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Abstract. The observable output of a probabilistic system that processes a secret
input might reveal some information about that input. The system can be mod-
elled as an information-theoretic channel that specifies the probability of each
output, given each input. Given a prior distribution on those inputs, entropy-like
measures can then quantify the amount of information leakage caused by the
channel. But it turns out that the conventional channel representation, as a ma-
trix, contains structure that is redundant with respect to that leakage, such as the
labeling of columns, and columns that are scalar multiples of each other. We
therefore introduce abstract channels by quotienting over those redundancies.

A fundamental question for channels is whether one is worse than another,
from a leakage point of view. But it is difficult to answer this question robustly,
given the multitude of possible prior distributions and leakage measures. Indeed,
there is growing recognition that different leakage measures are appropriate in
different circumstances, leading to the recently proposed g-leakage measures,
which use gain functions g to model the operational scenario in which a chan-
nel operates: the strong g-leakage pre-order requires that channel A never leak
more than channel B, for any prior and any gain function. Here we show that, on
abstract channels, the strong g-leakage pre-order is antisymmetric, and therefore
a partial order.

It was previously shown [1] that the strong g-leakage ordering is implied by a
structural ordering called composition refinement, which requires that A = BR, for
some channel R; but the converse was not established in full generality, left open
as the so-called Coriaceous Conjecture. Using ideas from [2], we here confirm
the Coriaceous Conjecture. Hence the strong g-leakage ordering and composition
refinement coincide, giving our partial order both structural- and leakage-testing
significance.
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1 Introduction

A fundamental goal in computer security is the protection of confidential information
from improper disclosure. Yet this goal often cannot be achieved perfectly, because cer-
tain leaks of confidential information are unavoidable. The importance of quantitative
information flow is therefore that it enables us to say that certain information leaks are
“small” and hence tolerable.

Consider a channel C that takes as input a secret X with prior probability distribu-
tion π, and produces (perhaps probabilistically) an observable output Y. If an adversary
knows π and C, then its initial uncertainty about X will depend on π. But each separate
output value y then allows it to update its knowledge about X’s prior π to a posterior dis-
tribution pX |y via Bayesian reasoning. Hence its expected remaining uncertainty about
X, after seeing the output of C, will depend on the set of possible posterior distributions
on X and their probabilities. The leakage is the difference between the initial and final
uncertainties.

This general quantitative framework is clear enough; but there is of course more
than one way to measure the “uncertainty” associated with a probability distribution:
popular choices include Shannon entropy [3], guessing entropy [4], min-entropy [5],
and the family of g-entropies [1] each determined by its own gain function g. Each of
those leakage measures has its own operational significance, which might or might not
suit the operational scenario. Moreover, the leakage caused by some C will also depend
on its prior π. As a result, if we consider the leakage ordering of two channels A and
B (both taking X as input), it is difficult to give an answer that is robust, i.e. that does
not depend on the particular prior and leakage measure. But such a robust ordering
is indispensable if we aim to develop software through stepwise refinement, based on
general laws that hold in all contexts.

There is such a robust order for deterministic channels, provided by the Lattice of
Information [6]. Any deterministic channel from X to Y induces a partition onX, where
x1 and x2 belong to the same block iff they map to the same output.1 That is, each block
of the partition is the pre-image of some output y.

Definition 1 (Partition refinement). Two deterministic channels A, B on input X are
said to be in the partition refinement relation, written A � B, just when the partition
induced by A on X is refined (as a partition) by the partition induced by B: the blocks
of B are formed by subdividing blocks of A.

For example a deterministic channel A taking a secret person X to her country of
birth would induce the partition in Fig. 1(a); the channel B that in some cases gives the
state as well leads to Fig. 1(b).

It is intuitively clear that an adversary will always prefer B to A, whatever the input
prior π; and this is supported by the following theorem due to Yasuoka & Terauchi, and
Malacaria [7,8].

Theorem 1. If A, B are deterministic, then A � B iff A never leaks more than B, on any
prior π and under Shannon-entropy, min-entropy, or guessing-entropy leakage.

1 We use X for the set of inputs, with x being a value in X and X being a random variable on X.
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(a) Less refined A (b) More refined B

Fig. 1. Partition refinement

The “only if” direction of this theorem can be seen as expressing the partition refine-
ment order’s soundness with respect to the leakage order. More interestingly, the “if”
direction can be seen as expressing its completeness, for it says that the only way for
A to never leak more than B is for A’s partition to be refined by B’s.2 Another way of
understanding this result is to say that partition refinement is an order on deterministic
channels with both a structural- and a leakage-testing characterization.

The main goal of this paper is to generalize these nice properties from determinis-
tic to probabilistic channels. A first issue, however, is that the story for deterministic
channels is not quite as nice as it appears, in that partition refinement is not in fact a
partial order on deterministic channels, but only a pre-order. Because distinct deter-
ministic channels can induce the same partition on X (since the particular names of the
outputs do not matter), partition refinement is not antisymmetric. While this problem is
rather obvious in the case of deterministic channels, we will see that it is more subtle
for probabilistic channels, and this will lead us to introduce abstract channels formed
by quotienting away the redundant structure of classical channel matrices.

We explore the fundamental properties of abstract channels, including their canonical
representation by reduced matrices and by hyper-distributions. Turning to their robust
leakage ordering, we consider a generalization of partition refinement called composi-
tion refinement (�◦) [2,1], where A �◦ B holds if A can be expressed as B followed
by “post-processing”. In our first major result, we show that composition refinement is
antisymmetric, and therefore a partial order, on abstract channels. Next we consider the
soundness and completeness of composition refinement with respect to leakage orders.
It was proved in [1,9] that composition refinement implies the strong g-leakage order-
ing (≤G), where A ≤G B holds if A never leaks more than B, on any prior distribution
and any gain function. The converse, however, was not proved in full generality, and
was left as the Coriaceous Conjecture. In our second major result, we use ideas from
[2] to prove the Coriaceous Conjecture. Hence composition refinement and the strong
g-leakage ordering coincide, giving us a partial order on abstract channels that has both
structural- and leakage-testing significance.

2 The “if” direction is actually easy to see—for if A’s partition is not refined by B’s, then there
must exist x1 and x2 that belong to the same block of B, but to different blocks of A. On a
prior that gives non-zero probability only to x1 and x2, B leaks nothing about X, while A leaks
everything.
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In summary, our principal contributions are (1) the concept of abstract channels,
which we argue to be the fundamental mathematical space for information-theoretic
leakage; (2) the proof that composition refinement is a partial order on this space;
and (3) the proof that composition refinement is complete with respect to the strong
g-leakage ordering.

