
Towards a Verified Component Platform

Matthew Fernandez, Ihor Kuz, Gerwin Klein, June Andronick
NICTA and the University of New South Wales, Sydney, Australia

first-name.last-name@nicta.com.au

Abstract
This paper describes ongoing work on a new technique for
reducing the cost of assurance of large software systems by
building on a verified component platform. From a compo-
nent architecture description, we automatically derive a for-
mal model of the system and a semantics for the runtime be-
haviour of generated inter-component communication code.
We can prove wellformedness properties of the architecture
automatically and provide a framework in which users can
reason about their component code and its behaviour. By
leveraging the isolation properties and communication guar-
antees of a formally verified platform, correctness arguments
for critical components will be able to be derived indepen-
dently and composed together to reason about system-level
correctness.

1. Introduction
Formal software verification, while clearly desirable for crit-
ical software systems, is an expensive and time intensive
process; prohibitively so for systems on the order of one mil-
lion lines of code [Moore 2003]. The code that can affect
correctness, safety or security of the system is referred to as
the trusted computing base (TCB). It typically includes both
operating system and some userspace functionality, and eas-
ily exceeds this measure. To gain trust in such systems, we
must either reduce their size or reduce the cost of assurance.

Component-based software engineering has been used
successfully to make the design and implementation of large
systems more tractable [Szyperski 1997], and it is already
used as a methodology for managing complexity in many
critical domains [Broy et al. 2007]. Using the same tech-

NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of Excellence
program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PLOS ’13 November 03-06 2013, Farmington, PA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2460-1/13/11. . . $15.00
http://dx.doi.org/10.1145/2525528.2525535

nique to divide and conquer the verification challenge has
the potential to dramatically reduce the cost and increase the
effectiveness of assurance.

By constructing an operating system and its userspace
applications such that critical functionality and non-critical
functionality are placed in separate components, verification
of the correctness of the system as a whole can be decom-
posed into the correctness of only the critical components,
their isolation from the non-critical components, and their
interaction. The feasibility of building real systems with this
methodology has been demonstrated in a small case study
in [Andronick et al. 2010]. The TCB of such a componen-
tised system is then reduced to the operating system kernel,
the critical components, initialisation code and the compo-
nent platform. The code of the non-critical components may
be untrusted and even assumed to be malicious. This paper
focuses on the component platform’s correctness, and its link
to correct initialisation. The long-term goal is to then build
on these guarantees to perform full-system verification.

In addition to the obvious benefits of code reuse and de-
sign flexibility, a component platform is typically comprised
of significantly less code than the non-critical components it
supports. With a component platform that has been verified
once, non-critical components can be freely added, removed
or reconfigured without requiring verification changes, as
long as they do not change the interaction with trusted com-
ponents. Systems can reuse verified components from pre-
vious systems and retain their locally proven guarantees;
something that is not possible with code reuse across mono-
lithic systems.

In this paper, we report on our initial progress in build-
ing a formally verified component platform. In particular,
we build on top of the seL4 microkernel, with the aim of
later leveraging its functional correctness [Klein et al. 2009]
and isolation properties [Sewell et al. 2011, Murray et al.
2013] to build componentised systems with strong isolation
guarantees. As a capability-based kernel, seL4 is ideal for
high assurance environments because it is possible to derive
upper bounds on the authority in a given system. We have
adapted an existing component platform, CAmkES [Kuz
et al. 2007], that can be used to design static userspace sys-
tems on seL4. Using a component platform to abstract the
low-level mechanisms of seL4 facilitates design and imple-

mentation of a system, and provides well-defined boundaries
between components by using the address space isolation
features of seL4.

CAmkES is part of the TCB in such a component system
and the correctness of the system as a whole is predicated
on the correctness of CAmkES. In the work presented here,
we address the correctness of this platform by automatically
deriving formal specifications of (i) the architecture of a sys-
tem and (ii) runtime semantics representing the behaviour of
the generated communication stubs. We also generate, from
the formal architecture specification, a description of the ini-
tial configuration, which can be used as input to an exist-
ing tool [Boyton et al. 2013] to correctly and automatically
initialise the system into this configuration. All the formal
specifications are in the form of Isabelle/HOL [Nipkow et al.
2002] theories that are machine checked.

