first thing a compiler, or rather its parser will do is to convert
the string into a tree for further processing. Now we are at the level of abstract
syntax and these trees are abstract syntax trees. To regain the advantages of the
linear string notation we write our abstract syntax trees as strings with paren-
theses to indicate the nesting (and with identifiers instead of the symbols + and
*), for example like this: Plus a (Times 5 b). Now we have arrived at ordinary
terms like we have used them all along. More precisely, these terms are over some
datatype that defines the abstract syntax of the language. Our little language of
arithmetic expressions is defined by the datatype aexp:

type-synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

where int is the predefined type of integers and vname stands for variable name.
Isabelle strings require two single quotes on both ends, for example ""abc’’. The
intended meaning of the three constructors is as follows: N represents numbers,
i.e. constants, V represents variables, and Plus represents addition. The following
examples illustrate the intended correspondence:

Concrete ‘ Abstract

5 N5

x V ”Il/

X +y Plus (V "2") (V "y")

2+ (z + 3) Plus (N 2) (Plus (V' "2"") (N 3))

It is important to understand that so far we have only defined syntax, not se-
mantics! Although the binary operation is called Plus, this is merely a suggestive
name and does not imply that it behaves like addition. For example, Plus (N 0)

(N 0) # N 0, although you may think of them as semantically equivalent—but
syntactically they are not.

Datatype aexp is intentionally minimal to concentrate on the essentials. Fur-
ther operators can be added as desired. However, as we shall discuss below, not
all operators are as well-behaved as addition.

2.1.2. Semantics

The semantics, or meaning of an expression is its value. But what is the value
of x+17 The value of an expression with variables depends on the values of its
variables. The value of all variables is recorded in the (program) state. The state
is a function from variable names to values.

type-synonym val = int
type-synonym state = vname = val

In our little toy language, the only values are integers.
The value of an arithmetic expression is computed like this:

fun aval :: aexp = state = wval where

aval (N n) s =n |

aval (V) s=suz|

aval (Plus a1 a2) s = aval a1 s + aval ag s

Function awval carries around a state and is defined by recursion over the form of
the expression. Numbers evaluate to themselves, variables to their value in the
state, and addition is evaluated recursively. Here is a simple example:

value aval (Plus (N 3) (V "z")) (Az. 0)

returns 3. However, we would like to be able to write down more interesting states
than Az. 0 easily. This is where function update comes in.

To update the state, that is, change the value of some variable name, the
generic function update notation f(a := b) is used: the result is the same as f,
except that it maps a to b:

fla:=0) = (Az. if £ = a then b else f x)

This operator allows us to write down concrete states in a readable fashion. Start-
ing from the state that is 0 everywhere, we can update it to map certain variables
to given values. For example, ((Az. 0) ("z" := 7)) ("y"" := 3) maps "z"" to 7,
"y to 3 and all other variable names to 0. Below we employ the following more

compact notation
<”I” . 7 //y// P 3>
=1, =

which works for any number of variables, even for none: <> is syntactic sugar for
Az. 0.

It would be easy to add subtraction and multiplication to aexp and extend
aval accordingly. However, not all operators are as well-behaved: division by zero
raises an exception and C’s ++ changes the state. Neither exceptions nor side-
effects can be supported by an evaluation function of the simple type aexp =
state = wval; the return type has to be more complicated.

2.2. Boolean expressions

In keeping with our minimalist philosophy, our boolean expressions contain only
the bare essentials: boolean constants, negation, conjunction and comparison of
arithmetic expressions for less-than:

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexrp

Note that there are no boolean variables in this language. Other operators like
disjunction and equality are easily expressed in terms of the basic ones.

Evaluation of boolean expressions is again by recursion over the abstract
syntax. In the Less case, we switch to aval:

fun bval :: bexp = state = bool where

bval (Bc v) s = v |

bval (Not b) s = (= bval b s) |

bval (And by bg) s = (bval by s A bval by s) |
(

s
bval (Less a1 a2) s = (aval a1 s < aval ag $)

2.3. IMP Commands

Having defined expressions and their evaluation, we can now move on to the com-
mands. Our language is a minimal Turing-complete WHILFE language. It has as-
signment, sequential composition (semicolon), conditionals (IF'), and WHILE. To
be able to express other syntactic forms, such as an IF without an FLSE branch,
we also include the SKIP command that does nothing. The right-hand side of
variable assignments uses the arithmetic expressions that we have defined above,
and similarly, the conditions in IF' and WHILE will take boolean expressions. A
program is then simply one, possibly complex, command in this language. The
formal syntax of commands is:

datatype com = SKIP

| Assign vname aexp
| Seq com com

| If bexp com com

|

While bexp com

The definition above introduces a datatype for abstract syntax. In the defi-
nitions, proofs, and examples further along in these notes, we will often want to
refer to concrete program fragments. To make such fragments more readable, we
also introduce concrete infix syntax in Isabelle for the four compound construc-
tors of the com datatype. The term Assign z e for instance can be written as
z = e, the term Seq c¢1 cg as cy;; co, the term If b ¢q co as IF b THEN c¢1 ELSE
c2, and the while loop While b ¢ as WHILE b DO c. Sequential composition is
denoted by “;;” to distinguish it from the “;” that separates assumptions in the

@

[. . .] notation. Nevertheless we still pronounce “;” as “semicolon”.

Example 1. The following is an example IMP program with two assignments.

"g'" = Plus (V "'y"") (N 1);; "y == N2

We have not defined its meaning yet, but the intention is that it assigns the value
of variable y incremented by one to the variable x, and afterwards sets y to 2.
In a more conventional concrete programming language syntax, we would have
written

T =y +1;y =2

We will occasionally use this more compact style for examples in the text, with
the obvious translation into the formal form.

¥ Note that, formally we write concrete variable names as strings enclosed in double
® quotes. Examples are V "'z’ or "z’ ::= exp. If we write V z instead, z is a logical
variable for the name of the program variable. That is, in z ::= ezp, the z stands for
any concrete name "'z’’, "4/, and so on, the same as exp stands for any arithmetic

expression.

¥ The associativity of semicolon in our language is to the left. That means, we have
® c13¢9 3 ¢3=(cq ;5) ;; cg3. We will later prove that semantically it does not
matter whether semicolon associates to the left or to the right.

The compound commands [F and WHILE bind stronger than semicolon. That
means WHILE b DO cy;; cog = (WHILE b DO c¢1);; co.

While more convenient than writing abstract syntax trees, as we have seen
in the example, even the more concrete Isabelle notation above is occasionally
somewhat cumbersome to use. This is not a fundamental restriction of the the-
orem prover or of mechanising semantics. If one was interested in a more tradi-
tional concrete syntax for IMP, or if one were to formalise a larger, more realistic
language, one could write separate parsing/printing ML code that integrates with
Isabelle and implements the concrete syntax of the language. This is usually only
worth the effort when the emphasis is on program verification as opposed to meta
theorems about the programming language.

A larger language may also contain a so-called syntactic de-sugaring phase,
where more complex constructs in the language are transformed into simple core
concepts. For instance, our IMP language does not have syntax for Java style
for-loops, or repeat ... until loops. For our purpose of analysing programming
language semantics in general these concepts add nothing new, but for a full
language formalisation they would be required. De-sugaring would take the for-
loop and do ... while syntax and translate it into the standard WHILE loops that
IMP supports. This means, definitions and theorems about the core language only
need to worry about one type of loops, while still supporting the full richness of a
larger language. This significantly reduces proof size and effort for the theorems
that we discuss in these notes.

2.4. Big-Step Semantics
In the previous section we defined the abstract syntax of the IMP language. In this

section, we show its semantics. More precisely, we will use a big-step operational
semantics to give meaning to commands.

Sk Assi
(SKIP, s) =5 7 (z:=a,5) = s(z = avalas) 0"

a
(61, 81) = S92 (CQ, 82) = 83
(135 c2, 81) = 83

bval bs (c1,8) =t
(IF' b THEN ¢y ELSE c9, s) =t
—bvalbs (c1,8) =t
(IF b THEN ¢y ELSE ¢1, 5) = ¢
= bval b s
(WHILE b DO ¢, s) = s
bval b s1 (e, s1) = s2 (WHILE b DO ¢, s2) = s3
(WHILE b DO ¢, 51) = s3

Seq

IfTrue

IfFalse

WhileFalse

While True

Figure 1. The big-step rules of IMP.

In an operational semantics setting, the aim is to capture the meaning of
a program as a relation that describes how a program executes. Other styles of
semantics may be concerned with assigning values or mathematical structures
as meanings to programs, e.g. in the so-called denotational style, or they may
be interested in capturing the meaning of programs by describing how to reason
about them, e.g. in the axiomatic style of Hoare-logic.

2.4.1. Definition

In big-step operational semantics, the relation to be defined is between program,
initial state, and final state. Intermediate states during the execution of the pro-
gram are not visible in the relation. Although the inductive rules that define the
semantics will tell us how the execution proceeds internally, the relation itself
looks as if the whole program was executed in one big step.

We formalise the big-step execution relation in the theorem prover as a
ternary predicate big-step. The intended meaning of big-step ¢ s t is that execution
of command ¢ starting in state s terminates in state ¢. To display such predi-
cates in a more intuitive form, we use Isabelle’s syntax mechanism and the more
conventional notation (¢, s) = ¢ instead of bigstep ¢ s t.

It remains for us to define which ¢, s and s’ this predicate is made up of.
Given the recursive nature of the abstract syntax, it will not come as a surprise
that our choice is an inductive definition. Figure 1 shows its rules. Predicates such
as (¢, s) = t that are defined by a set of rules are often also called judgements,
because the rules decide for which parameters the predicate is true. However,
there is nothing special about them, they are merely ordinary inductively defined
predicates.

Going through each of the rules in detail, they admit the following executions
in IMP.

e If the command is SKIP, the initial and final state must be the same.

(//xll = N5, 8) = s(llxll = 5) (//y// = V N.Z'”, S(Hm// = 5)) = Sl
(I/l'// - N5,, //y/l = V I/.I'//, 3) = 3/

where s = s("z" :=5,"y" :=5)

Figure 2. Derivation tree for execution an IMP program.

e [f the command is an assignment = ::= a and the initial state is s, then the
final state is the same state s where the value of variable z is replaced by
the evaluation of the expression a in state s.

e If the command is a sequential composition, rule Seq says the combined
command c1;; co started in s7 executes to sg if the the first command
executes in s1 to some intermediate state so and co takes this so to s3.

e The conditional is the first command that has two rules, depending on the
value of its boolean expression in the current state s. If that value is True,
then the IfTrue rule says that the execution ends in the same state s’ that
the command c¢; results in if started in s. The IfFalse rule does the same
for the command c¢9 in the False case.

e WHILE loops are slightly more interesting. If the condition evaluates to
false, the whole loop is skipped, which is expressed in rule WhileFalse. If
the condition evaluates to True in state si, however, and the body ¢ of
the loop takes this state s1 to some intermediate state so, and if the same
WHILE loop started in s ends in s3, then the entire loop also terminates
in s3.

Designing the right set of introduction rules for a language is not necessarily
hard. The idea is to have at least one rule per syntactic construct and to add
further rules when case distinctions become necessary. For each single rule, one
starts with the conclusion, for instance (c¢1;; c¢a, s) = §’, and then constructs
the assumptions of the rule by thinking about which conditions have to be true
about s, s’, and the parameters of the abstract syntax constructor. In the c1;; co
example, the parameters are ¢1 and co. If the assumptions collapse to an equation
about s’ as in the SKIP and z ::= a case, s’ can be replaced directly.

2.4.2. Deriving IMP Ezecutions

As Figure 2 demonstrates, we can use the rules of Figure 1 to construct a
so-called derivation tree that shows a particular execution is admitted by the
IMP language. Figure 2 shows an example: we are executing the program
"g! = Nb5;;"y" = V "z, starting it in an arbitrary state s. Our claim is
that at the end of this execution, we get the same state s, but with both z and
y set to 5. We construct the derivation tree from its root, the bottom of Fig-
ure 2, by starting with the Seq rule, which gives us two obligations, one for each
assignment. Working on "z’ ::= N 5 first, we can conclude via the Assign rule
from Figure 1 that it results in the state s ("/z’’ := 5). We feed this intermediate
state into the execution of the second assignment, and again with the assignment
rule complete the derivation tree. In general, a derivation tree consists of rule

applications at each node and of applications of axioms (rules without premises)
at the leafs.

We can conduct the same kind of argument in the theorem prover. The fol-
lowing is the example from Figure 2 in Isabelle. Instead of telling the prover what
the result state is, we state the lemma with a schematic variable and let Isabelle
compute its value as the proof progresses.

schematiclemma ex: (2" ::= N5;;"y" ==V "2" s) = %
apply (rule Seq)

apply (rule Assign)

apply simp

apply(rule Assign)

done

After the proof is finished, Isabelle instantiates the lemma statement, and after
simplification we get the expected

(//x// =]\]’5;7 //yI/ e V //CE”7 S) = S(//I'// = 5’ //y// = 5)

We could use this style of lemma to execute IMP programs symbolically.
However, a more convenient way to execute the big-step rules is to use Isabelle’s
code generator. The following command tells it to generate code for the predicate
= and thus make the predicate available in the values command which is similar
to value, but works on inductive definitions and computes a set of possible results.

code_pred big-step .
We could now write
values {¢. (SKIP, A\~ 0) = ¢}

but this only shows us {3, i.e. that the result is a set containing one element.
Functions cannot always easily be printed, but lists can be, so we just ask for the
values of a list of variables we are interested in, using set-comprehension notation:

values {map t ["z","y"] |t. ("z" == N2, A= 0) = t}

This has the result {[2,0]}. In the following sections, we will again omit such code
generator detail, but we use it to produce examples.

This section showed us how to construct program derivations and how to exe-
cute small IMP programs according to the big-step semantics. In the next section,
we instead deconstruct executions that we know have happened and analyse all
possible ways we could have gotten there.

2.4.3. Rule Inversion

What can we conclude from (SKIP, s) = t? Clearly ¢ = s. This is an example
of rule inversion and is a consequence of the fact that an inductively defined
predicate is only true if the rules force it to be true, i.e. only if there is some
derivation tree for it.

Inversion of the rules for big-step semantics tells us what we can infer from
(¢, s) = t. For the different commands we obtain the following inverted rules:

SKIP,s) = t=1t=3s

(

(ru=a,s)=>t=1t=s(x:=aval as)

(c135 c2, 1) = s3 = Ts2. (c1, 51) = s2 A (c2, 52) = s3
(

IF b THEN ¢i ELSE co, s) = t =>
bval b s A (c1,8) =tV o bval bs A (ca, s) =t

(WHILE b DO ¢, s) = t =
—bvalbs ANt =sV
bval b s A (5. (¢, s) = s AN (WHILE b DO ¢, s') = t)

As an example, we paraphrase the final implication: if (WHILE b DO ¢, s) = t
then either b is false and ¢t = s, i.e. rule WhileFalse was used, or b is true and there
is some intermediate state s’ such that (¢, s) = s’ and (WHILE b DO ¢, s') = t,
i.e. rule WhileTrue was used.

