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Abstract
We have developed and mechanically verified an ML system called
CakeML, which supports a substantial subset of Standard ML.
CakeML is implemented as an interactive read-eval-print loop
(REPL) in x86-64 machine code. Our correctness theorem ensures
that this REPL implementation prints only those results permitted
by the semantics of CakeML. Our verification effort touches on
a breadth of topics including lexing, parsing, type checking, in-
cremental and dynamic compilation, garbage collection, arbitrary-
precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-
ing a system that is end-to-end verified, demonstrating that each
piece of such a verification effort can in practice be composed
with the others, and ensuring that none of the pieces rely on any
over-simplifying assumptions. The second is developing novel ap-
proaches to some of the more challenging aspects of the veri-
fication. In particular, our formally verified compiler can boot-
strap itself: we apply the verified compiler to itself to produce a
verified machine-code implementation of the compiler. Addition-
ally, our compiler proof handles diverging input programs with a
lightweight approach based on logical timeout exceptions. The en-
tire development was carried out in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Correctness proofs, Formal
methods; F.3.1 [Logics and meanings of programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical veri-
fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;
machine code verification; read-eval-print loop; verified parsing;
verified type checking; verified garbage collection.
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1. Introduction
The last decade has seen a strong interest in verified compilation;
and there have been significant, high-profile results, many based
on the CompCert compiler for C [1, 14, 16, 29]. This interest is
easy to justify: in the context of program verification, an unverified
compiler forms a large and complex part of the trusted computing
base. However, to our knowledge, none of the existing work on
verified compilers for general-purpose languages has addressed all
aspects of a compiler along two dimensions: one, the compilation
algorithm for converting a program from a source string to a list of
numbers representing machine code, and two, the execution of that
algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified
a compiler along the full scope of both of these dimensions for a
practical, general-purpose programming language. Our language is
called CakeML, and it is a strongly typed, impure, strict functional
language based on Standard ML and OCaml. By verified, we mean
that the CakeML system is ultimately x86-64 machine code along-
side a mechanically checked theorem in higher-order logic saying
that running that machine code causes an input program to yield
output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in
machine code. Instead we write it in higher-order logic and synthe-
sise CakeML from that using our previous technique [22], which
puts the compiler on equal footing with other CakeML programs.
We then apply the compiler to itself, i.e., we bootstrap it. This
avoids a tedious manual refinement proof relating the compilation
algorithm to its implementation, as well as providing a moderately
large example program. More specifically,
• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler
inside the logic;
• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and
• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.
Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an
interactive read-eval-print loop (REPL). A verified REPL enables
high-assurance applications that provide interactivity, an important
feature for interactive theorem provers in the LCF tradition, which
were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-
porting a verified implementation. (Section 3)
• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified
compilation). (Sections 4–6, 10)



• A lightweight method for proving divergence-preservation us-
ing a clock and timeout exceptions — these only appear in the
proof, not in the implementation. It allows us to do all of our
compiler proofs by induction and in the direction of compila-
tion. (Section 7)
• To the best of our knowledge, this is the first bootstrapping of

a formally verified compiler. The bootstrapping is done within
the logic so that the compiler correctness theorem can be in-
stantiated to apply directly to the compiler’s output. (Section 9)

Result The result of this work is an end-to-end verified REPL
implementation in 64-bit x86, including lexing, parsing, type in-
ference, compilation, garbage collection, printing, and arbitrary-
precision integer arithmetic. The entire formal development was
carried out in the HOL4 theorem prover [8]. All of our definitions
and proofs are available at https://cakeml.org.

2. Approach
The CakeML system and verification divides into three layers.

REPL semantics (REPLs)

REPL as function in HOL (REPLi)

REPL in x86-64

implements

implements

interactive proof

bootstrapping (mostly)

At the top is the semantic specification of the REPL. At the
bottom is machine code implementing the REPL. In between is an
implementation of the REPL as a function in logic. We describe
the components of each layer in more detail below, then give an
overview of the proof that each layer implements the one above it.

The REPL Specification The semantics for the CakeML REPL
is given by a relation

REPLs : bool list→ string→ repl result→ bool

between a string representing the read input and a repl result,
which is a list of strings representing the printed output, ending
in a nil value that indicates whether the REPL has terminated or di-
verged. The bool list argument indicates which input declarations
have type errors (needed because we have not yet verified com-
pleteness for the type inferencer; see Section 5).

The input string is treated as a series of declarations separated
by semicolons. Each declaration might yield an output string de-
scribing a result value or reporting a lex, parse, or type error; or it
might diverge.

In the definition of REPLs, we apply an executable lexer speci-
fication to the entire input string and split the resulting list of tokens
at top-level semicolons, yielding a list of possibly invalid declara-
tions.1 For each declaration, we pick a valid parse tree according
to the CakeML grammar, if one exists. If none exists, the result
for that declaration is a parse error. We then translate away some
syntactic sugar, and resolve the scoping of types and datatype con-
structors.

CakeML has a declarative (non-algorithmic) typing relation in
the standard style. If the declaration has a type, we move on to the
operational semantics. If it does not have a type, then the semantics
gets stuck or signals a type error depending on the corresponding
value in the bool list.

1 We use an executable specification instead of a regular expression-based
one because ML comments are not expressible with regular expressions.

The operational semantics is given as a big-step relation, on
which our compiler correctness proofs can all proceed by induc-
tion since both the compiler and big-step semantics are defined
inductively over CakeML abstract syntax. To precisely define di-
vergence, and to support a syntactic type-soundness proof [31], we
also give a small-step semantics for expressions as a CEK machine
[5], and prove that it is equivalent to the big-step relation.

If the declaration diverges, REPLs relates it to the repl result
divergence-nil value. If it terminates normally or with an un-
handled exception, or if a parse or type error occurred, REPLs up-
dates its state, converts the result to a string and conses it to the
result of evaluating the rest of the input.

The REPL Implementation The REPLs specification is imple-
mented by a HOL function

REPLi : string→ repl result

from an input string to a list of result strings ending in either ter-
mination or divergence (as above). The function is total; however,
it is not computable, since it correctly ends the output list with di-
vergence when necessary: being a function in the logic, it is able
to ask whether there exist a number of steps in which execution of
code for the next declaration would terminate.

We define REPLi as a loop that consumes the input string while
transforming the state of a low-level virtual machine for CakeML
Bytecode (Section 6.3) and accumulating results. The loop is split
into three parts:
1. (REPLi step: Read and compile) The first part reads and lexes

the input until the next semicolon, parses the resulting tokens,
performs type inference on the resulting syntax and then com-
piles it to produce bytecode.

2. (Evaluate) The second part returns the result, if it exists, of ex-
ecuting the bytecode simulator on the bytecode, or else signals
divergence.

3. (Print and Loop) If the simulator terminates, the last part con-
tinues the loop with the new machine state after accumulating
the results from the new state. If the simulator diverges, or if
all input has been read, the loop ends. If any step fails, the loop
continues after accumulating the error message.

The REPL in Machine-Code The bottom layer is a machine-
code implementation of the REPL, created mostly by bootstrap-
ping. Specifically, we translate the HOL function, REPLi step,
the main part of REPLi, into CakeML declarations using proof-
producing synthesis [22]. We then evaluate the compiler in the logic
on those declarations to produce a verified bytecode implementa-
tion of REPLi step. This bytecode is mapped via a verified trans-
lation into x86-64 machine code.

To implement the other parts of REPLi, we separately synthe-
sise a small amount of x86-64 machine code to jump to the code
produced by the compiler, and to tie the loop together. We also
synthesise verified machine code for the lexer, printer, garbage col-
lector and arbitrary-precision integer package, which complete the
verified implementation.

2.1 Correctness and Verification
The correctness of the x86-64 machine-code implementation of the
CakeML REPL is stated with respect to our machine model for
x86-64. The theorem (which appears in more detail as Theorem 25)
can informally be read as follows:

Theorem 1. If the machine is loaded with the CakeML REPL code
and started with accessible memory for the data and code heaps,
and provided with a finite input character stream i, then one of the
following happens.
• The machine terminates successfully with an output stream
output , and there exist l and o such that REPLs l i o holds, o



ends with termination, and out o = output . (Here out converts
a repl result to a string by joining the results.)
• The machine diverges after producing a finite output stream
output , and there exist l and o such that REPLs l i o holds,
o ends with divergence, and out o = output.
• The machine terminates with an out-of-memory error. The out-

put stream is terminated with an error message.

We prove the correctness theorem using two methods: interac-
tive proof, to establish a connection between REPLs and REPLi

and to put the final result together, and a combination of interactive
proof and proof-producing synthesis (including bootstrapping) to
construct verified machine code that implements REPLi.