Ongoing work focuses on additionally generating two
proofs about artefacts produced by the CAmkES platform.
The first is intended to show that the generated communi-
cation stubs refine the derived runtime semantics of a given
system and the second is intended to show that the generated
initial configuration of the system corresponds to the derived
architecture semantics.

The intended outcome is a verified component platform,
supporting full system verification to the level of source
code, by allowing users to decompose the reasoning about
correctness of large systems.

Section 2 provides a brief introduction to the CAmkES
platform and an example of generated code. Section 3 gives
an overview of the code and theories we generate. More spe-
cific details on the generation of architecture semantics, run-
time semantics and initialisation specification are described
in Sections 4, 5 and 6 respectively. Section 7 discusses the
limitations of our approach and future directions.

2. CAmkES
CAmkES systems consist of components and connections
between these components. Each component has a collection
of incoming and outgoing interfaces and connections must
link an outgoing interface of one component with an incom-
ing interface of another component. There are three types
of interface supported by CAmkES: procedures (function
calls), events (asynchronous signals) and dataports (shared
memory). The interfaces at either end of a connection must
be of the same type. Connections specify a communication
mechanism, but abstract this from the user.

In this section we will use the CAmkES system depicted
in Figure 1 as a simple example of interacting components.
The system involves three component instances; c reads
values from a key-value store in s, while f interposes on
their communication and prevents the values associated with
certain keys from being read. From a user’s perspective, c
invokes functions of f, which in turn invokes functions of s.

s f c

Figure 1. Example CAmkES system

Treating c and s as untrusted components, we wish to
prevent c from reading certain values from s. By placing
f as a trusted component between c and s we would like
to be able to show our property using only the behaviour
of f and the structure of the system. Figure 1 can be seen
as exemplary of a system involving trusted and untrusted
components with a desirable security property.

1 procedure Lookup {

2 int get_value(in int key);

3 }

4 component Client {

5 control;

6 uses Lookup inf;

7 }

8 component Filter {

9 provides Lookup external;

10 uses Lookup backing;

11 }

12 component Store {

13 provides Lookup db;

14 }

15 assembly {

16 composition {

17 component Filter f;

18 component Client c;

19 component Store s;

20 connection RPC one(from c.inf ,

21 to f.external);

22 connection RPC two(from f.backing ,

23 to s.db);

24 }

25 }

Figure 2. Example ADL

CAmkES systems are described using an architecture de-
scription language (ADL). The syntax of the language is
straightforward, and Figure 2 shows the ADL correspond-
ing to the example from Figure 1. It describes an interface
type, Lookup (lines 1-3), three component types, Client
(lines 4-7), Filter (lines 8-11) and Store (lines 12-14)
and a system involving instances of these types (lines 15-
25). Client has an active thread of control (line 5) and
makes calls to functions from the interface Lookup (line 6).
Filter contains an implementation of the interface Lookup
(line 9) and also makes calls to an outgoing instance of this
interface (line 10). Store contains a further implementation
of the same interface (line 13). The system, defined in the
composition block (lines 16-24), contains an instance of
each component type (lines 17-19) and two connections, one
from c’s outgoing interface to f’s incoming interface (lines
20-21) and the other from f’s outgoing interface to s’s in-
coming interface (lines 22-23). Both connections use a re-

mote procedure call (RPC) mechanism. The assembly ele-
ment (line 15) designates the top-level entity of the system.

The first stage of compiling a CAmkES system uses a
code generator that parses the given ADL description and
generates glue code. This glue code implements the inter-
faces as described in the ADL in terms of underlying plat-
form mechanisms. This glue code is then compiled together
with the user’s component code to form a collection of
userspace applications. These applications are configured by
an initialiser task that runs as the first application after the
kernel has booted.

