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Abstract
We present an approach for automatically generating provably
correct abstractions from C source code that are useful for practical
implementation verification. The abstractions are easier for a human
verification engineer to reason about than the implementation and
increase the productivity of interactive code proof. We guarantee
soundness by automatically generating proofs that the abstractions
are correct.

In particular, we show two key abstractions that are critical for
verifying systems-level C code: automatically turning potentially
overflowing machine-word arithmetic into ideal integers, and trans-
forming low-level C pointer reasoning into separate abstract heaps.
Previous work carrying out such transformations has either done so
using unverified translations, or required significant proof engineer-
ing effort.

We implement these abstractions in an existing proof-producing
specification transformation framework named AutoCorres, devel-
oped in Isabelle/HOL, and demonstrate its effectiveness in a number
of case studies. We show scalability on multiple OS microkernels,
and we show how our changes to AutoCorres improve productivity
for total correctness by porting an existing high-level verification of
the Schorr-Waite algorithm to a low-level C implementation with
minimal effort.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Correctness
proofs

Keywords C verification; Isabelle/HOL

1. Introduction
Recent successes like the verified CompCert compiler [17] and
the seL4 microkernel [15] show that the verification of low-level
systems code has become feasible, although the effort expended for
these verifications is still high: the seL4 team reports 20 person years
for 10 000 source lines of C code. Formal verification at this low
level is especially important in safety and security critical systems,
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such as operating systems, real-time systems, or language runtimes,
where higher-level programming languages are not appropriate.

There are two broad approaches to low-level software verifica-
tion. The first is push-button verification, where even a relatively
unskilled user can use an automated verification tool to quickly
verify specific properties about her program, e.g., using software
model checking [3, 12]. While theoretically any property might be
checkable, practical success at scale has been achieved only for
specific domains, such as using APIs in correct sequence, avoiding
buffer overflows, or undefined behaviour. The second approach is
interactive verification, which requires skilled users and greater time
investment, but is able to verify deeper properties about the system,
such as the two landmark verifications [15, 17] mentioned above.
This approach is more flexible; the verification engineer has com-
plete freedom in style and form of properties as well as semantic
depth. She can for instance reason simultaneously about a program
with a VCG [30], prove refinement to a higher-level specification [7],
and prove more complex properties such as non-interference [20].

Much work has focused on making the automated systems
in the first approach more powerful. The goal of our work is to
simplify the interactive second approach and to drastically increase
its productivity, while simultaneously maintaining the soundness
guarantees the approach provides. C verification projects report that
a large part of C verification deals with mechanical complexities of
the C semantics, not with key ideas of the underlying algorithms [30].
In our AutoCorres tool1, we deal with the uninteresting complexities
of C automatically, allowing the user to focus her human creativity
on the algorithmic parts of verification. We do this by performing
automatic, proof-producing specification abstraction, transforming
a low-level specification in multiple steps into a more abstract one.
AutoCorres presents to the end user a representation of the program
that is simpler to reason about, while additionally producing a
proof that the original program is a formal refinement of the final
representation.

Specification abstraction has constraints that do not apply to
push-button verification. Firstly, we generate a single output per
program that has to be general enough not to sacrifice the flexibility
and freedom of the verification engineer in her choice of property,
program logic, or semantic depth. Secondly, our output specification
needs to be usable and readable by humans. CEGAR, for instance,
performs automatic abstraction and refinement by avoiding counter
examples generated by an SMT solver. This provides good results,
but a new model is automatically generated for each property of
interest, and these final models are unlikely to be human readable.
Finally, we aim at higher correctness assurance than other typical
automated methods: our transformation steps produce formal LCF-
style proofs in Isabelle/HOL [21].

