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Abstract
The TCP/IP protocols and Sockets API underlie much of mod-
ern computation, but their semantics have historically been very
complex and ill-defined. The real standard is the de facto one of
the common implementations, including, for example, the 15 000–
20 000 lines of C in the BSD implementation. Dealing rigorously
with the behaviour of such bodies of code is challenging.

We have recently developed a post-hoc specification of TCP,
UDP, and Sockets that is rigorous, detailed, readable, has broad
coverage, and is remarkably accurate. In this paper we describe the
novel techniques that were required.

Working within a general-purpose proof assistant (HOL), we
developed language idioms (within higher-order logic) in which
to write the specification: operational semantics with nondetermin-
ism, time, system calls, monadic relational programming, etc. We
followed an experimental semantics approach, validating the spec-
ification against several thousand traces captured from three imple-
mentations (FreeBSD, Linux, and WinXP). Many differences be-
tween these were identified, and a number of bugs. Validation was
done using a special-purpose symbolic model checker programmed
above HOL.

We suggest that similar logic engineering techniques could be
applied to future critical software infrastructure at design time,
leading to cleaner designs and (via specification-based testing using
a similar checker) more predictable implementations.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs; C.2.2 [Computer-Communications Networks]: Net-
work Protocols; C.2.6 [Computer-Communications Networks]:
Internetworking—Standards (e.g., TCP/IP)

General Terms Documentation, Design, Standardization, The-
ory, Verification.

Keywords Network Protocols, TCP/IP, Sockets, API, Specifica-
tion, Conformance Testing, Higher-order Logic, HOL, Operational
Semantics
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1. Introduction

Background The TCP/IP network protocols are among the most
widely-used software infrastructure, with protocol endpoint imple-
mentations running on almost all machines. By and large the de-
ployed Internet —the assembly of all these endpoints and the in-
terconnecting routers— works remarkably well. When one looks at
what the protocols are, however, and at what the behaviour of that
endpoint code is (or should be), the situation is very unclear.

There are specifications: RFCs that focus on the on-the-wire
protocols, and the POSIX standard for the Sockets API used by
applications. These are prose documents: they describe the formats
of wire messages and the C-language types of API calls precisely,
but they are (almost inevitably) ambiguous and incomplete descrip-
tions of the behaviour.

On the other hand, there is the code. There are many implemen-
tations of TCP/IP and the Sockets API. For each, the code does
(implicitly) define some precise behaviour, but there are many dif-
ferences between them, some intended and some not. The common
implementations together form a de facto standard: any implemen-
tation must interoperate reasonably well with all of them, though
the BSD implementations have a special status, with various proto-
col features first developed there. Moreover, each implementation
is in itself a complex body of code. They are typically written in
C, intertwined with an operating system. They are multithreaded,
dealing with asynchronous events on the network interface, con-
current Sockets API calls, and the expiry of various timers. There
is a rough layer structure (Sockets/TCP/IP/interface) but much cou-
pling between the layers, with ‘fast path’ optimisations for the com-
mon cases, indirection via function pointers, and many historical
artifacts. The deployed base makes it almost impossible to change
the implementation behaviour (at either wire or Sockets interface)
in any substantial way.

Developers, both of protocol stacks and of applications above
them, thus have to deal with a very complex world. TCP is recog-
nised as hard to implement correctly [19], [RFC2525], and indeed
there is no precise sense in which an implementation is ‘correct’ or
not. Application writers using the Sockets API have to be aware of
a host of behavioural subtleties and implementation differences, in
addition to the intrinsic difficulties of concurrency, partial failure,
and malicious attack. It it clearly possible to write reasonable pro-
tocol stacks, and distributed libraries and applications above them,
but the cost and level of expertise needed are high.

55

http://www.cl.cam.ac.uk/users/pes20/Netsem


Problem We set out to answer two questions: the specific ques-
tion of what this de facto standard is; and the general question of
what specification and validation techniques are needed to treat the
behaviour of such systems rigorously.

The first should provide a basic reference for developers of
protocol stacks and of distributed applications above the Sockets
API, and a basis for formal reasoning about either. The second
aims towards making it feasible to precisely specify the behaviour
of future protocols (or similarly critical software infrastructure) at
design time, and also to enable automated conformance testing
from those specifications, and hence ultimately lead to a more
comprehensible and robust software environment than we have
now.

Contribution In answer to the first question, we have produced a
‘post-hoc’ specification of TCP, UDP, and the Sockets API that re-
flects the behaviour of several existing implementations (FreeBSD
4.6, Linux 2.4.20-8, and Windows XP SP1). It is fully rigorous,
expressed in higher-order logic. It is detailed, with almost all im-
portant aspects of the real-world communications at the level of
individual TCP segments and UDP datagrams, with timing, and
with congestion control (it abstracts from the internals of IP). It
has broad coverage, dealing with the behaviour of a host for ar-
bitrary incoming messages and Sockets API call sequences, not
just some well-behaved usage — one of our main goals was to
characterise the failure semantics under network loss, duplication
and reordering, API errors, and malicious attack. It is also remark-
ably accurate, experimentally validated against those implemen-
tations (though TCP validation was mainly with respect to BSD).
The specification is available as a technical report, together with an
overview of the project [6, 7].

In this paper we focus mainly on the second question, discussing
the specification language and idioms we needed and describing the
validation technology we developed. The fact that our techniques
suffice for the post-hoc specification work we have carried out is a
strong indication that they could be used at design time for future
systems.

A companion paper gives a systems-oriented view of the work,
focussing on protocol and API modelling issues, the level of
abstraction used, anomalies found in the implementations, and
lessons for future protocol design [5]. We build on our earlier work
[20, 21, 26, 18] which involved only much simpler UDP models,
not covering TCP and without HOL-based checking.

Approach The key to our approach is the use of an expressive
logic supported by a general-purpose mechanized proof assistant,
the HOL tool [11, 12]. HOL supports classical higher-order logic.
It provides a rich type structure, including numeric types and user-
definable datatypes, with ML-style polymorphism and type infer-
ence. The system provides the programmer with a variety of deci-
sion procedures and scriptable tactics. HOL is not a fully automatic
theorem-prover or model checker, as higher-order logic is not de-
cidable, but its programmability allows the development of stand-
alone tools, tailored to particular domains.

The specification is written as an operational-semantics defini-
tion in higher-order logic, with various idioms adapted from pro-
gramming language and concurrency theory semantics, including
a relational monad structure and nondeterministic timed labelled
transition systems. An important goal in writing the specification
was to make it as readable as possible (in sharp contrast to the code,
which has evolved over the years and has considerable performance
optimisation). We discuss these idioms in §2.

The specification was produced and validated with an experi-
mental semantics approach. We produced an initial draft specifica-
tion based on the RFCs [RFC768, 791, 792, 793, 1122, 1323, 2414,
2581, 2582, 2988, 3522, 3782], POSIX [13], standard texts [24,

28, 25], BSD and Linux source code, and ad-hoc tests. In paral-
lel, we instrumented a test network (containing machines running
each of the three implementations mentioned above) and wrote
tests to drive those implementations, generating several thousand
real-world traces chosen to cover as much of their behaviour as we
could. We then ensured that the specification admitted those traces
by running a special-purpose symbolic model checker, correcting
the specification when we discovered that particular real-world be-
haviour was not included. This was a computationally-intensive ac-
tivity, and so checking had to be distributed over many machines.