These inverted rules can be proved automatically by Isabelle from the original
rules. Moreover, proof methods like auto and blast can be instructed to use both
the introduction and the inversion rules automatically during proof search. For
details see theory Big-Step.

One can go one step further and combine the above inverted rules with the
original rules to obtain equivalences rather than implications, for example

(c13; c2, 81) = 83 +— (Is2. (c1, s1) = s2 A (c2, s2) = 53)

Every = in the inverted rules can be turned into <— because the <= direction
follows from the original rules.

As an example of the two proof techniques in this and the previous section
consider the following lemma. It states that the syntactic associativity of semi-
colon has no semantic effect. We get the same result, no matter if we group
semicolons to the left or to the right.

Lemma 2. (c13; c23; ¢3, 8) = s «<— (c13; (c255 ¢3), 8) = &

Proof. We show each direction separately. Consider first the execution where the
semicolons are grouped to the left: ((c1;; ¢2);; ¢3, s) = §’. By rule inversion we
can decompose this execution in twice and obtain the intermediate states s and
s9 such that (c1, s) = s1, as well as (c2, s1) = s2 and (c3, s2) = s’. From this,
we can construct a derivation for (c1;; (co;; ¢3), s) = s’ by first concluding (ca;;
c3, s1) = s with the Seq rule and then using the Seq rule again, this time on
c1, to arrive at the final result. The other direction is analogous. O

2.4.4. Equivalence of Commands

In the previous section we have applied rule inversion and introduction rules of the
big-step semantics to show equivalence between two particular IMP commands.
In this section, we define semantic equivalence a concept in its own right.

We call two commands ¢ and ¢’ equivalent w.r.t. the big-step semantics when
c started in s terminates in s’ iff ¢’ started in s also terminates in the same s'.
Formally, we define it as an abbreviation:

abbreviation
equivc :: com = com = bool (infix ~ 50) where
cr~cd =Wst (e8)=t = (5)=1)

¥ Note that the ~ symbol in this definition is not the standard tilde ™, but the symbol
\<sim> instead.

Experimenting with this concept, we see that Isabelle manages to prove many
simple equivalences automatically. Such rules could be used for instance to trans-
form source-level programs in a compiler optimisation phase. One example is the
unfolding of while loops:

Lemma 3.
WHILE b DO ¢ ~ IF b THEN c;; WHILE b DO ¢ ELSE SKIP

Another example is a trivial contraction of IF":
Lemma 4. IFFb THEN ¢ ELSE ¢ ~ ¢

Of course not all equivalence properties are trivial. For example, the congru-
ence property

Lemma 5. ¢ ~ ¢/ = WHILE b DO ¢ ~ WHILE b DO ¢’
is a corollary of

Lemma 6.
[(WHILE b DO ¢, s) = t; ¢ ~ ¢'] = (WHILE b DO ¢/, s) =t

This lemma needs the third main proof technique for inductive definitions:
rule induction. Recall that for the big-step semantics, rule induction applies to
properties of the form (¢, s) = s’ = P ¢ s s’. To prove statements of this kind,
we are allowed to consider one case for each introduction rule, and to assume P
as an induction hypothesis for each occurrence of the inductive relation = in the
assumption of the respective introduction rule.

This concept of semantic equivalence is not only useful in phrasing correctness
statements, it also has nice algebraic properties. For instance, it forms a so-called
equivalence relation.

Definition 1 (Equivalence Relation). A relation R is called an equivalence relation
iff it is

reflexive: V. R z z,
symmetric: Vz y. Rxy — R y x, and
transitive: Ve y. Rz y — Ryz — Rz 2

Equivalence relations can be used to partition a set into sets of equivalent
elements — in this case, commands that are semantically equivalent belong to
the same partition. The standard equality = can be seen as the most fine-grained
equivalence relation for a given set.

10

Lemma 7. The semantic equivalence ~ is an equivalence relation. It is reflexive:
c ~ ¢, symmetric: ¢ ~ ¢ = ¢’ ~ ¢, and transitive:
[e~c;cd ~d"] = c~ .

Proof. All three properties are proved automatically. O

Our relation ~ is also a so-called congruence on the syntax of commands: it
respects the structure of commands — if all sub-commands are equivalent, so will
be the compound command. This why we called Lemma 5 a congruence property.
It establishes that ~ is a congruence relation w.r.t. WHILE. We can easily prove
further such rules for semicolon and IF.

We have used the concept of semantic equivalence in this section as a first
example of how semantics can be useful — to prove that two programs always
have the same behaviour. We will use this concept in later sections to show the
correctness of program transformations and optimisations.

2.4.5. Ezecution in IMP is deterministic

So far, we have proved properties about particular IMP commands and we have
introduced the concept of semantic equivalence.

We have not yet investigated properties of the language itself. One such prop-
erty is whether the language IMP is deterministic or not. A language is called
deterministic if, for every input, there is precisely one possible result state. Con-
versely, a language is called non-deterministic if it admits multiple possible re-
sults.

Having defined the semantics of the language as a relation, it is not immedi-
ately obvious if execution in this language is deterministic or not.

Formally, the language is deterministic if we compare any two executions for
the same command and will always arrive in the same final state if we start in
the same initial state. The following lemma states this in Isabelle.

Lemma 8 (IMP is deterministic).
[(c,) = t; (¢, s) =] =1t =

Proof. The proof is by induction on the big step semantics. With our inversion and
introduction rules from above, each case is then solved automatically by Isabelle.
Note that the automation in this proof is not completely obvious. Merely using
the proof method auto after the induction for instance leads to non-termination,
but the backtracking capabilities of blast manage to solve each subgoal. Exper-
imenting with different automated methods is encouraged if the standard ones
fail. O

So far, we have defined the big-step semantics of IMP, we have explored
the proof principles of derivation trees, rule inversion, and rule induction in the
context of the big-step semantics, and we have explored semantic equivalence as
well as determinism of the language. In the next section we will look at a different
way of defining the semantics of IMP.

11

2.5. Small-Step Semantics

The big-step semantics gave us the completed execution of a program from its
initial state. Short of inspecting the derivation tree of big-step introduction rules,
it did not allow us to explicitly observe intermediate execution states. For that,
we use small-step semantics.

Small-step semantics lets us explicitly observe partial executions and make
formal statements about them, for instance if we would like to talk about the
interleaved, concurrent execution of multiple programs. The main idea for repre-
senting a partial execution is to introduce the concept of how far execution has
progressed in the program. There are many ways of doing this. Traditionally, for
a high-level language like IMP, we modify the type of the big-step judgement
from com x state = state = bool to something like com X state = com X
state = bool. The second com X state component of the judgement is the result
state of one small, atomic execution step together with a modified command that
represents what still has to be executed. We call a com X state pair a configura-
tion of the program, and use the command SKIP to indicate that execution has
terminated.

The idea is easiest to understand by looking at the set of rules. They define
one atomic execution step. The execution of a command is then a sequence of
such steps.

Assign

(z == a, s) = (SKIP, s(z := aval a s))

(c1, 8) = (1, §)
(c13; ca, 8) = (e1'5; e, 8)

Seql Seq2

(SKIP;; c2, 5) — (c2,)

bval b s
(IF b THEN ¢ ELSE c2, s) — (c1, $)

IfTrue

= bval b s
(IF b THEN ¢y ELSE c2, s) — (c2, $)

IfFalse

While

(WHILE b DO ¢, s) — (IF b THEN c;; WHILE b DO ¢ ELSE SKIP, s)

Figure 3. The small-step rules of IMP.

Going through the rules in Figure 3 we see that:

e Variable assignment is an atomic step. As mentioned, we represent the
terminated program by SKIP.

e There are two rule for semicolon: either the first part is fully executed
already (signified by SKIP), then we just continue with the second part,
or the first part can be executed further, in which case we perform the
execution step and replace this first part with its result.

12

e An IF reduces either to the command in the THEN branch or the ELSE
branch, depending on the value of the condition.

e The final rule is the WHILE loop: we define its semantics by merely un-
rolling the loop once. The subsequent execution steps will take care of
testing the condition and possibly executing the body.

Note that we could have used the unrolling definition of WHILFE in the big-
step semantics as well. We were, after all, able to prove it as an equivalence in
Section 2.4.4. However, such an unfolding is less natural in the big-step case,
whereas in the small-step semantics, the whole idea is to transform the command
bit by bit to model execution.

Had we wanted to observe partial execution of arithmetic or boolean expres-
sions, we could have introduced a small-step semantics for these as well and made
the corresponding small-step rules for assignment, IF, and WHILE non-atomic
in the same style as the semicolon rules.

Transforming the program in the small-step style works elegantly, because the
language follows the structured programming principle, hence also its alternative
name structural operational semantics.

We can now define the execution of a program as the reflexive transitive
closure of the smallstep judgement —-:

abbreviation op —x* :: com X state = com X state = bool where
T —x y = star smallstep z y

Example 9. To look at an example execution of a command in the small-step
semantics, we again use the values command. This time, we will get multiple
elements in the set that it returns — all partial executions of the program. Given
the command c with

c = 1 /I = V 11 II //y// = V llxll

and an initial state s with

11,01 1,11

s=<"g":=3,"y" :=7"2" == 5>
we issue the following query to Isabelle
values {(c¢’,map t ["z" /"y 2"]) |¢' t. (¢,8) == (1)}

The result contains four execution steps, starting with the original program in the
initial state, proceeding through partial execution of the the two assignments, and
ending in the final state of the final program SKIP:

{(// "o //z// " // =V ! [37 7, 5])7
(SKIP;; "y = V” " 05,7, 5])»

Uy e V e (5,7, 5).

(SKIP, [5, 5, 5])}

As a further test whether our definition of the small-step semantics is useful,
we prove that the rules still give us a deterministic language as in the big-step
case.

13

Lemma 10. [es — ¢s’; ¢s = ¢s''] = ¢s’’ = ¢s’
Proof. After induction on the first premise (the small-step semantics), the proof
is as automatic as the big-step case. O

¥ Recall that both sides of the small-step arrow — are configurations, that is, pairs
® of commands and states. If we don’t need to refer to the individual components, we
refer to the configuration as a whole, such as cs in the lemma above.

We could conduct further tests like this, but since we already have a semantics
for IMP, we can use it to show that our new semantics defines precisely the same
behaviour. The next section does this.

2.5.1. Equivalence with big-step semantics

Having defined an alternative semantics for the same language, the first interesting
question is of course if our definitions are equivalent. This section shows a formal
proof that this is the case.

The game plan for this proof is to show both directions separately: for any
big-step execution, there is an equivalent small-step execution and vice versa.

The first direction is ¢s = t = ¢s —* (SKIP, t). We will show it by rule
induction on the big-step judgement, and we will use the following two lemmas.
Both lemmas are about the small-step semantics. The first lifts the execution of
a command into the context of a semicolon:

Lemma 11.
(c1, 8) = (c1', 8') = (c13; c2, 8) —* (c1'5; c2, 8')

Proof. The proof is by induction on the reflexive transitive closure star. The base
case is trivial by reflexivity on both sides. In the step case, we use the rule Seq2 of
the small-step semantics and the induction hypothesis with the step case of star
on the right-hand side. O

The second lemma establishes that executing two commands independently
one after the other means that we can also execute them as one compound semi-
colon command with the same result.

Lemma 12. [(c1, s1) —=* (SKIP, s3); (c2, s2) —* (SKIP, s3)]
= (c13 c2, 51) =% (SKIP, s3)

Proof. This proof is by case distinction on the first premise. In the reflexive case,
c1 is SKIP and the statement becomes trivial. In the step case, we use Lemma 11
together with transitivity of star. O

We are now ready to prove that big-step executions imply small-step execu-
tions.

Lemma 13. ¢s = t = cs —x (SKIP, t)

14

Proof. The proof is by induction on the big-step semantics. Each case is solved
automatically, instantiating the induction hypotheses for each part of the big-step
semantics and constructing the corresponding small-step execution. The semi-
colon case boils down to Lemma 12. The theory file Small-Step also contains a
long version of this proof that goes into more detail. O

The other direction of the proof is even shorter. It cannot necessarily be called
the easier direction, though, because the proof idea is less obvious. The main
statement is (¢, s) = (SKIP, t) = (¢, s) = t. Our first attempt would be rule
induction on the derivation of the reflexive transitive closure. However, it quickly
becomes clear that the statement is too specialised. If we only consider steps that
terminate in SKIP, we cannot chain them together in the induction. The trick,
as always, is to suitably generalise the statement.

In this case, if we generalise SKIP to an arbitrary ¢/, the statement does not
make sense any more, because the big-step semantics does not have any concept
of an intermediate ¢’. The key observation is that the big-step semantics always
executes the program fully and that (¢/, s’) is just an intermediate configuration
in this execution. That means, executing the ‘rest’ (¢’, s’) and executing the
original (¢, s) should give us precisely the same result in the big-step semantics.
Formally:

[(c, s) == (c, s); (¢, 8') = t] = (¢, 8) =t

If we substitute SKIP for ¢/, we get that s’ must be ¢t and we are back to what
we where out to show originally.

This new statement can now be proved by induction on the reflexive transitive
closure. We extract the step case into its own lemma:

Lemma 14 (Step case). [cs — ¢s’; ¢s’ = t] = cs = ¢

Proof. The proof is automatic after rule induction on the small-step semantics.
O

With this, we can now state the main generalised inductive lemma:

Lemma 15 (Small-step implies big-step).
[es —x cs’; e’ = t] = cs =t

Proof. As mentioned, the proof is by induction on the reflexive transitive closure,
and the step case is solved by Lemma 14. O

Our initial second direction of the proof is now an easy corollary.
Corollary 16. cs —# (SKIP, t) = cs =t

Proof. As planned, we use Lemma 15 and instantiate c¢s’ to (SKIP, t), which
collapses the second premise of Lemma 15 to True. O

Both directions together let us conclude the equivalence we were aiming for
in the first place.

15

Corollary 17. (¢, s) = t +— (¢, s) —=* (SKIP, t)

This concludes our proof that the small-step and big-step semantics of IMP
are equivalent. Such equivalence proofs are useful whenever there are different
formal descriptions of the same artefact. The reason one might want different
expressions of the same thing is that they differ in what and how they can be
used for. For instance, big-step semantics are relatively intuitive to define, while
small-step semantics allow us to make more fine-grained formal observations. The
next section shows one such kind of observation.

3. Types

This section introduces types into IMP, first a traditional programming language
type system, then more sophisticated type systems for information flow analysis.
Why bother with types? Because they prevent mistakes. They are a simple,
automatic way to find obvious problems in programs before these programs are
ever run.
There are 3 kinds of types.

The Good Static types that guarantee absence of certain runtime faults.

The Bad Static types that have mostly decorative value but do not guarantee
anything at runtime.

The Ugly Dynamic types that detect errors only when it can be too late.

