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Abstract—Energy efficiency is a primary design criterion of
the modern smartphone due to limitations in battery capacity.
Multi-core processors are now commonplace in these devices,
which adds a new dimension, the number cores used, to energy
management. In this paper we investigate how the mechanisms of
frequency scaling and core offlining interact, and how to use them
to reduce energy consumption. We find surprising differences in
the characteristics of latest-generation smartphones, specifically
in the importance of static power. This implies that policies that
work well on one processor can lead to poor results on another.

We propose a simple policy that integrates core offlining with
frequency scaling and implement it in a Linux-based frequency
governor called medusa. We show that, despite its simplicity,
medusa obtains energy savings that are as good or better
than governors presently shipping on the studied phones and
approaches the static optimal setting.

I. INTRODUCTION

Energy efficiency is a first-class concern in mobile em-
bedded systems, such as the smartphone, due to battery con-
straints. At the same time, multi-core processors are emerg-
ing in the embedded space, with high-end smartphones now
shipping with quad-core application processors. Such systems
present new challenges and opportunities for energy manage-
ment.

The modern multi-core applications processor provides
several mechanisms to control energy consumption. One of
these is offlining, which allows the operating system to switch
off individual cores, reducing the per-core power consumption
to zero, but allowing the remaining cores to continue process-
ing. Another is the well-studied DVFS, or dynamic voltage
and frequency scaling, which provides for the reduction of
CPU operating frequency at the cost of performance. The use
of these two mechanisms in tandem presents an interesting
tradeoff: to respond to increasing system load, either the
frequency of online cores can be increased or additional cores
can be onlined (and vice versa for decreasing load). The
energy-optimal decision depends, among other things, on the
power/performance response of these two mechanisms.

Past research has observed the increasing importance of
static power, and the resulting importance of sleep states
in reducing energy consumption [2], [11]. When the per-
core static power is significant, a larger number of active
cores means more static power, and thus a higher energy
consumption. In particular, deep sleep states mean that the
race-to-halt approach may be beneficial, as it minimises the
accumulation of static energy loss. Consequently, running at
minimum frequency may not minimise energy use [14].

In this paper we revisit these assumptions and observations
in the context of latest-generation smartphone applications
processors. We extend our previous work [3] in investigating
the combined efficacy of core idle power states and DVFS for
maximising energy efficiency. We do not investigate trading

off performance for energy, and instead attempt to minimise
energy consumption without affecting performance (i.e. slack
management). We find a surprising diversity in characteristics
of latest-generation ARM processor implementations: from
very significant to completely negligible static power. This
has a significant impact on energy management, which does
not seem to be well understood: phones ship with energy-
management policies which produce highly non-optimal re-
sults.

We start our investigation in Section II by measuring
the energy consumption of a range of synthetic workloads
while varying the core frequency and number of active cores.
In Section III we analyse these data from both an empiri-
cal and theoretical perspective, and show that running with
more online cores generally reduces energy consumption and
thus aggressive offlining of processors cores is an ineffective
energy management strategy. In Section IV we describe an
implementation of an energy management policy in the Linux
kernel called medusa, which exploits these insights to reduce
energy consumption. In Section V we perform a series of
benchmarks to evaluate medusa’s effectiveness, comparing it
against existing policies and exploring how it can be adapted
for particular platforms.

II. MOTIVATION

To understand the problem and motivate a solution, we
first measure the energy consumption of a series of simple
microbenchmarks while varying the CPU frequency and num-
ber of online cores. This pair forms the operating point (OP).

A. Platforms
We run our benchmarks on two versions of the Samsung

Galaxy S4 smartphone. The first, S4-E, is the GT-I9500 model
which features the Samsung Exynos 5410 system-on-chip
(SoC) with a quad-core Cortex-A15 and a quad-core Cortex-
A7 CPU. These run in an ARM big.LITTLE “task migration”
configuration [7] whereby one of the quad-core CPUs (called
clusters) can be active at any time. Switching between the
clusters is controlled by the operating system, and on our
device this is done in the DVFS subsystem by “virtualising”
the frequency control. When the OS requests a particular
operating (virtual) frequency, this is used to decide which
cluster to activate, and the virtual frequency is mapped to
the physical frequency that the cluster will actually run at.
Virtual frequencies in the range 250–600 MHz will cause the
Cortex-A7 cluster to be active, running at twice the virtual
frequency. For virtual frequencies at or above 800 MHz, the
Cortex-A15 cluster will be active at a physical frequency equal
to the virtual frequency. This is the default behaviour that ships
with the GT-I9500 device, and for the purposes of our work
we retain this behaviour and, unless otherwise noted, we use
virtual frequencies in the remainder of the paper.
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TABLE I. CHARACTERISTICS OF THE TWO GALAXY S4 PLATFORMS.
†THE S4-E HAS 8 CPU CORES, BUT ONLY 4 ARE ACTIVE AT ANY TIME.