The rest of the paper is structured as follows: Section 2 presents preliminaries; Sec-
tion 3 introduces abstract channels; Section 4 presents composition refinement and
proves that it is a partial order on abstract channels; Section 5 proves that composi-
tion refinement implies the strong g-leakage ordering; Section 6 proves the converse,
resolving the Coriaceous Conjecture; Section 7 gives a monadic presentation of com-
position refinement; Section 8 discusses limits of the information-theoretic perspective
with respect to computationally-bounded adversaries; Section 9 discusses related work;
and Section 10 concludes.

2 Preliminaries: Channels and Leakage Measures

We begin by recalling the basic definitions of information-theoretic channels [10]. A
channel is a triple (X,Y,C), where X and Y are finite sets (of secret input values and
observable output values) and C is an |X|×|Y| channel matrix whose entries are be-
tween 0 and 1 and whose rows each sum to 1; the intent is that Cx,y is the conditional
probability of output y given input x. Channel C is deterministic if each entry of C is
either 0 or 1, implying that each input row contains a single 1 which identifies its unique
corresponding output.

For prior distribution π on X, the joint distribution on X×Y is p(x, y) = π[x]Cx,y,
with jointly distributed random variables X, Y whose marginal probabilities are given by
p(x) =

∑
y p(x, y) and p(y) =

∑
x p(x, y), and whose conditional probabilities are given

by p(y|x) = p(x,y)/p(x) (if p(x) is non-zero) and p(x|y) = p(x,y)/p(y) (if p(y) is non-zero).
Note that pXY is the unique joint distribution that recovers π and C, in that p(x) = π[x]
and p(y|x) = Cx,y (if p(x) is non-zero).3

For a given y (such that p(y) is non-zero), the conditional probabilities p(x|y) for each
x∈X form the posterior distribution pX |y, which is the knowledge that the adversary
learns about X by seeing output y.

Example 1. Given X = {x1, x2, x3}, and Y = {y1, y2, y3, y4}, and (the uniform) prior
π = (1/3, 1/3, 1/3), consider channel C and its associated joint matrix J as follows:

C y1 y2 y3 y4

x1 1 0 0 0
x2 0 1/2 1/4 1/4
x3 1/2 1/3 1/6 0

leads via π to the joint matrix

J y1 y2 y3 y4

x1 1/3 0 0 0
x2 0 1/6 1/12 1/12

x3 1/6 1/9 1/18 0

.

By summing J’s columns we get the (marginal) distribution pY = (1/2, 5/18, 5/36, 1/12)
and by normalizing the columns we get the posterior distributions pX |y1 = (2/3, 0, 1/3),
pX |y2 = (0, 3/5, 2/5), pX |y3 = (0, 3/5, 2/5) and pX |y4 = (0, 1, 0). �

3 When necessary to avoid ambiguity, we write distributions with subscripts, e.g. pXY or pY .
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Leakage measures are defined based on various entropy-like measures of the prior
distribution π and the posterior distributions pX |y, together with their probabilities p(y).

Shannon leakage is based on the Shannon entropy [3] of the prior distribution,
H(π) = −∑x π[x] logπ[x], and the expected Shannon entropy of the posterior distribu-
tions, H(π,C) =

∑
y p(y)H(pX |y). The Shannon leakage is the difference H(π)−H(π,C),

which is equal to the mutual information I(π,C).4

Guessing entropy leakage is based on the guessing entropy [4] of the prior distribu-
tion, G(π) =

∑
i i π[xi], with X indexed in non-increasing probability order, and on the

expected guessing entropy of the posterior distributions G(π,C) =
∑

y p(y)G(pX |y). The
guessing entropy leakage is the difference G(π) −G(π,C).

The operational significance of both Shannon entropy and guessing entropy can be
stated in terms of the expected number of brute-force guesses that the adversary would
need to find the secret.5 But this is not really satisfactory for confidentiality, because the
expected number of brute-force guesses needed to find the secret can be high even if
the adversary has a high probability of guessing the secret successfully in just one try.
For this reason we consider min-entropy leakage [5], which is based on the prior vul-
nerability of the secret to be guessed in one try V(π) = maxx π[x], and on the expected
vulnerability of the posterior distributions V(π,C) =

∑
y p(y)V(pX |y). The prior- and

posterior min-entropies are obtained by taking the negative logarithm of the vulnera-
bility: H∞(π) = − log V(π) and H∞(π,C) = − log V(π,C). The min-entropy leakage
L(π,C) is the difference H∞(π) − H∞(π,C) or, equivalently, the logarithm of the ratio
of the posterior- and prior vulnerabilities, that is log V(π,C)/V(π).

While vulnerability is clearly important for confidentiality, it implicitly assumes an
operational scenario in which the adversary gains only by guessing the secret exactly,
and in one try. For this reason, g-leakage [1] generalizes vulnerability to incorporate
a gain function g, the choice of which allows the modelling of differing operational
scenarios. In each scenario, there will be some set W of guesses that the adversary
could make about the secret, and for any guess w and secret value x, there will be some
gain g(w, x) that the adversary gets by having chosen w when the secret’s actual value
was x; gains are assumed to range from 0 (when w has no value at all) to 1 (when w is
ideal). Formally, g:W×X→ [0, 1], whereW is a finite, non-empty set. Given a gain
function g, the prior g-vulnerability is defined as the maximum expected gain over all
possible guesses: that is Vg(π) = maxw

∑
x π[x]g(w, x). The posterior g-vulnerability,

the g-entropy and the g-leakage are then defined as for min-entropy leakage: we have
Vg(π,C) =

∑
y p(y)Vg(pX |y), and Hg(π) = − log Vg(π), and Hg(π,C) = − log V(π,C) and

Lg(π,C) = Hg(π) − Hg(π,C) = log Vg(π,C)/Vg(π).
In particular, a gain function g that gives gain 1 for guessing the secret correctly and

0 otherwise makes g-leakage coincide with min-entropy leakage: it is thus a special
case. But gain functions can do much more. As explained in [1], they can model a wide
variety of practical operational scenarios, including those where the adversary benefits
from guessing a value close to the secret, guessing a part of the secret, guessing a
property of the secret or guessing the secret within some bounded number of tries.
They can also model scenarios where there is a penalty for incorrect guesses.