Examples of the first kind are Java, ML and Haskell. In Java for instance,
the type system enforces that there will be no memory access errors, which in
other languages manifest as segmentation faults. ML and Haskell have even more
powerful type systems that can be used to enforce basic higher-level program
properties by type alone, for instance strict information hiding in modules or
abstract data types.

Famous examples of the bad kind are C and C++. These languages have static
type systems, but they can be circumvented easily. The language specification
may not even allow these circumventions, but there is no way for compilers to
guarantee their absence.

Examples for dynamic types are scripting languages such as Perl and Python.
These languages are typed, but typing violations are discovered and reported
at runtime only, which leads to runtime messages such as “TypeError: ...” in
Python for instance.

In all of the above cases, types are useful. Even in Perl and Python, they at
least are known at runtime and can be used to conveniently convert values of one
type into another and to enable object-oriented features such as dynamic dispatch
of method calls. They just don’t provide any compile-time checking. In C and
C++, the compiler can at least report some errors already at compile time and
alert the programmer to obvious problems. But only static, sound type systems
can enforce the absence of whole classes of runtime errors.

16

In fact, static type systems can be seen as proof systems, type checking as
proof checking, and type inference as proof search. Every time a type checker
passes a program, it in effect proves a set of small theorems about this programs.

The ideal for a static type system is to be permissive enough not to get into
the programmer’s way while being strong enough to achieve Robin Milner’s slogan
Well-typed programs cannot go wrong [9]. It is the most influential slogan and one
of the most influential papers in programming language theory.

What could go wrong? Some examples of common runtime errors are corrup-
tion of data, null pointer exceptions, nontermination, running out of memory, and
leaking secrets. There exist type systems for all of these, and more, but in prac-
tise only the first is covered in widely-used languages such as Java, C#, Haskell,
or ML. We will cover this first kind in Section 3.1, and information leakage in
Section 3.2.

As mentioned above, the ideal for a language is to be type safe. Type safe
means that the execution of a well-typed program cannot lead to certain errors.
Java and the JVM, for instance, have been proved to be type safe. An execution of
a Java program may throw legitimate language exceptions such as NullPointer or
OutOfMemory, but it can never produce data corruption or segmentation faults
other than by hardware defects or calls into native code. In the following sections
we will show how to prove such theorems for IMP.

Type safety is a feature of a programming language. Type soundness means
the same thing, but talks about the type system instead. It means that a type
system is sound or correct with respect to the semantics of the language: If the
type system says yes, the semantics does not lead to an error. The semantics is the
primary definition of behaviour, and therefore the type system must be justified
w.r.t. it.

If there is soundness, how about completeness? Remember Rice’s theorem:

Nontrivial semantic properties of programs (e.g. termination)
are undecidable.

Hence there is no (decidable) type system that accepts precisely the programs
that have a certain semantic property.

Automatic analysis of semantic program properties is necessarily incomplete.

This applies not only to type systems, but also to the other automatic semantic
analyses that we present here.

3.1. Typed IMP

In this section we develop a very basic static type system as a typical application of
programming language semantics. The idea is to define the type system formally
and to use the semantics for stating and proving its soundness.

The IMP language we have used so far is not well-suited for this proof, because
it has only one type of values. This is not enough for even a simple type system. To
make things at least slightly non-trivial, we invent a new language that computes
on real numbers as well as integers.

17

To define this new language, we go through the complete exercise again, and
define new arithmetic and boolean expressions, together with their values and
semantics, as well as a new semantics for commands. In the theorem prover we
can do this by merely copying the original definitions and tweaking them slightly.
Here, we will briefly walk through the new definitions step by step.

We begin with values occurring in the language. Our introduction of a second
kind of value means our value type now correspondingly has two alternatives:

datatype val = Iv int | Rv real

This definition means we tag values with their type at runtime (the constructor
tells us which is which). We do this, so we can observe when things go wrong,
for instance when a program is trying to add an integer to a real. This does not
mean that a compiler for this language would also need to carry this information
around at runtime. In fact, it is the type system that lets us avoid this overhead!
Since it will only admit safe programs, the compiler can optimise and blindly
apply the operation for the correct type. It can determine statically what that
correct type is.

¥ Note that the type real stands for the mathematical real numbers, not floating
® point numbers, just as we use mathematical integers in IMP instead of finite ma-
chine words. For the purposes of the type system this difference does not matter. For
formalising a real programming language, one should model values more precisely.

Continuing in the formalisation of our new type language, variable names and
state stay as they are, i.e. variable names are strings and the state is a function
from such names to values.

Arithmetic expressions, however, now have two kinds of constants: int and
real:

datatype aezp = Icint | Rc real | V vname | Plus aexp aexp

In contrast to vanilla IMP, we can now write arithmetic expressions that make
no sense, or in other words have no semantics. The expression Plus (Ic 1) (Rc 3)
for example is trying to add an integer to a real number. Assuming for a moment
that these are fundamentally incompatible types that cannot possibly be added,
this expression makes no sense. We would like to express in our semantics that
this is not an expression with well-defined behaviour. One alternative would be
to continue using a functional style of semantics for expressions. In this style we
would now return val option with the constructor None of the option data type
to denote the undefined cases. It is quite possible to do so, but we would have to
explicitly enumerate all undefined cases.

It is more elegant and concise to only write down the cases that make sense
and leave everything else undefined. The operational semantics judgement already
lets us do this for commands. We can use the same style for arithmetic expressions.
Since we are not interested in intermediate states at this point, we choose the
big-step style.

Our new judgement relates an expression and the state it is evaluated in to
the value it is evaluated to. We refrain from introducing additional syntax and

18

taval (Ic i) s (Iv i) taval (Rer) s (Rvu) taval (V) s (s z)

taval a1 s (v i7) taval a2 s (v ig)
taval (Plus a1 a2) s (Iv (i1 + i2))

taval a1 s (Rv 1) taval ag s (Rv ro)
taval (Plus a1 a2) s (Rv (r1 + r2))

Figure 4. Inductive definition of taval :: aezp = state = val = bool

tbval b s bv
tbval (Bc v) s v tbval (Not b) s (— bv)

tbval by s bvy thval by s bvg taval a1 s (fv i) taval ag s (Iv i)
tbval (And by ba) s (bvy A bug) tbval (Less ay ag) s (i1 < i2)

taval a1 s (Rv 1) taval ag s (Rv 12)

thval (Less a1 a2) s (r1 < r3)

Figure 5. Inductive definition of tbval :: bexp = state = bool = bool

call this judgement taval for typed arithmetic value of an expression. In Isabelle,
this translates to an inductive definition with type aexp = state = wval = bool.
We show its introduction rules in Figure 4. The term taval a s v means that
arithmetic expression a evaluates in state s to value v.

The definition is straightforward. The first rule taval (Ic) s (Iv i) for instance
says that an integer constant Ic ¢ always evaluates to the the value Iv i, no matter
what the state is. The interesting cases are the rules that are not there. For
instance, there is no rule to add a real to an int. We only needed to provide rules
for the cases that make sense and we have implicitly defined what the error cases
are. The following is an example derivation for taval where s ""z"" = Iv 4.

taval (Ic 3) s (Iv 3) taval (V "2"") s (Iv 4)
taval (Plus (Ic 3) (V "z')) s (Iv 4)

For s ""z' = Rv 3 on the other hand, there would be no execution of taval that

we could derive for the same term.

The syntax for boolean expressions remains unchanged. Their evaluation,
however, is different. In order to use the operational semantics for arithmetic
expressions that we just defined, we need to employ the same operational style for
boolean expressions. Figure 5 shows the formal definition. Next to its own error
conditions, e.g. for Less (Ic n) (Re r), this definition also propagates errors from
the evaluation of arithmetic expressions: If there is no evaluation for a then there
is also no evaluation for Less a b.

The syntax for commands is again unchanged. We now have a choice: do we
define a big-step or a small-step semantics? The answer seems clear: it must be

19

taval a s v
(z == a, s) = (SKIP, s(z := v))

(c1, 8) — (cl, §)
(SKIP;; ¢, s) — (c,) (c135 2, 8) = (1’33 ca, §)

tbval b s True

(IF b THEN ¢y ELSFE co, s) — (c1, s)
thval b s False

(IF b THEN ¢y ELSFE ca, s) — (ca2, $)

(WHILE b DO ¢, s) — (IF b THEN c;; WHILE b DO ¢ ELSE SKIP, s)

Figure 6. Inductive definition of op — :: com X state = com X state = bool

small-step semantics, because only there can we observe when things are going
wrong in the middle of an execution. In the small-step case, error states are
explicitly visible in intermediate states: if there is an error, the semantics gets
stuck in a non-final program configuration with no further progress possible. We
need executions to be able to go wrong if we want a meaningful proof that they
do not.

In fact, the big-step semantics could be adjusted as well, to perform the
same function. By default, in the style we have seen so far, a big-step semantics
is not suitable for this, because it conflates non-termination, which is allowed,
with runtime errors or undefined execution, which are not. If we mark errors
specifically and distinguish them from non-termination in the big-step semantics,
we can observe errors just as well as in the small-step case.

So we still have a choice. Small-step semantics are more concise and more
traditional for type soundness proofs. Therefore we will choose this one. Later, in
Section 4, we will show the other alternative.

After all this discussion, the definition of the small-step semantics for typed
commands is almost the same as the untyped case. As shown in Figure 6, it merely
refers to the new judgements for arithmetic and boolean expressions, but does
not add any new rules on its own.

As before, the execution of a program is a sequence of small steps, denoted
by star, for example (¢, s) —x* (¢/, s').

Example 18. For well-behaved programs, our typed executions look as before. For
instance, let s satisfy s "'y’ = v 7. Then we get the following example execution
chain.

(/lel = V //y//;; I/yll = Plus (V //x//) (V //y//)’ S) N

("y" = Plus (V "2") (V "y"), s("2" :==Tv 7)) =

(SKIP, s("z" .= Iv7,"y" := Iv 14))

However, programs that contain type errors can get stuck. For example, if in
the same state s, we take a slightly different program that adds a constant of the
wrong type, we get:

20

I'klIce: Ity I'E Rcr: Rty I'EVz:Tz

I'kFay:7 'kFao:r
I'+ Plus a1 ag : 7

Figure 7. Inductive definition of -+ -: -:: tyenv = aexp = ty = bool

("x" = VY "y = Plus (V "2") (Re 3), s) —
("y"" = Plus (V ""z") (Re 3), s("z" :=1Iv 7))

The first assignment succeed as before, but after that there there is no further
execution step possible, because we cannot find an execution for taval on the right-
hand side of the second assignment.

3.1.1. The Type System

Having defined our new language above, we can now define its type system. The
idea of such type systems is to predict statically which values will appear at
runtime and to exclude programs in which unsafe values or value combinations
might be encountered.

The type system we use for this is very rudimentary, it has only two types:
int and real, written as the constructors Ity and Rty, corresponding to the two
kinds of values we have introduced. In Isabelle, this is simply:

datatype ty = Ity | Rty

The purpose of the type system is to keep track of the type of each variable
and to allow only compatible combinations in expressions. For this purpose, we
define a so-called typing environment. Where a runtime state maps variable names
to values, a static typing environment maps variable names to their static types.

type-synonym tyenv = vname = ty

For example, we could have I" /z'/ = Ity, telling us that variable x has type integer

and that we should therefore not use it in an expression of type real.

With this, we can give typing rules for arithmetic expressions. The idea is
simple: constants have fixed type, variables have the type the typing environment
I prescribes, and Plus can be typed with type 7 if both operands have the same
type 7. Figure 7 shows the definition in Isabelle. We use the notation I' - a : ty
to say that expression a has type ty in context I.

The typing rules for booleans in Figure 8 are even simpler. We do not need
a result type, because it will always be bool, so the notation is just I + b for
expression b is well-typed in context T'. For the most part, we just need to capture
that boolean expressions are well-typed if their subexpressions are well-typed.
The interesting case is the connection to arithmetic expressions in Less. Here we
demand that both operands have the same type 7, i.e. either we compare two ints
or two reals, but not an int to a real.

Similarly, commands are well-typed if their subexpressions are well-typed.
The only non-regular case here is assignment: we demand that the arithmetic

21

|)
' Becw '+ Not b

'tk by 't by 'kay:7 I'kFag: 7
' And by bo '+ Less a1 a2

Figure 8. Inductive definition of op + :: tyenv = bexp = bool

I'Fa:T 2
I' - SKIP 'z i=a

Thep TF e TFb Thre TFe TFb TFre
TF ¢y co T F IF b THEN ¢, ELSE co T - WHILE b DO ¢

Figure 9. Inductive definition of op F :: tyenv = com = bool

expression has the same type as the variable it is assigned to. We re-use the syntax
I' F ¢ for command c is well-typed in context T.

This concludes the definition of the type system itself. Type systems can be
arbitrarily complex. The one here is intentionally simple to show the structure
of a type soundness proof without getting side tracked in interesting type system
details.

Note that there is precisely one rule per syntactic construct in our definition
of the type system, and the premises of each rule apply the typing judgement only
to sub-terms of the conclusion. We call such rule sets syntax directed. Syntax
directed rules are a good candidate for automatic application and for deriving
an algorithm that infers the type simply by applying them backwards, at least
if there are no side conditions in their assumptions. Since there is exactly one
rule per construct, it is always clear which rule to pick and there is no need for
back-tracking. Further, since there is always at most one rule application per
syntax node in the term or expression the rules are applied to, this process must
terminate. This idea can be extended to allow side conditions in the assumptions
of rules, as long as these side conditions are decidable.

Given such a type system, we can now check wether a specific program c
is well-typed. To do so, we merely need to construct a derivation tree for the
judgment I F ¢. Such a derivation tree is also called a type derivation. Let for
instance I' "z’ = Ity as well as " ''yy’/ = Ity. Then our previous example program
is well-typed, because of the following type derivation.

F ”.TN —]ty F //y// —]ty
"y = Ity L'V "z": Ity L'V 7"y Ity
L=V "y Ity L'+ Plus (V "2") (V "y : Ity
1—\ |_ /l./L'/I = V I/y// I\ l_ I/yl/ = Plus (V //:L.//) (V //y//)

F l_ //xl/ = V //y//;; l/y// = Plus (V //x//) (V //y//)

22

3.1.2. Well-typed Programs do Not Get Stuck

In this section we prove that the type system defined above is sound. As men-
tioned earlier, Robert Milner coined the phrase well-typed programs cannot go
wrong [9], i.e. well-typed programs will not exhibit any runtime errors such as
segmentation faults or undefined execution. In our small-step semantics we have
defined precisely what “go wrong” means formally: a program exhibits a runtime
error when the semantics gets stuck.