Characteristic S4-E S4-S
Model GT-I9500 GT-I9505
SoC Exynos 5410 Snapdragon 600 (8064T)
CPU Cortex-A15/A7 Krait 300

cores 4† 4
Frequency (MHz)

min 250 384
max 1600 1890

Voltage (V)
min 0.9 0.9
max 1.15/1.2125 1.2125

Cache (KiB)
L0 (I/D) — 4 / 4
L1 (I/D) 32 / 32 16 / 16
L2 (shared) 1024 2048

OS Android 4.2.2

Our second platform is the GT-I9505 model featuring a
Qualcomm Snapdragon 600 SoC with a quad-core Krait 300
CPU; we call this the S4-S. Table I summarises the relevant
parameters for these two platforms. On S4-E, all cores run at
the same voltage and frequency. The S4-S allows cores to run
at independent voltages and frequencies, but for the purposes
of this work we force all active cores to run at the same setting.
Herbert and Marculescu [9] show that this is not a significant
limitation.

These devices are latest-generation, off-the-shelf commod-
ity smartphones. They represent two SoC vendors (Samsung
and Qualcomm) and two independent implementations of the
ARMv7 architecture (ARM Cortex and Qualcomm Krait), and
hence give us good coverage of the high-end mobile CPU
space.

B. Measurement
We measure power consumption of the devices by inserting

a 20 mΩ current sense resistor between the battery and the
device. We use a National Instruments NI-6229 [15] data
acquisition system to sample the voltage drop across the sense
resistor, and the battery supply voltage, from which power
can be determined. To minimise interference from non-CPU
components, we run the devices in airplane mode with all
unrelated components disabled, including the screen. When the
screen is required, as in the medusa evaluation benchmarks, we
run it at minimum brightness.

C. Benchmarks
We use three workloads that emulate periodic tasks, de-

signed so that the work performed and total execution time
are fixed, but varying in duty cycle (i.e. the proportion of time
spent computing vs. sleeping) by varying the OP (frequency
and online cores). These benchmarks are loadcpu, loadcache
and loadmem, which exercise the CPU, L2 cache, and main
memory, respectively. For each, we use four levels of intensity,
corresponding to 10, 25, 50 and 75% of the total system
capacity (i.e. 100% means running all cores at maximum
frequency, 50% means all cores at half frequency, or two
cores at maximum frequency, etc.) Each benchmark consists
of four identical processes executing the load for a certain
number of iterations, and then sleeping for the remainder of the
50 ms period. We vary the number of iterations to control the
load intensity, but for each benchmark the total execution time
and amount of work performed are constant, with duty cycle
varying with the OP. We run each workload only at OPs that
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Fig. 1. S4-S loadcpu normalised energy vs. frequency (MHz) at 10, 25, 50
and 75% load.

can sustain the required throughput (i.e. utilisation ≤ 100%
without over-running the 50 ms interval).

In loadcpu, the workload is a simple busy loop with no
memory accesses. For loadcache, each process strides through
a memory region performing read-modify-write cycles on
successive cache lines. The size of the region is 2× the L1
cache size per process, for a total working set of 128 KiB on
S4-S and 256 KiB on S4-E. This results in significant cache
pressure, with few accesses to main memory. For loadmem
we do the same, but increasing the total working set size
to 2× L2 cache size, resulting in many accesses to main
memory. We use another microbenchmark, spin, to investigate
the properties of CPU-bound workloads, i.e. those with no
periods of idleness. spin simply executes a busy-loop for a
fixed number of iterations, so in varying OP, the execution
time changes but the total work performed is constant.

For all microbenchmarks, the work is split over four
processes which are scheduled by the default Linux task
scheduler. While this does not enforce any particular assign-
ment of processes to cores, we observe that in practice, the
work performed by each core involved in the benchmark is
approximately equal. In all cases we report the average of
three iterations of the workload, and for all data reported, the
relative standard deviation across iterations is less than 6%.

D. Results
The results of loadcpu on both platforms are shown in

Figures 1 and 2. For a fixed number of online cores, energy is
an increasing function of frequency; that is, the lowest energy
generally occurs at the lowest frequency attainable for a given
number of cores. At a fixed frequency, energy is very weakly
dependent on the number of online cores on S4-E. However,
on the S4-S, there is significant energy difference varying the
number of cores at fixed frequency, a factor of two in some
cases.

On both platforms, at fixed frequency, using a single core
(where load is low enough to allow this) is more efficient than
2, 3 or 4 cores, and this disparity increases with frequency
(although this effect is much more pronounced on the S4-S
than the S4-E). This is due to a CPU-wide sleep state that
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Fig. 2. S4-E loadcpu normalised energy vs. frequency (MHz) at 10, 25, 50
and 75% load.
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Fig. 3. S4-S loadcache normalised energy vs. frequency (MHz) at 10 and
25% load.

significantly reduces power, but can be entered only when
cores 1–3 are offline, and core 0 becomes idle. We say more
about this in Section III-C. Minimal energy is achieved with
more than the minimal number of cores active in cases where
this allows frequency to be further reduced. On S4-E, note a
discontinuity from 600 to 800 MHz; this is where the processor
switches from the little (A7) to big (A15) CPU cluster.

In Figures 3–5 we show a subset of the loadcache and
loadmem results. On S4-S, adding significant cache pressure
does not noticeably change the shape of the graphs. However,
with added main memory access in Figure 4, we observe that
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Fig. 4. S4-S loadmem normalised energy vs. frequency (MHz) at 10 and
25% load.
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Fig. 5. S4-E loadcache normalised energy vs. frequency (MHz) at 10 and
25% load.
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Fig. 6. spin normalised energy vs. frequency (MHz) for (a) S4-E, and (b)
S4-S.

the energy difference between the number of online cores has
increased approximately uniformly across the full range of fre-
quencies. Furthermore, under cache pressure, the discontinuity
on S4-E from 600–800 MHz caused by the CPU cluster switch
does not appear. In other respects, the loadcache and loadmem
results do not differ from loadcpu in any significant aspect.

