
Can Truly Dependable
Systems Be Affordable?
Gernot Heiser
NICTA and UNSW

1 APSys'13 Keynote

©2013 Gernot Heiser, NICTA 2

Present Systems are NOT Trustworthy!

APSys'13 Keynote

Yet they are expensive:
•  $1,000 per line of code for
 “high-assurance” software!

2

©2013 Gernot Heiser, NICTA 3

Fundamental issue: large stacks, need isolation

E.g. medical implant

APSys'13 Keynote 3

 Processor

Device
drivers

Life-
supporting

•  1 kLOC critical code
•  20–100 kLOC trusted
 computing base (TCB)
•  100s of bugs
•  dozens of exploits!

 RTOS

Network
stacks

Control,
monitoring,
maintenance

1,000 LOC

1,000 LOC

1,000 LOC

>10,000
LOC

>10,000
LOC

©2013 Gernot Heiser, NICTA 4

High Assurance Bad Practice

 Processor

Uncritical/
untrusted

Sensitive/
critical/
trusted

•  TCB of millions of LOC
•  Expect 1000s of bugs
•  Expect 100s of vulnerabilities

Isolation?

 Xen/VMware/KVM
 hypervisor

Huge TCB

Hacker’s
delight!

APSys'13 Keynote 4

©2013 Gernot Heiser, NICTA 5

High Assurance Best Practice

 Processor

Uncritical/
untrusted

Sensitive/
critical/
trusted

•  Isolate
•  Minimise the TCB
•  Assure TCB by

•  testing
•  code inspection
•  bug-finding tools

 Separation kernel

Minimal
“trusted

computing
base”

Minimal
“trusted

computing
base” (TCB)

Always
incomplete!

APSys'13 Keynote 5

©2013 Gernot Heiser, NICTA 6

State of the Art: NICTA’s seL4 Microkernel

 Processor

Uncritical/
untrusted

Sensitive/
critical/
trusted

Strong
Isolation

 seL4 microkernel

Truly
dependable

TCB

APSys'13 Keynote 6

•  Provable isolation!
•  Provable assurance!

No place for
bugs to hide!

©2013 Gernot Heiser, NICTA 7

NICTA’s seL4: Mathematical Proof of Isolation

APSys'13 Keynote

Integrity

Abstract
Model

C Imple-
mentation

Confiden-
tiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional
correctness
[SOSP’09]

Isolation
properties

[ITP’11, S&P’13]

Translation
correctness

[PLDI’13]

Exclusions (at present):
•  Initialisation
•  Privileged state & caches
•  Multicore
•  Covert timing channels

Timeliness
[RTSS’11]

7

©2013 Gernot Heiser, NICTA 8

NICTA’s seL4 Microkernel: Unique Assurance

APSys'13 Keynote

First and only operating-system with
functional-correctness proof: operation
is always according to specification

First and only operating-system with
proof of integrity and confidentiality
enforcement – at the level of binary code!

First and only protected-mode
operating-system with complete
and sound timing analysis

World’s fastest microkernel
on ARM architecture

Predecessor
deployed on
2 billion devices

8

©2013 Gernot Heiser, NICTA 9

seL4: Cost of Assurance

APSys'13 Keynote

Integrity

Abstract
Model

C Imple-
mentation

Confiden-
tiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f

20.5 py
4.5 years

1 py
4 months

0 py
By construction

4.5 py

2 py, 1.5 years
Mostly for tools

$400 per line
of code!

9

2 py, 1 year
Mostly for tools

©2013 Gernot Heiser, NICTA 10

Cost of Assurance

Industry Best Practice:
•  “High assurance”: $1,000/LOC, no guarantees, unoptimised
•  Low assurance: $100–200/LOC, 1–5 faults/kLOC, optimised

State of the Art – seL4:
–  $400/LOC, 0 faults/kLOC

•  Estimate repeat would cost half
–  that’s about the development cost of the predecessor Pistachio!

•  Aggressive optimisation [APSys’12]
–  much faster than traditional high-assurance kernels
–  as fast as best-performing low-assurance kernels

APSys'13 Keynote 10

©2013 Gernot Heiser, NICTA 11

What Have We Learnt?

Formal verification probably didn’t produce a more secure kernel
•  In reality, traditional separation kernels are probably secure
But:
•  We now have certainty
•  We did it probably at less cost

Real achievement:
•  Cost-competitive at a scale where traditional approaches still work
•  Foundation for scaling beyond: 2 ⨉ cheaper, 10 ⨉ bigger!