To prove type soundness we merely have to prove that well-typed programs
never get stuck. They either terminate successfully, or they make further progress.
Taken literally, the above sentence translates into the following lemma statement:

[(c, s) = (,¢'); T F] = ¢ =SKIPV (3cs”. (!, ') = ¢s")

Given an arbitrary command ¢, which is well-typed I'" F ¢, any execution
(¢, s) == (', ') either has terminated successfully with ¢/ = SKIP, or can make
another execution step Jes”. (¢, 8') — ¢s”’. Clearly, this statement is wrong,
though: take c¢ for instance to be a command that computes the sum of two
variables: z := z+y. This command is well-typed, for example, if the variables
are both of type int. However, if we start the command in a state that disagrees
with this type, e.g. where = contains an int, but y contains a real, the execution
gets stuck.

Of course, we want the value of a variable to be of type int when the typing
says it should be int. This means we want not only the program to be well-typed,
but the state to be well-typed too.

We so far have the state assigning values to variables and we have the type
system statically assigning types to variables in the program. The concept of
well-typed states connects these two: we define a judgement that determines if a
runtime state is compatible with a typing environment for variables. We call this
formal judgement styping below, written I' - s. We equivalently also say that a
state s conforms to a typing environment I'.

With this judgement, our full statement of type soundness is now

[(c, s) = (c,8'); T Fe; T Fs; ¢ # SKIP] = Jes”. (¢, 8') — es”

Given a well-typed program, started in a well-typed state, any execution that
has not reached SKIP yet can make another step.

We will prove this property by induction on the reflexive transitive closure of
execution steps, which naturally decomposes this type soundness property into
two parts: preservation and progress. Preservation means that well-typed states
stay well-typed during execution. Progress means that in a well-typed state, the
program either terminates successfully or can make one more step of execution
progress.

In the following, we formalise the soundness proof for typed IMP.

We start the formalisation by defining a function from values to types, which
will then allow us to phrase what well-typed states are. In the IMP world, this is
very simple. In more sophisticated type systems, there may be multiple types that
can be assigned to a value and we may need a compatibility or subtype relation

23

between types to define the styping judgement. In our case, we merely have to
map v values to Ity types and Rv values to Rty types:

fun type :: val = ty where
type (Iv i) = Ity
type (Rv r) = Rty

Our styping judgement for well-typed states is now very simple: for all variables,
the type of the runtime value must be exactly the type predicted in the typing
environment.

definition op :: tyenv = state = bool where
'ks «— (Vz. type (sz) =T x)

We now have everything defined to start the soundness proof. The plan is to prove
progress and preservation, and to conclude from that the final type soundness
statement that an execution of a well-typed command started in a well-typed
state will never get stuck. To prove progress and preservation for commands, we
will first need the same properties for arithmetic and boolean expressions.

Preservation for arithmetic expressions means the following: if expression a
has type 7 under environment I', if a evaluates to v in state s, and if s conforms
to I, then the type of the result v must be 7:

Lemma 19 (Preservation for arithmetic expressions).
[TFa:T;taval a sv; T+ s] = typev =1

Proof. The proof is by rule induction on the type derivation I' F a : 7. If we
declare rule inversion on taval to be used automatically and unfold the definition
of styping, Isabelle proves the rest. O

The proof of the progress lemma is slightly more verbose. It is almost the
only place where something interesting is concluded in the soundness proof —
there is the potential of something going wrong: if the operands of a Plus were
of incompatible type, there would be no value v the expression evaluates to. Of
course, the type system excludes precisely this case.

The progress statement is as standard as the preservation statement for arith-
metic expressions: given that a has type 7 under environment I', and given a
conforming state s, there must exist a result value v such that a evaluates to v
in s.

Lemma 20 (Progress for arithmetic expressions).
[TFa:7;TF s] = 3v. taval a s v

Proof. The proof is again by rule induction on the typing derivation. The interest-
ing case is Plus a1 a2. The induction hypothesis gives us two values v{ and vo for
the subexpressions a; and as. If v is an integer, then, by preservation, the type of
a1 must have been Ity. The typing rule says that the type of as must be the same.
This means, by preservation, the type of vo must be Ity, which in turn means then
vo must be an Iv value and we can conclude using the taval introduction rule
for Plus that the execution has a result. Isabelle completes this reasoning chain

24

automatically if we carefully provide it with the right facts and rules. The case
for reals is analogous, and the other typing cases are solved automatically. O

For boolean expressions, there is no preservation lemma, because tbval, by
its Isabelle type, can only return boolean values. The progress statement makes
sense, though, and follows the standard progress statement schema.

Lemma 21 (Progress for boolean expressions).
[TFbTFs] = 3v. thval b s v

Proof. As always, the proof is by rule induction on the typing derivation. The
interesting case is where something could go wrong, namely where we execute
arithmetic expressions in Less. The proof is very similar to the one for Plus: we
obtain the values of the subexpressions; we perform a case distinction on one of
them to reason about its type; we infer the other has the same type by typing rules
and by preservation on arithmetic expressions; and we conclude that execution
can therefore progress. Again this case is automatic if written carefully, the other
cases are trivial. O

For commands, there are two preservation statements, because the configu-
rations in our small-step semantics have two components: program and state. We
first show that the program remains well-typed and then that the state does. Both
proofs are by induction on the small-step semantics. They could be proved by
induction on the typing derivation as well. Often it is preferable to try induction
on the typing derivation first, because the type system typically has fewer cases.
On the other hand, depending on the complexity of the language, the more fine
grained information that is available in the operational semantics might make the
more numerous cases easier to prove in the other induction alternative. In both
cases it pays off to design the structure of the rules in both systems such that
they technically fit together nicely, for instance such that they decompose along
the same syntactic lines.

Theorem 22 (Preservation: commands stay well-typed).
[(e,s) = (c,¢); TFc]=TFC¢

Proof. The preservation of program typing is fully automatic in this simple lan-
guage. The only mildly interesting case where we are not just transforming the
program into a subcommand is the while loop. Here we just need to apply the
typing rules for IF' and sequential composition and are done. O

Theorem 23 (Preservation: states stay well-typed).
[(e,s) = (c,8); THeTHs]=TFSs

Proof. The proof is by induction on the small-step semantics. Most cases are
simple instantiations of the induction hypothesis, without further modifications to
the state. In the assignment operation, we do update the state with a new value.
Type preservation on expressions gives us that the new value has the same type,
and unfolding the styping judgement shows that it is unaffected by substitutions
that are type preserving. In more complex languages, there are likely to be a
number of such substitution cases and the corresponding substitution lemma is a
central piece of type soundness proofs. O

25

The next step is the progress lemma for commands. Here, we need to take
into account that the program might have fully terminated. If it has not, and we
have a well-typed program in a well-typed state, we demand that we can make
at least one step.

Theorem 24 (Progress for commands).
[Tk e; TFs;c# SKIP] = 3¢5’ (¢, s) = cs'

Proof. This time the only induction alternative is on the typing derivation again.
The cases with arithmetic and boolean expressions make use of the corresponding
progress lemmas to generate the values the small-step rules demand. For IF, we
additionally perform a case distinction for picking the corresponding introduction
rule. As for the other cases: SKIP is trivial, sequential composition just applies
the induction hypotheses and makes a case distinction if ¢; is SKIP or not, and
WHILE always trivially makes progress in the small-step semantics, because it is
unfolded into an IF'/ WHILE. O

All that remains is to assemble the pieces into the final type soundness state-
ment: given any execution of a well-typed program started in a well-typed state,
we are not stuck; we have either terminated successfully, or the program can
perform another step.

Theorem 25 (Type soundness).
[(c, s) = (c,¢'); T Fe; T F s ¢ # SKIP] = Je¢s”. (¢, 8') — es”’

Proof. The proof lifts the one-step preservation and progress results to a sequence
of steps by induction on the reflexive transitive closure. The base case of zero
steps is solved by the progress lemma, the step case needs our two preservation
lemmas for commands. O

This concludes the section on typing. We have seen, exemplified by a very
simple type system, what a type soundness statement means, how it interacts
with the small-step semantics, and how it is proved. While the proof itself will
grow in complexity for more interesting languages, the general schema of progress
and preservation remains.

For the type soundness theorem to be meaningful, it is important that the
failures the type system is supposed to prevent are observable in the semantics,
so that their absence can be shown. In a framework like the above, the definition
of the small-step semantics carries the main meaning and strength of the type
soundness statement.

Our mantra for type systems:

Type systems have a purpose: the static analysis of programs in order to predict
their runtime behaviour. The correctness of this prediction must be provable.

26

8.2. Security Type Systems

In the previous section we have seen a simple static type system with soundness
proof. However, type systems can be used for more than the traditional concepts
of integers, reals, etc. In theory, type systems can be arbitrarily complex logical
systems used to statically predict properties of programs. In the following, we
will look at a type system that aims to enforce a security property: the absence
of information flows from private data to public observers. The idea is that we
want an easy and automatic way to check if programs protect private data such
as passwords, bank details, or medical records.

Ensuring such information flow control properties based on a programming
language analysis such as a type system is a part of so-called language-based se-
curity. Another common option for enforcing information flow control is the use
of cryptography to ensure the secrecy of private data. Cryptography only admits
probabilistic arguments (one could always guess the key), whereas language-based
security also allows more absolute statements. As techniques they are not incom-
patible: both approaches could be mixed to enforce a particular information flow
property.

Note that absolute statements in language-based security are always with
respect to assumptions on the execution environment. For instance, our proof
below will have the implicit assumption that the machine actually behaves as
our semantics predicts. There are practical ways in which these assumptions can
be broken or circumvented: intentionally introducing hardware-based errors into
the computation to deduce private data, direct physical observation of memory
contents, deduction of private data by analysis of execution time, and more. These
attacks make use of details that are not visible on the abstraction level of the
semantic model our proof is based on — they are covert channels of information
flow.

8.2.1. Security Levels and Ezxpressions

We begin developing our security type system by defining security levels. The idea
is that each variable will have an associated security level. The type system will
then enforce the policy that information may only flow from variables of ‘lower’
security levels to variables of ‘higher’ levels, but never the other way around.

In the literature, levels are often reduced to just two: high and low. We
keep things slightly more general by making levels natural numbers. We can
then compare security levels by just writing < and we can compute the maximal
or minimal security level of two different variables by taking the maximum or
minimum respectively. The term [< I’ in this system would mean that [is less
private or confidential than I’, so level 0 could be equated with ‘public’.

It would be easily possible to generalise further and just assume a lattice of
security levels with <, join, and meet operations. We could then also enforce that
information does not travel ‘sideways’ between two incomparable security levels.
For the sake of simplicity we refrain from doing so here and merely use nat.

type-synonym level = nat

27

For the type system and security proof below it would be sufficient to merely
assume the existence of a HOL constant that maps variables to security levels.
This would express that we assume each variable to possess a security level and
that this level remains the same during execution of the program.

For the sake of showing examples — the general theory does not rely on it!
—, we arbitrarily choose a specific function for this mapping: a variable of length
n has security level n.

The kinds of information flows we would like to avoid are exemplified by the
following two:

e explicit: low := high
e implicit: IF highl < high2 THEN low := O ELSE low := 1

The property we are after is called noninterference: a variation in the value of
high variables should not interfere with the computation or values of low variables.
‘High should not interfere with low.’

More formally, a program c guarantees noninterference iff for all states s
and sg: if s1 and s9 agree on low variables (but may differ on high variables!),
then the states resulting from executing (¢, s1) and (¢, s2) must also agree on
low variables.

As opposed to our previous type soundness statement, this definition com-
pares the outcome of two executions of the same program in different, but re-
lated initial states. It requires again potentially different, but equally related final
states.

With this in mind, we proceed to define the type system that will enforce this
property. We begin by computing the security level of arithmetic and boolean
expressions. We are interested in flows from higher to lower variables, so we define
the security level of an expression as the highest level of any variable that occurs
in it. We make use of Isabelle’s overloading and call the security level of an
arithmetic or boolean expression sec e.

fun sec :: aexp = level where

sec (N n) =0

sec (V) = sec x

sec (Plus a1 a2) = max (sec ay) (sec a2)

fun sec :: bexp = level where

sec (Bc v) =0

sec (Not b) = sec b

sec (And by ba) = max (sec by) (sec ba)
(

sec (Less a1 az) = max (sec ay) (sec a2)

A first lemma indicating that we are moving into the right direction will be that
if we change the value of only variables with a higher level than sec e, the value
of e should stay the same.

To express this property, we introduce notation for two states agreeing on the
value of all variables below a certain security level. The concept is light-weight
enough that a syntactic abbreviation is sufficient and avoids us having to go
through the motions of setting up additional proof infrastructure.

We will need <, but also the strict < later on, so we define both here:

28

sec a < sec x I < secrz I+ I co

I+ SKIP lFza=a IF ey co
maz (sec b) I F ¢1 maz (sec b) I+ ¢y maz (sec b) 1+ ¢
I+ IF b THEN ¢; ELSE ¢ I+ WHILE b DO ¢

Figure 10. Definition of sectype :: nat = com = bool
s=¢ (£l)=Vz.secz<l—sx=5=z
s(<l)=Vzr.secx<l— sz !

s'x
With this, the proof of our first two security properties is simple and automatic:
The evaluation of an expression e only depends on variables with level below or
equal to sec e.

Lemma 26 (Noninterference for arithmetic expressions).
[s1 = s2 (K 1); sec e <] = aval e s1 = aval e 59

Lemma 27 (Noninterference for boolean expressions).
[s1 = s2 (£ 1); secb <] = bval b s1 = bval b s2

8.2.2. Syntax Directed Typing

As usual in IMP, the typing for expressions was simple. We now define a syntax
directed set of security typing rules for commands. This makes the rules directly
executable and allows us to run examples. Checking for explicit flows, i.e. assign-
ments from high to low variables is easy. For implicit flows, the main idea of the
type system is to track the security level of variables that decisions are made on,
and to make sure that their level is lower or equal to variables assigned to in that
context.

We write [F ¢ to mean that command ¢ contains no information flows to
variables lower than level I, and only safe flows into variables > .

Going through the rules of Figure 10 in detail, we have defined SKIP to be safe
at any level. We have have defined assignment to be safe if the level of x is higher
than or equal to the level of the information source a, but lower than or equal to 1.
For semicolon to conform to a level [, we just recursively demand that both parts
conform to the same level [. As previously shown in the motivating example, the
IF command could admit implicit flows. We prevent these by demanding that for
IF to conform to I, both ¢; and ¢o have to conform to level [or the level of the
boolean expression, whichever is higher. We can conveniently express this with
the maximum operator maxz. The WHILFE case is similar to an IF: the body must
have at least the level of b and of the whole command.

Using the maz function makes the type system executable if we tell Isabelle
to treat the level and the program as input to the predicate.

Example 28. Testing our intuition about what we have just defined, we look at
four examples for various security levels.

OF IF Less (V ""21”) (V ""z’") THEN ""z1" ::= N0 ELSE SKIP

29

The statement claims that the command is well-typed at security level 0: flows can
occur down to even a level 0 variable, but they have to be internally consistent,
i.e. flows must still only be from lower to higher levels. According to our arbitrary
example definition of security levels that assigns the length of the variable to the
level, variable z1 has level 2, and variable x has level 1. This means the evaluation
of this typing expression will yield True: the condition has level 2, and the context
s 0, so according to the IF rule, both commands must be safe up to level 2, which
is the case, because the first assignment sets a level 2 variable, and the second is
just SKIP.
Does the same work if we assign to a lower-level variable?