To make this more concrete, Figure 3 shows the glue code
that is generated for the interface inf in c for the ADL ex-
ample in Figure 2. The glue code consists of an implemen-
tation of the interface function, get value, prefixed by the
name of the interface, inf. The implementation marshals the
parameters of the function into an in-memory buffer (lines
4-9) and uses seL4’s inter-process communication mecha-
nism to send this data via a capability to an endpoint, EP
(lines 11-13). This endpoint is connected to component f,
that provides the interface. The glue code waits for a re-
sponse to this communication (line 14), unmarshals the re-
turn value from the function (lines 16-19) and then returns
control to the user’s code (line 21). The corresponding glue
code for f (omitted here) is the inverse of this, namely un-
marshalling the parameters, calling the user’s implementa-
tion of get value and then marshalling the response. The
majority of CAmkES glue code performs similar mechanical
operations, which makes code generation relatively straight-
forward.

1 int inf_get_value(int key) {

2 void *buf = BUFFER_BASE;

3
4 /* Marshal the method index */

5 int call = 0;

6 buf = marshal(buf , &call , sizeof(int));

7
8 /* Marshal all the parameters */

9 buf = marshal(buf , &key , sizeof(int));

10
11 /* Call the endpoint */

12 unsigned int msglen = buf - BUFFER_BASE;

13 kernel_Send(EP , msglen);

14 kernel_Wait(EP , NULL);

15
16 /* Unmarshal the response */

17 buf = BUFFER_BASE;

18 int r;

19 buf = unmarshal(buf , &r, sizeof(int));

20
21 return r;

22 }

Figure 3. Example glue code

The net result is that the user writes component code as
if each component was directly accessing the functionality
of other connected components. The implementation of the
glue code can be modified without necessitating changes to

the user’s component code. This abstraction also facilitates
porting the component code to other operating systems.

3. Generated Artefacts
The design of our framework is depicted in Figure 4, with
the user-provided elements shaded in light grey and the
generated artefacts in dark grey. We provide an overview
of the process here and then provide further details in the
following sections.

From an architecture description, such as that in Figure 2,
we generate a formal architecture semantics, glue code, a
formal semantics for the glue code and an initialisation spec-
ification in the form of a capability distribution. The user
provides code for each component and specifications for
the execution of trusted components. The component code,
glue code and capability distribution are compiled to form a
bootable userspace image. We can obtain a semantics for the
system as a whole by composing the architecture semantics,
the glue semantics and the user’s component specifications.

The larger, bidirectional arrows labelled ¬ and in the
figure represent formal refinement proofs. We expect the
user to provide a proof that their trusted component spec-
ifications correspond to their component code or to axioma-
tise this. We intend to automatically provide all other steps
and proofs in the diagram. The resulting artefacts provide ev-
idence for the correspondence between the system semantics
and the binary, as indicated by arrow ®. The formal compo-
sition implied by ® is ongoing work, whose initial steps are
described in [Andronick et al. 2010].

component
code

glue code

glue
semantics

trusted
component

specification

binary
userspace

image

system
semantics

u
se
r-
p
ro
v
id
e
d

architecture
description

architecture
semantics

capability
distribution

u
se
r-
p
ro
v
id
e
d

1 2 3

Figure 4. System artefacts

4. Architecture Semantics
The interpretation of ADL during the compilation process
described in Section 2 is informal in the sense that we know
what the resulting system looks like, but there are no con-
straints on what is a valid description, what it means for
two components to be connected and what properties such
a system has. Essentially the code generator has rules for
the syntax of the language, but no semantics ascribed to

the syntactic elements. Part of the work presented here has
been defining a formal semantics for ADL. This gives formal
meaning to an ADL description in Isabelle/HOL. Figure 5
shows a fragment of the Isabelle/HOL theory correspond-
ing to the ADL in Figure 2. The definition of the procedure
Lookup describes a list containing a single method that ac-
cepts an integer input parameter (lines 5-7) and returns an
integer value (lines 2-3). The component Client is defined
to have a thread of control (line 10) and a single outgoing
interface of type Lookup (line 11). Definitions are also gen-
erated for Filter, Store and the assembly block, but have
been omitted for reasons of space.

Both specifications, informal and formal, express the
same information, but the formal specification, with its at-
tached semantics, can be used to reason about structural
properties of the system. We have developed a tool for auto-
matically generating these formal specifications from ADL.