The results of the spin benchmark for both platforms are
shown in Figure 6. While energy is a complex function of
frequency, maximising the number of online cores is always
optimal for this workload, both globally and at each frequency.
The discontinuity in (a) is again due to the CPU cluster
switch from 600 to 800 MHz. While the power curve is
reasonably continuous across the switch (see Figures 2 and
5), the performance curve shows a significant discontinuity,
resulting in this effect on the energy curve. The use of little
cores can significantly improve energy efficiency, more than a
factor of two if the correct OPs are selected. However this of
course results in an increased workload runtime.

III. MODELLING AND ANALYSIS

In this section we analyse the results from Section II, and
provide a theoretical framework in which to understand them.

A. CPU Model
We use a simple multi-core CPU power model in which

each core can be in one of three states, active, idle and offline.
Active is the state in which instructions are executing. The
offline state is the deepest sleep state in which the core and
all supporting circuity is fully powered down. Idle is the
shallowest sleep state in which the core is ready to perform
computation but not actually executing instructions. These
states correspond roughly to ACPI C-states C0, C1–C(x-1) and



Cx respectively (if x is the deepest C-state). Each core may
be in a different power state, but we assume that the CPU
has a single voltage and frequency plane, and hence all cores
are clocked at the same frequency and supplied with the same
voltage. We assume that the idle state can be entered and exited
instantaneously with no performance or energy overhead, and
that this is done immediately when no computation is available
to run. Further we assume that the offline state has a high entry
and exit cost and thus is used at a coarse granularity under
control of the system-wide power management policy.

We model the power consumption of an n-core CPU at
frequency f as:

PCPU = Puncore + n(Pdynamic + Pstatic) . (1)

Pstatic is the power consumed by a core when it is online
but otherwise idle. It is workload independent, but varies with
core voltage. Pdynamic is the additional power consumed when
a core is active, and is dependent on workload and volt-
age/frequency. The sum of the dynamic and static components
forms the per-core contribution to total power consumption.
The remaining CPU power consumption is independent of the
number of online cores, and hence called the uncore, denoted
Puncore. The uncore must remain powered as long as any core
is online, and typically includes last-level caches, buses, etc.
We can express Pdynamic by the well-known equation

Pdynamic = CefffV
2 , (2)

where Ceff is the effective switching capacitance, f is the core
frequency, and V is the core voltage.

This model is based on Gupta [8], but others have used sim-
ilar models [19], [20]. Importantly, we are using a functional
power model, and not a physical one: we are interested in how
power appears to be consumed from the OS perspective, rather
than the location or subsystem to which the corresponding
circuit belongs. For example, if the transistor leakage power
of a core persists whether or not that core is online, such as if
all cores share a power plane, then functionally we consider
this uncore power, since it is independent of n. We discuss the
validity of this model in Section III-C.

B. Analysis
The energy cost of choosing an incorrect operating point

can be substantial, a result well known from the single-core
DVFS literature [17]. Our results show that the multi-core
processor only exacerbates this problem, both by increasing
the penalty of incorrect OP selection, and by increasing the
size of the optimisation problem with the additional “number
of online cores” dimension. Moreover, the results show that
the offline and DVFS mechanisms are inherently tied: one
cannot be optimised independently of the other. Applying the
naive wisdom that lower power implies lower energy, i.e. that
fewer cores result in lower energy consumption, can lead to
catastrophic results, in some cases (e.g. Figure 4(a)) a doubling
of energy consumption!

As the experiments of Section II-D show, energy is gener-
ally minimised by running at the lowest possible frequency
on both platforms. However, to meet performance require-
ments, cores must be onlined to offset the capacity lost by
reducing frequency. Put another way, onlining cores allows us
to run workloads at lower, more energy-efficient frequencies

for equivalent throughput. This is the primary mechanism by
which running more cores can reduce energy consumption.

We can develop an understanding of how this occurs using
the above CPU model. Treating the workload as periodic, using
Equation 1 and substituting T for the period of the workload,
and t for the per-period execution time (where t < T ), we get
per-period energy of

ECPU = PuncoreT + n(Pdynamict+ PstaticT ) . (3)

Using the approximation [18] that

Pdynamic ∝
instructions

cycles
(4)

for fixed frequency f , it follows that Edynamic is proportional
to the number of executed instructions, which is constant for a
fixed workload. So if we execute i instructions spread across
n cores, then

Edynamic ∝ i/n , (5)

and substituting into Equation 3, we get

ECPU = (Puncore + nPstatic)T + ie , (6)

where e is the proportionality constant of Equation 4, corre-
sponding to the per-instruction energy, and ie is constant for a
given workload. Thus, if Pstatic is small compared to Puncore,
then ECPU is independent of n. In the following sections, we
show this to be true on S4-E, and then deal with the case
where it is not. Note that for the purposes of this analysis we
can treat Puncore as constant, since adding the dynamic uncore
contribution would only increase the uncore/static ratio.