0+ IF Less (V "'21") (V "&") THEN """ := N 0 ELSE SKIP

Clearly not. Again, we need to look at the IF rule which still says the assignment
must be safe at level 2, i.e. we have to derive 2 & ""z'" ::= N 0. But z is of level
1, and the assignment rule demands that we only assign to levels higher than the
context. Intuitively, the IF decision expression reveals information about a level
2 variable. If we assign to a level 1 variable in one of the branches we leak level
2 information to level 1.

What if we demand a higher security context from our original example?

2+ IF Less (V ""21”) (V ""2") THEN 21" := N0 ELSE SKIP

Context of level 2 still works, because our highest level in this command is level
2, and our arguments from the first example still apply.
What if we go one level higher?

3+ IF Less (V "a1') (V ""z") THEN "21"” := N 0 ELSE SKIP

Now we get False, because we need to take the mazximum of the context and the
boolean expression for evaluating the branches. The intuition is that the context
gives the minimum level to which we may reveal information.

As we can already see from these simple examples, the type system is not
complete: it will reject some safe programs as unsafe. For instance, if the value of
z in the second command was already 0 in the beginning, the context would not
have mattered, we only would have overwritten 0 with 0. As we know by now, we
should not expect otherwise. The best we can hope for is a safe approximation
such that the false alarms are hopefully programs that rarely occur in practise or
that can be rewritten easily.

It is the case that the simple type system presented here, going back to
Volpano, Irvine, and Smith [18], has been criticised as too restrictive. It excludes
too many safe programs. This can be addressed by making the type system more
refined, more flexible, and more context aware. For demonstrating the type system
and its soundness proof here, however, we will stick to its simplest form.

3.2.8. Soundness

We introduced the correctness statement for this type system as noninterference:
two executions of the same program started in related states end up in related

30

states. The relation in our case is that the values of variables below security level
[are the same. Formally, this is the following statement

[(c,s) =8 (c, t) =t 0k c;s=t(K)]= s =t (<1

An important property, which will be useful for this lemma, is the so-called
anti-monotonicity of the type system: a command that is typeable in [is also
typeable in any level smaller than [. Anti-monotonicity is also often called the
subsumption rule, to say that higher contexts subsume lower ones. Intuitively it
is clear that this property should hold: we defined [F ¢ to mean that there are no
flows to variables < [. If we write I’ F ¢ with an I’ < [, then we are only admitting
more flows, i.e. we are making a weaker statement.

Lemma 29 (Anti-monotonicity). [l F ¢; ' <] = 1I'F ¢

Proof. The formal proof is by rule induction on the type system. Each of the cases
is then solved automatically. O

The second key lemma in the argument for the soundness of our security
type system is confinement: an execution that is type correct in context [can
only change variables of level | and above, or conversely, all variables below [will
remain unchanged. In other words, the effect of ¢ is confined to variables of level
> 1

Lemma 30 (Confinement). [(¢, s) = ¢; I F ¢] = s =1t (<)

Proof. The first instinct may be to try rule induction on the type system again,
but the WHILE case will only give us an induction hypothesis about the body
when we will have to show our goal for the whole loop. Therefore, we choose rule
induction on the big-step execution instead. In the [F and WHILE cases, we make
use of anti-monotonicity to instantiate the induction hypothesis. In the IfTrue
case, for instance, the hypothesisis [F ¢; = s = ¢ (<), but from the type sys-
tem we only know maz (sec b) I+ ¢1. Since I < maz (sec b) [, anti-monotonicity
allows us to conclude | F ¢y. O

With these two lemmas, we can start the main noninterference proof.

Theorem 31 (Noninterference).
[(c,s) = §5(c, t) =t;0Fc;s=t (<] = s =t (<]

Proof. The proof is again by induction on the big-step execution. The SKIP case
is easy and automatic, as it should be.

The assignment case is already somewhat interesting. First, we note that s’ is
the usual state update s(z := aval a s) in the first big-step execution. We perform
rule inversion for the second execution to get the same update for t. We also
perform rule inversion on the typing statement to get the relationship between
security levels of x and a: sec a < sec . Now we show that the two updated
states s’ and ¢’ still agree on all variables below [. For this, it is sufficient to show
that the states agree on the new value if sec z < [, and that all other variables y
with sec y < [still agree as before. In the first case, looking at z, we know from

31

above that sec a < sec x. Hence, by transitivity, we have that sec a < I. This is
enough for our noninterference result on expressions to apply, given that we also
know s = t (< I) from the premises. This means, we get aval a s = aval a t:
the new values for z agree as required. The case for all other variables y below [
follows directly from s = ¢ (< 1).

In the semicolon case, we merely need to compose the induction hypotheses.
This is solved automatically.

IF has two symmetric cases as usual. We will look only at the IfTrue case in
more detail. We begin the case by noting via rule inversion that both branches
are type correct to level sec b, since the maximum with 0 is the identity, i.e. we
know sec b F c¢1. Then we perform a case distinction: either the level of b is < [
or it is not. If sec b < [, i.e. the IF decision is on a more public level than I,
then s and ¢, which agree below [, also agree below sec b. That in turn means by
our noninterference lemma for expressions that they evaluate to the same result,
so bval b s = True and bval b t = True. We already noted sec b - ¢ by rule
inversion, and with anti-monotonicity, we get the necessary 0 F ¢1 to apply the
induction hypothesis and conclude the case. In the other case, if [< sec b, i.e. a
condition on a more confidential level than [we do not know that both IF com-
mands will take the same branch. However, we do know that the whole command
is a high-confidentiality computation. We can use the typing rule for IF' to con-
clude sec b + IF b THEN ¢y ELSE co since we know both maz (sec b) 0 F ¢;
and maz (sec b) 0 F co. This in turn means we now can apply confinement: ev-
erything below sec b will be preserved — in particular the state of variables up to
[. This is true for ¢ to ¢’ as well as s to s’. Together with the initial s = ¢ (< 1),
we can conclude s’ = t' (< I) which closes the whole IfTrue case.

The IfFalse and WhileFalse cases are analogous. Either the conditions evalu-
ate to the same value and we can apply the induction hypothesis, or the security
level is high enough such that we can apply confinement.

Even the WhileTrue case is similar. Here, we have to work slightly harder to
apply the induction hypotheses, once for the body and once for the rest of the
loop, but the confinement side of the argument stays the same. O

83.2.4. The Standard Typing System

The judgement [F ¢ presented above is nicely intuitive and executable. How-
ever, the standard formulation in the literature is slightly different, replacing the
maximum computation directly with the anti-monotonicity rule. We introduce
the standard system now in Figure 11 and show equivalence with our previous
formulation.

The equivalence proof goes by rule induction on the respective type system
in each direction separately. Isabelle proves each subgoal of the induction auto-
matically.

Lemma 32. |F¢c = [FH ¢
Lemma33. [H ¢ = [l ¢

32

sec a < sec x [< secx

I+ SKIP IH zu=a
IH ¢ IH co sec b <1 IH ¢ IH co
IH c135 ¢ I+ IF b THEN ¢y ELSE co
sechb <l IF ¢ IH ¢ <1
I F WHILE b DO ¢ U'H ¢

Figure 11. Definition of sectype’ :: nat = com = bool

sec a < sec T Fep:ly Foeo:lg

F SKIP : 1 Fzi=a:sexz Foc1;; c9 i min ly g
sec b < min ly Iy Fep:ly Foco:ly sec b <1 Fe:l
F IF b THEN ci1 ELSE co : min 1y Iy F WHILE b DO ¢ : 1

Figure 12. Definition of the bottom-up security type system.

3.2.5. A Bottom-Up Typing System

The type systems presented above are top-down systems: the level [is passed
from the context or the user and is checked at assignment commands. We can also
give a bottom-up formulation where we compute the smallest [consistent with
variable assignments and check this value at IF and WHILE commands. Instead
of max computations, we now get min computations in Figure 12.

We can read the bottom-up statement - ¢ : [as ¢ has a write-effect of I,
meaning that no variable below [is written to in c.

Again, we can prove equivalence. The first direction is straightforward and
the proof is automatic.

Lemma34. Fc: |l = [FH ¢

The second direction needs more care. The statement [H ¢ = F ¢ : [is
not true, Isabelle’s nitpick tool quickly finds a counter example:

OF "z = NO,but =+ "2" == NO:0

The standard formulation admits anti-monotonicity, the computation of a min-
imal [does not. If we take this discrepancy into account, we get the following
statement that is then again proved automatically by Isabelle.

Lemma 35. [H ¢ = 3JU'>l.Fc: U

3.2.6. What about termination?

In the previous section we proved the following security theorem (Theorem 31):
[(e,s) =55 (e, t) =t 0Fc;s=t (<)==t (L]

33

We read it as: If our type system says yes, our data is safe: there will be no
information flowing for high to low variables.

Is this correct? The formal statement is certainly true, we proved it in Isabelle.
But: it doesn’t quite mean what the sentence above says. It means only precisely
what the formula states: given two terminating executions started in states we
can’t tell apart, we won’t be able to tell apart their final states.

What if we don’t have two terminating executions? Consider, for example,
the following typing statement.

0 - WHILE Less (V "'z'") (N 1) DO SKIP

This is a true statement, the program is type correct at context level 0.
Our noninterference theorem holds. Yet, the program still leaks information: the
program will terminate if and only if the higher-security variable z (of level 1)
is not 0. We can infer information about the contents of a secret variable by
observing termination.

This is also called a covert channel, that is, an information flow channel that
is not part of the security theorem or even the security model, and that therefore
the security theorem does not make any claims about.

In our case, termination is observable in the model, but not in the theorem,
because it already assumes two terminating executions from the start. An exam-
ple of a more traditional covert channel is timing. Consider the standard strcmp
function in C that compares two strings: it goes through the strings from left to
right, and terminates with false as soon as two characters are not equal. The more
characters are equal in the prefix of the strings, the longer it takes to execute
this function. This time can be measured and the timing difference is significant
enough to be statistically discernible even over network traffic. Such timing at-
tacks can even be effective against widely deployed cryptographic algorithms, for
instance as used in SSL [2].

Covert channels and the strength of security statements are the bane of se-
curity proofs. The literature is littered with the bodies of security theorems that
have been broken, either because their statement was weak, their proof was wrong,
or because the model made unreasonably strong assumptions, i.e. admitted too
many obvious covert channels.

Conducting security proofs in a theorem prover only helps against one of
these: wrong proofs. Strong theorem statements and realistic model assumptions,
or at least explicit model assumptions, are still our own responsibility.

So what can we do to fix our statement of security? For one, we could prove
separately, and manually, that the specific programs we are interested in always
terminate. Then the problem disappears. Or we could strengthen the type system
and its security statement. The key idea is: WHILE conditions must not depend
on confidential data. If they don’t, then termination cannot leak information.

In the following, we formalise and prove this idea.

Formalising our idea means we replace the WHILFE-rule with a new one that
does not admit anything higher than level 0 in the condition:

secb =0 OF ¢
0O+ WHILE b DO ¢

34

sec a < sec x I < secrz I+ I co

I+ SKIP lFza=a IF ey co
maz (sec b) I F ¢ maz (sec b) I+ co secb=0 OFc
I+ IF b THEN ¢ ELSE co 0+ WHILE b DO ¢

Figure 13. Termination-sensitive security type system.

This is already it. Figure 13 shows the full set of rules, putting the new one
into context.

We now need to change our noninterference statement such that it takes ter-
mination into account. The interesting case was where one execution terminated
and the other didn’t. If both executions terminate, our previous statement already
applies, if both do not terminate then there is no information leakage, because
there is nothing to observe.! So, since our statement is symmetric, we now assume
one terminating execution, a well-typed program of level 0 as before, and two
start states that agree up to level [, also as before. We then have to show that the
other execution also terminates and that the final states still agree up to level L

[(c,s) =850k c;s=t (<D= 3. (¢, t) =>t' Ns' =1 (<]

We build up the proof of this new theorem in the same way as before. The
first property is again anti-monotonicity, which still holds.

Lemma 36 (Anti-monotonicity).
el <l]=1ltec

Proof. The proof is by induction on the typing derivation. Isabelle then solves
each of the cases automatically. O

Our confinement lemma is also still true.

Lemma 37 (Confinement).
[(c, s) =t ik] = s=¢t(<])

Proof. The proof is the same as before, first by induction on the big-step exe-
cution, then by using anti-monotonicity in the IF' cases, and automation on the
rest. O

Before we can proceed to noninterference, we need one new fact about the new
type system: any program that is type correct, but not at level 0 (only higher),
must terminate. Intuitively that is easy to see: WHILFE loops are the only cause of
potential nontermination, and they can now only be typed at level 0. This means,
if the program is type correct at some level, but not at level 0, it does not contain
WHILE loops.

Lemma 38 (Termination).
[lFcl#0 = 3t (¢, s) =t

INote that if our programs had output, this case might leak information as well.

35

Proof. The formal proof of this lemma does not directly talk about the occurrence
of while loops, but encodes the argument in a contradiction. We start the proof
by induction on the typing derivation. The base cases all terminate trivially, and
the step cases terminate because all their branches terminate in the induction
hypothesis. In the WHILFE case we have the contradiction: our assumption says
that [# 0, but the induction rule instantiates [with 0, and we get 0 # 0. O

Equipped with these lemmas, we can finally proceed to our new statement of
noninterference.

Theorem 39 (Noninterference).
[(c,s)=8;0Fc¢;s=t ()] =3Ft'. (¢, t) =t AN =t (<)

Proof. The proof is similar to the termination-insensitive case, it merely has to
additionally show termination of the second command. For SKIP, assignment, and
semicolon this is easy, the first two because they trivially terminate, the second,
because Isabelle can put the induction hypotheses together automatically.

The IF case is slightly more interesting. If the condition does not depend
on secret variables, the induction hypothesis is strong enough for us to conclude
the goal directly. However, if the condition does depend on secret variables, i.e.
= sec b < [, we make use of confinement again, as we did in our previous proof.
However, we first have to show that the second execution terminates, i.e. that a
final state exists. This follows from our termination lemma and the fact that if
the security level sec b is greater than [, it cannot be 0. The rest goes through as
before.