Our symbolic model checker takes a captured trace and checks
whether it is included in the set of all traces of the specification.
Rather different from conventional model-checking (symbolic or
otherwise), the states here are arbitrary higher-order logic formu-
lae, essentially constraints on the underlying state of a protocol
endpoint. As the checker works along a trace (possibly backtrack-
ing) it uses various HOL tactics, e.g. for simplification, to symboli-
cally evaluate the specification. Lazy control of the search through
the tree of possibilities is essential. The checker either succeeds,
in which case it has essentially proved a machine-checked theorem
that that trace is included, or fails, for a trace that is not included, or
terminates if one of several heuristic conditions is satisfied. HOL is
a proof assistant in the LCF style [10], and so its soundness, and the
soundness of the checker above it, depends only on the correctness
of a small trusted kernel. The checker is described more fully in §3.

The results of trace checking are summarised in §4, which
briefly recapitulates some of the experimental procedure and data
from [5], and we discuss further related work and conclude in §5
and §6.

Contrasts Our approach is rather different to most previous
work on program verification and model-checking. We combine the
use of a general-purpose mechanized proof assistant with what can
best be described as logic engineering, both in the specification and
in the checker. We have developed techniques, some principled and
others ad-hoc, that together pragmatically suffice for this problem;
we leave for future work the task of understanding how far they can
be generalised. In the remainder of this section we highlight the key
aspects of the problem that have led us to these choices.

Post-hoc vs pre-hoc specification Traditionally one thinks of test-
ing an implementation against a pre-existing specification. Here,
faced with the entrenched de facto standard of the deployed im-
plementations, the best that can be done is identify what their
behaviour is — hence our post-hoc experimental semantics ap-
proach. The checker technology, however, is symmetric: it could
equally well be used to test future implementations against our
now-existing specification. Indeed, our trace-checking threw up a
number of behaviours in the implementations that should almost
certainly be classed as bugs, and many differences between the
three implementations. Some of these are described in §4.

Nondeterminism The variation in extant implementations, the
liberality of existing specifications permitting much of this varia-
tion, and the fact that the behaviour of any one implementation is
highly dependent on OS scheduling, timers, and so on, mean that it
is not enough to specify just one “correct” behaviour. Instead, our
formal specification must reflect the informal specifications’ loose-
ness and describe a wide range of legitimate behaviours.

This need for nondeterminism strongly influences the choice of
language in which to write the specification and the checking tech-
niques that can be used. Our specification is quite different from a
“reference implementation” for TCP in a more-or-less conventional
programming language, which would describe just one behaviour
of the many possible (several of these exist, including the BSD C
code and those by Biagioni in Standard ML [4], by Castelluccia
et al. in Esterel [8], and by Kohler et al. in Prolac [15]). Instead,
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we have had to express constrained behaviour in a relational style,
within the higher-order logic of HOL. Moreover, much nondeter-
minism is internal, observable only indirectly after several further
interactions. Checking conformance cannot be done by simply run-
ning the specification and an implementation in lock-step and com-
paring the results, but needs the more sophisticated methods of §3.

Code scale and complexity Ideally one would want to prove that
all executions of the implementation code meet the specification,
rather than testing that a sample of traces do. Unfortunately, the
scale and complexity of the code seem to be prohibitive. For exam-
ple, the relevant part of the BSD code is of the order of 15 000 –
20 000 lines of C. To the best of our knowledge, there is not even a
formal semantics for the fragment of C that is used, let alone proof
techniques that have been shown to scale to this kind of problem.
Moreover, the relevant code is intertwined with the remainder of
the OS.

Specification scale Another tempting goal would be to prove
correctness results for the protocol (as made precise by the spec-
ification). For example, one might prove that two copies of the
endpoint-specification, in parallel with a simple model of the net-
work and under assumptions about the amount of message loss etc.,
really did provide a reliable-stream communication service. Even
more ambitiously, one might like to prove that the TCP congestion
control algorithms (as described in the specification) are effective,
leading to (reasonably) stable and fair global network behaviour.

Both of these again founder on the problem of scale. The spec-
ification is a moderately large document (386pp typeset; 25 800
lines of HOL source, of which around 2/3 are comment). Proof
about such a large definition is a daunting prospect, but our prag-
matic specification-based testing approach scales reasonably with
the size of the definition. It is also independent of the size of the
code, though not of its behavioural complexity.

Rich properties Other model-checking techniques have been ap-
plied to substantial bodies of real code, notably BDD-based meth-
ods (in the more usual sense of ‘symbolic model-checking’) and
predicate abstraction methods. They are generally focussed on de-
tecting runtime errors, such as dereferencing null pointers and as-
sertion violations. In contrast, we check conformance with a com-
plete specification of the system behaviour, a much more elabo-
rate property which would be hard to state with assertions or sim-
ple temporal logics. On the other hand, those methods analyse the
source code directly, whereas we consider only its behaviour as
manifested in the generated traces.

State space A TCP endpoint has a very large and complex state
space, in the implementations and in the specification. In the latter,
the control block for each end of a TCP connection contains 14
32-bit sequence numbers, as many natural numbers again, and 10
timers, represented with real numbers. An implementation would
likely use 32-bit numbers instead of the specification’s unbounded
natural numbers, and types at least this wide for the timers. A rough
estimate thus suggests that each connection would take 1200 bits to
model if a finite translation were attempted.

Further, the specification allows for an arbitrary number of
connections to be made, and for arbitrary number of messages to be
in various of the host’s queues. Ignoring the data being transmitted
in the packets and their IP addresses, each TCP segment contributes
another 190 bits to the size of the state.

Clearly, any finite analysis of the specification would have to
dramatically constrain its possible behaviours, and would also re-
quire a sound translation from the high-level specification to the
finite model. Both of these requirements are unpalatable.

No essence Finally, it is worth emphasising that we are working
with TCP as it actually is, that we approach it as an experimental

object. We are not trying to distill some simple ‘Platonic essence’
of TCP. Indeed, it is not clear that it has one in any useful sense.
The protocol has many aspects: connection setup and teardown
(as loosely described in the classic ‘TCP state diagram’ [27]),
sliding-window flow control, congestion control, protection against
wrapped sequence numbers, round-trip time estimation, protection
against certain denial-of-service attacks, and so forth. These are
intertwined in subtle ways, with almost no modular structure.

Programmers writing TCP/IP stacks and systems on top of TCP
need to understand it at an intuitive level, but crucially also need
to understand the warts and wrinkles of its actual implementations.
Not all aspects are important in all circumstances, but all are im-
portant in some.

2. Specification Structure and Idioms
In this section we describe the form of the specification and the
main idioms (within higher-order logic) that have made it feasible
to write it. By working in a general-purpose proof assistant we have
been able to choose specification idioms almost entirely on clarity,
not on their algorithmic properties. The following section addresses
the algorithmic and proof aspects of checking traces against this
specification.

External form The main part of the specification (modelling
the shaded region below) is the host labelled transition system,
or host LTS, describing the possible interactions of a single host
OS: between program threads and host via calls and returns of the
Sockets API, and between host and network via message sends and
receives.

TCP TCP
ICMP ICMP

UDP UDP

IPIP

Sockets API

Wire interface

Distributed

applications

Host LTS spec

libraries and

IP network

tid·v

msg
msg

. . .
tid·bind(fd, is1, ps1)

The host LTS is a transition relation h
l−→ h ′, where h and h ′

are host states, modelling the relevant parts of the OS and network
hardware of a machine, and l is of the following forms.

• msg for the host receiving a datagram msg from the network;

• msg for the host sending a datagram msg to the network;

• tid ·f(arg1, .., argn) for a Sockets API call f made by thread
tid , e.g. tid ·bind(fd , is1, ps1) for a bind() call with arguments
(fd , is1, ps1) for the file descriptor, IP address, and port;

• tid ·v for value v being returned to thread tid by the Sockets
API;

• τ for an internal transition by the host, e.g. for a datagram
being taken from the host’s input queue and processed, possibly
enqueuing other datagrams for output; and

• d for time d ∈ R>0 passing.