1 definition Lookup :: procedure

2 where "Lookup ≡ [(| m_return_type =

3 Some (Primitive (Numerical Integer)),

4 m_name = ’’get_value’’, m_parameters =

5 [(| p_type = Primitive (Numerical Integer),

6 p_direction = InParameter,

7 p_name = ’’key’’ |)] |)]"
8
9 definition Client :: component

10 where "Client ≡ (| control = True,

11 requires = [(’’inf’’, Lookup)],

12 provides = [], dataports = [], emits = [],

13 consumes = [], attributes = [] |)"

Figure 5. Formalised ADL

ADL allows a component system to be described that can
never be implemented, or one that violates the assumptions
of CAmkES. To constrain the possible system descriptions
we have defined wellformedness predicates for each ADL el-
ement. The constraint on wellformedness of a composition
block is shown in Figure 6. It expresses basic properties re-
quired of the composition, including that the composition
must contain at least one component with a thread of control
(line 6), all components themselves are wellformed (lines
13-14) and all connections link valid interfaces of the same
type (lines 16-17). During specification generation, we also
generate a proof that the specification is wellformed, guar-
anteeing that the system described can be created.

5. Runtime Semantics
To reason about the execution of components and proper-
ties that are true of the system at runtime, we need a model
of what the glue code actually does. We generate such a
model, shown as the glue semantics in Figure 4, in a for-
mal imperative language for concurrent processes with syn-
chronous message passing. The language allows us to ex-
press component execution as a series of local state modi-
fications and communication steps. Since component code

1 definition
2 wellformed_composition :: "composition ⇒ bool"

3 where
4 "wellformed_composition c ≡
5 (* This system contains ≥ 1 active component. *)

6 (∃ x ∈ set (components c). control (snd x)) ∧
7 (* All references resolve. *)

8 refs_valid_composition c ∧
9 (* No namespace collisions. *)

10 distinct (map fst (components c) @

11 map fst (connections c)) ∧
12 (* All components are valid. *)

13 (∀ x ∈ set (components c).

14 wellformed_component (snd x)) ∧
15 (* All connections are valid. *)

16 (∀ x ∈ set (connections c).

17 wellformed_connection (snd x))"

Figure 6. Wellformed composition

is user-supplied, the local state of components is simply a
type variable ’cs in the Isabelle formalisation. The global
execution state of the system is then a map from component
instance name inst to comp which encodes the current pro-
gram counter of that instance and this local state:

1 type synonym ’cs global_state =

2 "(inst, ’cs comp × ’cs local_state) map"

To encode glue code behaviour, we generate program
fragments in the formal language above for each interface
function in each component. In addition to the user’s com-
ponents specified in ADL, we model events and dataports
as artificial additional components in the system, in order to
capture their associated state and semantics. The state of an
event is a boolean variable indicating whether the event is
pending or not. The state of a dataport is a map from natural
numbers to values, representing the contents of the shared
memory at any given address offset. Thus the local state of a
generalised component is a value of either the user-supplied
state type in the case of a user component or one of the previ-
ously described types in the case of an artificial component:

1 datatype ’cs local_state

2 = Component ’cs

3 | Event bool

4 | Memory "(nat, variable) map"

We generate definitions describing the effect on the sys-
tem state of invoking each exposed piece of glue code
functionality. Figure 7 shows the definitions correspond-
ing to the glue code from Figure 3. The first definition,
Call Client inf get value, provides a general descrip-
tion of the interface invocation in the Client component
type. It accepts a connection to send on, ch, a projec-
tion function, keyP , to extract the integer to send from
the local state and an embedding function, embed, for up-
dating the local state with the return value. The defini-
tion performs two steps, a Request (lines 7-9), that cor-
responds to the marshalling and send system call in the

glue code, and a Response (lines 10-13), that corresponds
to the wait system call and return. The second definition,
Call c inf get value, curries the first with a function
returning a precise outgoing connection, one, to provide a
definition specific to the glue code for the instance c.