The WHILE case becomes easier than in our previous proof. Since we know
from the typing statement that the boolean expression does not contain any high
variables, we know that the loops started in s and ¢ will continue to make the
same decision whether to terminate or not. That was the whole point of our type
system change. In the WhileFalse case that is all that is needed, in the WhileTrue
case, we can make use of this fact to access the induction hypothesis: from the
fact that the loop is type correct at level 0, we know by rule inversion that 0 - c.
We also know, by virtue of being in the WhileTrue case, that bval b s, (¢, s) =
s, and (w, s'") = s'. We now need to construct a terminating execution of the
loop starting in ¢, ending in some state ¢’ that agrees with s’ below 1. We start
by noting bval b t using noninterference for boolean expressions. Per induction
hypothesis we conclude that there is a ¢’ with (¢, t) = ¢/ that agrees with s’
below [. Using the second induction hypothesis, we repeat the process for w, and
conclude that there must be such a ¢’ that agrees with s’ below L O

The predicate [F ¢ is phrased to be executable. The standard formulation,
however, is again slightly different, replacing the maximum computation by the
anti-monotonicity rule. Figure 14 introduces the standard system.

As before, we can show equivalence with our formulation.

Lemma 40 (Equivalence to standard formulation).
IlFe +— IH ¢

36

seca < secx |<serz IH ¢ IH ¢o

I+ SKIP IHz:=a IH c13 e
sec b <1 IH ¢ IF co sec b =0 0 ¢
I+ IF b THEN ¢y ELSE c» 0+ WHILE b DO c
IH ¢ U<l
'+ ¢

Figure 14. Termination-sensitive security type system — standard formulation.

Proof. As with the equivalence proofs of different security type system formula-
tions in previous sections, this proof goes first by considering each direction of
the if-and-only-if separately, and then by induction on the type system in the
assumption of that implication. As before, Isabelle then proves each sub case of
the respective induction automatically. O

3.83. Summary and Further Reading

In this section we have analysed two kinds of type systems: a standard type
system that tracks types of values and prevents type errors at run time, and a
security type system that prevents information flow from higher-level to lower-
level variables.

Sound, static type systems enjoy widespread application in popular program-
ming languages such as Java, C#, Haskell, and ML, but also on low-level lan-
guages such as the Java Virtual Machine and its bytecode verifier [8]. Some of
these languages require types to be declared explicitly, such as in Java. In other
languages, such as Haskell, these declarations can be left out, and types are in-
ferred automatically.

The purpose of type systems is to prevent errors. In essence, a type derivation
is a proof, which means type checking performs basic automatic proofs about
programs.

The second type system we explored ensured absence of information flow. The
field of language-based security is substantial [15]. As mentioned, the type system
and the soundness statement in the sections above go back to Volpano, Irvine, and
Smith [18]. While language-based security had been investigated before Volpano
et al, they were the first to give a security type system with a soundness proof that
expresses the enforced security property in terms of the standard semantics of
the language. As we have seen, such non-trivial properties are comfortably within
the reach of machine-checked interactive proof. Our type system deviated a little
from the standard presentation of Volpano et al: we derive anti-monotonicity as a
lemma, whereas Volpano, Irvine, and Smith have it as a typing rule. In exchange,
they can avoid an explicit max calculation. We saw that our syntax directed form
of the rules is equivalent and allowed us to execute examples. We also mentioned
that our simple security levels based on natural numbers can be generalised to
arbitrary lattices. This observation goes back to Denning [4].

A popular alternative to security type systems is dynamic tracking of infor-
mation flows, or so-called taint analysis [17]. It has been long-time folklore in the

37

field that static security analysis of programs must be more precise than dynamic
analysis, because dynamic (run-time) analysis can only track one execution of the
program at a time, whereas the soundness property of our static type system for
instance compares two executions. Many dynamic taint analysis implementations
to date do not track implicit flows. Sabelfeld and Russo showed for termination-
insensitive noninterference that this is not a theoretical restriction, and dynamic
monitoring can in fact be more precise than the static type system [16]. However,
since their monitor essentially turns implicit flow-violations into non-termination,
the question is still open for the more restrictive termination-sensitive case. For
more sophisticated, so-called flow-sensitive type systems, the dynamic and static
versions are incomparable: there are some programs where purely dynamic flow-
sensitive analysis fails, but the static type system succeeds, and the other way
around [14].

The name non-interference was coined by Goguen and Meseguer [5], but the
property goes back further to Ellis Cohen who called its inverse Strong Depen-
dency [3]. The concept of covert information flow channels already precedes this
idea [7]. Non-interference can be applied beyond language-based security, for in-
stance by directly proving the property about a specific system. This is interesting
for systems that have inherent security requirements and are written in low-level
languages such as C or in settings where the security policy cannot directly be
attached to variables in a program. Operating systems are an example of this
class, where the security policy is configurable at runtime. It is feasible to prove
such theorems in Isabelle down to the C code level: the sel.4 microkernel is an
operating system kernel with such a non-interference theorem in Isabelle [11].

4. Program Analysis

Program analysis, also known as static analysis, describes a whole field of tech-
niques for the static (i.e. compile-time) analysis of programs. Most compilers or
programming environments perform more or less ambitious program analyses.
The two most common objectives are the following;:

Optimisation The purpose is to improve the behaviour of the program, usually
by reducing its running time or space requirements.

Error detection The purpose is to detect common programming errors that lead
to runtime exceptions or other undesirable behaviour.

Program optimisation is a special case of program transformation (for example for
code refactoring) and consists of two phases: the analysis (to determine if certain
required properties hold) and the transformation.

There are a number of different approaches to program analysis that employ
different techniques to achieve similar aims. In the previous section we used type
systems for error detection. In this section we employ what is known as data-flow
analysis. We study two analyses (and associated transformations):

38

1. Definite initialisation analysis determines if all variables have been ini-
tialised before they are read. This falls into the category of error detection
analyses. There is no transformation.

2. Constant folding is an optimisation that tries to replace variables by con-
stants. For example, the second assignment in x := 1; y := x can be
replaced by the (typically faster) y := 1.

Throughout this section we continue the naive approach to program analysis
that ignores boolean conditions. That is, we treat them as nondeterministic: we
assume that both values are possible every time the conditions are tested. More
precisely, our analyses are correct w.r.t. a (big or small-step) semantics where we
have simply dropped the preconditions involving boolean expressions from the
rules, thus resulting in a nondeterministic language.

Limitations

Program analyses, no matter what techniques they employ, are always limited.
This is a consequence of Rice’s Theorem from computability theory. It roughly
tells us that Nontrivial semantic properties of programs (e.g. termination) are
undecidable. That is, no semantic property P has a magic analyser that

e terminates on every input program,
e only says Yes if the input program has property P (correctness),
e only says No if the input program does not have property P (completeness).

For concreteness, let us consider definite initialisation analysis of the following
program:

FOR ALL positive integers x, y, z, n DO
IFn>2 A x* + y* =2z" THEN u := u ELSE SKIP

For convenience we have extended our programming language with a FOR ALL
loop and an exponentiation operation: both could be programmed in pure IMP,
although it would be painful. The program searches for a counterexample to
Fermat’s conjecture that no three positive integers x, y, and z can satisfy the
equation x* + y* = z" for any integer n > 2. It reads the uninitialised variable
u (thus violating the definite initialisation property) iff such a counterexample
exists. It would be asking a bit much from a humble program analyser to determine
the truth of a statement that was in the Guinness Book of World Records for
“most difficult mathematical problems” prior to its 1995 proof by Wiles.

As a consequence, we cannot expect program analysers to terminate, be cor-
rect and be complete. Since we do not want to sacrifice termination and correct-
ness, we sacrifice completeness: we allow analysers to say No although the pro-
gram has the desired semantic property but the analyser was unable to determine
that.

4.1. Definite Initialisation Analysis
The first program analysis we investigate is called definite initialisation. The

Java Language Specification has the following to say on definite initialisation. [6,
chapter 16, p. 527]

39

Each local variable [...] must have a definitely assigned value when any access
of its value occurs. [...] A compiler must carry out a specific conservative
flow analysis to make sure that, for every access of a local variable [...] f, f
is definitely assigned before the access; otherwise a compile-time error must
occur.

Java was the first mainstream language to force programmers to initialise their
variables.

In most programming languages, objects allocated on the heap are automat-
ically initialised to zero or a suitable default value, but local variables are not.
Uninitialised variables are a common cause of program defects that are very hard
to find. A C program for instance, that uses an uninitialised local integer variable
will not necessarily crash on the first access to that integer. Instead, it will read
the value that is stored there by accident. On the developer’s machine and oper-
ating system that value may happen to be zero and the defect will go unnoticed.
On the user’s machine, that same memory may contain different values left over
from a previous run or from a different application. What is more, this random
value might not directly lead to a crash either, but only cause misbehaviour at a
much later point of execution, leading to bug reports that are next to impossible
to reproduce for the developer.

Removing the potential for such errors automatically is the purpose of the
definite initialisation analysis.

Consider the following example with an already initialised x.

y +1

IFx<1THENy :=x ELSEy :=x + 1; y :
X; y :i=y +1

IF x <xTHENy :=y + 1 ELSE y :=

The first line is clearly fine: in both branches of the IF, y gets initialised before it
is used in the statement after. The second line is also fine: even though the True
branch uses y where it is potentially uninitialised, we know that the True branch
can never be taken. However, we only know that, because we can prove that x <
x will always be False.

What about the following example? Assume x and y are initialised.

WHILE x < y DO z :=x; z :=z + 1

Here it depends: if x < y, the program is fine (it will never terminate, but at least
it does so without using uninitialised variables), but if x < y is not the case, the
program is unsafe. So, if our goal is to reject all potentially unsafe programs, we
have to reject this one.

As mentioned in the introduction, we do not analyse boolean expressions
statically to make predictions about program execution. Instead we take both
potential outcomes into account. This means, the analysis we are about to develop
will only accept the first program, but reject the other two.

Java is more discerning in this case, and will perform the optimisation of
constant folding, which we discuss in Section 4.2, before definite initialisation
analysis. If during that pass it turns out an expression is always True or always
False, this can be taken into account. This is a nice example of positive interaction

40

between different kinds of optimisation and program analysis, where one enhances
the precision and predictive power of the other.

As discussed, we cannot hope for completeness of any program analysis, so
there will be cases of safe programs that are rejected. For this specific analysis,
this is usually the case when the programmer is smarter than the boolean constant
folding the compiler performs. As with any restriction in a programming lan-
guage, some programmers will complain about the shackles of definite initialisa-
tion analysis, and Java developer forums certainly contain such complaints. Com-
pletely eliminating this particularly hard-to-find class of Heisenbugs well justifies
the occasional program refactoring, though.

In the following sections, we construct our definite initialisation analysis,
define a semantics where initialisation failure is observable, and then proceed to
prove the analysis correct by showing that these failures will not occur.

4.1.1. Definite Initialisation

The Java Language Specification quotes a number of rules that definite initial-
isation analysis should implement to achieve the desired result. They have the
following from (adjusted for IMP):

Variable z is definitely initialised after SKIP
iff = is definitely initialised before SKIP.

Similar statements exist for each each language construct. Our task is simply
to formalise them. Each of these rules talks about variables, or more precisely sets
of variables. For instance, to check an assignment statement, we will want to start
with a set of variables that is already initialised, we will check that set against
the set of variables that is used in the assignment expression, and we will add the
assigned variable to the initialised set after the assignment has completed.

So, the first formal tool we need is the set of variables mentioned in an
expression. The Isabelle theory Vars provides an overloaded function wvars for
this:

fun vars :: aexp = wvname set where
vars (N n) ={}
vars (V) {z}

vars (Plus a1 ag) = vars a1 U vars ag

fun vars :: bexp = wvname set where
vars (Bc v) ={}

vars (Not b) = vars b

vars (And by ba) = vars by U vars b
vars (Less a1 ag) = vars a; U vars ag

With this we can define our main definite initialisation analysis. The purpose is
to check whether each variable in the program is assigned to before it is used.
This means we ultimately want a predicate of type com = bool, but we have

41

vars a C A
D A SKIP A D A (z == a) (insert z A)
D Aq c¢1 Ao D Ay co Az
D Ay (c13; c2) A3
vars b C A DA c A D A ¢y Ao
D A (IF b THEN ¢ ELSE ¢3) (A1 N Ag)
vars b C A DAc¢A
D A (WHILE b DO ¢) A

Figure 15. Definite initialisation D :: vname set = com = vname set = bool

already seen in the examples that we need a slightly more general form for the
computation itself. In particular, we carry around a set of variables that we know
are definitely initialised at the beginning of a command. The analysis then has to
do two things: check wether the command only uses these variables, and produce
a new set of variables that we know are initialised afterwards. This leaves us with
the following type signature:

D :: vname set = com = vname set = bool
We want the notation D A ¢ A’ to mean:

If all variables in A are initialised before ¢ is executed, then no uninitialised
variable is accessed during execution, and all variables in A" are initialised
afterwards.

Figure 15 shows how we can inductively define this analysis with one rule per
syntactic construct. We walk through them step by step:

e The SKIP rule is obvious, and translates exactly the text rule we have
mentioned above.

e Similarly, the assignment rule follows our example above: the predicate
D A (z == a) A’ is True if the variables of the expression a are contained
in the initial set A, and if A’ is precisely the initial A plus the variable z
we just assigned to.

e Sequential composition has the by now familiar form: we simply pass
through the result As of ¢ to co, and the composition is definitely ini-
tialised if both commands are definitely initialised.

e In the IF case, we check that the variables of the boolean expression are all
initialised, and we check that each of the branches is definitely initialised.
We pass back the intersection of the results produced by ¢1 and cg, because
we do not know which branch will be taken at runtime. If we were to
analyse boolean expression more precisely, we could introduce further case
distinctions into this rule.

e Finally, the WHILE case. It also checks that the variables in the boolean
expression are all in the initialised set A, and it also checks that the com-
mand c is definitely initialised starting in the same set A, but it ignores the

42

result A’ of c¢. Again, this must be so, because we have to be conservative:
it is possible that the loop will never be executed at runtime, because b
may be already False before the first iteration. In this case no additional
variables will be initialised, no matter what ¢ does. It may be possible for
specific loop structures, such as for-loops to statically determine that their
body will be executed at least once, but no mainstream language currently
does that.

We can now decide whether a command is definitely initialised, namely ex-
actly when we can start with the empty set of initialised variables and find a
resulting set such the our inductive predicate D is True:

De=(3A.D{}cA)

Defining a program analysis such as definite initialisation by an inductive
predicate makes the connection to type systems clear: in a sense, all program
analyses can be phrased as sufficiently complex type systems. Since our rules
are syntax directed, they also directly suggest a recursive execution strategy. In
fact, for this analysis it is straightforward to turn the inductive predicate into
two recursive functions in Isabelle that compute our set A’ if it exists, and check
whether all expressions mention only initialised variables. We leave this recursive
definition and proof of equivalence as an exercise to the reader and turn our
attention to proving correctness of the analysis instead.

4.1.2. Initialisation Sensitive Fxpression Evaluation

As in type systems, to phrase what correctness of the definite initialisation anal-
ysis means, we first have to identify what could possibly go wrong.

Here, this is easy: we should observe an error when the program uses a variable
that has not been initialised. That is, we need a new, finer-grained semantics
that keeps track which variables have been initialised and leads to an error if the
program accesses any other variable.