For workloads with no periods of idleness (i.e. compute-
bound, such as our spin), it is always more energy efficient
to run with more cores online, because increasing throughput
reduces execution time and thus reduces the accumulation of
static CPU energy. This is an example of the race-to-idle effect,
which is well-documented in the DVFS literature [14]. How-
ever, with DVFS dynamic power is super-linear in frequency
(since P ∝ fV 2 and V is monotonic in f ) and hence race-to-
idle with frequency is not necessarily optimal. On the other
hand, core power is linear in the number of online cores,
and thus additional cores are always more efficient. Assuming
scalability1 (t ∝ 1/n where t is the execution time), then from
Equation 1 we get

ECPU ∝
Puncore

n
+ Pdynamic + Pstatic , (7)

and hence increasing n will always decrease ECPU, for work-
loads with ideal scalability. The results of Figure 6 show this
clearly. Determining the optimal frequency however, depends
on the relative values of the power terms, and we claim this
requires a full multi-core dynamic power model, which is
currently an open problem.

C. Model validation
In the previous section, we established that if Pstatic is low,

then CPU energy is minimised by onlining as many cores as
required to run at the lowest possible frequency. To validate
this assumption, we directly measure the static power on both
platforms.

1We use the term scalability specifically in terms of the effect of hardware
resource sharing, such as L2 cache and memory buses. The algorithmic
scalability of a workload is not relevant to this discussion.
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Fig. 7. S4-E idle power for the Cortex-A15 (big) CPU cluster at minimum
(800 MHz) and maximum (1600 MHz) frequencies, and with idle states
enabled and disabled (noidle).
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Fig. 8. S4-E idle power for the Cortex-A7 (little) CPU cluster at minimum
(500 MHz physical) and maximum (1200 MHz physical) frequencies, and with
idle states enabled and disabled (noidle).

Figure 7 shows idle power consumption as a function of
the number of online cores for the S4-E platform running
with the big (A15) cores only, at maximum (1600 MHz) and
minimum (800 MHz) frequencies for that cluster. From such a
graph, the per-core static power consumption, Pstatic, can be
determined from the gradient of the curve, while the uncore
power, Puncore, corresponds to the y-intercept. Shown are two
data sets for each; one in the normal configuration, and one
with all idle states disabled.

With idle states disabled, we see that Pstatic is approxi-
mately 14 mW per core at fmax, and 6 mW at fmin, determined
by dividing the difference in power consumption from 2–4
cores by 2. This is a very small fraction of uncore power, only
3.5% and 2.1% respectively, so this platform indeed has low
static power. From our previous analysis we thus expect to
see that on S4-E, onlining cores consumes less energy, and
Figures 2, 5 and 6 demonstrate exactly that. Furthermore, the
small difference in power consumption between the normal and
idle-disable cases (worst-case of 42 mW for 4 cores at fmax)
shows that our earlier assumption of a 3-state core (offline,
idle, active) holds on this platform. Moreover, this validates our
assumption that idle state entry and exit cost is negligible, since
disabling them entirely does not significantly impact power.

We measured the same data for the small (A7) CPU cluster
on the S4-E, running at maximum (1200 MHz) and minimum
(500 MHz) physical frequency, plotted in Figure 8. This shows
negligible Pstatic even with idle states disabled (3 mW per core
@ fmax), and a worst-case difference between idle and noidle

0 1 2 3 4

Cores online

0

200

400

600

800

Id
le

 P
o
w

e
r 

(m
W

) fmax

fmin

Fig. 9. S4-S idle power at minimum (386 MHz) and maximum (1890 MHz)
core frequencies.

of 10 mW.
Figure 9 shows idle power as a function of online cores

for the S4-S platform, at maximum (1890 MHz) and minimum
(386 MHz) frequency. The per-core static power is 146 mW
per core at fmax, and 58 mW at fmin, corresponding to 60%
and 50% of Puncore, respectively. This is certainly significant,
and hence we do not necessarily expect to see that maximising
the number of online cores yields minimum energy, and our
microbenchmark results reflect this, particularly Figures 1, 3
and 4 at 10 and 25% load levels. We deal with this issue in
Section III-D. This figure shows the measurements with all
core idle states enabled, however disabling them increases the
idle power by at most 2%. This further validates our 3-state
CPU model.

As the idle states provide little power saving, race-to-
idle is not beneficial. For periodic workloads, this implies
that minimising power is equivalent to minimising energy.
Moreover, since all power terms are increasing functions of f ,
then for fixed n, energy is minimised by minimising f . The
same does not apply however to CPU-bound loads, because
the entire CPU can be powered down and hence race-to-halt
remains potentially effective.

It is certainly surprising to see such a big difference in
static power with two latest-generation implementations of
the same architecture, by manufacturers who are both major
players in the smartphone processor market! One explanation
of this is that in the case of S4-E, all cores share a power
plane (i.e. they are connected to the same power supply), so
they are powered regardless of the power state of the core. This
means that the leakage power, a significant aspect of overall
power consumption, can not be reduced by offlining a core. On
the other hand, the S4-S powers each core from independent
supplies and hence leakage can be reduced in offline cores. The
latter is consistent with per-core DVFS, where cores require
different supply voltages when running at different frequencies.

The significant reduction in power seen on both platforms
with a single idle core is due to the previously mentioned
“package idle state”, which requires core 0 to be idle, and cores
1–3 to be offline. The existence of low-power idle states such
as this means that the energy-optimal OP may in fact not be at
minimum frequency, due to race-to-idle reducing static energy
loss. Specifically, there is a trade-off between the energy saved
by completing the workload faster and entering the low-power
state as soon as possible, and the additional dynamic energy
consumption caused by running at a higher frequency. We
claim that in general, solving such an optimisation requires an



TABLE II. AVERAGE COST OF OPERATING POINT TRANSITION PAIR.

