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Modern implementations of DBMS software are intended to take advantage of high core counts that are
becoming common in high-end servers. However, we have observed that several database platforms, in-
cluding MySQL, Shore-MT, and a commercial system, exhibit throughput collapse as load increases into
over-saturation (where there are more request threads than cores), even for a workload with little
or no logical contention for locks, such as a read-only workload. Our analysis of MySQL identifies latch
contention within the lock manager as the bottleneck responsible for this collapse.

We design a lock manager with reduced latching, implement it in MySQL, and show that it avoids the
collapse and generally improves performance. Our efficient implementation of a lock manager is enabled
by a staged allocation and de-allocation of locks. Locks are pre-allocated in bulk, so that the lock manager
only has to perform simple list-manipulation operations during the acquire and release phases of a trans-
action. De-allocation of the lock data-structures is also performed in bulk, which enables the use of fast
implementations of lock acquisition and release, as well as concurrent deadlock checking.
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1. INTRODUCTION
Present high-end computing platforms, as they are frequently used for database
servers, now feature dozens of processor cores, and will soon exceed 100 cores. It is
therefore important that database transaction processing can utilise such a large num-
ber of cores efficiently.

This is not trivial, as higher core counts result in increased contention for shared
data structures in the DBMS internals. A few years ago, studies [Johnson et al. 2009b;
Salomie et al. 2011] showed that many open-source and commercial database engines
exhibit limited multi-core scalability, and even performance collapse, due to bottle-
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necks in their lock, log or transaction manager. This has triggered significant research
activity [Horikawa 2013; Boyd-Wickizer et al. 2010; Johnson et al. 2009a; Johnson
et al. 2010; Clements et al. 2012; Johnson et al. 2012; Pandis et al. 2010; Pandis et al.
2011; Salomie et al. 2011; Pesterev et al. 2012; Sewall et al. 2011] aimed at reducing
lock or latch contention.

Yet, significant scalability problems still exist for serializable transactions, surpris-
ingly even under read-only workloads, where the locks never conflict with one another
(though of course they must still be taken, since the system must work properly if
updates are submitted). This is illustrated in Figure 1, which shows throughput of a
serializable, read-only workload on MySQL under varying load using 4, 8 or 16 cores
of the same 32-core platform. (Detailed specification of the setup is given in Section 5.)
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Fig. 1. MySQL throughput under varying multi-programming level (MPL) on 4 (green), 8 (yellow) and 16
cores (red).

The figure clearly shows that on 4 cores the database behaves as expected, with 8
cores throughput degrades at high load to about 75% of peak throughput. On 16 cores,
high-load performance collapses to about 1/3 of peak, and well below what the 4-core
configuration can handle. We note that these collapses all occur when the sys-
tem is over-saturated, that is, the number of request threads being handled
concurrently exceeds the number of available cores. The peak throughput of 16
cores is also below that of 8.

Our analysis of this undesirable effect shows that it is caused by latch contention in
the lock manager. Each time a transaction acquires or releases a lock, it grabs the mu-
tex which in InnoDB protects the global table of locks. Even though the mutex
is only held briefly, cache-line bouncing [Schimmel 1994] makes acquiring or releasing
it expensive under high contention [Boyd-Wickizer et al. 2012]. While other systems
use finer-grained latches, we have found that some important examples still
suffer from a performance collapse when over-saturated.

We propose a solution to this problem, based on a (mostly) latch-free implementation
of the lock manager. The design is enabled by the observation that the lock acquisition
and release operations can be split into two phases: the allocation (and initialisation)
and de-allocation of the lock data structure, and the manipulation of this data struc-
ture. The latter can be implemented latch-free, and thus contention-free. We perform
allocation and de-allocation of locks in bulk, thus amortising any remaining latching
overhead over a large number of locks. Furthermore, de-allocation becomes a garbage-
collection exercise which can be performed asynchronously to transaction processing.
We refer to this approach as staged lock acquisition and release.

This article makes the following contributions:
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— We identify scalability issues leading to performance collapse under high workloads
when running on a platform featuring dozens of cores. We show that this collapse
occurs on multiple open-source (MySQL, Shore-MT) as well as on a commercial
database engine (Section 5.2 and Section 5.3).

— We propose a design for the lock manager in which much less latching is needed, and
we describe its implementation in MySQL (Section 3). The key idea of our design
is bulk allocation and de-allocation of locks, asynchronous to transaction processing
(Section 4);

— We propose an epoch-based lock reclamation scheme to make the approach work
with long-running transactions (Section 4).

— We evaluate our implementation, demonstrating that staged lock handling avoids
the throughput collapse and also leads to improved peak throughput compared to
the baseline MySQL platform (Section 5.2 and Section 5.3).

A preliminary version of this work appeared as [Jung et al. 2013]. We now extend
the technique to support long-running transactions, and all experiments have been
redone with a system including this feature.

2. BACKGROUND AND RELATED WORK
This article is related to an extensive literature on managing concurrency, both in
database systems and more general programs. Here we point to a few essential con-
cepts needed for understanding our contribution.

2.1. The Lock Manager
Database management platforms are expected to provide the application program-
mers with an abstraction of ACID transactions, freeing the programmer from worrying
about anomalies that might arise from concurrency or failure. This enables indepen-
dent development of multiple database clients. Authoritative coverage on the field of
transaction management, and its subfield of concurrency control, can be found in the
textbooks by Bernstein et al. [1987] and Weikum and Vossen [2001]. The internal de-
sign of a DBMS is described by Hellerstein et al. [2007]. The usual approach is for the
lower, storage-focused parts of the DBMS to contain a component called a lock man-
ager. Code that fetches or updates a record obtains an appropriate lock in the lock
manager; this lock is then held until the transaction completes (“strict two phase lock-
ing”). Locks are taken in various modes, such as shared mode for a read, or exclusive
mode for a write; other modes are important for preventing phantoms and allowing
locking on different granularities of item (such as records, pages and tables). The lock
manager arbitrates access by putting a transaction, which attempts to acquire an in-
compatible lock, into a wait state, and wakes it up when the lock becomes available.
Design principles for a lock manager are presented by Gray and Reuter [1992].