To that end, we enrich our set of values with an additional element that we
will read as uninitialised. Isabelle provides the option data type for this:

datatype 'a option = None | Some 'a
We simply redefine our program state as
type-synonym state = vname = val option

and take None as the uninitialised value. The option data type comes with addi-
tional useful notation: s(z — y) means s(z := Some y), and dom s = {a. s a #
None}.

Now that we can distinguish initialised from uninitialised values, we can check
the evaluation of expressions. We have had a similar example of potentially failing
expression evaluation in type systems in Section 3.1. There we opted for an induc-
tive predicate, reasoning that in the functional style where we would return None
for failure, we would have to consider all failure cases explicitly. This argument
also holds here. Nevertheless, for the sake of variety, we will this time show the

43

functional variant with option. It is less elegant, but not so horrible as to become
unusable. It has the advantage of being functional, and therefore easier to apply
automatically in proofs.

fun aval :: aexp = state = wval option where

aval (N i) s = Some i
aval (V) s = sz
aval (Plus a1 az) s = (case (aval ay s, aval ag s) of
(Some i1, Some ig) = Some(i1+iz)
| -= None)

fun bval :: bexp = state = bool option where

bval (Bc v) s = Somewv
bval (Not b) s = (case bval b s of
None = None | Some bv = Some(— bv))
bval (And by ba) s = (case (bval by s, bval by s) of
(Some buy, Some bvy) = Some(bvy A bug)
| -= None)
bval (Less a1 a2) s = (case (aval ay s, aval ag s) of
(Some i1, Some ig) = Some(i1 < i)
| -= None)

We can reward ourselves for all these case distinctions with two concise lemmas
that confirm that expressions indeed evaluate without failure if they only mention
initialised variables.

Lemma 41 (Initialised arithmetic expressions).
vars a € dom s = 4. aval a s = Some i

Lemma 42 (Initialised boolean expressions).
vars b C dom s =—> Jbv. bval b s = Some bv

Both lemmas are proved automatically after structural induction on the ex-
pression.

4.1.8. Initialisation Sensitive Small-Step Semantics

From here, the development towards the correctness proof is standard: we define
a small-step semantics, and we prove progress and preservation as we would for
a type system.

In fact, the development is so standard that we only show the small-step
semantics in Figure 16 and give one hint for the soundness proof. It needs the
following lemma.

Lemma 43 (D is increasing). D A ¢ A’ = A C A’

Proof. This lemma holds independently of the small-step semantics. The proof is
automatic after structural induction on c. O

44

aval a s = Some 1%
(x := a, s) = (SKIP, s(z — 1))

(c1,8) = (c1', 8")
(SKIP;; ¢, s) — (c,) (c135 2, 8) = (1’55 2,)

bval b s = Some True
(IF b THEN ¢y ELSFE co, s) — (c1, s)

bval b s = Some False
(IF'b THEN ¢y ELSE ca, s) — (ca2, $)

(WHILE b DO ¢, s) — (IF b THEN c;; WHILE b DO ¢ ELSE SKIP, s)

Figure 16. Small-step semantics, initialisation sensitive

The soundness statement then is as in the type system in Section 3.1.

Theorem 44 (D is sound).
If (¢, s) == (¢!, s") and D (dom s) ¢ A’ then (Fes”. (!, s') = ¢s’) VvV ¢ =
SKIP.

The proof goes by showing progress and preservation separately and making
use of Lemma 43. We leave its details as an exercise and present an alternative
way of proving soundness of the definite initialisation analysis in the next section
instead.

4.1.4. Initialisation Sensitive Big-Step Semantics

In the previous section we learned that a formalisation in the small-step style
and a proof with progress and preservation as we know them from type systems
are sufficient to prove correctness of definite initialisation. In this section, we
investigate how to adjust a big-step semantics such that it can be used for the
same purpose of proving the definite initialisation analysis correct. We will see
that this is equally possible and that big-step semantics can be used for such
proofs. This may be attractive for similar kinds of correctness statements, because
big-step semantics are often easier to write down. However, we will also see the
price we have to pay: a larger number of big-step rules and therefore a larger
number of cases in inductive proofs about them.

The plan for adjusting the big-step semantics is simple: we need to be able
to observe error states, so we will make errors explicit and propagate them to the
result. Formally, we want something of the form

com X state = state option

where None would indicate that an error occurred during execution, in our case
that the program accessed an uninitialised variable.

45

There is a small complication with the type above. Consider for instance this
attempt to write the semicolon rule.

(c1, s1) = Some sa (c3, $2) = s (c1, $s1) = None

(c135 ¢2, 81) = 8 (c135 ¢2, s1) = None

There is no problem with the soundness of these rules. The left rule is the case
where no error occurs, the right rule terminates the execution when an error does
occur. The problem is that we will need at least these two cases for any construct
that has more than one command. It would be nicer to just specify once and for
all how error propagates.

We can make the rules more compositional by ensuring that the result type
is the same as the start type for an execution, i.e. that we can plug a result state
directly into the start of the next execution without any additional operation or
case distinction for unwrapping the option type. We achieve this by making the
start type state option as well.

com X state option = state option
We can now write one rule that defines how error (None) propagates:
(¢, None) = None

Consequently, in the rest of the semantics in Figure 17 we only have to locally
consider the case where we directly produce an error, and the case of normal
execution. An example of the latter is the assignment rule, where we update the
state as usual if the arithmetic expression evaluates normally:

aval a s = Some 1

(z = a, Some s) = Some (s(z — 1))

An example of the former is the assignment rule, where expression evaluation
leads to failure:

aval a s = None

(z ::= a, Some s) = None

The remaining rules in Figure 17 follow the same pattern. They only have to
worry about producing errors, not about propagating them.

If we are satisfied that this semantics encodes failure for accessing uninitialised
variables, we can proceed to proving correctness of our program analysis D.

The statement we want in the end is, paraphrasing Milner, well-initialised
programs cannot go wrong.

[D (dom s) ¢ A’; (¢, Some s) = s'| = s’ # None

The plan is to use rule induction on the big-step semantics to prove this property
directly, without the detour over progress and preservation. Looking at the rules
for D A ¢ A, it is clear that we will not be successful with a constant pattern
of dom s for A, because the rules produce different patterns. This means, both

46

(¢, None) = None (SKIP, s5) = s

aval a s = Some i aval a s = None

(z = a, Some s) = Some (s(z — 1)) (z ::= a, Some s) = None

(c1, s1) = s2 (c2, s2) = s3
(c135 €2, 51) = 83

bval b s = Some True (c1, Some s) = s

(IF b THEN ¢y ELSE c3, Some s) = s’

bval b s = Some False (co, Some s) = s’

(IF b THEN ¢y ELSE cy, Some s) = s

bval b s = None
(IF b THEN ¢ ELSE co, Some s) = None

bval b s = Some Fualse
(WHILE b DO ¢, Some s) = Some s

bval b s = Some True (¢, Some s) = s’ (WHILE b DO ¢, s') = s"
(WHILE b DO ¢, Some s) = s"’

bval b s = None
(WHILE b DO ¢, Some s) = None

Figure 17. Big-step semantics with error propagation

A and A’ need to be variables in the statement to produce suitably general in-
duction hypotheses. Replacing dom s with a plain variable A in turn means we
have to find a suitable side condition such that our statement remains true, and
we have show that this side condition is preserved. A suitable such condition is
A C dom s, i.e. it is OK if our program analysis succeeds with fewer variables
than are currently initialised in the state. After this process of generalising the
statement for induction, we arrive at the following lemma.

Lemma 45 (Soundness of D).
[(c, Some s) = s'; D AcA; AC dom s] =
Jt. s’ = Somet AN A" C dom t

Proof. The proof is by rule induction on (¢, Some s) = s’; Isabelle solves all
sub-cases but WHILE automatically. In the WHILFE case, we apply the induction
hypothesis to the body ¢ manually and can then let the automation figure out
the rest. Applying the induction hypothesis to c¢ is interesting, because we need
to make use of D’s increasing property we proved in Lemma 43. Recall that the D
rule for WHILE requires D A ¢ A’ for the body c. Per induction hypothesis, we
get that the result state ¢ after execution of ¢ has the property A’ C dom t. To

47

apply the induction hypothesis for the rest of the WHILFE loop, however, we need
A C dom t. From Lemma 43 we know that A C A’ and can therefore proceed. [J

After this proof, we can now better compare the small-step and big-step ap-
proaches to showing soundness of D: While the small-step semantics is more con-
cise, the soundness proof is longer, and while the big-step semantics has a larger
number of rules, its soundness proof is more direct and shorter. As always, the
trade-off depends on the particular application. With machine-checked proofs, it
is in general better to err on the side of nicer and easier-to-understand definitions
than on the side of shorter proofs.

4.2. Constant Folding and Propagation

The previous section presented an analysis that prohibits a common program-
ming error, uninitialised variables. This section presents an analysis that enables
program optimisations, namely constant folding and propagation.

Constant folding and constant propagation are two very common compiler
optimisations. Constant folding means computing the value of constant (sub) ex-
pressions at compile time and substituting their value for the computation. Con-
stant propagation means determining if a variable has constant value, and prop-
agating that constant value to the use-occurrences of that variable, for instance
to perform further constant folding:

X = 42 - b;
y=x %2

In the first line, the compiler would fold the expression 42 - 5 into its value 37,
and in the second line, it would propagate this value into the expression x * 2
to replace it with 74 and arrive at

x = 37;
y =74

Further liveness analysis could then for instance conclude that x is not live in the
program and can therefore be eliminated, which frees up one more register for
other local variables and could thereby improve time as well as space performance
of the program.

Constant folding can be especially effective when used on boolean expressions,
because it allows the compiler to recognise and eliminate further dead code. A
common pattern is something like

IF debug THEN debug_command ELSE SKIP

where debug is a global constant that if set to False could eliminate debug-
ging code from the program. Other common uses are the explicit construction of
constants from their constituents for documentation and clarity.

Despite its common use for debug statements as above, we stay with our
general policy in this section and will not analyse boolean expressions for constant

48

folding. Instead, we leave it as a medium-sized exercise project for the reader to
apply the techniques covered in this section.

The semantics of full-scale programming language can be tricky for constant
folding (which is why one should prove correctness, of course). For instance, fold-
ing of floating point operations may depend on the rounding mode of the machine,
which may only be known at run time. Some languages demand that errors such
as arithmetic overflow or division by zero are preserved and raised at runtime,
others may allow the compiler to refuse to compile such programs, yet others
allow the compiler to silently produce any code it likes in those cases.

A widely known tale of caution for constant folding is that of the Intel Pentium
FDIV bug in 1994 which lead to a processor recall costing Intel roughly half
a billion US dollars. In processors exhibiting the fault, the FDIV instruction
would perform an incorrect floating point division for some specific operands (1037
combinations would lead to wrong results). Constant folding was not responsible
for this bug, but it gets its mention in the test for the presence of the FDIV
problem. To make it possible for consumers to figure out if they had a processor
exhibiting the defect, a number of small programs were written that performed
the division with specific operands known to trigger the bug. Testing for the
incorrect result, the program would then print a message whether the bug was
present or not.

If a developer compiled this test program naively, the compiler would perform
this computation statically and optimise the whole program to a binary that
just returned a constant yes or no. This way, every single computer in a whole
company could be marked as defective, even though only the developer’s CPU
actually had the bug.

In all of this, the compiler was operating entirely correctly, and would have
acted the same way if it was proved correct. We see that our proofs critically rely
on the extra-logical assumption that the hardware behaves as specified. Usually,
this assumption underlies everything programmers do. However, trying to distin-
guish correct from incorrect hardware under the assumption that the hardware is
correct, is not a good move.

In the following, we are not attempting to detect defective hardware, and can
focus on how constant propagation works, how it can be formalised, and how it
can be proved correct.

4.2.1. Folding

As usual, we begin with arithmetic expressions. The first optimisation is pure
constant folding: the aim is to write a function that takes an arithmetic expression
and statically evaluates all constant sub expressions within it. However, since
we are going to mix constant folding with constant propagation, if we know the
constant value of a variable by propagation, we should use it. To do this, we keep
a table or environment that tells us which variables we know to have constant
value, and what that value is. This is the same technique we already used in type
systems and other static analyses.

type-synonym tab = vname = wval option

49

We can now formally define our new function afold that performs constant folding
on arithmetic expressions under the assumption that we already know constant
values for some of the variables.

fun afold :: aexp = tab = aexp where

afold (N n) _ = Nn
afold (V) t = (case t © of None = V x | Some x = N x)
afold (Plus e e2) t = (case (afold e1 t, afold eq t) of

(N ni, NTLQ) = N (n1+n2)
| (e1’, e2’) = Plus e1’ ed’)

For example, the value of afold (Plus (V ""z'") (N 3)) ¢t now depends on the
value of t at "z”’. If ¢t 2" = Some 5, for instance, afold will return N 8. If
nothing is known about ""z”/, i.e. ¢ "2/ = None, then we get back the original
Plus (V ""z'") (N 3).

The correctness criterion for this simple optimisation is that the result of
execution with optimisation is the same as without:

aval (afold a t) s = aval a s

As with type system soundness and its corresponding type environments, however,
we need the additional assumption that the static table ¢ conforms with, or in
this case approzximates, the runtime state s. The idea is again that the static value
needs to agree with the dynamic value if the former exists:

definition approz t s = (Vz k. t £ = Some k — sz = k)
With this assumption the statement is provable.

Lemma 46. Correctness of afold
approx t s => aval (afold a t) s = aval a s

Proof. Automatic, after induction on the expression. O

The definitions and the proof reflect that the constant folding part of the fold-
ing and propagation optimisation is the easy part. For more complex languages,
one would have to consider further operators and cases, but nothing fundamental
changes in the structure of proof or definition.

As mentioned, in more complex languages, care must be taken in the definition
of constant folding to preserve the failure semantics of that language. For some
languages it is permissible for the compiler to return a valid result for an invalid
program, for others the program must fail in the right way.

4.2.2. Propagation

At this point, we have a function that will fold constants in arithmetic expressions
for us. To lift this to commands for full constant propagation, we just apply the
same technique, defining a new function fold :: com = tab = com. The idea is
to take a command and a constant table and produce a new command. The first
interesting case in any of these analyses usually is assignment. This is easy here,
because we can just use afold:

50

fun defs :: com = tab = tab where
defs SKIP t =
defs (z == a) t = (case afold a t of
Nk = tlx—k)

| -= t(z:=None))
defs (c1;; ca) t = (defs cg o defs c1) t
defs (IF b THEN ¢y ELSE co) t = merge (defs c1 t) (defs ca t)
defs (WHILE b DO c¢) t t(ars o

Figure 18. Definition of defs.

fold (z == a) t =z == afold a t

What about sequential composition? Given c1;; co and t, we will still need to
produce a new sequential composition, and we will obviously want to use fold
recursively. The question is, which ¢ do we pass to the call fold co for the second
command? We need to pick up any new values that might have been assigned
in the execution of c¢i. This is basically the analysis part of the optimisation,
whereas fold is the code adjustment.