In addition there are labels for loopback messages, changes of
network interface status, and certain BSD debug trace events (these
reveal some of the implementation internal state at specific points).
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There are many careful choices embodied in the form of this
definition, of exactly what aspects of the real system to model,
which events to observe, and what (rather mild) abstraction and
idealisation is done to map them to events in the model. We refer
the reader to [5, 6] for discussion.

Internal structure The host LTS is defined in an operational se-
mantics style as the least relation satisfying certain rules. These
rules form the bulk of the specification: some 148 rules for the
socket calls (5–10 for each interesting call) and some 46 rules for
message send/receive and for internal behaviour, occupying around
160 and 75 pages respectively, including extensive commentary.
The remainder consists of definitions of types, constants, and aux-
iliary functions, around 125 pages.

The definition is almost entirely flat, in two senses. First, most
rules have no transition premises, the only exceptions being rules
for time passage (the definition is factored into two relations, one
without time passage and one with). Second, there is no parallel
composition structure or synchronisation within a host; each rule
can refer to any part of the host state as needed.

Host states and types HOL types can be constructed from type
constructors, built-in or user-defined, of natural-number arities.
We make extensive use of this type structure, especially products
(t#t), functions (t → t), finite maps (t �→ t), labelled records
(〈[fld1 : t1,fld2 : t2, ...]〉), options, lists, 32-bit integers, natural
numbers, real numbers, and user-defined datatypes. HOL also sup-
ports ML-style polymorphism. The specification is only intention-
ally polymorphic in a few places, but type inference and checking is
essential. The HOL datatype and inductive definition packages au-
tomatically prove various theorems for later use; during the course
of the project we have had to improve these to handle the large
types required.

Host states h are simply values of a certain carefully-designed
HOL type. We give two fragments of this definition below, to
indicate the style: the types of sockets and of the protocol-specific
information contained in a TCP socket. A host h contains a finite
map from socket identifiers to sockets together with much other
data (its open file descriptions, queues of incoming and outgoing
messages, and so on).

– details of a socket :
socket
=〈[ fid : fid option; (* associated open file description if any *)

sf : sockflags; (* socket flags *)
is1 : ip option; (* local IP address if any *)
ps1 : port option; (* local port if any *)
is2 : ip option; (* remote IP address if any *)
ps2 : port option; (* remote port if any *)
es : error option; (* pending error if any *)
cantsndmore : bool; (* output stream ends at end of send queue *)
cantrcvmore : bool; (* input stream ends at end of receive

queue *)
pr : protocol_info (* protocol-specific information *)

]〉

– protocol-specific information for a TCP socket :
tcp_socket
=〈[ st : tcpstate; (*LISTEN, ESTABLISHED, TIME_WAIT, etc.*)

cb : tcpcb; (*the ‘TCP control block’, a 44-field record of timers,
sequence numbers, the reassembly segment queue, etc.*)

lis : socket_listen option; (*data for listening socket*)
sndq : byte list; (*send queue*)

sndurp : num option; (*send urgent pointer*)
rcvq : byte list; (*receive queue*)
rcvurp : num option; (* receive urgent pointer*)
iobc : iobc (*out-of-band data and status*)

]〉

Higher-order types are used to a limited extent. For example, one
auxiliary definition in the specification has the type below.

arch→(ifid �→ ifd)→socket→(bool#(tcpcb→tcpcb) option)

and there are some 3rd-order types (where order(tycon) = 0,
order(t → t ′) = order(t �→ t ′) = max(order(t)+1, order(t ′)),
and order((t , t ′, ..)tyop) = max(order(t), order(t ′), ..). The or-
der could be reduced by encoding finite maps with lists, at some
loss of clarity, but in HOL there is no need to do so. The highest
order at which we quantify is order 1, e.g. at the host type.

Transition rules Each transition rule is abstractly of the form

	 P ⇒ h0
l→h

where P is a condition (on the free variables of h0, l, and h) under
which host state h0 can make a transition labelled l to host state
h. The condition is usually written below the transition. One of the
simplest rules is shown below.

bind_5 all: fast fail Fail with EINVAL: the socket is already
bound to an address and does not support rebinding; or socket has been
shutdown for writing on FreeBSD

h 〈[ts := ts ⊕ (tid �→ (RUN)d)]〉
tid ·bind(fd , is1, ps1)−−−−−−−−−−−−−−−−→

h 〈[ts := ts ⊕ (tid �→ (RET(FAIL EINVAL))sched_timer)]〉

fd ∈ dom(h.fds) ∧
fid = h.fds[fd ] ∧
h.files[fid ] = FILE(FT_SOCKET(sid),ff ) ∧
h.socks[sid ] = sock ∧
(sock .ps1 
= ∗ ∨
(bsd_arch h.arch ∧ sock .pr = TCP_PROTO(tcp_sock) ∧
(sock .cantsndmore ∨
tcp_sock .cb.bsd_cantconnect)))

This is one of 7 rules for bind(). It deals with the case where a
thread tid calls bind(fd , is1, ps1) for a socket referenced by the
file descriptor fd that already has its local port bound; the error
EINVAL will be returned to the thread. In the host on the left of
the transition, the thread state map ts maps thread id tid to (RUN)d ,
indicating that the thread is running (in particular, it is not currently
engaged in a socket call). In the host on the right of the transition,
that thread is mapped to (RET(FAIL EINVAL))sched_timer, indi-
cating that within time sched_timer the failure EINVAL should
be returned to the thread (all returns are handled by a single rule
return_1 , which generates labels tid ·v ).

The sidecondition is a conjunction of 5 clauses. The first three
ensure that the file descriptor fd is in the host’s file descriptor
map h.fds , that fid is the file identifier for this file descriptor,
and that this fid is mapped by the host’s files map h.files to
FILE(FT_SOCKET(sid),ff ), i.e. to a socket identifier sid and file
flags ff . The fourth simply picks out the socket structure sock
associated with the socket id sid . The fifth says that the local port
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accept_1 tcp: succeed Return new connection; either immediately or from a blocked state.
accept_2 tcp: block Block waiting for connection.
accept_3 tcp: fail Fail with EAGAIN: no pending connections and non-blocking semantics set.
accept_4 tcp: fail Fail with ECONNABORTED: the listening socket has cantsndmore set or has

become CLOSED. Returns either immediately or from a blocked state.
accept_5 tcp: fail Fail with EINVAL: socket not in LISTEN state.
accept_6 tcp: fail Fail with EMFILE: out of file descriptors.
accept_7 udp: fail Fail with EOPNOTSUPP or EINVAL: accept() called on a UDP socket.

Figure 1. The rules for the accept() Sockets API call.

of the socket with that sid is not equal to the wildcard ∗, i.e. that
this socket has already got its local port bound, or that some BSD-
specific condition holds.

Nondeterminacy and relational specification For the specifi-
cation to actually include all the behaviour even of a single im-
plementation it must be highly nondeterministic, e.g. to admit the
pseudo-random choice of initial sequence numbers, the variations
due to varying OS scheduling of multiple threads and interrupts,
and variations in the rates of timers.

This nondeterminism forces us to use relational idioms (ex-
pressed in the higher-order logic of HOL) throughout much of the
specification. In places we can use auxiliary functions, but often we
need auxiliary relations, or functions that return relations. Nonde-
terminism is sometimes implicit (e.g. where several different error
rules are applicable) and sometimes explicit (e.g. where an uncon-
strained or partially-constrained variable is introduced).

Nondeterminism is also used to model some differences be-
tween implementations (e.g. unconstraining the protocol options
chosen at connection-establishment time). Other implementation
differences are modelled by explicitly parameterising the behaviour
by an implementation version (e.g. as in the last conjunct of
bind_5 , which is BSD-specific). This explicitness lets us identify
and test differences more sharply.

Often it is useful to think of a part of a rule predicate P as
being a ‘guard’, which is a sufficient condition for the rule to be
applicable, and the remainder as a constraint, which should always
be satisfiable, on the final state h . This distinction is not formalised,
however.