While the lock manager prevents logical interference between concurrent transac-
tions, there is also a need to prevent interference between DBMS threads as they ma-
nipulate the shared physical structures within the DBMS, including within the lock
manager. This is typical of the problems of concurrent programming, and is tradition-
ally addressed by what the DB community calls latches (or mutexes) that surround
any DBMS internal code that deals with shared data structures. The distinctions be-
tween locks and latches are clarified by Graefe [2010]. Some early open-source DBMS
code used a coarse-grained latch on the whole of the kernel internals, but the current
InnoDB system we used as the baseline for our evaluation has moved to a more so-
phisticated design with separate latches for different parts of the kernel, such as the
lock manager, the buffer pool, etc. It is reported that many commercial platforms
use a latch for each hash-bucket of locks within the lock manager.
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A substantial body of recent research has addressed some bottlenecks in
transaction processing on multi-core platforms. An early study [Johnson
et al. 2009b] identified a variety of bottlenecks across the storage manager,
and proposed the design of Shore-MT to alleviate them. Within the lock man-
ager, this design used a mutex per bucket (rather than a mutex for the lock
manager as a whole), it rewrote several critical sections to shorten them and
avoided nested latches, and it used a compare-and-swap on a latch-free pool
of lock requests. Shore-MT has been the platform for many subsequent stud-
ies.

Several papers have improved multicore scalability of different parts of
the storage manager. Latching for index structures was studied in Sewall
et al. [2011], Pandis et al. [2011], and Graefe et al. [2012]. Scalability of logging
was the focus of Johnson et al. [2012]. At a more detailed level of the system
design, Johnson et al. [2010] proposed better scheduling for the requests on
a latch, to mitigate the convoy phenomenon [Blasgen et al. 1979] (a quasi-
deadlock to which queue-based spinlocks are vulnerable, that can happen if
a latch is held by a thread that has been scheduled out, leaving all waiting
threads unable to advance even when they are active). The convoy problem
can be worse in multicores where it meets other aggravating factors (such as
the cache invalidation storm).

Closer to our work has been proposals to improve the multicore scala-
bility of locking. Johnson et al. [2009a] proposed a technique, called specu-
lative lock inheritance (SLI), that identifies a working set of frequently ac-
cessed locks and transfers the ownership of such locks to different trans-
actions without latching. In Kimura et al. [2012], a lightweight intent lock
(LIL), which maintains a set of lightweight counters in a global lock table,
is proposed to shorten code paths for locking. Ren et al. [2012] propose very
lightweight locking (VLL) to avoid a global lock manager; instead of using
a global lock manager, VLL associates a pair of counters with each tuple,
tracking how many transactions request read/write accesses.

Other recent works [Horikawa 2013; Han et al. 2014] have studied multi-
core scalability for systems with different concurrency control, such as those
based on multiple versions and snapshots.

More radical yet are some proposals for complete re-architecting the stor-
age system for a multicore platform. Salomie et al. [2011] suggests a dis-
tributed approach, where each core has specific roles, and so all logical con-
currency control would be placed on a single core, different from where data
access occurs. Pandis et al. [2010] introduced DORA, where the transaction
execution moves among the threads, so that each thread can deal with lo-
calised data. This allows decentralising the lock management.

Unlike these works, our focus is to design a localized change to the lock
manager of a platform using lock-based concurrency control, without chang-
ing what is locked or requiring other parts of the platform to be recoded.
A preliminary conference version of some of our design has appeared [Jung
et al. 2013] with the same goals, but it is more restricted because it does not
deal with long-running transactions, and also the evaluation has now been
improved and extended.

2.2. Synchronising Multithread Programs
Concurrent programs are notoriously hard to code correctly. The simplest approach
relies on an ability to make a segment of code execute without interleaving, allowing
repeated use of a variable, as in the synchronisation pattern called atomic write after
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(a) Non-serialisable execution (b) Safe with barriers

Fig. 2. Unsafe vs. safe RAW execution.

read (AWAR) where a thread or process atomically reads and then writes a shared
variable. The atomicity of AWAR is typically achieved through latches (such as spin
locks) using atomic machine instructions, such as compare-and-swap (CAS) or test-
and-set. On multiprocessor architectures with a snoop-based cache coherence protocol,
this can lead to expensive cache invalidation storms.

An alternative coding style is read after write (RAW) where a process writes to some
shared variable A, followed by the process reading a different shared variable B, with-
out the process writing to B in between [Attiya et al. 2011]. Use of the RAW pattern
must ensure that concurrent processes only see a compatible (linearizable or sequen-
tially consistent) state of shared variable. In reality, modern compilers may optimize
the simple RAW code segment by reordering load and store instructions (i.e., out-of-
order execution). In multi-threaded programs, different threads may see incompatible
values owing to this instruction reordering. The problem is illustrated in Figure 2(a),
where concurrent processes P and Q access shared variables A and B according to
the RAW pattern. Executing unconstrained, the data race could result in P seeing the
value of B = 0 and Q seeing the value A = 0, which violates serialisability. Figure 2(b)
shows how correctness can be enforced though the introduction of memory barriers,
making the data race benign. The main role of memory barriers strictly prevents com-
pilers from reordering instructions across the memory barrier.

While memory barriers can be expensive, the advantage of the RAW pattern over
AWAR is that the hardware overhead is paid at most once per thread. This is in
contrast to cache lines potentially bouncing repeatedly between processes in AWAR.
Hence the RAW pattern tends to scale better with increasing number of cores and
processes.

The textbook by Herlihy and Shavit [2008] provides extensive coverage on multipro-
cessor programming, for a wide range of interesting data structures.

3. LOCKING WITH LESS LATCHING
We now describe the approach we take to make the lock manager (mostly) latch-free.
As explained earlier, the core idea is to separate the allocation and de-allocation of the
lock data structures from lock acquisition and release, and perform the allocation and
de-allocation in bulk and asynchronous to transaction processing.

In this section we describe the algorithms for lock acquisition and release, while the
bulk allocation and de-allocation of the lock hash table is presented in Section 4.

The LHS of Figure 3 shows high-level pseudo-code of the implementation of the lock
acquisition (top) and release (bottom) operations in MySQL, and Figure 4 illustrates
these two operations with a schematic flow diagram in the context of transaction ex-
ecution (top); other database engines use a similar approach. Most of the acquisition
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Fig. 3. Implementation of lock acquisition and release in MySQL. The left column shows the existing lock
manager code, while the right column shows our reduced-latch implementation. S1, . . . , S7 represent RAW
synchronisation points.

and all of the release are protected by a mutex on the lock data structure. This ensures
the consistency of the lock table and correct synchronisation of transactions.

3.1. Lock Acquisition
The fundamental observation which allows us to reduce latching is that some of the
data races in the code are benign: when obtaining a slot in the hash table, it does not
matter which slot goes to a particular transaction, as long as all transactions obtain
different slots.
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Fig. 4. A schematic flow diagram of lock acquisition and release operations in the legacy lock manager
(MySQL) and the new lock manager.

Looking at the acquire code in the LHS column of Figure 3, we can see that the
transaction first creates a lock on the data item and inserts it into its list of held locks.1
It then checks whether other transactions hold incompatible locks on the same data,
in which case it marks the new lock as being in waiting state, followed by checking for
deadlocks. The complete sequence is protected by a latch on the hash table.