4 The more usual notation for these quantities is H(X), H(X|Y), and I(X; Y).
5 For Shannon entropy, this follows from a result by Massey [4].
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3 Abstract Channels Capture the Essence of Leakage

For a fixed channel and prior, it can easily happen that distinct output values y, y′ in Y
give rise to the same posterior distribution on X. In that case there is actually no benefit
to the adversary from distinguishing outputs y, y′, since each gives the same knowledge
about X. Furthermore, the output values y make no difference either: all that matters for
any output y is its associated posterior distribution pX |y. This implies that the result of
a channel, as far as leakage is concerned, should simply be a distribution on posterior
distributions; following [2] we call this a hyper-distribution.

Example 2. Returning to channel C from Ex. 1, we notice that its outputs y2,3 produce
the same posterior distribution, i.e. that pX |y2 = pX |y3 . Hence the hyper-distribution pro-
duced by C on π has only three columns rather than four:6

C 1/2 15/36 1/12

x1 2/3 0 0
x2 0 3/5 1
x3 1/3 2/5 0

In this representation the columns are normalised, and are labelled
by their associated marginal probabilities: theY-values have been
removed. Note that the probability 15/36 of the middle posterior
distribution is found by adding p(y2) + p(y3), that is 5/18 + 5/36.

�

We capture these two abstractions in the following definition:

Definition 2 (Abstract channel). The leakage semantics of a channel matrix is the
mapping that it gives from priors to hyper-distributions.

We call such a mapping an abstract channel.

The following theorem reassures us that we have not abstracted too much.

Theorem 2. The usual leakage measures are well defined on abstract channels.

Proof. As we saw in §2, under min-entropy leakage vulnerability is V(π) = maxx π[x],
and posterior vulnerability is V(π,C) =

∑
y p(y)V(pX |y). Hence the column labels y

make no difference. Moreover, if pX |y = pX |y′ then the posterior vulnerability is unaf-
fected by merging outputs y and y′, since then

p(y)V(pX |y) + p(y′)V(pX |y′) = p(y ∨ y′)V(pX |y).

Other leakage measures, such as Shannon-based mutual information, behave similarly.
��

Taking this abstracted, semantic viewpoint makes us realise that the conventional,
channel-matrix representation can contain redundant information as far as leakage is
concerned, namely (1) labels on columns, (2) columns that are all zero, representing
outputs that can never occur, and (3) similar columns, which are columns that are scalar
multiples of each other and therefore yield the same posterior distributions.7 By elimi-
nating this redundant information, we obtain a well defined reduced matrix:

6 The block representation of a hyper-distribution has probabilities in its top row, rather than
Y-values.

7 These can be seen as analogous to redundant information in computer programs, like the names
of local variables, dead code, and if-statements with identical branches. Case (2) could be seen
as an instance of Case (3) with a scaling factor of zero; but then similarity would not be
symmetric.
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Definition 3. The reduced matrix Cr of a channel matrix C is formed by deleting output
labels and all-zero columns, then adding similar columns together, and finally ordering
the resulting columns lexicographically.

Theorem 3. Any channel matrix C has the same leakage semantics as its reduction Cr.

Proof. Output labels, all-zero columns, and column ordering all have no effect on the
hyper-distribution. And similar columns each contribute weight to the same posterior
distribution; hence merging them leaves the hyper-distribution unchanged. ��

A reduced matrix hence serves as a canonical representation of an abstract channel.

Corollary 1. Channels C,D represent the same abstract channel just when Cr = Dr.

Example 3. Given X = {x1, x2, x3} we consider the following two channels C,D:

C y1 y2 y3

x1 1 0 0
x2 1/4 1/2 1/4
x3 1/2 1/3 1/6

D z1 z2 z3

x1 2/5 0 3/5
x2 1/10 3/4 3/20

x3 1/5 1/2 3/10

.

These channels as matrices are different — but as abstract channels they are the same.
Indeed both map prior distribution π = (p1, p2, p3) to the same hyper-distribution:

(4p1 + p2 + 2p3)/4 (3p2 + 2p3)/4

x1
4p1

4p1+p2+2p3
0

x2
p2

4p1+p2+2p3

3p2

3p2+2p3

x3
2p3

4p1+p2+2p3

2p3

3p2+2p3

To understand this, note that the second and third columns of C are similar (indeed
column 2 is two times column 3). In the same way, columns
1 and 3 of D are similar (indeed column 1 is two-thirds times
column 3). Hence A, B have the same reduced matrix, as shown
here at right:

Cr = Dr =

x1 1 0
x2 1/4 3/4
x3 1/2 1/2

�

While we have said that an abstract channel is a mapping from priors to hyper-
distributions, in fact the mappings that come from channel matrices are highly con-
strained. Write 
π� for the support of distribution π, that is those elements (of X) to
which it assigns non-zero probability. Then we have

Theorem 4. An abstract channel C with input X is completely determined by its be-
haviour on any full-support prior π, that is one with 
π�=X.

Proof. If full-support π yields a certain hyper-distribution then, by scaling each of the
posterior distributions with its probability, we recover the joint matrix of Cr under π.
And normalizing the rows of the joint matrix gives Cr . ��
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It follows that we can also canonically represent an abstract channel by the hyper-
distribution that it produces on (for instance) the uniform prior πu — indeed we showed
such a hyper-distribution in Ex. 2.8

4 Generalizing Partition Refinement to Composition Refinement

We now return our attention to the question of whether we can generalize the partition
refinement A � B of Def. 1 in §1 from deterministic to probabilistic channels. Our
criteria for success will include an investigation (in §5) of the situations in which the
generalisation is sound in the sense that A � B implies that A’s leakage does not exceed
B’s, and complete in that the generalisation fails only if there really is such a situation
in which A leaks more than B.

In the deterministic case, A’s partition is refined by B’s just if we can convert from
B to A by doing a “post-processing” step in which certain of B’s outputs are merged
— this corresponds to “anti-refinement” of partitions achieved by merging regions (just
as federating the states of Australia takes us from Fig. 1(b) back to Fig. 1(a)). That is,
we can express A as the cascade [12] of B and a channel Rmerge, so that A is the matrix
product of B and Rmerge.9 And, unlike partition refinement, this new formulation applies
to probabilistic as well as deterministic channels.

Definition 4. For channels A, B we say that A is composition refined by B, written
A �◦ B, just when there exists a channel R such that A = BR.