Imperative updates and the relational monad In the C code
of the implementations the early parts of segment processing can
have side-effects on the host data structures, especially on the TCP
control block, before the outcome of processing is determined. Dis-
entangling this imperative behaviour into a clear declarative spec-
ification is non-trivial. Our most complicated rule deliver_in_3
calculates the host’s response to an incoming segment after a con-
nection has been established. This rule makes use of a relational
monad structure to expose certain intermediate states (as few as
possible). Relations in this monad have (curried) types of the form

t→ t#t′#bool → bool

where t is the state bring manipulated (e.g. a pair of a socket and a
host’s bandlimiter state), t′ is the result type (e.g. a list of segments
to be sent in reply to a segment being processed), and the boolean
in the second tuple argument is a flag indicating whether or not
execution should continue.

There is a binding combinator andThen, a unit cont (which
does nothing and continues), and a zero stop (which does nothing
and stops), and various other operations to manipulate the state.
It should be a theorem that andThen is associative, and so forth,
though we have not checked this within HOL.

Time and urgency Much TCP behaviour is driven by timers and
timeouts, and distributed applications generally depend on timeouts
in order to cope with asynchronous communication and failure. Our
model bounds the time behaviour of certain operations: for exam-
ple, a failing bind call in bind_5 will return after a scheduling
delay of at most dschedmax; a call to pselect with no file descrip-
tors specified and a timeout of 30sec will return at some point in
the interval [30, 30 + dschedmax] seconds. Some operations have
both a lower and upper bound; some must happen immediately; and
some have an upper bound but may occur arbitrarily quickly. For
some of these requirements time is essential, and for others time
conditions are simpler and more tractable than the corresponding
fairness conditions [16, §2.2.2].

Time passage is modelled by transitions labelled d ∈ R>0 inter-
leaved with other transitions, which are regarded as instantaneous.
This models global time which passes uniformly for all parts of
the system (although it cannot be accurately observed internally by
any of them). States are defined as urgent if there is a discrete action
which we want to occur immediately. This is modelled by prohibit-
ing time passage steps d from (or through) an urgent state. We have
carefully arranged the model to avoid pathological timestops by en-
suring a local receptiveness property holds: the model can always
perform input transitions for any label one might reasonably expect
it to.

The model is constructed to satisfy the two time axioms of [16,

§2.1]. Time is additive: if h1
d→ h2 and h2

d′→ h3 then h1
d+d′→ h3;

and time passage has a trajectory: roughly, if h1
d→ h2 then there

exists a function w on [0, d ] such that w(0) = h1, w(d) = h2, and

for all intermediate points t , h1
t→w(t) and w(t)

d−t→ h2. These
axioms ensure that time passage behaves as one might expect.

The timing properties of the host are specified using a small
range of timers, each with a particular behaviour. A single transition
rule epsilon_1 (shown in §3) models time passage, say of duration
d, by evolving each timer in the model state forward by d. If any
timer cannot progress this far, or the initial model state is marked as
urgent for another reason, then the rule fails and the time passage
transition is disallowed. Note that, by construction, the model state
may only become urgent at the expiry of a timer or after a non-
time-passage transition. This guarantees correctness of the above
rule. The timers ensure that the specification models the behaviour
of real systems with (boundedly) inaccurate clocks.

Many timed process algebras enforce a maximal progress prop-
erty [29], requiring that any action (such as a CCS synchronisation)
must be performed immediately it becomes enabled. We found this
too inflexible for our purposes; we wish to specify the behaviour of,
e.g., the OS scheduler only very loosely, and so it must be possi-
ble to nondeterministically delay an enabled action, but we did not
want to introduce many nondeterministic choices of delays. Our
calculus therefore does not have maximal progress; instead we en-
sure timeliness properties by means of timers and urgency. Our rea-
soning using the model so far involves only finite trace properties,
so we do not need to impose Zeno conditions.
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Partitioning the behaviour The partition of the system be-
haviour into particular rules is an important aspect of the specifi-
cation. We have tried to make it as clear as possible: each rule deals
with a conceptually different behaviour, separating (for example)
the error cases from the non-error cases. This means there is some
repetition of clauses between rules. For example, many rules have
a predicate clause that checks that a file descriptor is legitimate. In-
dividual rules correspond very roughly to execution paths through
implementation code. For substantial aspects of behaviour, on the
other hand, we try to ensure they are localised to one place in the
specification. For example, calls such as accept() might have a suc-
cessful return either immediately or from a blocked state. The final
outcome is similar in both, and so we have a single rule (accept_1 )
that deals with both cases. Another rule (accept_2 ) deals with en-
tering the blocked states, and several others with the various error
cases. The various accept rules are summarised in Fig. 1.

Framing The host state is complex, but most rules need refer
only to a small part of it, and permit an even smaller part to differ
between the initial and final state of a transition. In designing the
host state type and the rules it is important to ensure that explicit
frame conditions are usually not needed, to avoid overwhelming
visual noise. To do so we use a combination of pattern matching (in
the h0 and h) and of (functional) projection and update operations
for records and finite maps.

The overall host state structure roughly follows that of the sys-
tem state: hosts have collections of socket data structures, message
input and output queues, etc.; sockets have local and remote IP ad-
dresses and ports, etc.; TCP sockets have a TCP control block, and
so on. The details vary significantly, however, with our structures
arranged for clarity rather than performance — as we are speci-
fying only the externally-observable behaviour, we can choose the
internal state structure freely. For example, TCP send and receive
queues are modelled by byte lists rather than the complex BSD
mbuf structures, and we can subdivide the state so that commonly-
accessed components are together and near the root.

Concurrency, blocking calls, and atomicity In the implemen-
tations the host state may be modified by multiple threads making
Sockets API calls (possibly for the same socket), and by OS in-
terrupt handler code prompted by timers or incoming messages.
Sockets API calls can be fast or slow, the latter potentially blocking
for arbitrarily long. The imperative C code modifies state as it ex-
ecutes. Fortunately most of the network protocol code is guarded
by a coarse-grained lock, so the specification need not consider
all possible interleavings. Fast calls are typically modelled by two
atomic transitions, one for the call, in which all state change hap-
pens (as in bind_5 ), and one for the return of the result. Slow calls
typically involve three transitions, one for the call (leaving the host
thread record in a special blocked state), one in which the call is un-
blocked (e.g. a τ transition when new data is processed), and one
for the return of the result. Applying a degree of fuzziness to times
and deadlines suffices to let this correspond to the real executions.

Automated typesetting HOL source is fairly readable in the
small, but good typesetting and clear large-scale structure are es-
sential to make a large specification intelligible, and manual ap-
proaches would be tedious and error-prone. We have therefore built
an automated typesetting system that takes HOL source and out-
puts LaTeX, essentially as in the parts quoted here. This has been
surprisingly important in making the specification comprehensible,
during development and for others.

3. Validation: Checking Technology
Our computational task is this: given the nondeterministic labelled

transition system
l→ of the host LTS, an initial host h0, and a

sequence of experimentally observed labels l1 . . . ln, determine
whether h0 can exhibit this behaviour in the model. The transition
system includes unobservable τ labels, so we actually have to
demonstrate a sequence

h0
τ→∗ l1→ τ→∗ l2→ . . .

τ→∗ ln→h

If the system were deterministic, the problem would be easily
solved. The initial conditions are completely specified and the
problem would be one of mechanical calculation with values that
were always ground. Because the system is nondeterministic, the
problem becomes one of exploring the tree of all possible traces
that are consistent with the given label sequence. This exploration
is not entirely label-driven, as it must consider the possibility that a
τ transition is required.