The second part makes the transaction wait until all preceding incompatible locks
are released, as required for the usual database locking protocols. It does this by calling
the operating system to suspend the process, until the holder of the incompatible lock
signals its release. This code is protected by the transaction latch.2

Re-writing this operation in the RAW pattern allows us to eliminate the hash-table
latch, as shown on the RHS of Figure 3 and illustrated in Figure 4. Inserting the
lock into the hash table is now performed by a latch-free implementation of the in-
sertion function (S1), discussed below. Each occurrence of writing a shared variable
followed by reading a different one (S2, S3) is protected by a barrier (represented by
the atomic synchronize() function3), in line with the safe RAW pattern of Figure 2(b).
The new lock state OBSOLETE is a result of the staged de-allocation, and indicates that

1Since InnoDB uses a small bitmap in a lock to represent other record locks of the same transaction in the
same page, and the use of the bitmap can only be decided by seeing all locks in the hash list, lock create()
occurs while the hash table mutex is held.
2In InnoDB, when a MySQL thread is suspended, it should release the mutex it holds, and after being woken
up, the thread must regain the mutex and do the post-processing.
3We map this function to the full memory barrier instruction (i.e., mfence).
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the lock is no longer in use. The deadlock-checking function (line A12) must be replaced
by a race-tolerant implementation new deadlock().

Fig. 5. Operation of atomic lock insert() on a lock hash chain.

Operation of atomic lock insert() is shown in Figure 5. The function inserts a new
lock into the hash table by using atomic fetch and store() on the tail pointer of the
hash chain, returning the old tail pointer. The old tail is then made to point to the
new lock. The function next pointer update() implements a compare-and-swap-based
concurrent update [Herlihy and Shavit 2008] of the next pointers of all active locks in
the list. Barriers are again used to ensure safe RAW execution. Since the next pointer
update follows the atomic update of the tail pointer, we have to guarantee that other
concurrent transactions accessing this list see a consistent view of this list.

Fig. 6. Pseudo-code of latch-free list iteration.

The traversal of the lock list (line A4 of Figure 3) must preserve the invariant that all
locks inserted before the present one are examined. The implementation of the iterator
is explained in Figure 6. The original iterator in LHS of Figure 3 simply traverses
the list by using the next pointer of a lock until the end of the list. Our iterator is
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augmented with the while loop, and this ensures that any locks previously inserted
into the list become visible by waiting until the next pointer of a lock points to a newly
inserted lock. As shown in Figure 5, since the next pointer update is done after the
atomic update of a tail pointer, concurrent list traversal should see either the new lock
or the old tail. This is why we need the while loop.

The second part of the acquire function retains the transaction latch, which is fine,
as this latch is not contended by multiple processes. Barriers must again be inserted
to ensure safe RAW execution.

3.2. Lock Release
The release code is shown in the bottom part of Figure 3. Our implementation again
removes the lock-table latch, and inserts barriers according to the RAW pattern. Note
that, rather than de-allocating the lock, its status is set to OBSOLETE, so that no dan-
gling pointers are generated. The actual de-allocation is performed asynchronously and
in bulk. This affects to the lifetime of a lock object in the hash table. As shown in Fig-
ure 4, a lock object, after it’s logically released, should remain in the lock hash table
until a garbage-collector safely de-allocates it physically from the lock hash table.

Importantly, the release code must examine locks which were allocated after the
present lock, to detect any sleeping transactions trying to acquire an incompatible lock
on the same data. These are signaled via a system call which wakes up the sleeping
process.

3.3. Deadlock Detection
The deadlock checking function is to find any cycle in the wait-for graph by traversing
a lock hash table. The traditional approach does this traversal while holding the lock-
table latch. We avoid this by keeping any released lock and transaction data structures
until they are guaranteed to be no longer required, thus avoiding dangling-pointer de-
references in the deadlock checker. By making any other data structures required for
deadlock detection transaction-local, we enable a latch-free implementation.

When a deadlock is detected in the traditional, latch-based implementation, the lock
manager can use a number of different policies for selecting a victim transaction to
abort. For example, it can choose the transaction which (1) holds the smallest number
of (write) locks, (2) generates the fewest log records, or (3) actually causes the deadlock
(joining lock).

In our latch-free implementation, safety prevents a thread from changing the trans-
action state while other threads may access the state. Hence, the thread must abort
its own transaction when detecting a deadlock, i.e., we can only implement the above
policy (3).

3.4. Correctness
The main correctness concern is that concurrent acquisition and release operations
operate correctly, and that deadlock detection is correct.

Figure 7(a) illustrates the scenario where a transaction Tx A executes COMMIT and is
about to release lock1. Concurrently, transaction Tx B tries to insert an exclusive lock
(lock2) into the same lock hash list (and is sent to sleep). We must guarantee that the
commit of Tx A will wake up Tx B.

Figure 7(b) shows possible schedules resulting from the interleaving of the two
transactions. The critical point is the change of the state of the lock by Tx A (S6),
we must ensure that Tx B will be woken, no matter how the execution of S6 is inter-
leaved with its own execution. Depending on where S6 occurs during Tx B’s execution,
we have five different interesting cases, as indicated in Figure 7(b).
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(a) Illustration

(b) All possible schedules

(c) Correctness

Fig. 7. Concurrent execution of Lock Acquire and Lock Release.

The correctness argument is summarised in Figure 7(c). In the first three schedules,
(1)–(3), S6 happens before Tx B examines the state of lock1, and the barriers ensure
that Tx B sees the correct lock state. For schedule (4), Tx B may or may not see the
updated lock state. If it does, (4)(ii) then this is the same as schedules (1)–(3), and thus
executes correctly. Else the checking routine R6-7 of Tx A, which follows Tx B’s wait
execution due to Tx B’s transaction mutex, correctly captures Tx B’s “WAIT” state and
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wakes up Tx B correctly. In schedule (5), Tx B cannot detect S6 and waits until Tx A
correctly finds Tx B’s state, as in schedule (4)(i).

To reason about the correctness of concurrent deadlock checking, suppose we have
multiple transactions, all executing S2, changing their lock state to WAIT. Assuming
that these transactions create a real deadlock, then all interleaving schedules of con-
current deadlock checking must guarantee that at least one of the checks must see the
WAIT state of all other locks. This is ensured by the RAW pattern. Note that, unlike the
traditional approach, latch-free deadlock checking may abort more than one transac-
tion, if multiple deadlock checking invocations find the same deadlock simultaneously.
This is correctness-neutral (but may result in performance degradation).