Time (ms) ±1% Power (mW) ±4%
S4-E S4-S S4-E S4-S

offline at fmin 22.6 11.7 357 454
offline at fmax 16.5 4.09 1305 1926
fmin to fmax 2.10 11.1 1033 420
fmin to fmin+1 0.39 6.05 320 317
fmax to fmax−1 1.20 0.24 1400 838

online dynamic power model (such as Koala [17]). However,
on our platforms, running above minimum frequency does not
result in appreciable energy savings, and this can be observed
directly from the data in Section II.

We asserted earlier that the cost of transitioning between
the online and offline states is significant, and thus the
mechanism can only be used in a coarse-grained fashion. To
validate this, we perform an experiment where we on- and
off-line a core 1000 times, measuring the run time and power
consumption. Table II shows the results. Also shown is the
cost to transition between core frequencies: from minimum to
maximum, between the two lowest frequencies, and between
the two highest frequencies. In each case we repeat the
experiment 3 times and show the average cost of a transition
pair (i.e. online and offline or frequency increase and decrease);
our methodology does not allow us to determine the individual
cost of each operation. For all power data, the relative standard
deviation is < 4%, while for time it is < 1%.

D. Adapting for high static power
We have shown both theoretically and empirically how to

optimise the OP for a processor with low per-core static power.
If static power is significant however, our previous argument
does not apply. We now develop a heuristic that can be used
to predict an efficient OP for such processors.

Earlier we argued that for periodic workloads, minimising
PCPU is equivalent to minimising ECPU. If we treat n and
f as continuous variables, then the optimal operating point
can be determined by minimising PCPU(f, n). If we assume
scalability (i.e. n ∝ 1/f ), then we can express n in terms of
f as

n =
nmaxfmaxu

f
≡ γu

f
, (8)

where u is the total system utilisation. We can then minimise
PCPU by finding the f that solves

d

df
PCPU(f) = 0 . (9)

Substituting Equations 2 and 8 into Equation 1, we get

PCPU = Puncore + γu

(
CeffV

2 +
Pstatic

f

)
, (10)

where Puncore, Pstatic and V are functions of f , γ is a constant,
and Ceff and u are workload-dependent. Differentiating with
respect to f :

P ′CPU = P ′uncore + γu

(
2CeffV V

′ +
P ′staticf − Pstatic

f2

)
.

(11)
Puncore, Pstatic and V can be measured, and their derivatives
determined numerically, so the f that minimises PCPU is a
function of the remaining variables, u and Ceff , both of which
are workload-dependent. u can be trivially measured online,
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Fig. 10. Optimal operating frequency predicted by our power model for
S4-S as a function of utilisation for minimum (0) and maximum (3) IPC. The
dashed lines delimit valid operating points.

and Ceff can be approximated as a function of instructions per
cycle (IPC), such as is done by Gupta [8].

We follow a methodology similar to that of Spiliopoulos
et al. [18]: we run a series of compute-bound benchmarks at
minimum and maximum frequency, measuring both IPC and
power. We use the EEMBC telecommunications benchmark
suite, which is characterised by minimal L2 cache and memory
activity. This minimises any variation in Puncore from the static
measurements we made in Section III-C.

We verify this directly by measuring the L1 cache miss
rate, but since the L2 and memory clocks do not scale propor-
tionally to the CPU clock, we can also see this by comparing
the measured IPC between the iterations at maximum and
minimum frequency, which vary by at most 3%. Across all 16
benchmarks, we observe IPC values between 1.0 and 2.3. From
the measurements, Pdynamic can be determined by subtracting
the known Pstatic and Puncore from the total power. Using
Equation 2 and a least-squares linear regression, we then
produce a function of IPC to Ceff , with R2 = 0.73.

Finally, we add this model to Equation 11, and solve
P ′CPU(u, IPC) = 0 for f ; in other words, given a workload
characterised by its IPC and utilisation u, we can predict
the frequency f that minimises power, and hence energy
consumption. Figure 10 plots the optimal frequency as a
function of utilisation for the two IPC extremes, 0 and 3
(since the S4-S is a triple-issue pipeline). Note that not all
points on the graph correspond to valid operating points. For
example, at u = 1, all cores are required running at maximum
frequency to achieve the necessary throughput. At u = 0.5,
an operating frequency of at least 945 MHz (half of fmax) is
required. The dashed lines show the range of valid operating
points, corresponding to one or four online cores.

From Figure 10 we observe several interesting character-
istics of the optimal frequency. Within the valid operating
points, the characteristic IPC of the running workload does
not significantly affect the optimal OP. Thus, for the remainder
of the paper, we assume a fixed IPC at the midpoint 1.5. At
low utilisations, the optimal response to increasing load is to
increase frequency. At higher u, the optimal frequency grows
slower than utilisation demands, requiring onlining of cores to
provide the necessary capacity.