Search structure Nondeterminism arises in two different ways:

• two or more rules may apply to the same host-label pair (or the
host may be able to undergo a τ transition);

• a single rule’s sideconditions may not constrain the resulting
host to take on just one possible value.

These two sorts of nondeterminism do not correspond to any deep
semantic difference, but do affect the way in which the problem is
solved.

Because labels come in a small number of different categories,
the number of rules that might apply to any given host-label pair is
relatively small. It is clearly reasonable to explicitly model this non-
determinism by explicit branching within a tree-structured search-
space. The search through this space is done depth-first.

Possible τ transitions are checked last: if considering host h
and a sequence of future labels, and no normal rule allows for a
successful trace, posit a τ transition at this point, followed by the
same sequence of labels. As long as hosts can not make infinite
sequences of τ transitions, the search-space remains finite.

An example of the second sort of nondeterminism comes when
a resulting host is to include some numeric quantity, but where the
model only constrains this number to fall within certain bounds.
It is clearly foolish to explicitly model all these possibilities as
branching (indeed, for many types there are an infinite number
of possibilities). Instead, the system maintains sets of constraints
(HOL predicates), attached to each transition. Instead of finding a
sequence of theorems of the form

	 h0
l1→h1

	 h1
l2→h2

· · ·
	 hn−1

ln→hn

(eliding the τs now) we must find a sequence of theorems of the
form

Γ0 	 h0
l1→h1

Γ0 ∪ Γ1 	 h1
l2→h2

· · ·
⋃n−1

i=0 Γi 	 hn−1
ln→hn

where each Γi is the set of constraints generated by the i-th tran-
sition. If the fresh constraints were only generated because new
components of output hosts were under-constrained, there would
be no difficulty with this.

Unfortunately, the sideconditions associated with each rule will
typically refer to input host component values that are no longer
ground, but which are instead constrained by a constraint generated
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by the action of an earlier rule. For example, imagine that the first
transition of a trace has made the v component of the host have
a value between 1 and 100. Now faced with an l-transition, the
system must eliminate those rules which allow for that transition if
v is greater than 150.

The symbolic evaluator accumulates constraint sets as a trace
proceeds, and checks them for satisfiability. The satisfiability check
takes the form of simplifying each assumption in turn, while assum-
ing all of the other assumptions as context. HOL simplification in-
cludes the action of arithmetic decision procedures, so unsatisfiable
arithmetic constraints are discovered as well as more obviously un-
satisfiable constraint sets. For example, using the theorems proved
by HOL’s data type technology, the simplifier “knows” that the con-
structors for algebraic types are disjoint. Thus, (s = [ ])∧(s = h ::
t) is impossible because the nil and cons constructors for lists are
disjoint.

Constraint instantiation As a checking run proceeds, later labels
may determine variables that had initially been under-determined.
For example, Windows XP picks file descriptors for sockets non-
deterministically, so on this architecture the specification for the
socket call only requires that the new descriptor be fresh. As a
trace proceeds, however, the actual descriptor value chosen will be
revealed (a label or two later, the value will appear in the return-
label that is passed back to the caller). In this situation, and others
like it, the set of constraints attached to the relevant theorem will
get smaller when the equality is everywhere eliminated. Though the
checker does not explicitly do this step, the effect is as if the earlier
theorems in the run had also been instantiated with the value cho-
sen. If the value is clearly inconsistent with the initial constraints,
then this will be detected because those constraints will have been
inherited from the stage when they were generated.

Case splitting Sometimes a new constraint will be of a form
where it is clear that it is equivalent to a disjunction of two pos-
sibilities. Then it often makes sense to case-split and consider each
arm of the disjunction separately

Γ, p ∨ q 	 hi−1
li→hi

Γ, p 	 hi−1
li→hi Γ, q 	 hi−1

li→hi

At the moment, such splitting is done on large disjunctions (as
above), and large conditional expressions that appear in the output
host. For example, if the current theorem is

Γ 	 h0
l→(. . . if p then e1 else e2 . . . )

then two new theorems are created: Γ, p 	 h0
l→(. . . e1 . . . ) and

Γ,¬p 	 h0
l→(. . . e2 . . . ), and both branches are explored (again,

in a depth-first order).

The Core Algorithm: Evaluating One Transition Given a host
h0 (expressed as a set of bindings for the fields that make up a
host, and thus of the form 〈[fld1 := v1;fld2 := v2; ...]〉), a set of
constraints Γ0 over the free variables in h0, and a ground label l0
(whether from the experimentally observed trace, or a τ label), the
core processing step of the trace-checking algorithm is to generate
a list of all possible successor hosts, along with their accompanying
constraints.

We precompute theorems of the form

〈[fld1 := v1;fld2 := v2; ...]〉 l→ h ≡ (D1 ∨ · · ·Dn−1 ∨Dn) (1)

where l is a label form (such as (tid ·socket(arg)) or τ or msg)
that will match l0, and where each Di corresponds to a rule in the

definition of the transition system. Such a theorem can be matched
against the input host and label. Each Di will constrain both the
input fields and the output host h. More, each Di includes an
equation of the form h = 〈[fld1 := v ′

1;fld2 := v ′
2; ...]〉, where the

new, primed variables are existentially quantified inDi, and further
constrained there.

It is then straightforward to generate a sequence of theorems
(one per possible rule), each of the form

	 Di ⇒ 〈[fld1 := v1; ...]〉 l0→〈[fld1 := v ′
1; ...]〉

where any variables existentially quantified in Di are now implic-
itly universally quantified in the theorem, and may appear in the
consequent of the implication. Similarly, the process of matching
the input values against the precomputed theorem (1) will have af-
fected the form ofDi.

Now the initial context Γ0 can be brought into play, and as-
sumed while the Di is simplified in that context. For example, we
earlier discussed the scenario where a variable in the input host
might become constrained in Γ0 to be no larger than 100. If some
Dk insists that the same value be greater than 150, the process of
simplification will discover the contradiction, and rewrite this Dk

to false. In such a scenario, the theorem containingDk will become
the vacuous Γ0 	 �, and can be discarded.

Those theorems that survive this stage of simplification can then
be taken to the form

Γ0, D
′
i 	 〈[fld1 := v1; ...]〉 l0→〈[fld1 := v ′

1; ...]〉
The next phase of evaluation is “context simplification”. Though

some checking and simplification of the constraints inD′
i has been

performed, the constraints there have not yet caused any adjust-
ment to Γ0. In this phase, the implementation iterates through the
hypotheses in Γ0 ∪ D′

i, simplifying each hypothesis in turn while
assuming the others. Furthermore, if this process does induce a
change in the hypotheses, the process is restarted so that the new
form of the hypothesis is given a chance to simplify all of the other
members of the set.

After the first phase of context simplification, the checker
heuristically decides on possible case-splits. If a case-split occurs,
more context simplification is required because the new hypothesis
in each branch will likely induce more simplification.

This phase of evaluation is potentially extremely expensive. We
have made various improvements to the checker during develop-
ment that have made dramatic differences, but they do not reflect
any deep theoretical advances. Rather, we are engaged in “logic en-
gineering” on top of the HOL kernel. The LCF philosophy of the
latter means that the ad-hoc nature of parts of our implementation
cannot affect soundness. At worst we will harm the completeness of
a method already known to be essentially incomplete because of the
undecidability of the basic logic. In fact, incompleteness is prag-
matically less important than being able to quickly reduce formula
sizes, and to draw inferences that will help in subsequent steps.

Laziness in Symbolic Evaluation Because hosts quickly lose
their groundedness as a checking run proceeds, many of the values
being computed with are actually constrained variables. Such vari-
ables may even come to be equated with other expressions, where
those expressions in turn include unground components. It is im-
portant in this setting to retain variable bindings rather than simply
substituting them out. Substituting unground expressions through
large terms may result in many instances of the same, expensive
computation when those expressions do eventually become ground.