4. LOCK MANAGEMENT
The RAW-style algorithms for acquisition and release of locks described in the previous
section can only work because we do not de-allocate a lock as soon as it has been
released—this is the essential idea of staged lock release. It means that we can tolerate
dangling references to a released lock, as long as its obsolete status is visible to any
transaction still holding such a reference.

4.1. Safe Lock De-allocation
Locks must be de-allocated eventually, else we would be creating a memory leak. Given
that de-allocation is delayed, the time when it happens is flexible, as long as we en-
sure that no dangling references are left, and that de-allocation happens eventually—a
classical garbage-collection problem.

The timing flexibility means that we can reduce overheads by cleaning up locks
in bulk. The same is true for allocation: by pre-allocating locks, we can also reduce
overheads through bulk operations.

When is it safe to de-allocate a lock? Each lock belongs to a unique transaction which
created it, and transactions do not pass to other transactions references to locks. We
therefore previously formulated a sufficient safety criterion [Jung et al. 2013]:

THEOREM 4.1. A lock L can be safely de-allocated if the oldest transaction in the
system has started after L’s transaction terminated.

By Theorem 4.1, we can always de-allocate any locks released before the oldest active
transaction from the lock table without risking the correctness, and we can progress
as long as the oldest active transaction ID keeps increasing monotonically. However,
if we have a long running transaction or a stalled transaction, Theorem 4.1 cannot be
satisfied for locks released after the long running transaction started, and as a result
database systems will sooner or later face memory exhaustion because the volume of
released locks will continue to grow. In order to support long-running transactions, we
provide a stronger and more general sufficient criterion:

THEOREM 4.2. A lock L can be safely de-allocated if no other process (or thread) in
a system holds any reference to L.

Theorem 4.2 is stronger than Theorem 4.1 in a sense that Theorem 4.2 can provide
a sufficient condition to the correct memory reclamation of released locks whereas
Theorem 4.1 cannot: Even though there are long running transactions in a system,
locks can be de-allocated by a garbage-collector if we can detect safe points where no
other transactions hold references to a released lock.

This type of safe de-allocation, while reads are performed on dynamic data struc-
tures, is a challenging problem in lockless synchronization, and [Hart et al. 2007] con-
ducted a performance study on three well-established memory reclamation schemes.
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Fig. 8. Update on pointers and epochs.

In this article, we use an epoch-based reclamation (EBR) scheme [Fraser 2004] and
adapt it to our lock manager when reclaiming (or de-allocating) a group of lock objects.

We first define the code section that accesses (or maneuvers) a lock (list) in the lock
table as a critical region. When a lock L is released and is made invisible by manipu-
lating pointers, we associate L with an epoch copied from the global epoch shared by
all concurrent transactions. A transaction, when entering a critical region, first sets a
local (per-transaction) epoch value to the global epoch, accesses lock objects, and clears
the local epoch after executing the critical region. The global epoch is incremented by
a transaction after a pre-defined number of executions of the critical region.

Incrementing the global epoch only succeeds if the local epoch of each transaction in
a critical region is equal to the global epoch. This type of synchronization can be viewed
as a fuzzy barrier [Gupta 1989]. It ensures that if the current value of the global epoch
is set to e, then no other transaction can have a local epoch value of less than e−1, and
it also implies that obsolete locks with an epoch of less than e − 1 cannot be visible to
any current or future transactions. As the global epoch increases, lock objects whose
epoch is at least two less than the global epoch can be reclaimed [Fraser 2004].

In the EBR scheme, as in similar schemes, reclamation can stall when a transac-
tion stalls before it clears its local epoch. Unless the database system aborts a stalled
transaction which holds a reference to a released lock, reclamation will also stall.

The overall operation logic for update on pointers and epochs is described in Fig-
ure 8, which explains how pointers and epochs are updated upon detecting obsolete
lock objects in the lock table. We use a snapshot of a lock hash list, which contains two
obsolete locks, one is at the beginning and the other is in the middle of the list. In the
next pointer update() function we move the head pointer, as it points to an obsolete
lock, then we set that lock’s local epoch to N , the global epoch. Advancing the head
pointer continues until it finds an active lock.

Once the update on the head pointer is done, we update all next-pointers to skip
obsolete locks in the middle of the list. We use the same approach to updating epochs:
first update the next pointer and then set the epoch of the obsolete lock. Care must
be taken when updating a next-pointer: We must never update the next-pointer of
an obsolete lock, as this could lead to de-referencing a null pointer. Once pointers are
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Fig. 9. Lock index data structure.

updated (red), transactions accessing the lock hash list can maneuver pointers without
seeing any obsolete locks.

As we briefly described in Section 3.2, the new lock manager manages lock objects
based on bulk allocation and de-allocation. This indicates that the lock manager does
not have to assign an epoch number to each lock object. For bulk de-allocation of a
group of locks, we only need to keep track of one epoch number for the group, and
check that this epoch is at least two less than the global epoch. A simple way to do this
is to copy the global epoch eg, to the group-local epoch, el, whenever one of the group’s
transaction terminates. The group can be cleaned up when (i) all of its transactions
have terminated and (ii) el < eg − 1 for the group.

4.2. Lock Pool Implementation
To support bulk allocation and de-allocation of locks, we use a data structure which
can grow and shrink on demand and naturally groups locks of similar age, and allows
us to locate locks quickly. Specifically, we use a page-table-like index structure to locate
a lock from its ID, as shown in Figure 9.

The data structure consists of a top-level index array of 2i entries. Each entry has a
valid flag and a pointer to a second-level segment array of size 2s, and both fields are
packed into a single 8-byte word together. A segment array contains pointers to lock
objects, as well as other meta data, such as an epoch number for each segment array
and an index number that is assigned to a lock when it is allocated to a transaction.
The index array has two associated pointers, the head entry and the tail entry. Index-
array entries between the head and the tail may point to segment arrays (if their valid
flag is set), entries outside do not point to segment arrays (irrespective of the valid
flag). The array is accessed in a circular fashion, meaning that if head<tail then the
potentially valid entries are the ones ≤head as well as those ≥tail. A third pointer (not
shown) points to the highest (newest) used segment, all segments between that pointer
and the head are unused.

4.3. Pre-allocation of Locks
A background pre-allocator will allocate additional segment arrays if the number of
unused segments falls below a low-water mark (i.e. the highest used segment is close
to the head). This is done by finding an index-array entry whose valid flag is FALSE,
starting from the tail pointer. This array is then moved to the head, its valid flag
set to TRUE, and the head and possibly tail pointers are incremented (modulo array
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size). If no invalid segment is found, a new one must be allocated and initialised. As
long as lock consumption does not outrun the pre-allocator, pre-allocation and lock
consumption never overlaps, avoiding contention. However, a dangerous race condition
in this producer-consumer loop occurs if lock create() finds no free locks. We use
the CAS instruction to make lock create() (consumer) wait until the pre-allocator
(producer) creates (or recycles) and initializes a new free segment array.