(Note that this definition appears in [1,9].)
On channel matrices, the composition-refinement relation is easily seen to be reflex-

ive (since C = CI) and transitive (since A = BR1 and B = CR2 implies A = (CR2)R1 =

C(R2R1)) — and so it is a preorder. But it is not antisymmetric, as can be seen from
C,D in Ex. 3, where we have both C �◦ D and D �◦ C:

C y1 y2 y3

x1 1 0 0
x2 1/4 1/2 1/4
x3 1/2 1/3 1/6

=

D z1 z2 z3

x1 2/5 0 3/5
x2 1/10 3/4 3/20

x3 1/5 1/2 3/10

R1 y1 y2 y3

z1 1 0 0
z2 0 2/3 1/3
z3 1 0 0

and
D z1 z2 z3

x1 2/5 0 3/5
x2 1/10 3/4 3/20

x3 1/5 1/2 3/10

=

C y1 y2 y3

x1 1 0 0
x2 1/4 1/2 1/4
x3 1/2 1/3 1/6

R2 z1 z2 z3

y1 2/5 0 3/5
y2 0 1 0
y3 0 1 0

However, if we restrict to abstract channels, we find that composition refinement is
better behaved: it becomes a true partial order (Thm. 6 below). We now prove that fact,
our first major result.

8 In the more general setting of Hidden Markov Models [11], however, such functions from
priors to hyper-distributions do not have the property of Thm. 4 — they are strictly more
general.

9 Indeed this equivalence was noted in Theorem 1 of [6].
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Lemma 1 (Jensen’s inequality for abstract channels). LetA andB be abstract chan-
nels, with (A,X,Z) and (B,X,Y) their presentation as reduced matrices, and let F be
a concave (�) function from distributions on X to the reals. If A=BR for some channel
matrix R then, for any full-support prior π, we have F(π, A) ≥ F(π, B) where as usual
F(π, A) =

∑
z p(z)F(pX |z).

Furthermore, ifA�B and F is strictly concave, then the inequality is strict.

Proof. Our proof relies on Jensen’s inequality [10], that if λ1, λ2, . . . λN are coefficients
in [0, 1] that sum to one, and F is concave, then

∑
n λnF(xn) ≤ F(

∑
n λnxn).

We use the following matrix notation. Given matrix M with row labels X and col-
umn labels Y, we write Mx,y to denote the (x, y) entry and M−,y to denote column y.
A fundamental property of matrix multiplication is that (MN)−,z = M(N−,z), i.e. that
column z of MN is a linear combination of the columns of M, with column z of N as
the coefficients, and thus that in fact the parentheses above are not necessary.10

We write Dπ to denote the diagonal matrix with prior π on its diagonal, so that DπA
is the joint matrix giving pXZ. Note that because A is reduced and π is full support, the
columns of DπA are all non-zero and non-similar; hence normalizing these columns is
well defined and gives the distinct posterior distributions pX |z = 1/p(z) DπA−,z where p(z)
is the (necessarily nonzero) sum of column z. For B, similarly, the posterior distributions
pX |y are distinct, and pX |y = 1/p(y) DπB−,y.

We now show that F(π, A) ≥ F(π, B) under the conditions given: first we have

F(π, A)
=
∑

z p(z) F(pX |z) “defn. F(π, A)”
=
∑

z p(z) F(1/p(z) DπA−,z) “pX|z = 1/p(z) DπA−,z”
=
∑

z p(z) F(1/p(z) DπBR−,z) “A=BR”
=
∑

z p(z) F(1/p(z) Dπ (
∑

y B−,yRy,z) ) “BR−,z =
∑

y B−,yRy,z”
=
∑

z p(z) F(
∑

y(Ry,z p(y)/p(z))(1/p(y) DπB−,y) ) “reorganising”
=
∑

z p(z) F(
∑

y(Ry,z p(y)/p(z))(pX |y) ) , “pX|y = 1/p(y) DπB−,y”

which contains F applied to a convex combination (
∑

y) whose coefficients Ry,z p(y)/p(z)
we now show are suitable for the use of Jensen. They sum to one because
∑

y Ry,z p(y)
=
∑

y Ry,z
∑

x(DπB)x,y “p(y) =
∑

x(DπB)x,y”
=
∑

x,y Ry,z (DπB)x,y “distributive law”
=
∑

x (DπBR)x,z “defn. matrix multiplication”
=
∑

x (DπA)x,z “A = BR”
= p(z) . “defn. p(z)”

With that done, we continue

. . . =
∑

z p(z) F(
∑

y(Ry,z p(y)/p(z))(pX |y) ) “from above”
≥∑z p(z)

∑
y(Ry,z p(y)/p(z)) F(pX |y) “(∗) Jensen wrt concave F”

=
∑

y p(y) F(pX |y)
∑

z Ry,z “simplify”

10 This is just associativity wrt post-multiplication by a column vector with one at row z and
zeroes elsewhere.
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=
∑

y p(y) F(pX |y) “
∑

z Ry,z = 1”
=F(π, B) , “defn. F(π, B)”

so that F(π, A) ≥ F(π, B) as claimed.
Now we suppose thatA�B and F is strictly concave.
A strict form of Jensen’s inequality is that if λ1, λ2, . . . λN are coefficients in [0, 1]

that sum to one, with at least one λn�1, and F is strictly concave, and the xn’s are all
distinct, then

∑
n λnF(xn) < F(

∑
n λnxn). This will give strict inequality at (∗) above.

Because B is reduced, the distributions pX |y (the normalised columns of DπB) are
distinct; otherwise B would have similar columns. Those are the distinct xn’s for strict
Jensen.

We now consider the λn’s, showing that at least one of them is not one. No two
columns of R can have a single non-zero entry in the same row, since those two columns
would generate similar columns in A, contradicting A’s being reduced. Thus if all
columns of R have exactly one non-zero value, since those values are alone in their
rows and R is a channel matrix, in fact R must be be a permutation of the identity. But
that makes A a column permutation of B, impossible if A, B are reduced and distinct.

Thus channel matrix R must have some column R−,ẑ in which at least two entries
are non-zero. But from

∑
y Ry,ẑ p(y) = p(ẑ), proved just above, plus the fact that p(y) is

nowhere zero, we have at least one ŷ (in fact, two) with Rŷ,ẑ p(ŷ)/p(ẑ) � 1. This ŷ (as n)
gives the λn�1 for that ẑ, as application of strict Jensen to that ẑ requires.