The main lemma proved interactively is that for every input ,
there is an l such that REPLs l input (REPLi input) holds. We
prove this (Section 8) by composing proofs that relate each of the
components of REPLi to the corresponding component of REPLs.

Since REPLi reads its input one character at a time, whereas
REPLs splits the whole input string up front, we first prove, for
the lexer, that the resulting list of declarations is the same either
way. We then prove our parser sound and complete with respect to
CakeML’s grammar (Section 4), which means the results of parsing
in REPLi match the choice of valid parse tree made by REPLs.

We prove soundness for the type inference algorithm: if a type
is inferred, the type system allows that type. We verify the rest of
the loop in REPLi under the assumption that type inference suc-
ceeded, and hence the operational semantics does not encounter a
type error. Internally, REPLs is defined by inductive relations pa-
rameterised by an environment and store. We maintain an invariant
between these semantic objects, the state of the compiler, and the
bytecode machine state.

Our first compiler correctness theorem (Section 6) is for when
REPLs says the declaration yields a new environment and output
string. We carry our invariant around an iteration of the REPLi loop
with this theorem, which says running the compiled code for the
declaration leads the virtual machine to produce the same output
string and to terminate in a state that satisfies the invariant updated
with the new environment.

In the case of divergence, we have a second compiler correct-
ness theorem (Section 7) that says that if REPLs says a declaration
diverges, then a run of the compiled code for that declaration also
diverges, causing the entire REPL to diverge.

The x86-64 machine-code implementation is constructed using
forward proof, most of which is automated. The bulk of the verified
machine code, i.e. that implementing REPLi step, is produced via
compiler bootstrapping:

1. We start by translating the HOL function REPLi step into
CakeML abstract syntax, a list of CakeML declarations
(ml repl step decls). The translation is automatic and proof-
producing: it proves that the generated CakeML declarations
implement the HOL functions.

2. Once we have the REPLi step in CakeML abstract syntax,
we evaluate the verified compiler on this abstract syntax. The
evaluation happens inside the logic and proves a theorem:

compile decs init ml repl step decls = (bytecode, cstate)

By the compiler correctness theorems, we prove that the gen-
erated code, i.e. bytecode, accurately implements the CakeML
declarations produced in the previous step.

3. In order to construct verified and executable machine code
from bytecode, we apply a verified translation from bytecode
instructions to x86-64 machine code.

The steps outlined above produced verified x86-64 code for part of
REPLi, namely REPLi step. We construct the machine code for all

id ::= x |Mn.x
cid ::= Cn |M.Cn
t ::= int | bool | unit | α | id | t id | (t(,t)∗)id

| t * t | t -> t | t ref | (t)
l ::= i | true | false | () | []
p ::= x | l | cid | cid p | ref p | | (p(,p)∗) | [p (,p)∗]

| p :: p
e ::= l | id | cid | cid e | (e,e (,e)∗) | [e (,e)∗]

| raise e | e handle p => e (| p => e)∗
| fn x => e | e e | ((e ;)∗ e) | uop e | e op e
| if e then e else e | case e of p => e (| p => e)∗
| let (ld |;)∗ in (e ;)∗ e end

ld ::= val x = e | fun x y+ = e (and x y+ = e)∗

uop ::= ref | ! | ~
op ::= = | := | + | - | * | div | mod | < | <= | > | >= | <> | ::

| before | andalso | orelse
c ::= Cn | Cn of t
tyd ::= tyn = c (| c)∗

tyn ::= (α(,α)∗) x | α x | x
d ::= datatype tyd (and tyd)∗ | val p = e

| fun x y+ = e (and x y+ = e)∗

| exception c
sig ::= :> sig (sl |;)∗ end
sl ::= val x : t | type tyn | datatype tyd (and tyd)∗

top ::= structureMn sig? = struct (d |;)∗ end; | d; | e;
where x and y range over identifiers (must not start with a capital letter), α
over SML-style type variables (e.g., ’a), Cn over constructor names (must
start with a capital letter), Mn over module names, and i over integers.

Figure 1. CakeML source grammar

other parts, including garbage collector and bignum library, using a
different form of proof-producing synthesis of machine code [23].
The top-level theorem is proved interactively by plugging together
theorems describing the behaviour of the components.

3. The Specification of CakeML
CakeML (Figure 1) is a subset of Standard ML (SML) [18], includ-
ing datatypes and pattern-matching, higher-order functions, ref-
erences, exceptions, polymorphism, and modules and signatures.
CakeML integers are arbitrary precision. The main features not in-
cluded are records, input/output, and functors.

All CakeML programs should run on an off-the-shelf SML
implementation with the same result;2 however, we have not proved
that fact with respect to the Definition of Standard ML. Thus, any
formal reasoning about CakeML programs must be carried out with
respect to the CakeML semantics, rather than SML’s. We chose to
be faithful to SML so that potential CakeML users do not have
to learn a new programming language from scratch, but our main
focus is not on SML per se, but rather on a call-by-value, impure,
strongly typed, functional language. We choose SML over OCaml
for technical reasons (Section 12); on our subset, the difference is
mostly in the syntax.

Section 2 summarises the specification: as a lexer, context-free
grammar, de-sugarer, elaborator, type system, and big-step opera-
tional semantics wrapped in a REPL. Most of these are typical, so
here we focus on their properties, and on our design decisions.

CakeML’s concrete syntax is specified by a context-free gram-
mar similar to Figure 1’s, but that unambiguously encodes the vari-
ous parsing precedences and resolves the “dangling case” ambigu-
ity. The transformation to abstract syntax removes syntactic sugar.

2 CakeML does not enforce equality types, so an SML implementation will
statically reject some programs that CakeML accepts. Our implementation
of equality raises an exception if one of its arguments contains a closure.



For example, a Let expression with multiple val bindings is de-
sugared into nested Lets, each with one binding.

Our abstract syntax uses a first-order representation of bind-
ing where variables, constructors, etc. are represented as strings.
This straightforward representation fits well with our semantics,
which uses closures rather than substitutions, and it also enables
bootstrapping, because the AST closely corresponds to a CakeML
datatype (CakeML does not support strings, but they become lists
of integers during synthesis).

The elaborator walks the AST and replaces uses of types and
constructors in patterns and expressions with fully qualified names,
i.e., with the full module path to the constructor. Thus, each con-
structor is canonically named, and the type system and operational
semantics do not have to generate unique stamps at datatype decla-
rations in order for a type preservation lemma to hold.

A key design principle for the operational semantics is for it to
raise a distinguished exception Rtype error whenever something
goes wrong, instead of getting stuck or continuing on anyway. By
raising Rtype error instead of getting stuck, the big-step semantics
has a precise correspondence between divergence and failure of an
expression to relate to a result. This is a key part of our technique
for verifying the compiler for diverging input programs (Section 7).

The Rtype error behaviour of the semantics forms the interface
between the type soundness proof and the compiler proof, as the
compiler proof assumes that programs do not raise Rtype error,
and type soundness theorem guarantees this. Even though these
choices only affect programs that do not type check, they are how
the compiler proof can use the fact that these situations do not
arise. For example, when evaluating a pattern match, the value’s
constructor might be from a different type than the first pattern’s,
as in case true of None => 0 | true => 1. The semantics
could just move on to the next pattern since the value’s and first-
pattern’s constructors are not equal. Instead the semantics detects
this case and raises Rtype error.

The semantics relies on the following definitions of values v;
environments for variables envE , constructors envC , and modules
envM ; stores s; and results r. The constructor environment records
the arity of the constructor and what type of values it constructs.
v ::= loc | l | cid | cid v | (v,v(,v)∗) | Closure〈E , x, e〉

| RecClosure〈E, (fun x y = e (and x y = e)∗), x〉
loc ::= num
envE , E = (x, v) list
envC , C = (cid , num*id) list
envM ,M = (id ,E) list
s = loc list
r ::= 〈s,C , 〈M ,E〉〉 | 〈s,C , ex〉 | 〈s,C ,Rtype error〉

The type system relies on typing contexts for variables tE , con-
structors tC , modules tM , and stores tS . We then have relations
for evaluation, divergence, and typing for top-level declarations.

evaluate top : M → C → s→ E → top → r → bool
top diverges : M → C → s→ E → top → bool
type top : tM → tC → tE → top → tM → tC → tE → bool

We use closures for function values, rather than performing substi-
tutions at function applications, to keep a close connection between
the semantics of functions and their implementation strategy.

The REPL repeatedly calls evaluate top, and must update its
state between each call, installing new bindings, using the new
store, etc. After completing a module declaration, the REPL up-
dates the type system’s state with the module’s bindings according
to its signature, since future declarations must not refer to hidden
bindings or constructors. However, the operational semantics’ state
must be updated because references to the hidden constructors will
generally be reachable from the environment or from the store.