(a) Byte-vector forest

(b) Latch-free pseudo code for Flip-and-Test

Fig. 10. Hierarchical free-list maintenance.

4.4. Lazy De-allocation of Locks
Bulk cleanup of locks happens at the granularity of segment arrays, once the whole ar-
ray is invalidated (and the safety condition is satisfied). Simple approaches to detect-
ing the invalidated state of the whole segment array would be (1) scanning the entire
segment array frequently, or (2) keeping a single reference counter, which should be

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A Scalable Lock Manager for Multicores A:15

Fig. 11. High-level view of the lock manager data structures.

atomically incremented/decremented by concurrent transactions. The first approach
needs a dedicated scanning process (not efficient), and the second one has a short-
coming of serializing atomic instructions on a single shared variable, which we aim to
avoid. For efficient detection of invalid arrays, we associate each segment array with a
hierarchical free list, as shown in Figure 10.

The list uses hierarchical byte-vector compression. At the leaf level, each byte rep-
resents a valid flag for an individual lock. Each byte of a non-leaf level compresses 8
bytes of the level below, and maintains the invariant that if the byte is zero, all the
lower-order bytes mapped by it are zero as well. The top-level byte is the valid flag for
the whole segment array.

The free list is updated latch-free (using hierarchical byte flipping implemented in
the RAW pattern) whenever the state of a lock is changed to “OBSOLETE” (R2 in
Figure 3). The transaction first clears the valid flag of the lock, and invokes a memory
barrier. Then it reads the complete 8-byte word containing the valid flag just cleared. If
the word is zero, the transaction clears the next byte up the hierarchy. This is repeated
until either a non-zero word is found, or the top-level valid flag is cleared (red line in
Figure 10(a)). Flags are encoded as bytes (rather than bits) as the x86 architecture
supports atomic updates of bytes but not of individual bits. Figure 10(b) is the C-like
pseudo-code for the implementation of latch-free Flip-and-Test. This pseudo code de-
pends on the assumption that, before executing Flip-and-Test, next pointer update()
is performed to correctly adjust pointer values (Figure 5). This ensures that transac-
tions started after the release of a lock can never see the obsolete lock.

Once the top-level valid flag is cleared, the complete segment array and the locks it
references can be cleaned up (recycled) as soon as the safety condition (i.e., Theorem 4.2)
holds. As indicated in Section 4.1, we do this by keeping, for each segment, track of the
highest epoch number, el, whenever a lock becomes invisible by next pointer update()
operating as described in Figure 8. Updating the global epoch is done only if the local
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Table I. Dell PowerEdge R810 hardware specifications.

Component Specification
Processors 8-Core Intel Xeon CPU E7-8837
Processor Sockets 4 Sockets
Hardware Threads 32 (No HyperThreading Support)
Clock Speed 2.66 GHz
L1 D-Cache 32 KiB (per core)
L1 I-Cache 32 KiB (per core)
L2 Cache 256 KiB (per core)
L3 Cache 24 MiB (per socket)
Memory 128 GiB DDR3 1066 MHz
Network Ethernet 1 Gbps

epoch of each transaction in the critical region is equal to the current global epoch,
as described in Section 4.1. This synchronized behavior guarantees that none of the
transactions concurrently running in the critical region have epoch values that differ
by more than 1. Segment arrays whose el is less than eg − 1 therefore satisfy Theo-
rem 4.2 and can be safely reclaimed by the garbage collector. This EBR-based reclama-
tion therefore removes the limitation of the prior work [Jung et al. 2013] with respect
to long-running transactions.

4.5. Lock Manager Architecture
The resulting lock manager architecture is shown in Figure 11. The traditional hash-
based lock manager architecture [Gray and Reuter 1992], prevalent in contemporary
database engines, is augmented by the lock index data structure. A new lock is ob-
tained by using an atomic fetch and add on a shared pointer into the segment array;
something like a sloppy counter [Boyd-Wickizer et al. 2010], could be used should this
atomic increment turn into a bottleneck. Once a transaction has obtained a unique lock
ID, it can access the lock data structure directly. Locks released by committed trans-
actions are not safe to be cleaned, since some old active transactions can still hold the
references to these locks. Advancing the head pointer of a lock list eventually makes
obsolete locks ready for clean-up, and we then physically de-allocate those locks.

MySQL recycles TRANSACTION objects. We therefore have locks point not at the
TRANSACTION object of its owner, but a small shadow transaction data structure,
which is also indexed by transaction ID. These shadow objects can be cleaned up safely
when the segment array is cleaned, as the safety criterion on locks ensures that the
transactions are no longer active.

5. EVALUATION
We measured multicore scalability on two open-source and one commercial database:
MySQL-5.6.10-GA with InnoDB storage engine-1.2.10, Shore-MT-7.0 (the official
EPFL branch4), and a commercial DBMS X.5 We also measured an implementation of
our design (Section 3 and Section 4) for a reduced-latching lock manager using staged
allocation and de-allocation with EBR-based garbage collection; this was coded as mod-
ifications to the InnoDB storage engine as back-end for the same MySQL code, and we
refer to it below as “Our System.”

5.1. Evaluation Setup
5.1.1. System Setup. All databases are running on a 32-core Dell PowerEdge server

whose hardware characteristics are listed in Table I. The operating system is Linux

4The EPFL branch supports more recent techniques, such as speculative lock inheritance [Johnson et al.
2009a].
5The commercial system’s license prohibits us from identifying it.
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3.1.5, which incorporates the scalability improvement patch by Boyd-Wickizer et al.
[2010].

We run MySQL with the default configuration, except for the following parameters:
max-connections 1000
innodb buffer pool size 20 GiB
innodb log file size 256 MiB
innodb log buffer size 16 MiB
innodb flush method fsync
innodb flush log at trx commit 2

The last setting (2) means the log flushing policy of “writing at commit, flushing once
per second.” This means that log flushes do not become a bottleneck, the same benefit
as obtained in more sophisticated systems from group commit. Shore-MT is also config-
ured with 20 GiB of buffer pool (sm bufpoolsize), 256 MiB of log file (sm logsize), and
16 MiB of log buffer (sm logbufsize). All transactions in Shore-MT experiments are
committed enabling the “lazy” option to follow the lazy log-flushing policy. Shore-MT
does offer the “group commit” function that enables multiple transactions to commit
together with a single log flush, but we do not use it in any Shore-MT experiments.
DBMS X is configured with similar parameters: the same size of buffer pool, log file,
and log buffer, and using lazy flushing rather than its group commit policy.