Those facts taken all together allow us to make step (∗) above strict, since for all z’s
(the nonstrict) Jensen applies, and for ẑ it applies strictly. ��

A consequence of Lem. 1 is the following theorem, which is itself of interest.

Theorem 5 (Strict data-processing inequality). Let A and B be abstract channels,
and write A �◦ B when A �◦ B but A�B. If A �◦ B then, for any full-support
prior π, the mutual information leakage ofA is strictly less than than that of B: that is
I(π,A) < I(π,B).11

Proof. We appeal to the strict concavity (�) of Shannon entropy H [13, p. 85], using H
for F in Lem. 1, to conclude that H(π,A) > H(π,B). Hence I(π,A) = H(π)−H(π,A) <
H(π) − H(π,B) = I(π,B). ��

A second consequence of Lem. 1 is the partial-order property we seek.

Theorem 6 (Partial order). Composition refinement (�◦) is a partial order on abstract
channels.

Proof. Since (�◦) is reflexive and transitive, we need only antisymmetry. Suppose that
A �◦ B �◦ A but A�B. Then in fact A �◦ B �◦ A whence, from Thm. 5, we have
I(π,A) < I(π,B) < I(π,A) for any full-support prior π— which is impossible. ��
11 To see that this theorem is indeed a strict version of the classic data-processing inequality [10],

note that if A = BR, where A goes from X to Z, B goes from X to Y, and R goes from Y to
Z, then for any prior π we have a Markov chain X → Y → Z. The (non-strict) data-processing
inequality says that in this case I(X; Z) ≤ I(X; Y), which in our notation is I(π, A) ≤ I(π, B).
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We conclude this section by completing the link with reduced channels. For channels
A, B write A ≈◦ B to mean A �◦ B �◦ A.

Lemma 2. For any channel C (not necessarily reduced) we have C ≈◦ Cr.

Proof. The reduced form Cr of channel C is defined in Def. 3 via a series of opera-
tions: deleting all-zero columns,12 summing (similar) columns together, and reorder-
ing columns (lexicographically). Each of those can be effected via post-multiplication
with a simple channel matrix; and so their overall effect is achieved via multiplication
with the (matrix) product of all those channel matrices, again a channel matrix. Hence
Cr �◦ C.

For the reverse direction the operations are adding an all-zero column, splitting a
column into several similar columns,13 and reordering columns. Again all of these can
be achieved by post-multiplication. Hence C �◦ Cr, and so C ≈◦ Cr as required. ��
Theorem 7 (Quotienting). The equivalence classes induced by the preorder (�◦) on
channels are the same as induced by the kernel of reduction (−r): that is for any chan-
nels A, B we have A ≈◦ B just when Ar = Br.

Proof. If A ≈◦ B then Ar ≈◦ A ≈◦ B ≈◦ Br (Lem. 2), whence Ar ≈◦ Br by transitivity
and finally Ar = Br by antisymmetry on reduced channels (Thm. 6).

If Ar = Br then Ar ≈◦ Br (reflexivity) whence A ≈◦ B (Lem. 2 and transitivity). ��

5 Composition Refinement and Leakage Orderings

In this section we address whether (�◦) is a reasonable information order to impose; as
mentioned at the beginning of §4, this is related to what we have called soundness and
completeness. In §5.3 we briefly discuss compositionality.

5.1 Soundness of (�◦)
The soundness condition for (�◦) concerns the situations in which A �◦ B implies that A
leaks no more than B. That is, given a situation in which (limiting) leakage is important,
according to some leakage measure, in what sense is it sound to use (�◦) to reason about
that system?

In fact we can argue informally that using (�◦) for our reasoning ought to be sound
for any reasonable situation and associated leakage measure: if A = BR for some R,
then an adversary should never prefer channel A to channel B, because given channel B
the adversary can always simulate channel A by simply post-processing the output from
channel B according to channel R.

12 This is where we depend on deleting only all-zero columns to proceed from C to Cr: although
post-multiplication with a channel matrix can add an all-zero column, it cannot delete a column
unless that column is all zero.

13 This is where we depend on summing only similar columns to proceed from C to Cr: although
post-multiplication with a channel matrix can sum any two columns, similar or not, it cannot
in general decompose a column into a sum of dissimilar columns.
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And indeed this property does hold for Shannon-entropy leakage, min-entropy leak-
age, and g-leakage. It is a generalized data-processing inequality, proved here14 for the
case of g-leakage.15

Theorem 8. If A �◦ B then the g-leakage of A never exceeds that of B, for any prior π
and any gain function g. (We denote this by A ≤G B.)

Proof. Note first that because Lg(π,C) = log Vg(π,C)/Vg(π) and Vg(π,C) and Vg(π) are
positive, we have Lg(π, A) ≤ Lg(π, B) iff Vg(π, A) ≤ Vg(π, B).

Now
Vg(π,C) =

∑

y∈Y
max
w∈W

∑

x∈X
π[x]Cx,yg(w, x) ,

and as noted in Section 4.C of [1], we can reify the choice of w, given y, as a probabilistic
channel S fromY toW that represents the adversary’s strategy.16 Hence we have

Vg(π,C) = max
S

∑

x,y,w

π[x]Cx,yS y,w g(w, x) = max
S

∑

x,w

π[x](CS )x,w g(w, x). (1)

(It might appear that the “max” in equation (1) should actually be “sup,” since there are
infinitely many possible strategies. But this is not so, because the supremum is in fact
realized on any strategy S such that S y,w > 0 only if w is a best guess given output y.)

Now notice that in the case where A = BR, any optimal strategy S for A is equivalent
to a strategy for B, namely RS ; but of course RS might not be optimal for B — there
might be a better strategy S ′. This allows us to calculate

Vg(π, A)
= maxS

∑
x,w π[x](AS )x,wg(w, x) “Eqn. (1)”

= maxS
∑

x,w π[x](BRS )x,wg(w, x) “A = BR”
≤ maxS ′

∑
x,w π[x](BS ′)x,wg(w, x) “S ′ can be RS ”

= Vg(π, B) , “Eqn. (1)”

which gives the inequality Vg(π, A) ≤ Vg(π, B) that we seek. ��

5.2 Completeness of (�◦)
The completeness condition we establish for (�◦) is that if A ��◦ B then there exists
a gain function g and a prior π for which A g-leaks strictly more than B does; this
depends on a theorem we prove in §6 below. Put informally, this completeness means
that if using our order (�◦) we criticise a channel A because it does not satisfy A �◦ B,
then we can justify our criticism by giving a π and g that shows A’s inferiority in a more
operational setting.