We define a new function for this job and call it defs :: com = tab = tab
for definitions. Given a command and a constant table, it should give us a new
constant table that describes the variables with known constant values after the
execution of this command.

Figure 18 shows the main definition. Auxiliary function lvars computes the
set of variables on the left-hand side of assignments. Function merge computes
the intersection of two tables:

merge t1 to = (Am. if t1 m = to m then t; m else None)

Let’s walk through the equations of defs one by one.

e For SKIP there is nothing to do, as usual.

e In the assignment case, we attempt to perform constant folding on the
expression. If this is successful, i.e. if we get a constant, we note in the
result that the variable has a known value. Otherwise, we note that the
variable does not have a known value, even if it might have had one before.

e In the semicolon case, we return the effect of co under the table we get
from cq.

e In the IF case, we can only determine the values of variables with certainty
if they have been assigned the same value after both branches, hence our
use of the table intersection merge defined above.

e The WHILE case, as almost always, is interesting. Since we don’t know
statically whether we will ever execute the loop body, we cannot add any
new variable assignments to the table. The situation is even worse, though.
We need to remove all values from the table that are for variables mentioned
on the left-hand side of assignment statements in the loop body, because
they may contradict what the initial table has stored. A plain merge as in
the IF case would not be strong enough, because it would only cover the

51

first iteration. Depending on the behaviour of the body, a different value
might be assigned to a variable in the body in a later iteration. Unless we
employ a full static analysis on the loop body, which constant propagation
usually does not, we need to be conservative. The formalisation achieves
this by first computing the names of all variables on the left-hand side of
assignment statements in ¢ by means of lvars, and by then restricting the
table to the complement of that set. The notation ¢[g is defined as follows.

tls = (Az. if € S then t = else None)

With all these auxiliary definitions in place, our definition of fold is now as
expected. In the WHILFE case, we fold the body recursively, but again restrict the
set of variables to those not written to in the body.

fun fold :: com = tab = com where

fold SKIP _ = SKIP

fold (z == a) t =z == afold at

fold (c13; ¢c2) t = fold ¢y t;; fold co (defs c1 t)

fold (IF b THEN ¢y ELSE c3) t = IF b THEN fold ¢y t ELSE fold ca t
fold (WHILE b DO ¢) t = WHILE b DO fold ¢ (t](_ jyars ¢))

Let’s test these definitions with some sample executions. Our first test is the
first line in the example program at the beginning of this section. The program
was:

X = 42 - 5;
y=x %2

In IMP, the first line can be encoded as "'z’ ::= Plus (N 42) (N —5). Running
fold on this with the empty table gives us "’z’’ ::= N 37. This is correct. Encoding
the second line as a Plus in IMP, and running fold on it in isolation with the
empty table should give us no simplification at all, and this is what we get:
"y'" = Plus (V "z'") (V "z’"). However, if we provide a table that sets z to
some value, say 1, we should get a simplified result: "’¢'/ ::= N 2. Finally, testing
propagation over semicolon, we run the whole statement with the empty table
and get "z’ == N 37;; ""y"" ::= N 74. This is also as expected.

As always in these notes, programming and testing are not enough. We want
proof that constant folding and propagation are correct. In this case we are per-
forming a program transformation, so our notion of correctness is semantic equiv-
alence.

Eventually, we are aiming for the following statement, where empty is the
empty table, defined by the abbreviation empty = Az. None.

fold ¢ empty ~ ¢

Since all our definitions are recursive in the commands, the proof plan is to
proceed by induction on the command. Unsurprisingly, we need to generalise the
statement from empty tables to arbitrary tables t. Further, we need to add a side
condition for this ¢, namely the same as in our lemma about expressions: ¢ needs
to approximate the state s the command runs in. This leads us to the following
interlude on equivalence of commands up to a condition.

52

4.2.8. Conditional Equivalence

This section describes a generalisation of the equivalence of commands, where
commands do not need to agree in their executions for all states, but only for
those states that satisfy a precondition. In Section 2.4.4, we defined

(c~d)= (Vst. (¢,8) =t = (,8) = 1)

Extending this concept to take a condition P into account is straightforward. We
read P = ¢ ~ ¢ as c is equivalent to ¢’ under the assumption P.

definition
(PEc~d)=Fss. Ps—(c,s)=s =(c,s)=¢)

We can do the same for boolean expressions:

definition
(PEb<~>0)=(Vs. Ps— bvalbs = bval b’ s)

Clearly, if we instantiate P to the predicate that returns True for all states,
we get our old concept of unconditional semantic equivalence back.

Lemma 47. (A= True) E c ~ ¢/) = (¢ ~ ')
Proof. By unfolding definitions. O

For any fixed predicate, our new definition is an equivalence relation, i.e. it
is reflexive, symmetric, and transitive.

Lemma 48 (Equivalence Relation).
PEc~c¢

(PEc~d)=(PEd~c¢)
[PEc~d;PEd~]=PEc~c"

Proof. Again automatic after unfolding definitions. O

It is easy to prove that, if we already know that two commands are equivalent
under a condition P, we are allowed to weaken the statement by strengthening
that precondition:

[PEc~cd;Vs.PPs— Ps]= P Ec~<

For the old notion of semantic equivalence we had the concept of congruence rules,
where two commands remain equivalent if equivalent sub-commands are substi-
tuted for each other. The corresponding rules in the new setting are slightly more
interesting. Figure 19 gives an overview. The first rule, for sequential composition,
has three premises instead of two. The first two are standard, i.e. equivalence of
¢ and ¢’ as well as d and d’. Similar to the sets of initialised variables in the
definite initialisation analysis of Section 4.1, we allow the precondition to change.
The first premise gets the same P as the conclusion P = ¢;; d ~ ¢';; d’, but the
second premise can use a new (). The third premise describes the relationship

53

PEc~cd QEFd~d Vss. (c,8)=>s —Ps— Q5
PlEcyd~cdyd

PEb<~>1 PEc~(PEd~d
P &= IF b THEN ¢ ELSE d ~ IF V' THEN ¢ ELSE d’

PEbL<~>1
PEc~cd Vss. (¢,s)=s — Ps—>bvalbs — P
P &= WHILE b DO ¢ ~ WHILE b' DO ¢’

Figure 19. Congruence rules for conditional semantic equivalence.

between P and @: () must hold in the states after execution of ¢, provided P held
in the initial state.

The rule for IF is simpler; it just demands that the constituent expressions
and commands are equivalent under the same condition P. As for the semicolon
case, we could provide a stronger rule here, that takes into account which branch
of the IF we are looking at, i.e. adding b or — b to the condition P. Since we do
not analyse the content of boolean expressions, we will not need the added power
and prefer the weaker, but simpler rule.

The WHILE rule is similar to the semicolon case, but again in a weaker
formulation. We demand that b and b’ are equivalent under P, as well as ¢ and
¢’. We additionally need to make sure that P still holds after the execution of the
body if it held before, because the loop might enter another iteration. In other
words, we need to prove as a side condition that P is an invariant of the loop.
Since we only need to know this in the iteration case, we can additionally assume
that the boolean condition b evaluates to true.

This concludes our brief interlude into conditional semantic equivalence. As
indicated in Section 2.4.4, we leave the proof of the rules in Figure 19 as an
exercise, as well as the formulation of the strengthened rules that take boolean
expressions further into account.

4.2.4. Correctness

So far we have defined constant folding and propagation, and we have developed a
tool set for reasoning about conditional equivalence of commands. In this section,
we apply this tool set to show correctness of our optimisation.

As mentioned before, the eventual aim for our correctness statement is un-
conditional equivalence between the original and the optimised command:

fold ¢ empty ~ ¢

To prove this statement by induction, we generalise it by replacing the empty
table with an arbitrary table ¢. The price we pay is that the equivalence is now
only true under the condition that the table correctly approximates the state the
commands are run from. The statement becomes

approx t = ¢ ~ fold c t

54

Note that the term approz t is partially applied. It is a function that takes a
state s and returns True iff ¢ is an approximation of s as defined previously in
Section 4.2.1. Expanding the definition of equivalence we get the more verbose
but perhaps easier to understand form.

Vs s approxts — (¢, 8) = s = (fold c t, s) = &

For the proof it is nicer not to unfold the definition equivalence and work with
the congruence lemmas of the previous section instead. Now, proceeding to prove
this property by induction on c¢ it quickly turns out that we will need four key
lemmas about the auxiliary functions mentioned in fold.

The most direct and intuitive one of these is that our defs correctly approx-
imates real execution. Recall that defs statically analyses which constant values
can be assigned to which variables.

Lemma 49 (defs approximates execution correctly).
[(c, s) = §'; approz t s] = approz (defs c t) s

Proof. The proof is by rule induction on the big-step execution:

e The SKIP base case is trivial.

e The assignment case needs some massaging to succeed. After unfolding of
definitions, case distinction on the arithmetic expression and simplification
we end up with

Vn. afoldat = Nn — aval a s = n

where we also know our general assumption approz ¢ s. This is a reformu-
lated instance of Lemma 46.

e Sequential composition is simply an application of the two induction hy-
potheses.

e The two IF cases reduce to this property of merge which embodies that it
is an intersection:

approx t1 s V approz to s = approx (merge t1 t2) s

In each of the two IF cases we know from the induction hypothesis that
the execution of the chosen branch is approximated correctly by defs, e.g.
approz (defs c1 t) s’. With the above merge lemma, we can conclude the
case.

e In the False case for WHILE we observe that we are restricting the exist-
ing table ¢, and that approximation is trivially preserved when dropping
elements.

e In the True case we appeal to another lemma about defs. From applying
induction hypotheses, we known approz (defs ¢ t[(_ ars ¢)) $', but our
proof goal for defs applied to the while loop is approz (t[(_ jars) 8"
Lemma 50 shows that these are equal.

O

The last case of our proof above rests on one lemma we have not shown yet.
It says that our restriction to variables that do not occur on the left-hand sides

55

of assignments is broad enough, i.e. that it appropriately masks any new table
entries we would get by running defs on the loop body.

Lemma 50. defs ¢ an

— lars ¢) — t[(_ lvars c)

Proof. This proof is by induction on c¢. Most cases are automatic, merely for
sequential composition and IF Isabelle needs a bit of hand holding for applying
the induction hypotheses at the right position in the term. In the IF' case, we also
make use of this property of merge:

[t1ls = tls; talg = tls] = merge t1 talg = tlg

It allows us to merge the two equations we get for the two branches of the IF into
one. O

The final lemma we need before we can proceed to the main induction is
again a property about the restriction of ¢ to the complement of [vars. It is the
remaining fact we need for the WHILE case of that induction and it says that
runtime execution can at most change the values of variables that are mentioned
on the left-hand side of assignments.

Lemma 51.

[[(Cv s) = s'; approx (tf(, lvars c)) 3]] = approx (tf(, lvars c)) s’

Proof. This proof is by rule induction on the big-step execution. Its cases are very
similar to Lemma 50. O

Putting everything together, we can now prove our main lemma.

Lemma 52 (Generalised correctness of constant folding).
approz t |= ¢ ~ fold c ¢

Proof. As mentioned, the proof is by induction on c¢. SKIP is simple, and as-
signment reduces to the correctness of afold, i.e. Lemma 46. Sequential compo-
sition uses the congruence rule for semicolon and Lemma 49. The IF case is au-
tomatic given the IF congruence rule. The WHILE case reduces to Lemma 51,
the WHILE congruence rule, and strengthening of the equivalence condition. The
strengthening uses the following property

[approx ta s; t1 T to] = approz t1 s
where (m1 Cp, ma) = (m1 = ma on dom mq) and t[g Cpy t. O
This leads us to the final result.

Theorem 53 (Correctness of constant folding).
fold c empty ~ ¢

Proof. Follows immediately from Lemma 52 after observing that approz empty =
(A= True). O

56

4.8. Summary and Further Reading

This section has explored two different, widely used data-flow analyses and asso-
ciated program optimisations: definite initialisation analysis, and constant prop-
agation. They can be classified according to two criteria:

Forward /backward
A forward analysis propagates information from the beginning to the end
of a program.
A backward analysis propagates information from the end to the beginning
of a program.

May /must
A may analysis checks if the given property is true on some path.
A must analysis checks if the given property is true on all paths.

According to this schema, both are a forward must analysis: in definite initiali-
sation analysis, variables must be assigned on all paths before they are used, in
constant propagation, a variable must have the same constant value on all paths.
Data-flow analysis arose in the context of compiler construction and is treated
in some detail in all decent books on the subject, e.g. [1], but in particular in the
book by Muchnik [10]. The book by Nielson, Nielson and Hankin [12] provides a
comprehensive and more theoretical account of program analysis.

Acknowledgements

We thanks David Sands and Andrei Sabelfeld for feedback on earlier drafts of this
material.

Tobias Nipkow was partially supported by NICTA. NICTA is funded by the
Australian Government through the Department of Communications and the
Australian Research Council through the ICT Centre of Excellence Program.

References

[1] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Tech-
niques, & Tools. Addison-Wesley, 2nd edition, 2007.

[2] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer Networks,
48(5):701-716, 2005.

[3] Ellis Cohen. Information transmission in computational systems. In Proceedings of the
sizth ACM symposium on Operating systems principles (SOSP’77), pages 133-139, West
Lafayette, Indiana, USA, 1977. ACM.

[4] Dorothy E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236-243, May 1976.

[5] Joseph A. Goguen and José Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11-20, 1982.

[6] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Specification,
3rd edition. Addison-Wesley, 2005.

[7] Butler W. Lampson. A note on the confinement problem. Communications of the ACM,
16(10):613-615, October 1973.

57

[17]

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine
Specification, Java SE 7 Edition. Addison-Wesley, February 2013.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences (JCCS), 17(3):348-375, 1978.

Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke, Sean
Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4: from general purpose to a proof
of information flow enforcement. In IEEE Symposium on Security and Privacy, pages
415-429, 2013.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

Tobias Nipkow. Programming and proving in Isabelle/HOL. http://isabelle.in.tum.
de/dist/doc/prog-prove.pdf, 2013.

Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive security analy-
sis. In Proceedings of the 23rd IEEE Computer Security Foundations Symposium (CSF),
pages 186-199. IEEE Computer Society, 2010.

Andrei Sabelfeld and Andrew Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5-19, 2003.

Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back: Riding the roller
coaster of information-flow control research. In A. Pnueli, I. Virbitskaite, and A. Voronkov,
editors, Perspectives of Systems Informatics, 7th International Andrei Ershov Memorial
Conference (PSI), volume 5947 of Lect. Notes in Comp. Sci., pages 352-365. Springer-
Verlag, 2009.

Edward Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but might have been
afraid to ask). In Proc. IEEE Symposium on Security and Privacy, pages 317-331. IEEE
Computer Society, 2010.

D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow analysis. Journal
of computer security, 4(2/3):167-188, 1996.

58

http://isabelle.in.tum.de/dist/doc/prog-prove.pdf
http://isabelle.in.tum.de/dist/doc/prog-prove.pdf