We propose a simple algorithm, characterised by a fre-
quency threshold, fthresh, to track the optimal operating point.
Figure 11 shows graphically how the proposed algorithm
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Fig. 11. Proposed algorithm, shown as the target frequency as a function
of utilisation. The spikes in frequency correspond to the onlining/offlining of
cores.
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Fig. 12. Predicted energy consumption of proposed algorithm for varying
threshold frequency (fthresh), as a percentage above predicted optimal.

works, for a hypothetical fthresh value of 700 MHz. As utili-
sation increases from 0, the frequency is increased on a single
core. When the threshold frequency is reached, rather than
exceed it, a second core is onlined. At this point, the frequency
can be halved to achieve the same throughput. As utilisation
increases from this point, we again scale frequency (now on
two cores) until the threshold is reached, where the third core
is onlined. Once all cores have been onlined in this manner,
we have no choice but to increase frequency.

This policy has the advantage of simplicity: it has a
single, well-defined tunable parameter fthresh, it requires no
workload-specific knowledge, and as we will show in the
following section, it is reasonably simple to implement. How-
ever, we require a methodology to determine an appropriate
threshold frequency.

First we use our power model to predict, for each possible
fthresh, the average energy consumption under the policy.
This is done by integrating the sawtooth curve shown in
Figure 11 over utilisation.2 Then we compute the average
energy consumption of the predicted optimal (the smooth curve
of Figure 11), averaging over utilisation. Finally, we plot the
difference between this average and the proposed algorithm,
shown in Figure 12 as a percentage increase in predicted
energy consumption.

From Figure 12 we see that the optimal fthresh selection
lies in the 600–800 MHz range. Moreover, we see that thresh-
old frequency selection is not particularly sensitive: across

2We only average over the utilisation range 0–0.6. Above that the algorithm
diverges quickly from the predicted optimal due to the minimum frequency
requirements imposed by high utilisation.

the 400–1000 MHz range, energy varies by only about 1%
of optimal, but above 1000 MHz the energy loss is significant.
For the remainder of the paper we will use fthresh = 810 MHz,
the nearest supported frequency on the S4-S at the upper end
of the predicted optimal frequency range.

E. Summary
We have shown that running a workload on more cores can

reduce energy consumption by two mechanisms:
1) allowing access to lower, more energy-efficient core

frequencies for equivalent throughput; and
2) reducing execution time and thus minimising the

energy contribution of the per-core static power and
the chip-wide uncore.

This result is enabled by low per-core static power, which we
have shown to be true for the S4-E. From this it follows that
the optimal policy for such devices is to run all cores at the
minimum frequency where utilisation is ≤ 100%, offlining
cores only when they idle. On S4-S however, we observed
comparatively high per-core static power, so the same policy is
not energy-optimal on that platform. However, we can predict
the optimal OP from a processor power model. We proposed an
algorithm utilising this, which we now implement and evaluate.

IV. MEDUSA: AN OFFLINE-AWARE FREQUENCY
GOVERNOR

Based on our insights, we have implemented an energy
management policy, medusa, in the Linux kernel running on
both Galaxy S4 platforms. The goal of this policy is to control
the CPU frequency and number of online cores to minimise
energy consumption by managing CPU slack time, but without
adversely affecting performance. The implementation is a
Linux “cpufreq” DVFS governor which controls frequency in
the standard way, but also configures the number of online
cores with the cpu_up() and cpu_down() primitives.

The policy selects a new operating point based on recent
history of the number of runnable threads and load on each
core. When the number of online cores does not need to
change, the frequency selection algorithm is very similar
to Linux’s ondemand or conservative governors; specifically,
attempt to choose the minimum frequency that keeps utilisation
≤ 100%. To select the number of cores to run, medusa uses as
input the platform-specific fthresh to attempt to maintain the
following invariants:

1) allow f > fthresh only if all cores are online; and
2) if f < fthresh, then only one core should be online.

Setting fthresh = 0 corresponds to a policy of onlining all
cores before increasing frequency at all—such a policy applies
for systems with very low Pidle, such as the S4-E. On the
other hand, setting fthresh = ∞ corresponds to maximising
frequency before onlining any additional cores, useful only on
(probably fictional) systems where Pdynamic is sub-linear in f .

In more detail, medusa runs every 100 ms, and executes
the following algorithm:

1) Select a candidate frequency fnew.
2) If fnew > fthresh, and the number of runnable

threads exceeds the number of online cores, online
an additional core.

3) If fnew ≤ fthresh, predict the frequency f ′new that
would be required to run the current load with n− 1



online cores. If f ′new ≤ fthresh, then offline one core
and switch to f ′new. Otherwise, switch to fnew.

4) If any core is below 5% utilisation, offline a core.

The candidate frequency fnew is that which is predicted to
maximise utilisation < 100%. f ′new is chosen by:

f ′new =
n

n− 1
× fcurrent × uavg ,

where uavg is the current average utilisation across all online
cores, and n/(n − 1) is the decrease in compute capacity
when switching from n to n−1 cores. We selected 100 ms on
that basis that other implementations use similar values: we
observed sampling periods of 50–500 ms, depending on the
device.

In practice, we apply averaging and hysteresis to most
calculations to improve OP stability. We also attempt to
increase frequency and online cores more aggressively after
load increases to improve responsiveness. The implementation,
including extensive configuration and debug support, is 1500
lines of C code.3

For S4-E, we observed that Pstatic is very low and thus
where possible, onlining cores before increasing frequency is
preferred. This is achieved by setting fthresh = 0. On S4-S, we
use fthresh = 810 MHz, which we selected using the results
in Figure 12.