This is analogous to the way in which a lazy language keeps
pending computations hidden in a “thunk” and does not evaluate
them prematurely. The difference is that lazy languages “force”
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thunks when evaluation determines that their values are required.
In the trace-checking setting, expressions yield values as the logical
context becomes richer, not on the basis of whether or not those
values are required elsewhere.

Moreover, as soon as an expression yields up a little information
about its structure it is important to let this information flow into the
rest of the formula. For example, if the current theorem is

x = E 	 . . . (if x = [ ] then f(x) else g(x)) . . .

then it is important not to substitute E for x and end up working
with two copies of (presumably complicated) expressionE. On the
other hand, future work may reveal that E is actually of the form
h :: t for some (themselves complicated) expressions h and t.

In this case, the theorem must become

v1 = h, v2 = t 	 . . . (g(v1 :: v2)) . . .

In this situation, the application of g to a list known to a be a cons-
cell may lead to future useful simplification.

To implement this, the checker can isolate equalities to pre-
vent them from being instantiated, and detects when expressions
become value-forms, or partial value-forms.

Evaluating Time Transitions Time transitions require special
treatment. An experimentally-observed trace will typically have
a time passage transition, labelled with a duration, between each
other observable transition. The relevant rule is

epsilon_1 all: misc nonurgent Time passes

h
dur→ h ′

let hs ′ = Time_Pass_host dur h in
is_some hs ′ ∧
h ′ ∈ (the hs ′) ∧
¬(∃rn rp rc lbl h ′.rn/ ∗ rp, rc ∗ /h lbl→ h ′ ∧ is_urgent rc)

The rule says that host h can have its internal timers updated by the
duration dur to become host state h ′, if h is not an urgent state.
A host state is urgent if it is able to undergo a τ transition of any
rule annotated urgent (this condition is expressed in the last line of
the displayed rule). Such transitions represent actions that are held
to happen instantaneously, and which must “fire” before any time
elapses, e.g. the expiry of a pselect() timeout (plus a scheduling
delay).

The trace-checker does not check for non-urgency by actually
trying all of the urgent rules in turn. Instead, it uses a theorem
(proved once and for all as the system builds) that provides an
approximate characterisation of non-urgency. If this is satisfied,
the above rule’s sideconditions can be discharged, and progress
made. If the approximation can not be proved true, then a τ step
is attempted so that the host can move through its pending urgent
transition.

Model Translation An important aim of the formalisation has
been to support the use of a natural, mathematical idiom in the
writing of the specification. This does not always produce logical
formulas well-suited to automatic analyses. Even making sure that
the conjuncts of a sidecondition are “evaluated” (simplified) in a
suitable order can make a big difference to the efficiency of the
tool. Rather than force the specification authors and readership to
deal explicitly with algorithmic issues (and the specification to be

a Prolog-like program), we have developed a variety of tools to
automatically translate a variety of idioms into equivalent forms.

At their best, these translations are produced by ML code writ-
ten to handle an infinite family of possibilities. Written within
HOL, this ML code produces translations by proving logical equiv-
alences. In this way, we can be sure that the translation is correct,
i.e. that the semantics of the specification is preserved. In other
cases, we prove specific theorems that state a particular rule or aux-
iliary function is equivalent to an alternative form. This theorem
then justifies the use of the more efficient expression of the same
semantics.

Translating Non-injective Pattern-Matching One important ex-
ample of translation comes in the handling of the pattern-matching
idiom. Making use of the HOL syntax for record values updated at
specific fields, specifiers can write

h 〈[fld1 := v0]〉 l→ h 〈[fld1 := v ]〉
to adjust the host h . The problem with field updates is that they are
not injective functions: there are multiple instantiations for h given
any particular host meant to match this rule. The transformation in
this case is simple: h is expanded into a complete listing of all its
possible fields, the actions of the update functions are applied, and
the translated rule becomes

〈[fld1 := v0;fld2 := v2;fld3 := v3; ...]〉
l→
〈[fld1 := v ;fld2 := v2;fld3 := v3; ...]〉

The specifier does not have to list the frame conditions, but the
implementation of the evaluator is simplified by explicitly listing
all of the fields (unchanging or not) in the transformed form.

Another example of non-injective pattern-matching comes with
the use of finite maps. These values are manipulated throughout the
labelled transition system. For example, rules describing the host’s
response to a new system call typically check that the calling thread
is in the RUN state, and also specify the new state that the thread
moves to if the transition is successful. Such a rule has the general
form

〈[ts := tidmap ⊕ (t ,RUN); ...]〉
l→
〈[ts := tidmap ⊕ (t ,newstate); ...]〉

sideconditions

where the ts field of the host is a finite map from thread-identifiers
to thread state information. A naïve approach to the symbolic eval-
uation of such a rule would attempt to find a binding for the variable
tidmap. Unfortunately, in the absence of further constraints on that
variable in the rule’s sideconditions, there are multiple such bind-
ings: tidmap may or may not include another binding for the key
t , and if it does include such a binding, may map t to any possi-
ble value. Because the only occurrences of tidmap are in situations
where an overriding value for t is provided, these possibilities are
irrelevant, and the evaluator should not distract itself by looking for
such values.

We have written ML code to check rules are of suitable form
and to then translate the above into

〈[ts := tidmap; ...]〉
l→
〈[ts := tidmap ⊕ (t ,newstate)]〉

fmscan tidmap t RUN ∧ sideconditions
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where the fmscan relation checks to see if its first argument (a finite
map) maps its second argument to its third. It is characterised by the
following theorem

fmscan ∅ k2 v2 = ⊥
fmscan (fm ⊕ (k1, v1)) k2 v2 = (k1 = k2 ∧ v1 = v2) ∨

fmscan (fm\\k1) k2 v2

where fm\\k denotes the finite map that is equal to fm , except that
any binding for k has been removed.

In other circumstances, the underlying finite map may not al-
ways appear with a suitable rebinding of the relevant key. For ex-
ample, this happens in rules that remove key-value pairs from maps.
Such a rule is close_7 , which models the successful closing of
the last file-descriptor associated with a socket in the CLOSED,
SYN_SENT or SYN_RECEIVED states. The rule’s transition
removes the socket-id/socket binding from the host’s socks map.
The relevant parts of the rule look like

〈[socks := sockmap ⊕ (sid , sock); ...]〉
tid·close(fd)→
〈[socks := sockmap; ...]〉

sideconditions (linking sid to fd , among other things)

Here the translation to the non-pattern version of the code can only
succeed if the sideconditions include the fact that sid does not oc-
cur in the domain of the map socks . Without such a sidecondition,
the meaning of the rule would be to allow the finite map to take
on any possible binding for sid in the resulting state. Not including
such a sidecondition is such an easy mistake for the specification-
writer to make that the code implementing this transformation is-
sues a warning if it can not find it.

If this constraint is found in the sideconditions, then the rule
becomes

〈[socks := sockmap; ...]〉
tid·close(fd)→
〈[socks := sockmap\\sid ; ...]〉

fmscan sockmap sid sock ∧
sideconditions[sockmap := sockmap\\sid ]

where the sideconditions to the rule have acquired a new fmscan
constraint, and have been altered so that any old references to
sockmap are replaced by sockmap\\sid .

Other Translation Examples A number of the specification’s
auxiliary functions are defined in ways that, while suitable for hu-
man consumption, are not so easy to evaluate. One simple exam-
ple is the definition of a host’s local IP addresses. Given a finite
map from interface identifiers to interface data values, the function
local_ips is defined:

local_ips(ifmap) =
⋃

(k,i)∈ifmap

i.ipset

This definition is inconvenient to work with directly, so the equiva-
lent recursive characterisation

local_ips(∅) = ∅
local_ips(ifmap ⊕ (k , i)) = i.ipset ∪ local_ips(ifmap\\k)

is used instead.