14 This result first appeared as Theorem 6.2 of [1], though with a slightly different proof.
15 Proofs for other leakage measures are similar, and indeed since min-entropy leakage is a spe-

cial case of g-leakage (end §2), that in particular is a trivial corollary.
16 This reification is reminiscent of Skolemization. Notice that it is reasonable for S to be proba-

bilistic, since there could be more than one w that is optimal for a given y.
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Surprisingly, that completeness criterion for (�◦) does not hold wrt min-entropy leak-
age, even though Thm. 1 suggests that it might. This failure is shown by the following
example:

A =
x1 2/3 1/3
x2 2/3 1/3
x3 1/4 3/4

B =
x1 1/2 1/2 0
x2 1/2 0 1/2
x3 0 1/2 1/2

Although it turns out that the min-entropy leakage of A never exceeds that of B on any
prior, still A ��◦ B.17

5.3 Compositionality

A more formal approach to soundness and completeness would be via compositionality,
asking given A �◦ B, for what contexts C can we be sure that also C(A) �◦ C(B)?

In [2] a simple probabilistic programming language with hidden state is treated, with
a relation (�) there that specialises to (�◦) here when those programs simulate channels.
It is shown there that (�) is the (unique) relation with the properties (soundness) that
A � B implies that the min-entropy leakage of C(A) never exceeds the min-entropy
leakage of C(B) for any context C in that programming language and any prior, and
(completeness) that A � B implies that the min-entropy leakage of C(A) does strictly
exceed the min-entropy leakage of C(B) for some context C and some prior. In this way
the legitimacy of (�) for programs, and hence of (�◦) for channels, could be argued
based on the utility of (the more restricted) min-entropy leakage, and compositionality.

The techniques for proving completeness in [2] led to the proof of Thm. 9 below.

6 The Coriaceous Property and Its Proof

We now present our second major result, the converse to Theorem 8. It says that the
strong g-leakage order implies composition refinement, which intuitively means that
composition refinement is not too strong: that is, whenever A ��◦ B, there exists a prior
π and a gain function g that causes A to leak more than B. This implication was stud-
ied in [1], but not proved in full generality—it was shown only in the case when the
columns of B are linearly independent—and the general result was left as the Coria-
ceous Conjecture, which we now resolve.18

Theorem 9. For any channel matrices A and B, if A ≤G B then A �◦ B.

Proof. We argue the contrapositive, showing that if A ��◦ B, then we can construct a
gain function g and a prior π such that Vg(π, A) > Vg(π, B); note that this implies that
Lg(π, A) > Lg(π, B) and hence that A �≤G B.

17 The min-entropy leakage bound can be verified using the linear-programming-based algorithm
given in Section 6.F of [1]. To see that A ��◦ B, note that because B is invertible we have A = BR
implies R = B−1A—but this calculation gives an R containing negative entries.

18 The proof is based on [14], itself extracted from the completeness proof in [2] which was, in
turn, a specialisation of McIver’s original proof in terms of probabilistic imperative-program
fragments and their weakest preconditions [15].
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Let A go from X to Z, and B from X to Y. If A ��◦ B, then there exists no channel
matrix R fromY toZ such that A = BR. If we use the abbreviation B↑ for the matrices
{BR | R is a channel matrix fromY toZ}, then our assumption becomes A � B↑.

Because matrix A and the matrices in B↑ go fromX toZ, they can be embedded into
Euclidean space of dimension N = |X|×|Z| by gluing their columns together in order.
Then B↑ becomes a set of points in N-space which, we observe by linearity of matrix
multiplication, is both convex and closed. And A is a point in N-space that does not
belong to B↑.

By the Separating Hyperplane Lemma [16] there is thus a hyperplane in N-space
with point A strictly on one side, and all of the set B↑ strictly on the other side. If G is
the normal of the hyperplane, also an N-vector thus, we have that A ·G > B′ ·G for all
B′ ∈ B↑.19 Note that we can assume a (>)-separation without loss of generality, because
we can negate G if necessary. Moreover we can assume without loss of generality that
the elements of G are in [0, 1]. First, we can eliminate negative elements of G by adding
a constant k to each entry; this has the effect of increasing both sides of the inequalities
above by exactly k|X|, because with A and each B′ derived from “glued” channel ma-
trices, as vectors they all sum to the same value |X|. Second, we can eliminate elements
of G that are greater than 1 by scaling, which simply scales both sides of (<) equally.

Now by “ungluing” we can view G, a vector in N-space, as a matrix (though not
necessarily a channel matrix) from X to Z. Thus we can view G as a gain function
g : Z×X → [0, 1], usingZ as the set of guesses and defined by g(z, x) = Gx,z.20

It turns out that this g is precisely the gain function that causes A to leak more than
B under the uniform prior πu. For by Eqn. (1) we have

Vg(πu, A) = maxSA

∑
x,z πu[x](ASA)x,zg(z, x)

and Vg(πu, B) = maxSB

∑
x,z πu[x](BSB)x,zg(z, x) ,

where strategies SA for A are channel matrices fromZ toZ, and strategies SB for B are
channels matrices from Y to Z. Note then that the identity matrix I is a strategy for A,
and that each BSB ∈ B↑. Hence, letting So

B denote any optimal strategy for B, we have

Vg(πu, B)
=
∑

x,z πu[x](BSo
B)x,zg(z, x) “So

B is optimal”
= 1/|X|

∑
x,z(BSo

B)x,zGx,z “πu is uniform over X”
= 1/|X| (BSo

B) ·G “taking dot-product in vector form”
< 1/|X| A ·G “separation; BSo

B ∈ B↑”
=
∑

x,z πu[x](AI)x,zg(z, x) “I is identity”
≤ maxSA

∑
x,z πu[x](ASA)x,zg(z, x) “SA can be I”

= Vg(πu, A) . “definition Vg”

��
While Theorem 9 shows that composition refinement is no stronger than the strong

g-leakage order, one might nonetheless wonder whether the gain function g constructed
in the proof (using the Hyperplane Separating Lemma) represents a “practical” leakage

19 We are using the vector forms here, and (·) is used for their dot-products.
20 Note that this is the transpose of the matrix representation of gain functions used in [1].
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threat, in that a “real” adversary would ever care about it. That is, perhaps the strong
g-leakage ordering is itself too strong. Three comments seem relevant here. First, it
seems generally prudent to make as few assumptions about the adversary as possible.
Second, the partial proofs21 in [1] show that, in the special case when A ��◦ B and the
columns of B are linearly independent, there is a quite intuitive gain function g and
prior π that causes A to leak more than B; g can then be a two-block gain function,
which corresponds to the adversary wanting to guess some property of the secret. And
finally (§5.3), with suitable definition of context it could be possible to reduce (�◦) to
the strong min-entropy leakage order.