The last remaining subtlety lies in module declarations that raise
an un-handled exception part-way through. When any declaration

raises an exception, its bindings do not take effect, and so the type
environments are not updated. However, the operational semantics
might need its constructor information updated, since the module
might have placed a locally defined constructor in the store first
before raising the exception.

We have two options, either updating the constructor environ-
ment with just the constructors seen, or with all of the constructors
from the module body. Both are sound, and neither affect the pro-
grammer, since they are not in the type environments. We choose
the latter, to match how the compiler implements modules.

Metatheory

Theorem 2 (Determinism). If evaluate topM C s E top r1 and
evaluate topM C s E top r2 then r1 = r2.

Proof sketch. By induction on the big-step relation.

Theorem 3 (Totality). (∃r. evaluate top M C s E top r) iff
¬top divergesM C s E top.

Proof sketch. First, we establish, by induction along a small step
trace, that the small-step semantics cannot get stuck. Then we use
the big-step/small-step equivalence theorem to transfer the result to
the big-step semantics.

The invariant of the type soundness theorem existentially quan-
tifies constructor and module type environments that represent
the declarations that are hidden by module signatures. The up-
date type sound inv function updates the state depending on
whether the result is an exception or not following the discussion
above.
type sound inv(tM , tC , tE ,M,C,E, s) =
∃ tS tM no sig tC no sig .
the environments are well-formed and consistent with each other,
MAP FST tM no sig = MAP FST tM ,
tM no sig weakens tM ,
tC no sig weakens tC , and
the constructors in tC no sig but not tC are all in modules in

the domain of tM .

Theorem 4 (Type soundness).
Let state = 〈tM , tC , tE ,M ,C ,E , s〉 be given.
For all top, if type sound inv state and
type top tM tC tE top tM ′ tC ′ tE ′ then either
top diverges M C s E top or there exists s′, C′, and r such that
r 6= Rtype error,
evaluate topM C s E top 〈s ′,C ′, r〉, and
type sound inv

(update type sound inv top state tM ′ tC ′ tE ′ s′ C′ r)

Proof sketch. We prove the usual preservation and progress lemmas
along a small-step trace. Then we use the big-step/small-step equiv-
alence theorem to transfer the result to the big-step semantics. We
then reason about declarations entirely with the big-step seman-
tics. This poses no problem because declarations cannot diverge
apart from their sub-expressions diverging. The preservation and
progress lemmas were proved directly on our CEK-style small-step
semantics, which uses closures and a context stack. To our knowl-
edge no such proof appears in the literature. The main impact on
the proof is to flatten out its structure (e.g., no substitution lemma),
and instead to require an invariant that types the continuation stack.
The usual subtleties about type substitution and weakening were
unchanged; we use de Bruijn indices for type variables.



Part II: Verification and Implementation
We now turn to the implementation and verification of each part
of the compiler. Afterward, we include a high-level discussion of
CakeML’s design and significance (Section 12).

4. Parsing
We implement the first phase of parsing with a Parsing Expression
Grammar (PEG), following Koprowski and Binsztok’s mechanisa-
tion in Coq [11]. We have a general inductive relation peg eval,
which takes a grammar, an input sequence of tokens, a PEG ex-
pression, and returns a verdict of either failure, or success with a
returned value and the remaining input. We prove the results from
Koprowski and Binsztok that the peg eval relation always has a
value when the PEG is well-formed, and that it is deterministic.
Thus, on well-formed PEGs (we prove the CakeML PEG is one
such), peg eval specifies a function.

PEG expressions are accompanied by “semantic actions” that
can transform the values associated with sub-parses into a com-
bined return value. Our semantic actions, in HOL, cannot be de-
pendently typed, as can be done in Coq where it is pleasant to have
parses of different non-terminals return values of different types.
Instead, all our PEG-expressions have semantic actions that simply
return lists of CFG-parse-trees. In this way, the first phase of pars-
ing concentrates on turning a linear sequence of tokens into a tree;
later phases map different parts of these trees into different types.

Even though peg eval specifies a function, its definition is not
well-suited to computation. Rather, we define a general PEG in-
terpreter peg exec that is tail-recursive, written in a continuation-
passing style. Whenever its PEG argument is well-formed, we
prove the interpreter has a well-defined result, and one that is equal
to the result demanded by the peg eval relation. It is this definition
that is compiled into the bytecode that is eventually executed.

Theorem 5 (Parser Soundness). Whenever the PEG successfully
parses a non-terminal N , its result is a single CFG parse-tree with
N at its head and whose fringe of tokens corresponds to the input
consumed by the execution of the PEG.

Proof sketch. Induction on the lexicographic combination of the
length of the input given to peg eval, and the rank of the non-
terminal. Each non-terminal is given a natural number rank such
that if executing the PEG on non-terminal N can result in needing
to execute non-terminal M without having consumed any input,
then N ’s rank is greater than M ’s. The fact that this ranking
is possible stems from the same argument that gives the well-
formedness of the PEG.

Theorem 6 (Parser Completeness). If a parse tree exists for a given
input, then the PEG implementation will find it.

Proof sketch. Induction on the lexicographic combination of the
length of the parse tree’s fringe, and the rank of the tree’s head
non-terminal.

As PEG execution is deterministic, this also implies that our
CFG is unambiguous.

5. Type Inference
Type inference is based on Milner’s algorithm J (and hence
W) [17]. We represent unification variables as numbers, and in-
crement a counter to generate fresh variables. Since the inferencer
is written in higher-order logic (in a state-and-exception monad),
we cannot use the common technique of doing substitutions by up-
dating pointers in the types. Instead we re-use our previous formal-
isation (from the HOL4 examples directory) of triangular substitu-

tions, which are not idempotent, but are instead designed to main-
tain sharing for greater efficiency in a pure functional setting [12].

Theorem 7 (Type Inferencer Soundness).
If infer top tM tC tE top state =
(Success(tM ′, tC ′, tE ′), state ′) and tM , tC , tE contain no uni-
fication variables, then type top tM tC tE top tM ′ tC ′ tE ′.

Proof sketch. The soundness proof is long and tedious, but not
particularly surprising. A large part of the proof is devoted to
establishing invariants on the usage of type variables in the various
environments and state components of the algorithm.

There are two ways in which our inferencer verification falls
short of what could be seen as an ideal for SML, but neither directly
affects our end-to-end correctness theorem. First, the types of let-
bound variables are not generalised, restricting polymorphism to
top-level and module-top-level declarations;3 and second, we have
not verified completeness of the inferencer. In both cases, the po-
tential for the CakeML system to behave badly is limited to sig-
nalling a type error on a declaration that the programmer expected
to pass type checking. In particular, there is no possibility for the
programmer to be deceived by the system appearing to returning an
erroneous result of executing the definition.

We gave proving inferencer completeness low priority because,
in practice, we find the inferencer does not fail on the programs we
expect to have types. If it did, a completeness theorem would tell
us that the bug is in CakeML’s declarative type system, rather than
possibly also in the inferencer.

6. Compilation
We now turn to translation from abstract syntax to CakeML Byte-
code, our assembly language for a virtual stack machine, which is
the final language before translation to x86-64 machine code. We
describe the bytecode in detail in Section 6.3, but first take a high-
level look at the compiler and its verification.

The main function is compile top which takes a top-level dec-
laration and the compiler’s state, including environments mapping
variables to bytecode stack offsets, and returns code and two new
compiler states. One is used if the code runs successfully and the
other if it raises an un-handled exception. For the verification, we
define a relation

compiler inv envM envC s envE rs z rd bs

between the semantic context (the module, constructor, and value
environments, and the store), the compiler’s state rs , the bytecode
machine state bs , and additional context indicating the size, z ,
of the stack before the last complete declaration, and information
about references and closures in rd .

We explain the compiler along with its verification, beginning
with the statement of the correctness theorem for terminating pro-
grams (for diverging programs see Section 7).

Theorem 8 (Compiler Correctness). If
top is well-typed, evaluate topm c s e top res ,
compile top rs top = (rss, rsf , code), and,
compiler invm c s e rs |bs.stack| rd bs ,

then a run of bs with code terminates with a new state bs ′, satisfy-
ing the following condition, depending on res:
If res is a successful result with new environments m′, c′, and e′,
and new store s′, then there exists rd ′ such that

bs ′ has reached the end of code (no next instruction),
compiler invm′ c′ s′ e′ rss |bs ′.stack| rd ′ bs′, and,
bs ′ has the result of printing the new bindings in its output.

3 Vytiniotis et al. [30, Section 4.3] provide evidence that generalisation for
let expressions is rarely used in practice.



Otherwise if res is an exception exc with a new store s′, then there
exists rd ′ and bv such that

the next instruction for bs ′ is Stop,
bs ′.stack = bv :: bs.stack,
bv is a refinement of exc, and,
compiler invm c′ s′ e rsf |bs.stack| rd ′ bs ′′,

where bs ′′ is bs ′ with bv popped. (The printing and popping of
bv is done by the main REPL loop after the Stop instruction is
reached.)