We use the isolation level SERIALIZABLE in all databases, and in addition we have run
MySQL with REPEATABLE READ (RR) isolation for comparison. For Shore-MT, we use
key-value locking for the B-tree index and the record-level locking iterator in accessing
data records. We also enable speculative lock inheritance [Johnson et al. 2009a] for all
Shore-MT experiments to see the behavior of the most recent techniques developed for
improving scalability.

All experiments have a single database instance running on the server. A varying
number of clients is emulated on a separate client computer (also multi-core, 128 GiB
of RAM, running Linux 3.0.0). To expose performance bottlenecks in the lock manager,
we configure all databases to have plenty of buffer pool space (i.e., 20 GiB). We store
all data to tmpfs, an in-memory file system, to avoid disk bottlenecks.

Client and server machines are connected with a 1 Gbps Ethernet network. The
benchmark client runs the OpenJDK 64-Bit Server Java VM (build 19.0-b09, mixed
mode) with the MySQL connector JDBC driver version 5.1.1. The only exception is
that in the Shore-MT experiments, all clients are running on the server machine and
directly call API functions of Shore-MT to access data, eliminating communication
overhead. This is the setup used by Johnson et al. [2009b], which we retain to make
our results comparable to theirs. This gives Shore-MT a potential performance advan-
tage over the other systems, but we are not aiming to compare performance across
unrelated platforms; instead the purpose of our evaluation of those other platforms
is to examine scalability when there is no logical contention, and especially to
determine whether problems similar to those of MySQL exist.

5.1.2. Microbenchmark. Our microbenchmark schema uses three tables called
txbench-{1, 2, 3}with two non-null integer and ten variable sized character columns
(b value-{1, 2, ..., 10}); one of the integer columns (b int key) is a primary key.
Each table is populated with 100 k randomly chosen items, and the total data size of
three tables is 0.5 GiB.

We use two types of queries: query transactions (read-only) and update-after-read
transactions (read-update). A transaction reads S data items, either S = 10 or S = 100.
To create rw-conflicts, we configure the read-update transactions to use the follow-
ing access rules: a transaction reading data items from txbench-i updates rows from
txbench-j, where j=i + 1 mod 3.
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The read-only transaction consists of a single Select-From-Where query:

SELECT sum(b int value)*rand number FROM txbench-i
WHERE b int key > :id and b int key <= :id+S

This means that the DBMS scans S rows in the table and aggregates their integer
column. This keeps the size of the result small (a single integer), to minimise network
traffic.

The read-update transaction first reads S rows from txbench-i and updates 0.2×
S rows from txbench -((i+1)%3). The reading part of this transaction uses the same
range query as the read-only transaction, and the update part consists of just a single
SQL statement (again to minimize network cost):

UPDATE txbench-((i+1)%3) SET b value-k = rand str
WHERE b int key = :id1

OR b int key = :id2

Note that the read-update transactions are not serializable in REPEATABLE READ isola-
tion due to cyclic dependency among these transactions. Our measurements are done
with a limited implementation, to read and write records (but not to insert or delete).

We vary the multiprogramming level (MPL) from 1 to 500, with all clients trying
to execute transactions as fast as possible without think time. Each experiment was
repeated five times, with each run consisting of one minute ramp-up period and one
minute measurement period. All plotted points in the figures of Section 5 are the av-
erage of these five test runs.

5.1.3. System configuration and profiling. To profile various system activities, we used
OProfile, a system-wide, statistical, continuous profiler for Linux systems. We also
used Intel VTune to verify function call traces. We use profiling to break total execu-
tion time into four categories: Idle for the idle state, Kernel for Linux kernel functions,
Database for non-mutex related database functions, and Mutex for all mutex related
functions in the DBMS. For DBMS X we cannot break down the time spent inside the
database, so we use DBMS X for the total time spent inside the database code (corre-
sponding to the sum of Database and Mutex).

To evaluate the impact of various CPU configurations, we use the CPU hotplug fea-
ture of modern processors. The hotplug function can make CPUs (or cores) available
or unavailable to the Linux kernel. For a given number of cores, we use the mini-
mum number of sockets (i.e., 1 socket for ≤ 8 cores and 2 sockets for 9 · · · 16 cores).
This minimises cache coherence costs and thus represents a best case for latch-based
approaches.

5.2. Scalability of Platforms
5.2.1. Performance under read-only load. We evaluate the scalability of the various

database systems with respect to the number of cores utilized, and to the workload.
A partial result was shown in Figure 1, which motivated our reduced-latch approach
to lock management. Our purpose here is to confirm that the collapse is not an artefact
of a poor implementation of one system (such as MySQL’s use of a single mutex
for the whole lock table), but rather the collapse applies to a diversity of platforms.
We also show that our design eliminates the collapse.

These experiments are all done with a workload that is entirely read-only,
so that there is no limitation arising from logical contention on the locks
(which could not be eliminated by a different implementation of the lock
manager). By using a read-only workload, we focus attention on the impact of
the latching and implementation choices in designing the lock managers in-
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Fig. 12. Throughput as a function of load (MPL) for varying number of cores.
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ternals. In all these experiments, we scale up the MPL into the over-saturated
situation, with more concurrent request threads than the number of cores.
While some system designs may use a limited thread pool to reduce over-
saturation and its problems, finding safe points to park a running connec-
tion (or session) and to resume the connection later is one of key mechanisms
for the efficient implementation of thread pooling, and it is quite delicate to
code. Thread pooling requires an efficient scheduling policy on those worker
threads. In any event, our experiments show that the performance collapse
at high client count and high core count remains an issue for a diverse set of
real platforms.

Figure 12 shows the complete results for read-only workload. The uppermost graphs
(Our system) show MySQL with the implementation of our reduced-latch, staged lock
manager, while the other graphs show unmodified existing systems. Note that the
scales on the y-axis differ, as attempting to display all graphs on the same scale would
make the results of the less-performing systems unreadable. In any case, our purpose
is not to compare performance across platforms (except between MySQL and Our Sys-
tem), but to show which systems experience performance collapse, at high (but not
logically contending) load and on many cores.

We can see that even with 4 cores, all the vanilla configurations show a through-
put peak, with performance degrading when load increases further in the over-
saturated situation.

At 16 cores (2 sockets) the performance degradation turns into an outright collapse
for both open-source systems. Interestingly, DBMS X roughly maintains peak perfor-
mance, (althoughits peak is about an order of magnitude less than that of the open-
source systems, and throughput remains below that of the open-source systems even
at the highest loads we applied).