1 definition Call_Client_inf_get_value ::

2 "(Client_channel ⇒ channel) ⇒
3 (’cs local_state ⇒ int) ⇒
4 (’cs local_state ⇒ int ⇒ ’cs local_state) ⇒
5 (channel, ’cs) comp"

6 where "Call_Client_inf_get_value ch keyP embed ≡
7 Request (λs. {(|q_channel = ch Client_inf,

8 q_data = Call 0 (Integer (keyP s) # []) |)})
9 discard ;;

10 Response (λq s. case q_data q of Return xs ⇒
11 {(embed s (case hd xs of Integer v ⇒ v),

12 (|a_channel = ch Client_inf, a_data = Void |))}
13 | _ ⇒ {})"

14
15 definition Call_c_inf_get_value ::

16 "(’cs local_state ⇒ int) ⇒
17 (’cs local_state ⇒ int ⇒ ’cs local_state) ⇒
18 (channel, ’cs) comp"

19 where "Call_c_inf_get_value ≡
20 Call_Client_inf_get_value

21 (λc. case c of Client_inf ⇒ one)"

22

Figure 7. Glue code semantics

The user can compose these generated definitions with
their own definitions of the behaviours of a trusted compo-
nent. These user-provided definitions represent the trusted
component specification in Figure 4. The user can also
choose to omit such definitions, e.g. for untrusted compo-
nents. In this case, we generate a broad non-deterministic
default behaviour that encompasses any local state modifi-
cation and any invocation of its interfaces, representing a
potentially maximally misbehaving component.

6. System Initialisation
Sections 4 and 5 have described how we derive an abstract
formal model of the system architecture and code. We want
to use this model to reason about properties like informa-
tion flow enforcement and have these properties hold at the
source code implementation level. It is not sufficient to rea-
son about the component and glue code. We need a trusted
path from an ADL specification to a correctly initialised ac-
cess control configuration of the underlying kernel in the
running system.

To see why this is necessary, consider an initialisation
process that correctly configures a given CAmkES system,
but additionally leaves capabilities allowing unconnected
components to communicate. With this, an information flow
property derived on the abstract model can easily be violated
in the implementation because the model does not capture
this extra communication path.

To ensure this does not happen, and to guarantee we run
what the architectural semantics describe, we utilise capDL,
a language for describing capability distributions on seL4
[Kuz et al. 2010]. The aim of the language is to describe
complete access control system configurations by capability
distributions alone. Such capDL descriptions are proved to
map to a corresponding access control policy [Boyton et al.
2013], that can then be used to reason about the integrity
and confidentiality of the system [Sewell et al. 2011, Murray
et al. 2013].

From the ADL of a component system, we automatically
generate a capDL description of that system, providing an
automated, trusted path from component specification to ca-
pability description. The code generation assigns a separate
address space to each component, and provides each with
the appropriate seL4 capabilities to access its declared com-
munication channels, but not more than these. We then use
an existing tool for correctly and automatically initialising
seL4 systems from capDL descriptions [Boyton et al. 2013].

7. Limitations, Status and Future Work
The main limitation of our system is that CAmkES can only
be used to describe and instantiate static system architec-
tures. Systems that involve creating and destroying compo-
nents at runtime cannot be described in ADL. We believe
this restriction is acceptable, as the high assurance domains
we are targeting typically use static system designs for other
reasons already [Broy et al. 2007].

A practical limitation of using CAmkES is that it is not
widely used, with the result that few existing systems can
take advantage of this work. However, given seL4’s ability
to be used as a hypervisor, it is possible to run virtualised
instances of commodity operating systems, such as Linux,
as components in a CAmkES system. This allows for in-
cremental deployment, with non-critical legacy applications
running in an untrusted virtualised environment, and critical
components extracted to run in the verified environment.

The system initialisation described in Section 6 provides
a formal theorem that the running system matches the ca-
pability distribution provided to the initialising task. To ex-
tend this to correspondence between the running system and
the component architecture description, we intend to define a
formal relation between the derived architectural model and
the seL4 capDL model. Automatically producing a proof of
correspondence at the time of code generation should also
be feasible. This will achieve a formal chain between formal
architecture description and running system configuration.