Proof sketch. The compile top function is implemented using func-
tions for compiling declarations and expressions, mirroring the
structure of the big-step semantics. The proof for each layer is by
induction on the appropriate big-step relation.

Our compilation strategy has three phases: translation to an in-
termediate language, analysis for the purpose of compiling func-
tions, and finally translation to bytecode. We proceed with a de-
scription of the implementation and verification of each phase.

6.1 Translation to Intermediate Language
The intermediate language (IL) simplifies the source language in
the following ways:
• Pattern-matching is replaced by conditional expressions and

constructor-tag equality tests.
• Named variables are replaced by de Bruijn indices. Constructor

names are replaced by numeric tags.
• All functions are syntactically recursive, and may have zero or

more arguments.
• The set of primitive operations is smaller (e.g. no greater-than,

only less-than).
The translation to IL expressions is a straightforward recursion

on the abstract syntax of CakeML. We also define a translation from
CakeML values to IL values, which makes use of the expression
translation since closures are amongst the values.

Verification We give a big-step operational semantics for the
intermediate language, similar to the one for the source language.
The correctness theorem for the translation to IL says whenever the
CakeML semantics gives a program p a result r, the IL semantics
gives the translated program [p] a result r′ that is related to [r]. The
proof is by induction on the CakeML big-step evaluation relation.

We cannot prove identity between the translated CakeML result
and the result produced by the IL semantics, because closure en-
vironments may differ. The translation to IL sometimes introduces
fresh variables that will appear in an IL closure’s environment but
not in the translation of the source closure’s. We need a coarser
relation on IL closures, allowing their environments to differ.

For this purpose, we define a relation ≈ on IL expressions, val-
ues, and environments. The relation V ` (z1, e1) ≈ (z2, e2) re-
lates an IL expression together with the size of its environment to
another such pair. It is parameterised by a relation V v1v2 indicating
variables that are assumed to be bound to equivalent values. To re-
late values, the relation v1 ≈ v2 needs no sizes or parameters, since
closures carry their environments so the size can be computed.

We have proved ≈ reflexive and transitive (symmetry fails as
explained in the next section) and the following two theorems.

Theorem 9. If the IL semantics says e1 evaluates in environment
env1 to a result r1; whenever V v1 v2 holds, env1(v1) ≈ env2(v2)
does also; and, V ` (|env1|, e1) ≈ (|env2|, e2); then there is a
result r2 to which e2 evaluates in env2 and r1 ≈ r2.

Proof sketch. By induction on the IL evaluation relation.

The main purpose of the≈ relation is to enable closure environ-
ments to be manipulated. The second theorem supports the renum-
bering of variables that is required in a closure’s body when its
environment is changed.

Theorem 10. Let e′ be the result of renumbering variables in e
and suppose V relates indices under the same renumbering scheme,
then V ` e ≈ e′.

Proof sketch. By induction on syntax-directed renumbering.

We use these theorems for verifying the translation to IL in-
cluding the removal of pattern matching. We also use ≈ to relate
IL function bodies to annotated IL closure bodies, described below.

6.2 Intermediate Language Closure Annotation
For every function body, we compute how to compile each occur-
rence of a variable, and how to build the closure environment. We
use flat closure environments that only have bindings for variables
that actually occur free in the function’s body.

As an example, consider the following IL expression (written in
concrete syntax with named variables, but recall that the IL actually
uses de Bruijn indices):

let val a = e1 val b = e2 val c = e3
fun f h x =

if x = 6 then h 7 else (g x) + (f (x - a))
and g x = f (fn y => x + y - b) (a - c)

in e4 end

Analysis of the bodies records this about the free variables:

for f: for g: for λ:
x -> arg 0 f -> rec 0 x -> env 0
h -> arg 1 b -> env 0 y -> arg 0
g -> rec 1 a -> env 1 b -> env 1
f -> self c -> env 2 cl env = [0,2]
a -> env 0 cl env = [1,2,0]
cl env = [2]

The env annotation gives an index into the closure environment,
which is itself a list of indices into the enclosing environment (so
in the anonymous function’s closure environment, 0 refers to g’s
argument, and 2 refers to the first element of g’s environment, since
1 would refer to g itself).

We update the variables in function bodies so that they refer to
the closure environment instead of the enclosing environment. For
example, in the body of f, the de Bruijn index for a is decremented
twice, because the intervening variables in the enclosing environ-
ment are omitted in the closure environment. CakeML’s operational
semantics also uses closures, making the proof of correspondence
conceptually straightforward, but closures in the semantics contain
the whole enclosing environment.

We generate, for each function body, a unique label that is used
(Section 6.4) as a code pointer to bytecode implementing the body.

Verification We store the closure environment information as an-
notations on the function bodies within the expression. The IL se-
mantics uses the closure (rather than enclosing) environment to
evaluate a call when such an annotation exists. Similarly, the re-
lation V,U ` (z1, bs1) ≈ (z2, bs2) allows the bodies in bs1 and
bs2 to be annotated, and uses the closure environment rather than
V and z as appropriate. The relation is directed (hence not symmet-
ric): if a body in bs1 is annotated, then the corresponding body in
bs2 must have the same annotation; however an unannotated body
in bs1 may be related to an annotated body in bs2.

Theorem 11. If e′ is the result of annotating e, and e is unannotated
and has free variables all less than z, then (=) ` (z, e) ≈ (z, e′),
and e′ is fully annotated with environments that cover the free
variables of its bodies.

Proof sketch. By induction on syntax-directed annotation.



bc inst ::= Stack bc stack op | PushExc | PopExc
| Return | CallPtr | Call loc
| PushPtr loc | Jump loc | JumpIf loc
| Ref | Deref | Update | Print | PrintC char
| Label n | Tick | Stop

bc stack op ::= Pop | Pops n | Shift n n | PushInt int
| Cons n n | El n | TagEq n | IsBlock n
| Load n | Store n | LoadRev n
| Equal | Less | Add | Sub |Mult | Div |Mod

loc ::= Lab n | Addr n
n = num
bc value ::= Number int | RefPtr n | Block n bc value∗

| CodePtr n | StackPtr n
bc state ::= { stack : bc value∗; refs : n 7→ bc value;

code : bc inst∗; pc : n; handler : n;
output : string; names : n 7→ string;
clock : n? }

Figure 2. CakeML Bytecode syntax, values, and machine state

6.3 CakeML Bytecode
The target language of the compiler is CakeML Bytecode (Fig-
ure 2), a low-level assembly language for a virtual machine with
a single random-access4 stack.

CakeML Bytecode was designed with three separate goals: to
be (i) conveniently abstract as a target for the compiler and its
proofs, and (ii) easy to map into reasonably efficient machine code
that is (iii) possible to reason about and verify w.r.t. an operational
semantics for x86-64 machine code. To support (i), the bytecode
has no notion of pointers to the heap, and provides structured
data (Cons packs multiple bytecode values into a Block) on the
stack instead. Also, the bytecode Number values are mathematical
integers; the x86-64 implementation includes a bignum library
to implement the arithmetic instructions. For (ii), we ensure that
most bytecode instructions map to one or two x86-64 machine
instructions; and for (iii), the bytecode essentially only operates
over a single ‘stack’, the x86-64 stack which we access using
the normal stack and base pointers, rsp and rbp registers. (See
Section 10 for the implementation of the bytecode in x86-64.)

The bytecode semantics is a deterministic state transition sys-
tem: the relation bs1 → bs2 fetches from code the instruction
indicated by pc and executes it to produce the next machine state.
We give some example clauses in Figure 3.

Our data refinement relation l, r,Cv |= bv says bv is a byte-
code value representing the IL value Cv . It is parameterised by two
functions: l to translate labels to bytecode addresses, and r provid-
ing extra information about code pointers for closures.

The refinement of closures is most interesting. There are two
components to a closure: its body expression, and its environment
which may refer to other closures in mutual recursion. We use a
correspondence of labels to link a code pointer to an annotated
IL body, and for the environment, we assume the IL annotations
correctly specify the closure environment. In the IL, a closure
looks like CRecClos env defs n, where env is the enclosing5

environment, and the body is the nth element of the bundle of
recursive definitions defs . We say

l, r,CRecClos env defs n |= Block c [CodePtr a;Block e bvs]

holds (c and e are tags indicating closure and environment Blocks)
when:

4 Most operations work on the top of the stack, but Load n and Store n
read/write the cell n places below the top, and LoadRev takes an index
from the bottom.
5 Annotations on defs[n] build the closure environment from env .

fetch(bs) = Stack (Cons t n) bs.stack = vs @ xs |vs| = n

bs → (bump bs){stack = Block t (rev vs) :: xs}

fetch(bs) = Return bs.stack = x :: CodePtr ptr :: xs

bs → bs{stack = x :: xs; pc = ptr}

fetch(bs) = CallPtr bs.stack = x :: CodePtr ptr :: xs

bs → bs{stack = x :: CodePtr (bump bs).pc :: xs; pc = ptr}

fetch(bs) = PushExc bs.stack = xs bs′ = bump bs

bs → bs′{stack = StackPtr (bs.handler) :: xs; handler = |xs|}

fetch(bs) = PopExc bs.handler = |ys|
bs.stack = x :: xs @StackPtr h :: ys

bs → (bump bs){stack = x :: ys; handler = h}

Figure 3. CakeML Bytecode semantics (selection). The helper
function fetch calculates the next instruction using the pc and code,
and bump updates the pc to the next instruction.