7 The Mathematical Structure of Hyper-distributions

In this section, we give a monadic presentation of composition refinement which, while
not necessary for the results in this paper, supports generalisation to richer settings.

7.1 Use of the Giry Monad

In Def. 2 we defined abstract channels as mappings from priors to hyper-distributions.
Recall that our (finite) input space is X, and write DX, with typical element lower-
case Greek (e.g. δ, π), for the (discrete) distributions over X; in that case (discrete)
hyper-distributions have type D2X, with typical element upper-case Greek (e.g. Δ), and
abstract channels have type DX→D

2X.22 We now look at D2X specifically, from a
monadic perspective [17].23

The functor G of the Giry monad [19] (G, μ, η) takes a measure space to another
space of measures, on the measures of that first space: this is the general technique
that allows us to construct distributions D() “on top of” another set of distributions
DX, as in D

2X (and even D
3X as in §7.3 below). As part of the monad structure we

have a “multiply” natural transformation μ that averages a distribution of distributions
to create a single distribution again. (We see an example of this below.) Here we call
it avg for “average.” The “unit” natural transformation η makes a point distribution on
a distribution; but we will not need it here. The functor G itself, acting on a mapping
f e.g. from X to Y, constructs a “lifted” mapping G f from GX to GY, that is in our
simple setting from DX to DY. We call it map here.24 Finally, we have a function exp
that takes the expected value of a function from a measure space to a weighted sum
based on a particular measure in that space; we see an example of that immediately
below (§7.2).

21 See the proofs of Lemma 6.4 and Theorems 6.5 and 6.6 of [1].
22 Since DX is uncountable even for finite X, hyper-distributions are at least potentially proper

measures: but when derived from matrices, as they are here, they are discrete distributions.
The proper-measure case is treated in [11,17] as mentioned in §7.3 below.

23 We keep this treatment very light: more details are found in [17], where the Kantorovich monad
[18] is used in a similar style.

24 In elementary probability it is called “push forward.” Calling it map is by analogy with the use
of monads in functional programming, where map “lifts” a function f between elements to a
function map f between structures on those elements.
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7.2 Applying g-vulnerability to Hyper-distributions Directly

We recall from §2 that a gain function g:W×X→ [0, 1] gives rise to two derived func-
tions: the prior vulnerability Vg takes one argument, having type DX→[0, 1]. The ex-
pected vulnerability (again) Vg of the posterior distributions takes two arguments, a
prior and a channel; but in the mathematical presentation we consider that to be of
type D2X→[0, 1], i.e. to have as its single argument the hyper-distribution that the prior
and channel jointly determine.25 That is, with this overloading of the name “Vg” it is
type-correct to write both Vg(δ) and Vg(Δ) for δ:DX and Δ:D2X.

The second form of Vg, applied to a particular hyper-distribution Δ:D2X, is then the
expected value expVg

(Δ) over Δ of the first form of Vg as a random variable on DX.26

7.3 Applying Composition Refinement (�◦) to Hyper-distributions Directly

We now introduce bi-hypers on X, that is hyper-distributions on DX (rather than on X
directly), that thus have type D3X with typical element bold upper-case Greek (e.g. Δ).
The definition of composition refinement (�◦) on hyper-distributions is then as follows:

Definition 5. Given two hyper-distributions ΔA,B:D2X, we say that ΔA �◦ ΔB just when
there is a bi-hyper Δ:D3X such that

ΔA = map (avg)(Δ) and avg (Δ) = ΔB .
27

The bi-hyper Δ is thus a witness of the relationship (�◦), just as R is a witness in the
matrix setting.

This more general, abstract construction of Def. 5 is not necessary for the material
(elsewhere) in this paper; but its being expressed purely in monadic terms means it ap-
plies without change to proper measures (rather than only discrete distributions). These
can arise naturally in a context more general than channels, for example imperative
looping programs with hidden state [11], and probabilistic- and demonic nondetermin-
ism together [17]. In this way, the channel model can be seen to fit into this very general
mathematical framework, possibly giving access to more general mathematical tools in
the analysis of channels.

8 Limits of the Information-Theoretic Perspective

The perspective of abstract channels is information theoretic, concerned only with a
channel’s mapping from priors to hyper-distributions, and abstracting from details like
the names of outputs. These choices are appropriate if we are interested only in the

25 In [17] the prior vulnerability function is abstracted from any g, presented simply as a “disor-
der test” that is by definition some continuous, concave function in DX→[0, 1]. Continuity re-
quires a metric, or a topology, and that is part of what the general Giry- or Kantorovich monad
structure supplies. Thus disorder tests are concave (by definition), while g-vulnerabilities are
convex (by construction based on g). The latter is a just special case of the former, negated.

26 That expected value would be written
∫

Vg dΔ or
∫

δ∈DX Vg(δ) dΔ in a more mathematical setting.
27 In the usual notation of the Giry monad that would be ΔA=GμXΔ and μ

GXΔ=ΔB .
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information that a channel provides to the adversary, and not in the amount of compu-
tation that might be required in order to exploit that information.

But if we wish to consider computationally-bounded adversaries, then we need to
move to a more concrete model, one where outputs come as strings of bits. Also, we
need to constrain the strategy-based formulation of g-vulnerability that we used in the
proof of Theorem 8. For simplicity, let us restrict our attention to min-entropy leakage
and (ordinary) vulnerability, whose strategy-based formulation is

V(π,C) = max
S

∑

x,y

π[x]Cx,yS y,x .

In a computational setting, we can no longer allow S to be an arbitrary probabilistic
mapping from outputs Y to guesses X, but instead must require it to be efficiently
computable. This in turn requires that we consider families of channels with respect
to a “security parameter” n, so that we can consider the growth of running time as a
function of n. Let us write Vc to denote the computational version of vulnerability.28

We can illustrate the effect of this definition by considering two channels whose
input is an n-bit prime p, assumed uniformly distributed. Channel A outputs p2, while
channel B outputs pq, where q is a uniformly-distributed (n+1)-bit prime. Note that
A and B represent the same abstract channel, since the reduced matrix of both is the
identity matrix. Hence in the non-computational setting we have V(π, A) = V(π, B) = 1.