How?
•  Combine theorem proving with

–  synthesis
–  domain–specific languages (DSLs)

APSys'13 Keynote 11

©2013 Gernot Heiser, NICTA 12

Boeing Unmanned
Little Bird (AH-6)
Deployment Vehicle

SMACCMcopter
Research Vehicle

Next Step: Full System Assurance

DARPA HACMS Program:
•  Provable vehicle safety
•  “Red Team” must not be able

to divert vehicle

APSys'13 Keynote 12

©2013 Gernot Heiser, NICTA 13

Hardware

Hardware

Sensors
• gyro,
• accel,
• …

C&C
Radio

Micro-
controller

Radio
control

Verified RTOS
C

on
tro

l

M
on

ito
r

C
A

N
 b

us

co
nt

ro
lle

r

Network
camera

Proces-
sor

seL4 – verified microkernel

C&C

Untrusted
Linux

kernel,
image

processing

Mission Board Control Board

Device
drivers

File
system

CAN Bus
Key:
Trusted
Trusted, NICTA
Untrusted

System Structure

APSys'13 Keynote 13

©2013 Gernot Heiser, NICTA 14

Architecture Specification

Requirements
(specific set of
security/safety

properties)

Component Model

Untr

trusted Untr

Automatic
Analysis
(Requirements
fulfilled)

Verified Glue Code

Component Implementations

Untr

trusted Untr

seL4 Kernel

Glue Code Proof

seL4 Proof

Correctness Formal
proof Synthesis

Functional
correctness Security

Automatic Generation
of Glue code

Communication Init

Architecting System-Level Security/Safety

APSys'13 Keynote 14

©2013 Gernot Heiser, NICTA 15

Synthesis: Device Drivers [SOSP’09]

driver.c

OS Interface
Spec

Device Spec

Formal
OS Interface

Spec

Formal
Device Spec

Formalise
specs!

Formalise
specs!

APSys'13 Keynote 15

©2013 Gernot Heiser, NICTA 16

Actually works! (On Linux & seL4)

Asix AX88772
USB-to-Eth adapter

SD host controller

W5100 Eth shield IDE disk controller Intel PRO/1000
Ethernet

UART controller

APSys'13 Keynote 16

©2013 Gernot Heiser, NICTA 17

Synthesis: Device Drivers

In progress:
•  Extract device spec from

device design work-flow
•  Manual optimisations
•  Verified synthesis

APSys'13 Keynote

driver.c

Formal
OS Interface

Spec

Formal
Device Spec

17

©2013 Gernot Heiser, NICTA 18

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

•  Low-level description:
registers, gates, wires.

•  Cycle-accurate
•  Precisely models internal

device architecture and
interfaces

•  “Gold reference”

Too
detailed
(for now)

APSys'13 Keynote 18

©2013 Gernot Heiser, NICTA 19

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

•  Captures external
behaviour

•  Abstracts away structure
and timing

•  Abstracts away the low-
level interface

bus_write(u32 addr, u32 val)
{
 ...
}

High-level model

Use for now

APSys'13 Keynote 19

©2013 Gernot Heiser, NICTA 20

DSLs: File System

Abstract
Spec
(Isabelle)

Component
Implementation
(Generated C)

Component
Implementation
(C)Generated

Component
Implementation
(C)

Component
Spec
(DSL)

Component
Spec
(DSL)

Component
Spec
(DSL)

Generated
Proof

Manual
Proof

Component
Spec
(Isabelle)

Component
Spec
(Isabelle)

Component
Spec
(Isabelle) Gene-

rator

APSys'13 Keynote

File-system properties:
•  Multiple, pre-defined
 abstraction levels
•  Naturally modular
•  Lots of “boring” code

•  (de-)serialisation
•  error handling

20

©2013 Gernot Heiser, NICTA 21

File System Code and Proof Co-Generation

DDSL code

CSDL code
Declarations
of Types,
Functions

ve
rif

ie
d

fil
es

ys
te

m
 c

od
e

generation

Control
Code

Data layout

Ve
rif

ie
d

C
 c

od
e

Control
Code

ADT
Code

(De-)seriali-
sation Code

Is
ab

el
le

 s
pe

cs
 &

 p
ro

of
s

Control
Code Spec

ADT
Code Spec

(De)-serial.
Code Spec

Fu
nc

tio
na

l s
pe

c

Proof

Proof

Proof

Proof

Proof

Proof

Manual, FS-specific

Manual, FS-independent

Generated

generation

ge
ne

ra
tio

n

APSys'13 Keynote

Case study: Flash file system
•  Linux-compatible
•  Fits between VFS and
 flash abstraction (UBI)

21

©2013 Gernot Heiser, NICTA 22

Vision: Trustworthy System

APSys'13 Keynote

Verified critical application

Verified microkernel

Verified
Device
Drivers

Processor Devices

Verified
File systems

Verified Resource Management

Verified
Network
Stacks

Verified
High-level
runtime

Untrusted VM

Untrusted
Linux

Untrusted
Apps

Untrusted Apps

22

©2013 Gernot Heiser, NICTA 23

Lessons Learnt So Far

Formal methods are expensive?
•  Cost-effective for high assurance on small to moderate scale
•  $200-400/LOC for 10kLOC

We think we can scale bigger and cheaper:
•  Componentisation

–  verify components in isolation – enabled by seL4 guarantees
–  cost – performance tradeoff

•  Synthesis
•  Abstraction: DSLs, HLLs increase productivity
Big challenge: Proof composition

APSys'13 Keynote

The next few years will be exciting!

23