• defs[n] has label lab and annotations ann , l(lab) = a, and
|ann| = |bvs|;
• for every variable x with an env annotation in ann , the corre-

sponding bytecode value bv in bvs satisfies l, r, env(x) |= bv ;
and,
• for every variable with a rec i annotation in ann , the corre-

sponding bytecode value in bvs is RefPtr p, for some p, and
there are env ′, defs ′, and j such that r(p) = (env ′, defs ′, j)
and CRecClos env defs i ≈ CRecClos env ′ defs ′ j.

Thus, for a function in mutual recursion we assume it is behind
the indirection of a RefPtr; the function r acts as an oracle in-
dicating the closure that should be pointed to. To tie the knot,
the inductive hypothesis in our compilation proof says whenever
r(p) = (env ′, defs ′, j ) the bytecode machine refs binds p to a
value bv satisfying l, r,CRecClos env defs j |= bv .

6.4 Translation to Bytecode
The main compilation algorithm takes an IL expression as input and
produces bytecode instructions. Additional context for the compiler
includes an environment binding IL variables to stack offsets, and
a return context indicating the number of variables that need to be
discarded before a jump if the expression is in tail position.

The correctness theorem for this phase is similar to Theorem 8
(whose proof uses this one as a lemma), assuming evaluation in
the IL semantics rather than the source semantics. In particular, we
have a relation called IL inv that captures an invariant between the
IL environment and store, the compiler state, the bytecode machine
state, and proof information like the l and r functions. This relation
is used in the definition of compiler inv, which crosses the three
languages (CakeML, IL, Bytecode). The theorem below depends
only on the IL and the bytecode.

Theorem 12. If the IL semantics says Cexp evaluates in environ-
ment Cenv and store Cs to a new store Cs ′ and result Cres , and all
the values in the context are fully annotated, then for all bytecode
machine states bs satisfying IL inv with Cenv and Cs (and proof
information including l and r), then
• If Cres is a value, Cv , then

Running bs with code from compiling Cexp in non-tail
position leads the bytecode machine to terminate in a new
state bs ′ such that IL inv holds of Cenv , Cs ′, and bs ′, and
bs ′.stack = bv :: bs.stack with l, r′,Cv |= bv ; and,



Assuming bs.stack = lvs @CodePtr ret :: args @ st,
running bs with code from compiling Cexp in tail position
ready to discard |lvs| and |args| leads the machine to a state
bs ′ satisfying the invariant as above, and also bs ′.pc = ret
and bs ′.stack = bv :: st, with l, r′,Cv |= bv .

• Otherwise, if Cres is an exception value Cx , and if bs.stack =
vs @StackPtr h :: CodePtr hdl :: st , and bs.handler =
|st| + 1, then running bs with code for compiling Cexp (in
either call context) leads the machine to a state bs ′ satisfying
the invariant, and with bs ′.pc = hdl , bs ′.stack = bv :: st ,
l, r′,Cx |= bv , and bs ′.handler = h.
• Finally, if Cres is a timeout exception, then a run of bs on code

for Cexp causes the machine to time out. (See Section 7 for
details.)

Proof sketch. By induction on the big-step semantics for the IL. The
invariant includes a condition on bs.code: it must already contain
code resulting from compiling all the function bodies appearing in
Cexp and for closures in Cs and Cenv . This assumption is justified
by the compilation of function bodies described below.

Function Bodies Before compiling the main expression, we
compile the functions. For each body, the compilation environment
is the closure environment and the return context is tail position
(ready to discard just the arguments to the function but no local
variables). We lay the resulting stretches of bytecode in sequence
each preceded by the label annotating the closure’s body.

Closure Creation As we saw in the definition of l, r,Cv |= bv ,
we represent a closure using a Cons block containing a code pointer
and an environment block, which is built following the annotations
on the closure body. For mutually recursive closures (the rec an-
notation), we build the closure environment using references, and
update them with the appropriate closures once all the closures are
created, thereby ensuring mutually recursive functions appear as
RefPtrs in the closure environment.

Function Calls and Proper Tail Calls The generated code for a
function call depends on whether it is tail position or not. In both
cases, we first evaluate the closure and its arguments, and extract
the code pointer from the closure. For a non-tail call, we use the
CallPtr instruction, which generates a return pointer and jumps.
For a tail call, since we are assuming a return pointer is already
on the stack, we reorganise the stack, discarding the local variables
and arguments, then use the Return instruction to make the call.

The key lemma enabling our proof by induction for the func-
tion call case says that if bs.stack = benv :: CodePtr ret ::
bvs @Block c [p; benv ] and l, r,CRecClos env defs n |=
Block c [p; benv ], then we can establish IL inv for bs with the clo-
sure environment made from env and the annotations on defs[n].
Thus we can use the inductive hypothesis on the closure body even
though it is not a subexpression of the original Cexp in the theorem
statement.

Declarations So far we have looked at the compilation of IL ex-
pressions. A CakeML program, however, is a sequence of decla-
rations of types, values, or structures. Our IL does not have decla-
rations, so to compile a value declaration val p = e, we construct
the CakeML expression case e of p => vs, where vs is a tuple of
the variables appearing in p, translate this expression to the IL and
compile it, and generate a bit of additional code to extract the new
bindings from the tuple. For type declarations, we need not generate
any code at all and simply update the compiler’s state component
mapping constructor names to bytecode block tags.

Modules Structure declarations are, from the compiler’s perspec-
tive, just a sequence of type and value declarations. But they must
be treated as a single unit, so there is a subtlety: if any of the decla-

rations within a structure raises an un-handled exception, the bind-
ings for the whole structure need to be discarded. Therefore, we
must set up an exception handler around the whole sequence of
declarations, enabling unwinding of the stack before proceeding to
the next top-level declaration. If the sequence of declarations fin-
ishes successfully, we pop the exception handler and hence need to
shift the stack offsets for the new bindings in the compiler’s envi-
ronment. We reuse this machinery and its proof for top-level decla-
rations (treating them as unnamed structures with one declaration).

7. Diverging Programs
So far we have seen our compilation algorithm and how we prove
that if a source declaration terminates then the bytecode terminates
with the same result. By assuming termination, we might appear
to admit a compiler that causes programs that should diverge to do
anything at all, including returning a wrong result. Here we show
how to establish that our compiler in fact preserves divergence.

The proofs of the previous section are all performed in the
direction of compilation by induction on the big-step semantics.
We would like to handle diverging programs in the same way, to
avoid establishing a simulation from a small-step bytecode trace
to a small-step source trace against the direction of compilation,
and to avoid introducing a co-inductive big-step semantics [15].
Because the bytecode semantics is deterministic, all we have to
do is show that the compiler maps diverging source expressions
to diverging bytecode expressions.

First, we add optional clocks to the source big-step semantics
and to the bytecode machine state. In the big-step semantics, the
clock is decremented by 1 on each function call, and a timeout
exception is raised if a function is called when the clock is 0.
In the bytecode, the Tick instruction decrements the clock, and
the semantics gets stuck if the clock is 0. The compiler emits a
Tick instruction for each source function call, and we prove that if
a program times out in the semantics with a certain clock, then
the compiled version times out in the bytecode with the same
clock. This is the core of the compiler proof for divergence, and
it follows the same inductive approach as the rest of the compiler
proof. The conclusion of Theorem 12 handles the case of a timeout
exception, and thereby supports an analogue of Theorem 8 for
diverging programs.

It remains to show how to establish our main divergence result
when the source semantics ignores the clock and the Tick instruc-
tion is implemented as a no-op (and thus produces no x86-64 in-
structions). We sketch the proofs here with a simplified notation.
We will write c ` e ⇓ v for convergence in the source language
with clock c to a value (or non-timeout exception), and c ` e ⇓ ∅
for a timeout exception. We use a clock of∞ to indicate the version
that ignores the clock.

Lemma (Big-step Clocked Totality). For all clocks c and expres-
sions e, either c ` e ⇓ ∅ or ∃v. c ` e ⇓ v.