Turning next to Vc, we find that Vc(π, A) = 1, since there is an efficient strategy
that maps p2 to p by calculating the square root via binary search. In contrast, Vc(π, B)
should be smaller, since the existence of an efficient strategy that maps pq to p would
contradict the standard assumptions about the difficulty of the factorization problem.
Indeed, it would appear that Vc(π, B) ≈ Vc(π), since an efficient probabilistic strategy is
believed to have a negligible probability of recovering p from pq.

Here we also have A �◦ B, which implies by Theorem 8 that V(π, A) ≤ V(π, B).
Why does the same inequality not hold for Vc? Recall that the proof of Theorem 8 is
based on the fact that if A = BR, then any strategy S for A gives rise to an equivalent
strategy for B, namely RS . But notice that RS need not be efficiently computable, even
if S is. Since here R is a channel that maps pq to p2, it indeed does not give rise to an
efficiently computable strategy for B. In the computational setting, however, we should
be able to get a weaker version of Theorem 8 saying that if A = BR, where R is efficiently
computable, then A never out-leaks B.

9 Related Work

Given the multitude of plausible ways to measure the “uncertainty” of a probability
distribution and the “amount” of information leakage caused by a channel, there has
long been interest in the robustness of such measures and the leakage orderings on
channels that they give.

28 There is also a technical issue that arises with prior vulnerability. Since now we have a family
π(n) of priors, parameterized by n, it is not clear that an adversary can efficiently compute an
x with maximum probability in π(n). In the example that follows, this is not in fact a prob-
lem, since there are standard techniques for efficiently generating uniformly-distributed n-bit
primes. But in general, we might wish to impose constraints on π(n).
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Such studies can both establish and refute relationships among measures. For in-
stance, Massey [4] compares Shannon entropy H and guessing entropy G, showing
that G(π) > 2H(π)−2, but that there is no interesting upper bound on G(π) in terms
of H(π). Another negative result is given by Pliam [20], who shows the incompara-
bility of Shannon entropy and marginal guesswork, which is the minimum number
of brute-force guesses required to guess a secret with some specified probability of
success. With respect to vulnerability and min-entropy, Santhi and Vardy [21] prove
a bound between posterior Shannon entropy and Bayes risk, which is the comple-
ment of posterior vulnerability; in our notation their bound can equivalently be written
as H(π,C) ≥ − log V(π,C) = H∞(π,C). Further study of similar bounds is done by
Chatzikoklakis, Palamidessi, and Panangaden [22].

Turning to comparisons between channels, we have the results of Yasuoka and Ter-
auchi [7] and Malacaria [8] described in Section 1 that establish the robustness of parti-
tion refinement in comparing deterministic channels. For probabilistic channels, Braun,
Chatzikokolakis, and Palamidessi [23] compare the leakage ordering resulting from
multiplicative and additive versions of min-entropy leakage—multiplicative leakage is
based on the ratio of the posterior- and prior vulnerabilities (as in min-entropy leak-
age, which is just the logarithm of this ratio), while additive leakage is based on their
difference. They show that when comparing two channels on a given prior, it makes no
difference whether multiplicative or additive leakage is used. But when channels are
compared with respect to their capacity (i.e. maximum leakage over all priors) then
multiplicative and additive leakage can produce inconsistent results.

Finally, Sabelfeld and Sands [24] describe a “PER” model of security specifications,
based on partitions of the hidden-value space; and there are some similarities between
their treatment of partitions and ours: in particular, refining a PER that specifies a pro-
gram’s input could be construed as allowing the program to be less secure; and refining
an output PER would require the program to be more secure. Their extension to prob-
ability, however, does not seem to lead to the same relation between channels as our
does.

10 Conclusion

This paper can be seen as an exploration of the mathematical foundations of quantita-
tive information flow. We have argued that, from the information-theoretic perspective,
it is abstract channels that are the fundamental objects of study: for when we consider
the information-theoretic leakage caused by a channel C, the essential fact is precisely
the mapping that C gives from priors to hyper-distributions—and any of the multitude
of possible leakage measures can be seen as simply summarizing this mapping. Con-
cretely, then, we have seen that classical channel matrices contain structural redundan-
cies which ought to be quotiented away, leading to reduced matrices. The utility of the
abstract-channel framework is further clarified by our study of composition refinement,
which is only a pre-order on channel matrices, but which we have proved is a partial or-
der on abstract channels. And, by our proof that composition refinement coincides with
the strong g-leakage ordering, it is a partial order with both structural- and leakage-
testing significance—and is therefore a compelling generalization (from deterministic
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to probabilistic channels) of partition refinement in the Lattice of Information. Finally,
we have discussed the limits of the information-theoretic perspective, pointing out that
the abstract channels framework is not suitable for addressing computationally-bounded
adversaries.

We have shown that channels can be regarded as functions from priors to hyper-
distributions and sketched in §7 how they can be formalised using general mathematical
machinery; in future work we will investigate this abstraction further in its relation to
channels. The characterisation of hypers within the general type of functions would
be the first step towards determining which program contexts preserve the order. For
example, the Coriaceous result establishes how to show that two channels are not related
by (�◦) by finding a refuting gain function g; an interesting result would be to determine
whether this g can be used to produce the precise conditions under which e.g. min-
entropy testing would fail, in the style of program testing “in context” [2]. Another
interesting question is whether two programs with an abstract channel denotation can
be proved to be in the (�◦) relation based on examining the way in which they were
constructed. Similar ideas have been discussed in [25] for the specific case of preserving
a particular threshold of leakage with respect to a single entropy measurement.

More generally, since particular leakage measures are appropriate for particular ap-
plications, we can define a family of weaker pre-orders on abstract channels for a fixed
leakage measure m: we say A ≤m B iff the m-leakage of A never exceeds that of B,
for any prior π. What we do not know is whether these are partial orders for important
choices of m, such as Shannon-, guessing-, or min-entropy leakage. Nor do we know
whether they are strictly weaker than (�◦), though we do know this for ≤min−entropy by
the example in §5.2.

Finally, our preliminary investigations suggest that (�◦) is not a lattice [26]; future
work will reveal other general properties and how to exploit them in channel analysis.
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