While our semantics of glue code can already be used to
reason about the behaviour of component systems, the con-
nection between these semantics and the C implementation
is currently unverified. That is, the translation from the archi-
tecture description to glue code is trusted to be correct. To
remove this assumption, we intend to show refinement be-
tween the runtime semantics and the generated code, using

existing infrastructure for deriving formal semantics from C
code [Tuch et al. 2007, Greenaway et al. 2012]. We intend
to fully automate this refinement proof, since the generated
glue code is system specific.

Our approach will be to show refinement for basic blocks
that appear as patterns in the glue code and then to gener-
ate a proof for specific glue code as a composition of these
blocks. Essentially, the glue code is a combination of mar-
shalling/unmarshalling code and interaction with the under-
lying OS kernel. The primitives of these operations can be
verified once manually, and then composed automatically.
Work on this is currently in progress.

8. Related Work
Designing high assurance systems by isolating software
components is an approach closely related to MILS [Alves-
Foss et al. 2006] and separation kernels [Rushby 1981;
1984]. There is also existing work proposing running un-
trusted services on a microkernel as part of a larger, trusted
system [Hohmuth et al. 2004]. We are essentially utilising
seL4 as a highly flexible separation kernel, but we are addi-
tionally aiming to give support for formally connecting such
MILS architectures directly to the final implementation of
the system, including generated component platform code.

Our approach of verifying the code generation post hoc is
a form of translation validation [Pnueli et al. 1998, Necula
2000]. While the problems we are tackling relate to efforts
like the CompCert compiler [Leroy 2006], the code we are
verifying is much more constrained. In particular the gener-
ated code contains no recursion and all loops can be bounded
statically. While this makes the code verification simpler, we
are pursuing an extensible system verification framework
that composes with user-provided code and specifications,
which is an aspect that has not yet appeared in implemen-
tation verification projects outside the proof-carrying code
paradigm [Necula 1997].

Correctness of component-based systems is not a novel
idea in itself and there is much existing work on this sub-
ject [Yellin and Strom 1997, Giannakopoulou et al. 2002,
Plasil and Visnovsky 2002, Adamek 2003]. This existing
work overwhelmingly focuses on the correctness of specific
component code and interactions. While this is important for
system correctness, it assumes correctness of the component
platform itself. While previous work has acknowledged this
weakness [Fisler and Krishnamurthi 2005], it still remains
an outstanding problem. This assumption is what our work
targets.

9. Summary
We have described a way of designing and implementing
component-based systems suitable for high assurance envi-
ronments. In particular, we have shown how to generate for-
mal semantics for architecture configurations and generated
communication glue code in the CAmkES component plat-

form, and we have laid out our vision of how this can be
combined with automatic refinement proofs to achieve a for-
mally verified component platform that supports local rea-
soning about user-provided components.

If we are to continue building complex, large software
systems for safety- and security-critical domains, we believe
the only way to provide cost effective trust in such systems is
to decompose the verification challenge. Using the process
we have described in this work, verification of a system
can be performed piecewise and, by formally isolating large
untrusted components, full verification of systems consisting
of millions of lines of code can be made tractable.

References
J. Adamek. Static analysis of component systems using behavior

protocols. In OOPSLA, pages 116–117, Anaheim, CA, USA,
Oct 2003.

J. Alves-Foss, P. W. Oman, C. Taylor, and S. Harrison. The MILS
architecture for high-assurance embedded systems. Int. J. Emb.
Syst., 2:239–247, 2006.

J. Andronick, D. Greenaway, and K. Elphinstone. Towards proving
security in the presence of large untrusted components. In
G. Klein, R. Huuck, and B. Schlich, editors, 5th SSV, Vancouver,
Canada, Oct 2010. USENIX.

A. Boyton, J. Andronick, C. Bannister, M. Fernandez, X. Gao,
D. Greenaway, G. Klein, C. Lewis, and T. Sewell. Formally ver-
ified system initialisation. In Lindsay Groves, Jing Sun, editor,
15th ICFEM, Queenstown, New Zealand, Oct 2013. Springer.

M. Broy, I. H. Krüger, A. Pretschner, and C. Salzman. Engineering
automotive software. Proc. IEEE, 95:356–373, 2007.

K. Fisler and S. Krishnamurthi. Decomposing verification around
end-user features. In VSTTE 2005, pages 74–81. Springer, Oct
2005.