Proof sketch. By well-founded induction on the lexicographic or-
dering of the clock and size of the expression. In all but one case,
the applicable big-step rules have inductive premises that have the
same or smaller clocks (because the clock is monotonically non-
increasing) and smaller sub-expressions. Thus, by induction the re-
sults for the sub-expressions combine to give a result for the expres-
sion. (It is important here that all mis-applied primitives evaluate to
an exceptional result.) The only case where the expression might be
bigger is function application, but it decrements the clock first.

Lemma (Big-step Clock/Unclock). c ` e ⇓ v implies∞ ` e ⇓ v
and,∞ ` e ⇓ v implies ∃c. c ` e ⇓ v.

Proof sketch. Straightforward induction.



The bytecode’s operational semantics is small-step, so we define
an evaluation relation in the standard way:

c ` bs ⇓bc bs ′ ≡ bs{clock = c} →∗ bs ′ ∧ ∀bs ′′. ¬(bs ′ → bs ′′)

We say the machine has timed out if it evaluates to a state with
clock = 0 and next instruction Tick. A bytecode machine state
diverges if it can always take another step.

Lemma (Bytecode Clock/Unclock). c ` bs ⇓bc bs ′ implies
bs{clock = ∞} →∗ bs ′{clock = ∞}, and ∞ ` bs ⇓bc bs ′

implies ∃c. c ` bs ⇓bc bs
′{clock = 0}.

Proof sketch. Straightforward induction.

Lemma (Clocked Bytecode Determinism). c ` bs ⇓bc bs ′ and
c ` bs ⇓bc bs

′′ implies bs ′ = bs ′′.

Proof sketch. The small-step relation is deterministic by inspection
of the rules; the main result follows by induction on→∗.
Theorem 13. Evaluation of e diverges in the un-clocked semantics
iff the compilation of e (loaded into a bytecode state bs) diverges
in the un-clocked bytecode semantics.

Proof. For the forwards direction, we have c ` e ⇓ ∅, for all
clocks c, by the source language’s determinism, and the totality
and clock/unclock lemmas. Therefore by the compiler correctness
result, we know for all clocks c there is a bs ′ such that c ` bs ⇓bc
bs ′ and bs ′ is timed out. Now we must show that bs{clock =∞}
diverges. Suppose, for a contradiction, there is some bs ′′ with∞ `
bs ⇓bc bs

′′. Let c be one more than the number of Tick instructions
on the trace from bs to bs ′′, which is unique by determinism. This
contradicts the existence of a bs ′ above: if evaluation stops before
reaching bs ′′, it will not have passed enough Ticks to deplete the
clock, and if it reaches bs ′′ it stops without timing out.

The backwards direction follows easily from Theorem 8 and the
clock/unclock lemmas.

8. Read-Eval-Print Loop
To interact with our compiler, we build a REPL. We define this
first as a logic function, REPLi, that implements REPLs. (In later
sections, we describe how we produce an x86-64 machine code
implementation of the REPL.)

loop (bs, b) input =
case lex until toplevel semicolon input of
| None→ Terminate
| Some (tokens, rest of input)→
case REPLi step(tokens, s) of
| Failure error msg →

Result error msg
(loop (bs, s) rest of input)

| Success (code, s, sexc)→
let bs = install code s.cstate code bs in
case bc eval bs of
| None→ Diverge
| Some bs→

let s = if success bs then s else sexc in
Result bs.output
(loop (bs, s) rest of input)

REPLi input = loop initial state input

On each iteration of its main loop REPLi lexes part of the in-
put string up until the first top-level semicolon; it then calls the
REPLi step function, which performs parsing, elaboration, type
inference and then compilation to bytecode. Once the input has
been turned into code, it installs the code into a bytecode state and
starts execution (bc eval) of the new bytecode state. If the gener-
ated code terminates, then it loops back to the top and starts again.

Here bc eval is a non-computable function which describes the
small-step execution of the bytecode semantics. This function is
total and returns None if the bytecode fails to terminate, otherwise
it returns the resulting state inside Some.6

Theorem 14 (REPLi Correct). For all inputs i and outputs o,
if REPLi i = o then REPLs (get type error mask o) i o.
Where REPLs is the REPL semantics described in Sec-
tion 2 and get type error mask picks out the inputs that output
"<type error>", to let the REPL semantics know where the type
system should fail.

Proof sketch. By induction on the length of i. This theorem pulls to-
gether the parser soundness and completeness theorems, the infer-
ence soundness theorem, the type soundness theorem and the com-
piler correctness theorem. Most of the proof is devoted to showing
that the various invariants required by the theorems are maintained
across the iterations of loop.

The verified REPLi function is well suited for simulating the
implementation in the theorem prover: we can evaluate REPLi

using the HOL4 prover’s EVAL mechanism. For example,

EVAL ‘‘REPLi "fun f x = x + 3; f 2;"’’

automatically derives a theorem:

REPLi "fun f x = x + 3; f 2;" =
Result "val f = <fn>" (Result "val it = 5" Terminate)

Note that this evaluation of REPLi inside the logic by inference
does not terminate if the bc eval fails to terminate, i.e., this evalu-
ation won’t return Diverge.

9. Bootstrapping
Most of the complexity in the definition of REPLi is contained
within the definition of REPLi step, a function that combines pars-
ing, elaboration, type inference and compilation to bytecode. The
next section describes how we construct a verified x86-64 machine-
code implementation of REPLi, and therefore of REPLs. In order
to make the construction of x86-64 for REPLi an easier task, we
use the verified compiler to compile REPLi step to bytecode. The
REPLi step function contains the compiler itself, which means
that this application of compilation amounts to bootstrapping the
compiler. This section explains the bootstrapping method; the next
section explains how we use the result.

Our starting point is REPLi step. We want to have byte-
code which is proved to implement the REPLi step function. The
REPLi step is defined in logic (HOL), where functions are speci-
fied using equations, e.g. it is easy to define a HOL constant, fac,
that is characterised by the equations:

fac 0 = 1
fac (n+ 1) = (n+ 1)× fac n

In order to apply the verified compiler to functions defined in HOL,
we need these equations to exists as CakeML abstract syntax for
function definitions, i.e., we need CakeML declarations defining
REPLi step.

A previously developed proof-producing tool [22], implements
exactly this kind of translation. Given a constant from HOL
with equations that look sufficiently ML-like, the tool generates
CakeML abstract syntax and proves that the generated CakeML
implements the constant described by equations in HOL. When
applied to REPLi step, this translation produces a long list of

6 bc eval is the ⇓bc relation from Section 7.



CakeML declarations:
ml repl step decls =
[datatype . . . , datatype . . . ,
fun . . . , fun . . . , . . . , fun repl step x = . . .]

The tool also proves two relevant theorems:

Theorem 15 (Evaluating ml repl step decls). Evaluation of the
declaration list succeeds and produces a semantic environment, i.e.,
a mapping from names to values. We will refer to this environment
as ml repl step env.

Theorem 16 (Evaluating repl step). The value associated with
the name repl step in ml repl step env, is a closure which im-
plements REPLi step w.r.t. refinement invariants input and output
(relations between abstract values and CakeML semantic values).
In the notation of Myreen and Owens [22]:

Eval ml repl step env "repl step"
((input→ output) REPLi step)

Proof sketch. By algorithm from Myreen and Owens [22]
The CakeML-to-bytecode compiler is then applied to the decla-

ration list. The result is a theorem produced by evaluation.

Theorem 17 (Compiling ml repl step decls). Given an initial
compiler state init and the declaration list, the compiler produces
bytecode and a new compiler state cstate.

compile decs init ml repl step decls = (bytecode, cstate)

Proof sketch. By evaluation in the logic (EVAL from above).
Next, we instantiate the compiler correctness theorem (the com-

pile decs version of Theorem 8) for use with Theorems 15 and 16.
Two further theorems are outlined below. We omit the definition of
run inv.

Theorem 18 (Running bytecode). Executing the compiler gener-
ated bytecode terminates in some state bs such that this state con-
tains ml repl step env and run inv bs v is true, for some v.

Proof sketch. By instantiation of a lemma supporting Theorem 8.

Theorem 19 (Calling repl step). For any bytecode state bs, se-
mantics value v and x such that run inv bs v and input x v, running
a snippet of bytecode which calls the code for repl step, termi-
nates in a new bytecode state bs′ and v′ such that run inv bs′ v′

and output (REPLi step x) v′. In other words, calling the code
for repl step computes REPLi step.

Proof sketch. By instantiation of Theorem 12 and other lemmas
supporting Theorem 8.

10. Implementation in x86-64
The verified x86-64 implementation is constructed so that it
exactly implements the in-logic-defined REPLi function from
above. Thanks to the bootstrapping, large parts of REPLi, namely
REPLi step, exist in the form of verified bytecode. In other words,
much of the effort involved in constructing the x86-64 implemen-
tation of REPLi boils down to producing an implementation of the
bytecode that the compiler targets.