Other translations rewrite definitions of relations to take on a
prenex-form:

R x y = ∃�v. let u1 = e1 in
let u2 = e2 in

· · ·
c1 ∧ c2 ∧ c3 ∧ . . . cn

The simplification strategy chosen by the checker could effect this
transformation at run-time but there is no reason not to precompute
it, and use the translated form of the definition instead of the
original.

One of the specification’s most complicated auxiliary defini-
tions is that for reassembly of TCP data that has arrived out of order,
characterised by the function tcp_reass. Involving two gruesome
set-comprehensions, tcp_reass’s definition calculates the set of all
possible valid reassemblies of a set of received segments. The the-
orem giving the alternative characterisation instead uses analogues
of fold and map, making evaluation over concrete data much eas-
ier. (The data is concrete because it is from observed labels corre-
sponding to the arrival of packets.)

Adding Constraints It is always sound to add fresh assumptions
to a theorem. The following is a rule of inference in HOL:

Γ 	 t
Γ, p 	 t

Adding arbitrary constraints in this way may allow heuristic knowl-
edge to be added, and thus used to guide the search for a satisfying
path. To date, we have not attempted to do this. The risk of such an
activity is not unsoundness, but rather incompleteness: if we add an
assertion p, and then find that this produces an unsatisfiable set of
constraints, we may incorrectly conclude that there is no satisfying
path.

On the other hand, we do add constraints that are consequences
of existing assumptions. This preserves satisfiability. For example,
traces often produce rather complicated expressions about which
arithmetic decision procedures can not reason directly. We help
the procedures draw conclusions by separately inferring upper and
lower bounds information about such expressions, and adding these
new (but redundant) assumptions to the theorem.

Simplification The core logical operation of the trace-checker
is simplification. This can be characterised as term-rewriting with
equational theorems, augmented with the use of various decision
procedures.

The equational theorems used in rewriting may include side-
conditions. The simplifier will try to discharge such by simplifying
them to truth. If this succeeds, the rewrite can be applied. For ex-
ample, integer division and modulus have no specified value when
the divisor is zero, meaning that theorems about these constants are
typically accompanied by sideconditions requiring the divisor to be
non-zero.

This basic term-rewriting functionality is then augmented with
decision procedures, such as those for Presburger arithmetic over R

and N, whose action is intermingled with rewriting. (Decision pro-
cedures typically rewrite sub-terms to � or ⊥.) This use of (aug-
mented) rewriting is well-established in the interactive theorem-
proving community. Systems such as ACL2 have long provided
such facilities, and demonstrated the potency of the combination.
Equational rewriting provides an easy way to express core iden-
tities in theories that may or may not be decidable. Well-chosen
identities can rapidly extend a system to cover significant parts of
new theories.

In our non-interactive setting, it is additionally important to
be able to add bespoke reasoning procedures to the action of the
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Figure 2. Testing infrastructure: a sample configuration.

simplifier. Our system extends the basic HOL simplifier not just
with new rewrites, but also with new code, which handles cases not
easily treatable with rewrites. Such programmatic extensions can
not compromise the system’s soundness because the programming
is over the HOL kernel, which remains unchanged.

In addition to extensions already discussed, such as the lazy
treatment of variable bindings, another example of such an exten-
sion is the treatment of TCP’s 32-bit sequence numbers. For the
most part, these are operated on as are normal fixed-width integers
(with wrap-around arithmetic). For example, subtraction is such
that 1 − 2 = −1, but −(231) − 3 = 231 − 3. The orderings on
sequence numbers are defined to be

s1 � s2 ≡ s1 − s2 � 0

where � is any of {<,≤, >,≥}, and where the subtraction on
the right results in an integer, which is compared with 0 in the
normal way for Z. These orderings exhibit some odd behaviours.
For example, s1 < s2 
≡ s2 > s1 (consider s1 and s2 exactly 231

apart).
Our system includes custom code for reasoning about inequal-

ities on sequence numbers. This code is not a complete decision
procedure, but has proved adequate in the checking runs performed
to date.

Phasing In the early stages of the core algorithm, the priority for
simplification is to eliminate possible transition rules that clearly
can not apply. Checking rules’ preliminary guards, and quickly
eliminating those that are false is vital for efficiency. At this stage,
therefore, it is wise not to expand the definitions of the more com-
plicated auxiliaries. Such expansions would dramatically increase
term-sizes, but might end up being discarded when a rule’s guards
were found not to be satisfied.

To implement this, we phase our use of the simplifier, so that it
only simplifies with the simplest definitions early on. In this way,
we hope to only expand complicated auxiliaries when they have a
reasonable chance of being needed.

4. Validation: Experiments and Results
Experiments To generate traces of the real-world implementa-
tions in a controlled environment we set up an isolated test network,
with machines running each of our three OS versions, and wrote in-
strumentation and test generation tools. A sample test configuration
is illustrated in Fig. 2. A test executive tthee drives the system by
making Sockets API calls (via a libd daemon) and directly in-
jecting messages with an injector tool. The resulting traces are

HOL-parsable text files containing an initial host state (its inter-
faces, routing table, etc.), an initial time, and a list of timestamped
labels.

Tests are scripted above tthee. They are of two kinds. The most
straightforward use two machines, one instrumented and an auxil-
iary used as a communication partner, with socket calls invoked
remotely. The others use a virtual auxiliary host, directly inject-
ing messages into the network; this permits tests that are not easily
produced via the Sockets layer, e.g. with re-ordering, loss, or ille-
gal or nonsense segments. We have written tests to, as far as we
could, exercise all the interesting behaviour of the protocols and
API. Almost all tests are run on all three OSs; many are automat-
ically iterated over a selection of TCP socket states, port values,
etc.

Checking these traces, which had to be repeated often during
development of the specification, is computationally intensive but
naturally parallel. Using around 100 processors, checking 2600
UDP traces takes approximately 5 hours; checking 1100 TCP traces
(for BSD only) takes approximately 50 hours. Analysing the results
is done with several HTML and graphical visualisation tools.

Results The experimental validation process shows that the spec-
ification admits almost all the test traces generated. For UDP,
over all three implementations (BSD, Linux, and WinXP), 2526
(97.04%) of 2603 traces succeed. For TCP we have focussed re-
cently on the BSD traces, and here 1004 (91.7%) of 1095 traces
succeed.

While we have not reached 100% validation, we believe these
figures indicate that the model is for most purposes very accurate
— certainly good enough for it to be a useful reference. Further, we
believe that closing the gap would only be a matter of additional
labour, fixing sundry very local issues rather than needing any
fundamental change to the specification or the tools.

Of the TCP non-successes: 42 are due to checker problems
(mainly memory limits); 6 are due to problems in test generation;
and the remaining 43 traces are due to a collection of 20 issues
in the specification which we have roughly diagnosed but not yet
fixed.

The success rates above are only meaningful if the generated
traces do give reasonable coverage. Care was taken in the design of
the test suite to cover interesting and corner cases, and we can show
that almost all rules of the model are exercised in successful trace
checking. Of the 194 host LTS rules 142 are covered in at least one
successful trace check run; 32 could not be covered by the tests
(e.g. rules dealing with file-descriptor resource limits, or non-BSD
TCP behaviour); and 20 either have not had tests written or have
not yet succeeded in validation.

The goal of this project was not to find bugs in the implemen-
tations. Indeed, from a post-hoc specification point of view, the
implementation behaviour, however strange, is a de facto standard
which users of the protocols and API should be aware of. More-
over, to make validation of the specification against the implemen-
tation behaviour possible, it must include whatever that behaviour
is. Nonetheless, in the course of the work we have found many be-
havioural anomalies (around 30 are listed in [6]), some of which
are certainly bugs in the conventional sense. All are relatively lo-
cal issues — the implementations are extremely widely used, so it
would be very surprising to find serious problems in the common-
case paths.