D. Giannakopoulou, C. S. Păsăreanu, and H. Barringer. Assump-
tion generation for software component verification. In 17th
ASE, pages 3–12, Edinburgh, Scotland, UK, Sep 2002.

D. Greenaway, J. Andronick, and G. Klein. Bridging the gap: Au-
tomatic verified abstraction of C. In L. Beringer and A. Felty,
editors, 3rd ITP, volume 7406 of LNCS, pages 99–115, Prince-
ton, New Jersey, Aug 2012. Springer. ISBN 978-3-642-32346-1.

M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro. Reducing
TCB size by using untrusted components — small kernels versus
virtual-machine monitors. In 11th SIGOPS Eur. WS, Leuven,
Belgium, Sep 2004.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verifica-
tion of an OS kernel. In 22nd SOSP, pages 207–220, Big Sky,
MT, USA, Oct 2009. ACM. doi: 10.1145/1629575.1629596.

I. Kuz, Y. Liu, I. Gorton, and G. Heiser. CAmkES: A component
model for secure microkernel-based embedded systems. Journal
of Systems and Software Special Edition on Component-Based
Software Engineering of Trustworthy Embedded Systems, 80(5):
687–699, May 2007.

I. Kuz, G. Klein, C. Lewis, and A. Walker. capDL: A language for
describing capability-based systems. In 1st APSys, pages 31–36,
New Delhi, India, Aug 2010.

X. Leroy. Formal certification of a compiler back-end, or: Pro-
gramming a compiler with a proof assistant. In J. G. Morrisett
and S. L. P. Jones, editors, 33rd POPL, pages 42–54, Charleston,
SC, USA, 2006. ACM.

J. S. Moore. A grand challenge for formal methods: A verified
stack. In B. K. Aichernig and T. Maibaum, editors, Formal Meth-
ods at the Crossroads: from Panacea to Foundational Support,
pages 161–172. Springer, 2003.

T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: from general
purpose to a proof of information flow enforcement. In IEEE
Symp. Security & Privacy, pages 415–429, San Francisco, CA,
May 2013. ISBN 10.1109/SP.2013.35.

G. C. Necula. Proof-carrying code. In 24th POPL, pages 106–119,
Paris, France, Jan 1997.

G. C. Necula. Translation validation for an optimizing compiler.
In PLDI, pages 83–94, Vancouver, British Columbia, Canada,
2000.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

F. Plasil and S. Visnovsky. Behavior protocols for software compo-
nents. IEEE Trans. Softw. Engin., 28(11):1056–1076, Nov 2002.

A. Pnueli, M. Siegel, and E. Singerman. Translation validation.
In 4th TACAS, pages 151–166, Lisbon, Portugal, Mar 1998.
Springer.

J. Rushby. A trusted computing base for embedded systems. In
Proceedings of 7th DoD/NBS Computer Security Conference,
pages 294–311, Sep 1984.

J. M. Rushby. Design and verification of secure systems. In 8th
SOSP, pages 12–21, Pacific Grove, CA, USA, Dec 1981.

T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick,
and G. Klein. seL4 enforces integrity. In M. C. J. D. van
Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk, editors, 2nd
ITP, volume 6898 of LNCS, pages 325–340, Nijmegen, The
Netherlands, Aug 2011. Springer. doi: http://dx.doi.org/10.1007/
978-3-642-22863-6 24.

C. Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley/ACM Press, Essex, England, 1997.

H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation
logic. In M. Hofmann and M. Felleisen, editors, 34th POPL,
pages 97–108, Nice, France, Jan 2007. ACM.

D. M. Yellin and R. E. Strom. Protocol specifications and compo-
nent adaptors. ACM Trans. Progr. Lang. & Syst., 19(2):292–333,
Mar 1997.

This material is based on research sponsored by Air Force Re-
search Laboratory and the Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8750-12-9-0179.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of Air Force Research Laboratory, the Defense Ad-
vanced Research Projects Agency or the U.S. Government.

	Introduction
	CAmkES
	Generated Artefacts
	Architecture Semantics
	Runtime Semantics
	System Initialisation
	Limitations, Status and Future Work
	Related Work
	Summary