At 32 cores (4 sockets), the performance collapse can be observed for all vanilla con-
figurations, including DBMS X. For MySQL, even the peak performance is degraded
below that of configurations with fewer cores. The best scalability is exhibited by
MySQL in the RR configuration with the larger (S=100) transactions.

In contrast, our system never shows a performance collapse, at worst there is a small
degradation from the peak at increasing load. Furthermore, adding cores increases the
peak throughput in all cases. The throughput of our systems is also always at least as
high as that of the vanilla MySQL(2PL) system it is based on. For the smaller transac-
tions it even matches or exceeds the performance of the RR configuration. The reason
why our system outperforms MySQL(RR) is that the latter uses the transaction-system
mutex whenever it opens a consistent read-view, when a transaction begins or com-
mits. As MPL grows, the mutex duration also increases and incurs high contention
among transactions. This leads to the unexpected performance behavior under high
load of smaller transactions.

Shore-MT shows an impressive peak throughput (∼42 million Txns/min) on 32 cores,
with smaller (S=10) transactions, mainly due to the speculative lock inheritance tech-
nique. In terms of the peak value, the EPFL branch of Shore-MT achieves almost an or-
der of magnitude higher throughput than that of the earlier system (i.e., Shore-MT-6.0)
that we used in a preliminary version of our paper [Jung et al. 2013]. However, in all
core configurations, the EPFL branch of Shore-MT shows worse throughput collapses
than the previous version. We will investigate this collapse further using profiled data.

5.2.2. Where does the time go?. Profiling allows us to peek inside the systems, as shown
in Figure 13. The leftmost column stands out for its virtual absence of the (yellow) mu-
tex times, thanks to latch-free implementation of lock management. This is in stark
contrast to the second column, showing the MySQL system ours was derived from,
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Fig. 14. Our system vs. MySQL(2PL) on 32 cores, S=100.

which has in excess of 50% of time spent spinning on mutexes. The lowest fraction of
spinning is in the 8-core configuration with small transactions. As Figure 12 shows,
this is the configuration where MySQL performs best. It is obvious that the perfor-
mance degradation of MySQL results from high mutex contention.

Surprisingly, at 32 cores the overloaded MySQL system actually has significant idle
time! MySQL implements all mutexes using the atomic test-and-set instruction, with
an additional random backoff mechanism. After a failed attempt to acquire a mutex
it busy-waits. After the pre-defined (but configurable) number of failures, the mutex
routine puts the calling thread to sleep until the mutex is released. This explains the
idle time at times of high mutex contention.

Also noticeable is that for small transactions, MySQL(RR) also shows significant
mutex overhead (as well as idle time), despite the lower isolation level. The explanation
is that in RR isolation, when a read view is to be opened, MySQL uses the transaction-
system mutex to find a serialisable point. Consequently, for the larger transaction size
the relative mutex overhead is much reduced.

DBMS X, where we could not break down the in-database time due to lack of access
to internals, also exhibits a large amount of idle time in overload situations.

The EPFL branch of Shore-MT shows huge mutex time, with reduced idle
time. This is mainly due to the default configuration that uses MCS locks
[Mellor-Crummey and Scott 1991]. In our experiments, the spin on waiting
routine for the MCS lock takes up-to 98% of running time. One character-
istic of MCS locks we learnt from our experiments is a severe performance
collapse when the number of competing threads outnumbers the core counts.
We also observed that after MPL outnumbers core counts, Shore-MT spends
most time in mutex contention. The performance collapses are still observ-
able even if we configure Shore-MT to use the pthread mutex lock/unlock()
routines as default latch functions. The main culprit in this case is the
join xlist() routine, not the spin on waiting() routine. In the join xlist() rou-
tine, each transaction is added to the transaction list to get the transaction
ID. To assign the transaction ID for a newly added transaction, Shore-MT in-
creases the transaction ID of the predecessor by one. A newly added transac-
tion spin-waits until the transaction ID of its predecessor is determined, and
this spin-waiting time is lengthened quite severely as the number of compet-
ing threads outnumbers the core count by a wide margin.

5.3. Performance Implications of Our Design
5.3.1. Read-update workload. Our previous experiments included no updates, so that

there was no logical contention at all between locks, in order to focus attention on the
contention between latches. However, all OLTP workloads do include some updates,
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Fig. 15. Exploring hotspot behaviour, 32 cores, S=10.

which are the reason even read-only queries need to set locks at all. Figure 14 shows a
direct comparison of our system with MySQL(2PL). As a baseline, Figure 14(a) repeats
earlier throughput data for read-only workloads (32-core lines from S = 100 graphs,
at the right of rows (a) and (b) of Figure 12). Figure 14(b) shows the same configura-
tion, except that we now use a read-update workload with 20% update transactions.
Update transactions acquire locks which are incompatible with those of both read-only
and update transactions, and this leads to blocking and deadlocks. Figure 14(c) shows
the abort numbers for the workload with 20% update transactions; these aborts in-
crease dramatically at high loads, with up to 46% of MySQL transactions aborted at
top load. Our system has somewhat higher number of aborts, but this must be con-
sidered against the much higher throughput: the fraction of transactions that abort at
worst about 7.2%. This shows the benefit of concurrent deadlock checking. Our system
shows performance degradation in high workload due to (inevitable) lock conflicts, not
because of implementation-specific latch contention.

5.3.2. Hotspot. A potential bottleneck of our staged lock management is the lock hash
list, which needs to be scanned during lock acquisition (lines A4–A15 of Figure 3). In
our implementation, this list is potentially much longer than in vanilla MySQL, as it
may contain many obsolete locks. We therefore devised a benchmark which stresses
this part of the code, by increasing contention for data items.

Our hotspot benchmark is a variant of our standard S = 10 benchmark with 20%
update transactions. In this case we restrict transactions to access only 5% of all table
rows, thus increasing logical contention twentyfold. Figure 15(b) shows the results for
throughput and Figure 15(c) shows abort rates. For comparison, Figure 15(a) shows
the performance with uniform data access in the S = 10 benchmark with 20% updates.