For example, in BSD:
• The receive window is updated on receipt of a bad segment.
• Simultaneous open can respond with an ACK rather than a
SYN,ACK.
• There is an erroneous definition of the TCPS_HAVERCVDFIN
macro, making it possible, for example, to generate a SIGURG
signal from a socket after its connection has been closed.
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• listen() can be (erroneously) called from any state, which can
lead to pathological segments being transmitted, with no flags or
only a FIN.
• After repeated retransmission timeouts the RTT estimates are
incorrectly updated.
• After 232 segments there is a 16 segment window during
which, if the TCP connection is closed, the RTT values will not
be cached in the routing table.
• The received urgent pointer is not updated in the fast-path
code, so if 2GB of data is received in the fast path, subsequent
urgent data will not be correctly signalled.
• On Linux, options can be sent in a SYN,ACK that were not in
the received SYN.

There are explicit OS version dependencies on around 260 lines of
the specification. Many of these, and many of the bugs above, were
discovered by our testing process, and indicate how discriminating
it is. The remainder were found directly in the source code while
writing the specification.

5. Related Work
There is an extensive literature dealing with semantic properties
of deployed code, including work on software model-checking and
on formal reasoning techniques, another (largely disjoint) literature
on protocol specification and verification, and yet another on auto-
mated reasoning tools such as HOL. To the best of our knowledge,
however, no previous work deals rigorously with behavioural prop-
erties comparable to those of real-world TCP.

The most detailed rigorous specification of a TCP-like protocol
we are aware of is that of Smith [23], an I/O automata specifica-
tion and implementation, with a proof that one satisfies the other,
used as a basis for work on T/TCP. The protocol is still substan-
tially idealised, however: congestion control is not covered, nor are
options, and the work supposes a fixed client/server directionality.
Later work by Smith and Ramakrishnan uses a similar model to
verify properties of a model of SACK [22].

Musuvathi and Engler have applied their CMC model-checker
to a Linux TCP/IP stack [17]. The properties checked were of two
kinds: resource leaks and invalid memory accesses, and protocol-
specific properties specified by a hand translation of the RFC793
state diagram into C code. While this is a useful model of the
protocol, it is an extremely abstract view, omitting flow control,
congestion control etc. Four bugs in the Linux implementation were
found.

Bhargavan et al. develop an automata-theoretic approach for
monitoring of network protocol implementations, with classes of
properties that can be efficiently checked on-line in the presence
of network effects [2]. They show that certain properties of TCP
implementations can be expressed.

In a rare application of rigorous techniques to actual standards,
Bhargavan, Obradovic, and Gunter use a combination of the HOL
proof assistant and the SPIN model checker to study properties
of distance-vector routing protocols [3], proving correctness theo-
rems. In contrast to our experience for TCP, they found that for RIP
the existing RFC standards were precise enough to support “with-
out significant supplementation, a detailed proof of correctness in
terms of invariants referenced in the specification”. The protocols
are significantly simpler: their model of RIP is (by a naïve line
count) around 50 times smaller than the specification we present.

Alur and Wang address the PPP and DHCP protocols [1]. For
each they check refinements between models that are manually
extracted from the RFC specification and from an implementation.

Many authors have considered radically idealised versions of
network protocols; we refer the reader to [5, 6] for some represen-
tative examples.

6. Conclusion
Summary We have described novel techniques that have en-
abled us to deal rigorously with the behaviour of complex real-
world software infrastructure: the TCP/IP and Sockets API imple-
mentations that form the de facto standard for most networked com-
putation. Using them, we have developed a post-hoc specification
of TCP, UDP, and Sockets that is rigorous, detailed, has broad cov-
erage, is remarkably accurate, and yet remains readable.

We achieved rigor by writing our specification in operational se-
mantics within mechanised higher-order logic. This choice of logic
also enabled us to keep the specification readable: we have been
able to write in a natural mathematical idiom, defining appropriate
abstractions where necessary. For example, our relational monad
allows a clean presentation of a complex and branching sequence
of updates to a shared state, our use of real-timed transition sys-
tems and timers allows realistically-loose timing properties to be
precisely specified, the HOL type structure has permitted a clean
model of endpoint states, and nondeterminism lets the specifica-
tion be sufficiently loose to admit a range of acceptable behaviour.
At a higher level, we have organised the specification modularly,
categorising transition rules to make the “big picture” apparent.

We achieved accuracy by writing a special-purpose symbolic
model checker on top of the HOL system, using theorem-proving
techniques to perform symbolic evaluation while retaining LCF-
style confidence in its soundness. This trace-checker allowed us
to mechanically verify that our specification captures behaviours
exhibited by the three implementations studied, with over 3 000
observed traces checked. Our experimental semantics approach,
describing the existing implementations as they are, has also led
us to the discovery of many behaviours in those implementations
that are bugs.

Our techniques might loosely be described as logic engineering:
we have developed an approach that is pragmatically feasible even
for this highly-challenging problem, dealing with the behaviour of
many thousands of lines of multi-threaded and time-dependent C
code that were (emphatically) not written with verification in mind.

The total effort required for the project, including our earliest
experiments with UDP [20, 21, 26, 18], has been around 9 man-
years over 3.5 calendar years, of which much has been devoted to
idiom and tool development. This is substantial, and might not be
well-motivated for software that is not in critical use, but is rather
modest compared with the effort devoted over the last 25 years
(and perhaps the next) to implementing and understanding these
protocols and their API. Network protocols are an area in which
behavioural standards are essential, as many implementations must
interoperate.

Future Work There are many possible directions for future
work.

Using the model The model can be used directly in several ways:
informally as a reference work; as a basis for testing other imple-
mentations (perhaps requiring additional work to remove artifacts
specific to the three we have based it on); as a basis for formal
reasoning; as a setting in which to describe modifications to (e.g.)
TCP’s congestion control algorithms; and even, given refinement of
some of the nondeterministic choices, as an executable prototype.
Compton [9] has demonstrated fully formal reasoning about exe-
cutable distributed OCaml code above our earlier UDP specifica-
tion, including a network model and semantics for an OCaml frag-
ment, using the Isabelle proof assistant [14]. Formal work above
our TCP specification would require mastering a greater level of de-
tail, but may still be practical. Li and Zdancewic are currently pro-
ducing a Haskell implementation of TCP closely based on the spec-
ification, using efficient purely-functional datastructures to achieve
good performance. Their work has uncovered a few bugs in the
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specification that our testing did not, indicating that better cover-
age (and better tools for assessing coverage) are still needed.

Our testing has only imposed a lower bound on the set of traces
of the model. Short of a protocol correctness proof, there is no
obvious precise upper bound, but only an informal one of utility
– in any of the above senses.

Returning to the code With our specification in hand, it would be
interesting to return to the implementation code with predicate-
abstraction or abstract-interpretation techniques, perhaps iden-
tifying internal properties of particular sequential C functions
(e.g. tcp_output.c) that could be mechanically verified.

Stream-level specification Our specification deals with individ-
ual TCP segments on the wire interface rather than the stream
abstraction provided by TCP that application programmers would
usually reason in terms of. We are now writing a companion speci-
fication at that more abstract level (and for stereotyped, “known-to-
be-safe” usage). This will explicitly reify the notion of stream, and
abstract away from some of the details in the existing specification.
Our existing validation technology should ensure the stream-level
specification’s accuracy.

Design-time specification and specification-based testing In the
long term, the most significant line of work may be to carry out
similar specification and conformance-testing work at design-time
for new protocols and other infrastructure. Early rigorous specifi-
cation could provide conceptual clarity, and a design-for-test ap-
proach (especially, making any internal nondeterminism directly
observable), could make specification-based testing commonplace.
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