In order to verify the x86-64 code we need a semantics, a
programming logic and proof automation for x86-64 machine code.
For these, we build on previous work.

Semantics of x86-64 We use a conventional small-step opera-
tional semantics for x86 machine code. This semantics originates
in a definition for 32-bit x86 that Sarkar et al. [28] validated against
real hardware. The semantics was extended in Myreen [19] to han-
dle self-modifying code and used in our previous work on a verified

implementation of a REPL for Lisp [21]. The current semantics has
a small coverage of the user-mode x86-64 instruction set. However,
it tries to be as accurate as possible for the subset it describes.

Programming Logic For most proofs (manual and automatic),
we use the machine-code Hoare logic for our previous work on
self-modifying code [19]. However, for the current work, we had
to define a new more expressive programming logic in order to
state and prove the top-level theorem. The top-level theorem must
be able to specify that the machine code diverges. Our previously
developed Hoare logic is only able to specify that a state satisfying
the postcondition is eventually reached (termination).

The new programming logic (also embedded in HOL), makes
statements, using temporal logic, about the sequence of all possible
executions of the underlying x86-64 machine. This new program-
ming logic makes judgements of the form temporal code φ. It is
strictly more expressive than the Hoare triple.

Theorem 20 (Hoare Triple Instance of temporal). The machine-
code Hoare triple, {p} code {q}, is an instance of temporal:

{p} code {q} ⇐⇒ temporal code ((now p)⇒ ♦(now q))

Proof sketch. Follows immediately from the definitions.

We define temporal, now, ⇒, ♦, etc. as follows. The defini-
tions below take a few concepts from Myreen [19], in particular
x86 seq s t is true if t is a valid x86-64 trace starting from state s,
and p � s is true if p holds for a copy of a state swith a less precise
instruction cache [19]; for most purposes, simply read p � s as p s.

temporal code φ =
∀s t r.
x86 seq s t =⇒ φ (λp s. (p ∗ code code ∗ r) � s) t

now p = λassert t. assert p (t 0)

� φ = λassert t. ∀k. φ assert p (λn. t (n+ k))

♦ φ = λassert t. ∃k. φ assert p (λn. t (n+ k))

later φ = λassert t. ∃k. φ assert p (λn. t (n+ k + 1))

φ ∨ ψ = λassert t. φ assert t ∨ ψ assert t

φ⇒ ψ = λassert t. φ assert t =⇒ ψ assert t

Using these, we can specify divergence of a machine-code pro-
gram. For example, from initial configuration p, code will always,
at some some later point, reach a state satisfying q. In other words,
q will be true infinitely many times.

temporal code ((now p)⇒ �♦(now q))

In our theorems, we instantiate q to say that the compiled bytecode
is still running. Divergence means that the program runs bytecode
forever.

Bytecode Heap Invariant Central to our proofs is the invariant
which specifies how bytecode states are concretely represented in
the x86-64 machine state. This invariant is formalised as a state
assertion bc heap bs aux s, which relates bytecode state bs and
auxiliary state aux to (part of) machine state s.

The formal definition of bc heap is not shown due to its length.
However, informally, this invariant states that:
• memory is split into two data heaps (of which only one is

in use at any point in time, enabling stop-and-copy garbage
collection), a code heap, the normal x86-64 stack and a separate
global state record;
• registers rax–rdx hold bytecode values – in the case of a Block,

a large (bignum) Number, or a RefPtr, this means they contain
a pointer into the data heap;
• the top of the bytecode stack is stored in register rax,



• the rest of the bytecode stack is kept in the x86-64 stack, i.e., all
values in the x86-64 stack are roots for the garbage collector,
• the stack is accessed through the normal stack and base point-

ers, registers rsp and rbp;
• other registers and state keep track of temporary values, the

state of the allocator and system configuration.
• output is produced via calls to a special code pointer, for which

we have an assumption that each call to this code pointer puts a
character onto some external stream (in practice we link to C’s
putc routine). Input is handled similarly (using getc).
• memory contains code for supporting routines: the verified

garbage collector, arbitrary-precision arithmetic library etc.
The garbage collector updates the heap and the stack (i.e., the roots
for the heap), both of which can contain code pointers and stack
pointers. In order for the garbage collector to distinguish between
data pointers and code/stack pointers all code/stack pointers must
have zero as the least significant bit (i.e., appear to be small inte-
gers). We ensure that all code pointers end with zero as the least
significant bit by making sure that each bytecode instruction is
mapped into x86-64 machine code that is of even length.

Implementation of CakeML Bytecode Having formalised the
representation of bytecode states, we define a function that maps
CakeML Bytecode instructions into concrete x86-64 machine in-
structions (i.e. lists of bytes). Here i is the index of the instruction
that is to be translated (i is used for the translation of branch in-
structions, such as Jump).

x64 i (Stack Pop) = [0x48, 0x58]
x64 i (Stack Add) = [0x48, . . .]

...

Entire bytecode programs are translated by x64 code:

x64 code i [ ] = [ ]
x64 code i (x :: xs) = let c = x64 i x in

c @ x64 code (i+ length c) xs

We prove a few key lemmas about the execution of the gener-
ated x86-64 machine code.

Theorem 21 (x64 code Implements Bytecode Steps). The code
generated by x64 code is faithful to the execution of each of
the CakeML Bytecode instructions. Each instruction executes
at least one x86-64 instruction (hence later). Note that exe-
cution must either reach the target state or resort to an error
(out of memory error).

bs → bs ′ =⇒
temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux ))⇒

later (now (bc heap bs ′ (base, aux ))
∨ now (out of memory error aux )))

Proof sketch. For simple cases of the bytecode step relation
(→), the proof was manual using the programming logic from
Myreen [19]. More complex instruction snippets (such as the sup-
porting routines) were produced using a combination of manual
proof and proof-producing synthesis (e.g. [20]).

Theorem 22 (x64 code Implements Terminating Bytecode Execu-
tions). Same as the theorem above, but with ⇓bc instead of→.

Proof sketch. Induction on the number of steps.

Theorem 23 (x86-64 Implementation of REPLi step). Executing
the x64 code-generated code for the result of the bootstrapping (i.e.
bytecode) and the bytecode snippet that calls repl step has the
desired effect w.r.t. bc heap.

Proof sketch. Follows from theorems 18, 19 and 22.

The only source of possible divergence in our x86-64 imple-
mentation of REPLi is the execution performed by bc eval. When
the logic function bc eval returns None, we want to know that the
underlying machine gets stuck in an infinite loop and that the output
stays the same. (Only the top-level loop is able to print output.)

repl diverged out aux =
�♦(now (∃bs. bc heap bs aux ∗ (bs.output = out)))

Theorem 24 (x86-64 Divergence). For any bs , such that
bc eval bs = None, we have:

(∀bs ′. bs →∗ bs ′ =⇒ bs.output = bs ′.output) =⇒
temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux ))⇒

later (repl diverged bs.output aux )
∨ now (out of memory error aux )))

Proof sketch. Theorem 21 and temporal logic.

Top-level Correctness Theorem The top-level theorem for the
entire x86-64 implementation is stated as follows.

Theorem 25 (x86-64 Implementation of REPLs). If the state starts
from a good initial state (init), then execution behaves according to
REPLs l for some list l of type inference failures.

temporal entire machine code implementation
(now (init inp aux )⇒

later ((∃l res. repl returns (out res) aux ∧
(REPLs l inp res ∧ terminates res))

∨
(∃l res. repl diverged (out res) aux ∧

(REPLs l inp res ∧ ¬terminates res))
∨
now (out of memory error aux )))

Here repl returns states that control is returned to the return pointer
of aux , and out and terminates are defined as follows.

out Terminate = ""
out Diverge = ""
out (Result str rest) = str @ out rest

terminates Terminate = true
terminates Diverge = false
terminates (Result str rest) = terminates rest

Proof sketch. The execution of bytecode is verified as sketched
above. The other parts of the x86-64 implementation (the setup
code, the lexer and the code that ties together the top-level loop)
was verified, again, using a combination of manual Hoare logic
reasoning and proof-producing synthesis. Theorem 14 was used to
replace REPLi by the top-level specification REPLs.

11. Small Benchmarks
To run the verified x86-64 machine code, we inline the code into a
30-line C program, which essentially just allocates memory (with
execute permissions enabled) then runs it (passing in function
pointers for getc and putc).