V. EVALUATION

We now evaluate the energy consumption under medusa,
comparing it against some existing policies. We also investi-
gate the selection of fthresh, including a sensitivity analysis.

Two factors affect energy consumption: selection of the op-
timal OP for a workload, and adapting to workloads changing
over time. In the present work we focus entirely on the first
problem, however from an implementation perspective, these
same mechanisms address both issues. Furthermore, quality
of service is a significant aspect for policies deployed in real
devices. For example, it may be desirable from a user interface
perspective to increase the OP above energy optimal to provide
a certain degree to performance headroom so that sudden
changes in load appear smooth. Again, such trade-offs are
outside the scope of this paper.

A. Benchmarks
We evaluate medusa with a series of benchmarks of three

types. In the first case, we use the loadcpu workload at the
10, 25, 50 and 75% load levels. For each, we compare the
performance of medusa with the static-optimal setting, where
the OP is fixed to a particular frequency and number of cores
for the full run, corresponding to the setting that minimised
energy consumption from our results of Section II. Since this
synthetic workload is homogeneous, static-optimal is optimal
in this case. We also compare with the performance of the
policies that ship with the devices, which we call default.
On S4-S, this consists of the ondemand frequency governor,
plus a (closed source) userspace daemon called mpdecision
which controls the number of online cores. On S4-E, OP is,
like medusa, controlled entirely in the kernel with a modified
version of ondemand.

3The code is available for download at http://ssrg.nicta.com.au/projects/
energy-management.
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Fig. 13. Energy consumption of loadcpu on both devices under three energy-
management policies. For static-optimal the frequency and number of cores
is fixed.

Secondly, we use a video playback application configured
to use a software decoder, and play an H.264-encoded 60
second video. We compare medusa with default as above,
but also compare with two of the standard Linux DVFS
governors, ondemand and conservative. Since these control
only frequency, we repeated each four times, statically setting
the number of online cores to 1, 2, 3 and 4. We report the
minimum energy across the four scenarios.

Finally, we use two benchmarking applications, AnTuTu
3DRating and Vellamo HTML5. For medusa and default we
measure the energy consumption for each benchmark and also
report the result “score” as an attempt to quantify the impact
on performance which, as discussed above, is largely due to
different approaches in responding to workload variation. In
the case of Vellamo, since we are running in airplane mode,
the parts of the benchmark that require network connectivity
are not used.

All of these benchmarks are multi-threaded. For loadcpu,
as earlier, the total work is split over four processes. For video,
AnTuTu and Vellamo, the degree of parallelism is controlled
by the applications themselves. The related configuration op-
tions are left to their default values. For Vellamo, AnTuTu and
video, the screen is on at minimum brightness.

B. Results
Figure 13 shows the performance of medusa with the

loadcpu workload. On average, medusa achieves within 8%
(11% worse case) of static-optimal on S4-S, and within 1%
(5% worst-case) on S4-E. The default policy is on average
23% above optimal on S4-S (27% worst case) and 6% on S4-
E (with 19% worst-case).

Figure 14 shows the results of the video playback bench-
mark. On both platforms, medusa has the lowest energy
consumption: 88% of default on average. For ondemand, the
minimal energy is at 1 core on S4-S, and 4 cores on S4-E, and
for conservative, 2 cores on S4-S. We have no data on S4-E
for the conservative governor, which appears to significantly
over-estimate frequency on this platform. The optimal number
of cores is consistent with our expectations: on S4-E, onlining
all cores yields minimum energy, whereas for S4-S, that is not
necessarily true.

Figure 15 shows the results of AnTuTu 3DMark and
Vellamo HTML5 of medusa relative to default, for both energy
and benchmark score. In all cases, medusa has both a lower
energy consumption, and lower score, than default. On S4-
S, medusa reduces energy by an average of 26%, while the

http://ssrg.nicta.com.au/projects/energy-management
http://ssrg.nicta.com.au/projects/energy-management
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Fig. 14. Video playback energy consumption on both devices under medusa
and default, as well as Linux standard ondemand and conservative governors
with the number of cores set statically to that which minimises energy.
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Fig. 15. AnTuTu 3DMark and Vellamo HTML5 energy consumption and
score results of medusa, relative to default.

score decreases by only 10%. For S4-E, the energy and score
decrease by 6% and 7% respectively.

We have already shown that medusa performs well com-
pared with other policies under reasonably static workloads
such as loadgen and video playback. By contrast, Vellamo and
AnTuTu are dynamic workloads and as such, they are sensitive
to the algorithm used to react to changing load. However, by
using the benchmark score generated by these programs, we
can attempt a quantitative evaluation of medusa’s performance
under such workloads. Using score

energy as an overall figure of
merit, default and medusa perform within 1% of each other
on S4-E, but on S4-S, medusa outperforms default by 22%.

C. fthresh sensitivity analysis
In our implementation, we determined fthresh for S4-S

from a model of both the algorithm implemented by medusa,
and the predicted optimal OP. To determine the effect of this
choice on energy consumption, we performed a sensitivity
analysis. Using the loadcpu program, we ran five benchmarks
at 10, 15, 20, 30 and 40% total system load, and measured the
energy consumption using the medusa policy, with ffthresh set
to 486, 594, 702, 810, 918, 1026 and 1134 MHz. Figure 16
shows, for each threshold frequency, the average percentage by
which each benchmark exceeds its minimum observed energy.