With low MPL, up to the peak, the presence of a hotspot makes no fundamental dif-
ference in our system nor with unmodified MySQL: throughputs for each are similar
to what is found with uniform data access. With a hotspot in access patterns, our sys-
tem reaches a peak throughput of 6.8 million tpm at MPL 200, compared to MySQL’s
peak of 1.5 million tpm at MPL 30. For MPL of 300 or greater, both systems show
a lower throughput for the hotspot workload than with uniform access. At MPL 500,
our system’s throughput has dropped to 4.2 million tpm (that is, 63% of the workload
with uniform access), while MySQL has only 0.2 million tpm which is 43% of the corre-
sponding figure with uniform access. Similarly, the abort numbers for our system with
a hotspot load are not very different from the abort numbers of MySQL; considered
as a fraction of the committing transactions, our abort rate is remarkably low (below
0.25%), whereas MySQL has an abort rate up to 46%. Thus, there is no indication
that the increased length of our hash chains is becoming a bottleneck even at high
multiprogramming level.
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5.3.3. Long-running transaction. Long-running transactions create substantial issues in
databases, both for managing in-memory data structures as well as data kept on per-
manent storage. For example, under REPEATABLE READ isolation on a database with a
multi-versioned storage engine (e.g., InnoDB), then the database must keep old ver-
sions of changed rows (or records) in permanent storage, as long as there are trans-
actions accessing them. This is to ensure that a transaction always sees the data as
it was when the transaction commenced. In our prior work [Jung et al. 2013], we re-
claimed released locks based on Theorem 4.1, which could lead the system to run out
of memory in the presence of long-running transactions.
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Fig. 16. Effect of a stalled transaction, on 32 cores, S=10, R/O workload at MPL 200.

To investigate the performance of the lock manager presented in Section 3 and Sec-
tion 4, which has EBR-based garbage collection, we show the time-evolution of activity
in a database system with a stalled transaction, showing throughput, CPU breakdown
and memory usage. This is to show the limitation of our prior work (scalable lock man-
ager without EBR, described in [Jung et al. 2013], and here labelled as Non-EBR) and
the clear benefit of the current work (scalable lock manager with EBR). The work-
load consists of read-only transactions (S=10) at MPL 200, and a database system is
running on 32 cores. Three metrics are measured every 5 seconds and plotted as a tra-
jectory. We introduce a stalled transaction that begins at 100 seconds, long after initial
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warm-up has completed, and it never ends. The oldest transaction ID in this exper-
iment is fixed throughput the experiment, that leads the system without EBR-based
garbage collection (from [Jung et al. 2013]) to thrashing. As shown in Figure 16(a), Fig-
ure 16(c) and Figure 16(e), our lock manager with EBR-based garbage collection does
not show any noticeable changes in three metrics, even with a stalled transaction.
However, Non-EBR shows throughput degradation right after a stalled transaction
commenced (Figure 16(b)), and CPU time spent by the operating system is increased
(Figure 16(d)), and the memory consumption for the database system gradually grows
(Figure 16(f)). This behaviour of Non-EBR is due to the memory allocation overhead
for new lock segment arrays and spurious page faults for the initial access to the lock
objects. This pattern continues until the system consumes all available memory (i.e.,
∼128 GiB) and faces thrashing around 1000 seconds. Then throughput collapses, and
the idle time becomes dominant.

In summary, we see that the proposed EBR-based garbage collection can successfully
support long-transaction workloads, without degrading throughput.

5.3.4. More complex transaction code. All the results we have seen so far are based on
our micro-benchmark. Now we show core-scalability results using more complex trans-
action code. The workload we run is a subset of the transactions from the Telecom-
munication Application Transaction Processing (TATP) benchmark, which is an open
source workload designed for high-throughput applications (e.g., in-memory database
systems). We first perform the experiments with the read-only transactions
(i.e., Get Subscriber Data, Get Access Data and Get New Destination); then we ex-
plore core-scalability under write workloads, by using update transactions
(i.e., Update Subscriber Data and Update Location) as well as read-only transac-
tions. We measure the performance of all systems used in Section 5.2 under
varying load (from 1 to 256 MPL). We set the scale factor to 64 when we gen-
erate TATP data.

As shown in Figure 17, original MySQL sysems (2PL and RR) show throughput col-
lapses on 16 and 32 cores due to the latch contention around the lock table mutex. Our
system does not show any collapse, but the peak throughput is the same both on 16
and 32 cores. The profiled data does not show any mutex overhead, except that idle
time is increased on 32 cores. Further investigation on this behavior tells us that most
of idle time is due to the read-write locks (i.e., rw s lock) on B-tree pages. The pro-
filed data shown in Figure 18 can explain performance collapses observed in
MySQL (2PL), MySQL (RR), and Shore-MT. Our system does not show notice-
able mutex time.

We configure Shore-MT to use the MCS latch (default). Shore-MT shows a
peak throughput (∼32 million Txns/min) on 32 cores with read-only trans-
actions. When update transactions are mixed, the peak throughput is 5 mil-
lon Txns/min. Shore-MT does not show good scalability, mainly due to spin-
waiting not inside the spin on waiting() routine, but in the the join xlist()
routine for the transaction initialization. This leads us to get a different
profiled breakdown for Shore-MT compared to what we have shown in Fig-
ure 13.

6. CONCLUSION
We have found that some contemporary database systems are not yet ready for the
multicore age. Our evaluation has demonstrated a collapse of transaction throughput
under high load, even read-only load, for the database systems we analysed. In the case
of the open-source systems, MySQL and Shore-MT, we could identify latch contention
in the lock manager as the bottleneck. While we could not perform the same in-depth
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Fig. 17. TATP results
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analysis on the commercial DMBS X, its observable behaviour is similar enough to the
open-source systems to suspect that the cause is similar.

We proposed to address this problem by an improved implementation of the lock
manager, which adopts the RAW pattern and barrier synchronization to greatly reduce
the use of latches. We have described the design for such a lock manager which is based
on staged lock management, where locks are pre-allocated and lazily de-allocated in
bulk, and deadlock checking can be done concurrently. We coded this design as a vari-
ant of the backend storage of MySQL. Our experiments show that this approach (i)
eliminates the performance collapse by essentially eliminating latch contention, and
(ii) is not detrimental to the performance with fewer cores or lighter load.

Our proposal is modular, and can be introduced in a database management system
with a conventional latch-based design for the lock manager, without affecting the
index structures, query processing code, buffer management, or other parts of the sys-
tem. For example, the early version of our design (originally published in [Jung et al.
2013]) was then implemented by researchers at HP, in the context of a system which is
based on an older version of Shore-MT (incorporating some but not all of the improve-
ments found in Shore-MT-7.0) and it uses the Foster B-tree index structure [Graefe
et al. 2012]. On a 4-socket Intel machine, with RAMDisk storage, running TPC-C with
10 warehouses at MPL=12, their system had been bottlenecked on the lock manager,
peaking at 15K TPS; on replacing the lock manager by one that was based on our de-
sign, these researchers moved the bottleneck to the log manager, and gained close to
40% in throughput, reaching 21K TPS [Kimura 2014].

The potential weak point of our staged approach is longer hash chains, resulting
from obsolete locks which have not yet been cleaned up. We stressed this part of the
system by forcing a high rate of contention on individual data items, but found that
this did not cause performance problems. We conclude that the staged, reduced-latch
approach to lock management looks promising.
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