The result of running a few benchmarks is shown below. Exe-
cution times are compared with interpreted OCaml: CakeML runs
the Fibonacci example 2.2 times faster than interpreted OCaml.

compiled OCaml Poly/ML CakeML
Fibonacci 7.9 4.6 2.2
Quicksort 3.1 10.0 0.6
Batched queue 2.0 12.9 0.4
Binary tree 4.3 5.6 0.6

The Fibonacci benchmark computes the 31st Fibonacci number



using the naı̈ve recursive definition; the second benchmark applies
Quicksort to a list of length 2,000; the batched queue benchmark
performs enqueue-enqueue-dequeue 1,000,000 times on a purely
functional implementation of queues; the last benchmark con-
structs a 2,000-element binary tree and then flattens it. We used
OCaml version 4.01 and Poly/ML 5.4.1.

12. Design and Context
Our overall goal for CakeML is to provide the most secure system
possible for running verified software and other programs that re-
quire a high-assurance platform. Thus, our primary focus has been
on reducing the trusted computing base, rather than on compiler
optimisations or exotic language features.

12.1 Trusted Computing Base
Our correctness theorem relies on a machine code semantics for
x86-64 and on a semantics for CakeML. If the machine code se-
mantics does not soundly reflect actual processor behaviour, then
the program might not behave as verified. Having a machine code
semantics in the trusted computing base is intrinsic to the problem.
The only alternative is to restrict execution to a verified processor,
severely limiting the usefulness of the verified compiler compared
to one that targets off-the-shelf hardware. However, the target ma-
chine code semantics only needs to cover, and be tested on, the
instructions that the compiler actually generates, which in our case
is significantly smaller than the entire x86-64 ISA.

If a programmer wants to understand what their CakeML pro-
gram does, they currently have two strategies: one, is to reason
about it relative to the CakeML semantics, and the other is to syn-
thesise verified CakeML from higher-order logic (e.g., using the
same technique [22] that we use for bootstrapping). In the latter
case, the CakeML semantics is not part of the trusted computing
base, because the synthesised CakeML is verified with respect to
the CakeML semantics. In this sense, the CakeML semantics is just
the interface between the compiler, and the user’s chosen verifica-
tion approach. In the future, we hope to implement further (verified)
ways to verify CakeML code, in the spirit of the Princeton “verified
software toolchain” [1], which takes the same viewpoint, but for a
C-like source language.

We also trust a small amount of code to set up the initial exe-
cution environment with functions to get a character from standard
input and to write a character to standard output, because our ma-
chine model does not include these features.

A theorem prover or checker is also intrinsically part of the
trusted computing base. In practice, our proofs can only be checked
by automated means: too much of their content is in the minute de-
tails. Furthermore, the bootstrapping and machine code synthesis
steps use verified computation in the prover itself to create the ver-
ified code: the proofs generated here are not human readable. One
could apply a separate proof checking tool (e.g., OpenTheory [9]),
or simply trust HOL4 which follows the LCF approach and relies
for its own soundness only on a small (≈1000 lines) trusted kernel.

Lastly, we note that we do not rely on the correctness of another
compiler in our trusted computing base (except perhaps as part of
the proof checker or theorem prover).

12.2 Other Targets, Other Sources
CakeML currently translates from an SML-like language to x86-64
machine code; however, neither of those choices are mandated by
our approach. In the future, we hope to extend CakeML to generate
ARM machine code as well. Because CakeML compiles to a low-
level, machine independent bytecode, and then to machine code,
retargeting it only requires introducing a new bytecode to machine
code level. This means that the amount of effort required to get a

verified compiler for a second platform is much smaller than the ef-
fort required to build the system in the first place. Even though go-
ing through a machine-independent bytecode can potentially limit
the compiler’s ability to generate optimal code, we consider it well
worth it in this context.

It would take more effort to adapt CakeML to new source
languages: any of the lexer, parser, type checker and compilation
to intermediate language (or even bytecode, if the source language
is different enough) might have to change. However, this work
would not be of a different character – it would just be in re-doing
proofs of different parsing/typechecking/etc. algorithms following
the strategy laid out here. In particular, the use of clocks (Section 7)
to handle divergence and maintaining equivalent small-step and
big-step semantics will be helpful in building a verified compiler
for any similar language.

What about OCaml? For the features that CakeML supports,
SML and OCaml are very similar, and CakeML follows OCaml in
several ways including the capitalisation restrictions on variables
and constructors, and our lack of equality types and overloading.
However, OCaml lacks two things that are important to our de-
velopment: deterministic evaluation order and an equality function
that always terminates (OCaml’s follows reference cells into their
contents, instead of just comparing them for identity). Thus, in or-
der to be a semantic subset of an existing language, SML is our
only choice. However, retargeting CakeML to an OCaml-like syn-
tax (albeit with these small differences) would just be a matter of
providing a new lexer and parser.

13. Related Work
The Jitawa verified Lisp implementation [21] has a similar goal
of end-to-end verification about the compiler running as machine
code. However, the source language of Jitawa is simpler than ours,
with much simpler parsing, no type system, no modules, no han-
dleable exceptions, no pattern matching, and no higher-order func-
tions. Thus, CakeML demonstrates a substantial scaling-up of the
kind of language that can be supported in a very high assurance set-
ting. Furthermore, Jitawa does not bootstrap itself, and its top-level
correctness theorem assumes that every input program terminates.

The CompCert compiler [14] and projects based on it, in-
cluding CompcertTSO [29] and the Princeton “verified software
toolchain” [1], focus on a C-like source language in contrast to
our ML-like language. The emphasis is variously on optimisations,
concurrency and program logics. Whereas our emphasis is on end-
to-end correctness and a very small trusted computing base.

The VLISP project [7], which produced a rigorously – not
formally – verified implementation of Scheme, emphasised end-
to-end verification and did bootstrap their Scheme compiler to
produce a verified implementation of their compiler.

Chlipala [4] is the most closely related work on verification of
compiling impure functional programs with higher-order functions.
Chlipala’s compiler has simpler source and target languages, and
its proofs do not address divergence. He emphasises the use of
parametric higher-order abstract syntax (PHOAS) instead of the
more conventional substitution semantics. For CakeML, we made
the closure environments explicit in order to keep things simple.

Turning to the front end, there has been significant focus on
mechanised meta-theory for language researchers (e.g., POPL-
Mark [2]), but it has not typically focussed on fitting into the over-
all context of a verified compiler. For type inference, Naraschewski
and Nipkow [25] verify algorithmW for a basic typed λ-calculus
plus let expressions. Our overall approach is similar to theirs, but
they verify completeness and generalise nested lets, whereas we
have a much richer language. Our approach to type soundness is
similar to OCaml light [26], which also uses a concrete representa-



tion for ordinary variables and de Bruijn indices for type variables.
The languages supported are also similar, except that they support
type abbreviations whereas we support a module system. They also
use a substitution-based semantics. Two other notable formalisa-
tions of ML metatheory by Lee at al. [13] and by Garrigue [6] fo-
cus on sophisticated type system features (functors and structural
polymorphism, respectively).

Verified parsing has been a productive area recently. Our work
distinguishes itself in its combination of soundness, completeness,
guaranteed termination, and relative efficiency. Jourdan et al. [10]
validate LR automata generated from a CFG, proving soundness
and completeness. However, they have to provide a “fuel” param-
eter in order to ensure that the automata’s execution terminates.
Ridge [27] verifies a sound, complete and terminating parsing al-
gorithm for arbitrary CFGs. As the input grammars may be ambigu-
ous, Ridge’s algorithm returns a list of parses. It is also rather inef-
ficient, potentially O(n5). Earlier still, work by Barthwal and Nor-
rish [3] achieves soundness and completeness, but is again missing
termination. The big difference between these approaches and our
own is that our approach is not generic as theirs are. Our PEG was
hand-crafted, and its proofs of soundness and completeness with
respect to the CFG were done manually.

14. Conclusion
The primary aim of CakeML is to provide an implementation of
a practical programming language running on off-the-shelf hard-
ware with the highest-levels of security and trustworthiness. We
hope that it will be used as a platform for the development and
deployment of programs where their correctness is the most impor-
tant concern. Thus the trade-offs we have made in the design of the
project differ from other efforts along the same lines. In particular,
our focus has been on minimising the trusted computing base, not
on optimisation or on breadth of source language features. In this
sense, we believe that CakeML complements the verification ef-
forts based around CompCert, which are focussed on optimisation
and mainstream programming languages.

However, the design of CakeML does not rule out source- or
IL-level optimisations, such as good support for multiple argument
functions, inlining, constant propagation, and lambda lifting; the
interesting question will be how to integrate them into the existing
verification without requiring unreasonable effort. Furthermore, it
does not appear difficult to add lower level optimisations with only
modest changes to CakeML Bytecode, for example, the addition of
registers and some form of register allocation.

Lastly, a verified compiler is most important in the context of
verified applications to run on it. We are already working toward
one example — a theorem prover using CakeML as its execution
environment [24] — and hope that others will join in with applica-
tions drawn from a variety of domains.
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