We can see that our selection of 810 MHz based directly
from the theory produces the best results, consuming within
1.5% energy of the minimum on average. Furthermore, it
appears that the cost of incorrectly setting fthresh is higher if
it is overestimated. This is consistent with expectation, since
a higher threshold means the core spends more time at higher
frequencies, and the power curve grows rapidly in this area
due to the quadratic dependence on voltage. This behaviour
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Fig. 16. Energy consumption vs. fthresh selection, as a percentage above
minimum.

largely mirrors the predictions made in Figure 12. Specifically,
energy is not particularly sensitive to threshold selection within
a window of ≈ 300 MHz. While the theoretical approach to
determining fthresh appears reasonably accurate and provides a
good basis for understanding, we concede that the experimental
approach is simpler in practice.

VI. RELATED WORK

Xu et al. [19] consider the related problem of clusters
of DVFS-capable uni-core nodes, and prove that maximising
the number of nodes is power-optimal when dynamic power
dominates static. For periodic workloads, we show this to be
true when static power is low, regardless of dynamic power.

Ghasemazar et al. [6] takes a theoretical approach to
the problem of combining offlining and DVFS, developing
a control-theoretic feedback algorithm to select an operating
point. They demonstrate that increasing the number of online
cores always decreases the optimum frequency, and claim that
offlining unused cores is important. We show that for some
processors, the per-core static power contribution is so low
that offlining them saves negligible power, idle or otherwise.
Maggio et al. [13] also use control theory to optimise operating
point, specifically for the problem of video decoding.

Anderson and Baruah [1] consider the problem of choosing
frequency and core count in the context of real-time task
execution guarantees. From a dynamic-only power model, they
observe that power can be made arbitrarily small by increasing
the number of cores and reducing frequency, a similar result
to our low-Pstatic observations. For non-trivial per-core static
power, our results in Figure 10 indicate that as n → ∞, the
optimal frequency remains asymptotic, but tending towards a
non-zero value.

Li and Martinez [12] develop a number of heuristics to re-
duce the optimisation search space and algorithms to search for
the optimal operating point. The policy is reactive feedback-
based, and hence depends on online power measurement. They
claim that the optimal operating point depends heavily on the
power-performance curve of the particular processor. We show
this not to be the case where per-core static power is low.

Chen at al. [4] develops algorithms with proven complexity
bounds to solve the problem on a theoretical basis, considering
also the energy and time cost in switching between operating
points. Several authors [5], [10], [16] have considered the
problem of co-control of online cores and frequency scaling
to maximise performance under thermal or peak-power limita-
tions. These generally used desktop and server-class systems,
or simulations thereof.



Le Sueur and Heiser [11] investigate the relationship be-
tween DVFS and idle sleep states on several x86 and ARM
platforms. They show that on x86, the use of both DVFS
and C-states can improve energy efficiency. On various x86
platforms, they show that for periodic workloads, energy tends
to be minimised at minimum frequency (combined with the use
of C-states). This suggests that an approach similar to medusa
may be feasible on some x86 systems. Conversely, Bircher and
John [2] show that the power reduction capacity of C-states
exceeds that of DVFS. On embedded multi-cores, idle states
save little power, so the decision reduces to whether a core
should be online or offline. Consequently, minimum frequency
is always optimal for periodic workloads since there is no race-
to-idle benefit.

Gupta et al. [8] consider the cost of the uncore component
of power consumption on heterogeneous multi-core processors.
They show that on desktop-class systems, uncore consumes a
significant fraction of CPU energy, varying 20–80% of total
depending on workload, and that core and uncore power are
approximately equal at idle. Our data show that this is highly
platform dependent, with uncore consuming close to 100% of
idle power on S4-E and 20–50% on S4-S.

VII. LIMITATIONS AND FUTURE WORK

The main limitation of our work is in the assumptions made
in the processor power model. While we believe these to be
reasonable for a certain class of CPUs (namely, mobile multi-
cores), it is unlikely to apply to a wider range of devices. The
complexity of idle states in a typical x86 processor means that
race-to-idle may be optimal. Implementing a policy on such
devices therefore requires a full dynamic power model, which
is currently an unsolved problem for multi-core processors.

In the future we plan to extend medusa to incorporate
active power management, allowing the trading of performance
for a reduction in energy consumption. The most promising
approach appears to be to extend Koala [17] to multi-core.
It uses parameterised time and power models to make online
predictions of a system’s performance and energy response to
changes in the operating point, based on sampling performance
counters.

VIII. CONCLUSIONS

We have shown that for mobile multi-cores with low static
core power, offlining cores generally leads to increased energy
consumption. This occurs for two reasons: one, onlining ad-
ditional cores allows running at lower, more energy efficient
frequencies; and two, that the additional throughput allows
the faster completion of a workload, and thus reduces the
accumulation of static uncore power. When per-core static
power is high, we have shown that up to a certain frequency
(which we call the threshold frequency), DVFS is preferable
to onlining cores. However, once this frequency is reached,
onlining cores is preferred. We showed how to determine the
threshold frequency, and that this yields good results.

Based on these observations, we implemented medusa,
an offline-aware frequency scaling governor, in the Linux
kernel running on two Galaxy S4 smartphones; one with an
Exynos 5410 SoC, and another with the Snapdragon 600. We
showed that medusa is capable of achieving close to optimal
energy consumption for static workloads, and compared it with
several other policies, including the default policy shipping on
these devices, with favourable results.
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