1 http://www.ssrg.nicta.com.au/projects/TS/autocorres/
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This paper extends the existing AutoCorres tool by Greenaway
et al. [11] that transforms a C program into a shallow monadic em-
bedding in the specification abstraction style described above. While
previously AutoCorres performed well at control flow abstraction, it
lacked abstraction support for primitive C data types such as 32- or
64-bit machine words and for pointer reasoning. Both are the source
of considerable effort in C verification. Reasoning about ideal inte-
gers instead of finite words is a key difference between algorithm
verification and C implementation verification, and low-level heap-
based programs are of course prevalent in systems code. In a correct
C implementation of an abstract algorithm, these details will typ-
ically not play a major role. This means, ideally, the user should
automatically be presented with integers instead of machine words
and with an abstract heap model instead of low-level C memory
detail. Both are hard problems to solve automatically.

The contribution of this paper is to solve both of them by extend-
ing AutoCorres with two key abstractions that make it applicable
to large-scale reasoning about heap-based C programs. Namely, the
novelty lies in the combination of: (i) automatically carrying out
word and heap abstractions on input specifications, without requiring
user input; and (ii) simultaneously, generating a full LCF-proof that
these abstractions are sound. Previous work has either axiomatised
the abstraction, or required the abstractions and associated proofs
to be carried out manually. Using AutoCorres, one can carry out
algorithmic verification at a high level of abstraction, while obtain-
ing a machine-checked proof that the verification holds for the C
source program, or even the compiled binary when chained with
recent translation validation work [25].

Additionally, we demonstrate in two case studies that Auto-
Corres scales to code bases of at least tens of thousands of lines,
and that it indeed achieves a significantly higher level of abstraction
than direct C code verification. For the former, we show statistics
of running AutoCorres on a number of larger code bases used in
independent ongoing verification projects. For the latter, we examine
the Schorr-Waite graph marking algorithm [24], a popular pointer
verification benchmark. We show that a previous verification [18] of
partial correctness of the high-level algorithm requires only minimal
changes to become a low-level C implementation verification of
total correctness based on AutoCorres.

We begin in Sec 2 by briefly summarising the existing Auto-
Corres tool. Sec 3 discusses the integer abstraction for machine
words and Sec 4 how we automatically eliminate low-level heap rea-
soning. Finally, Sec 5 summarises the case studies that substantiate
the practical usability of our extensions to AutoCorres.

2. The AutoCorres Tool
Greenaway et al.’s AutoCorres tool [11] automatically abstracts
low-level C semantics into a monadic shallow embedding in the
interactive proof assistant Isabelle/HOL [21], and produces a proof
that it did so correctly. In particular, AutoCorres takes as input a pro-
gram in sequential C [14] which has been translated into Schirmer’s
Simpl language [23] using Norrish’s C-to-Isabelle parser [27].

Because AutoCorres uses Norrish’s parser’s output as its input,
it supports the same C subset as the parser. In particular, we support
loops, function calls, type casting, pointer arithmetic, structures and
recursion.

We do not support references to local variables, goto statements,
expressions with uncontrolled side-effects, switch statements using
fall-through, unions, floating point arithmetic, or calls to function
pointers. Integer arithmetic is architecture-defined, and in our
examples matches a two’s-complement 32-bit system.

Fig 2 shows the example of a C function max, its translation
max body into Simpl by the C parser, and its abstracted functional
Isabelle/HOL specification specification max ′ operating on signed

int max(int a, int b) {
if (a < b)

return b;
return a;

}

max ′ a b ≡
if a < b then b else a

max body ≡
TRY
IF {|´a int <s ´b int|} THEN

´ret int :== ´b int;;
´global exn var :== Return;;
THROW

ELSE
SKIP

FI;;
´ret int :== ´a int;;
´global exn var :== Return;;
THROW;;
GUARD DontReach ∅

SKIP
CATCH

SKIP
END

Figure 2. C function max, its translation max body into Simpl by
the C parser, and its AutoCorres abstraction max ′.

Simpl Monad Definition

– return x λs. ({(Normal x, s)}, False)
Skip skip return ()
Basic m modify m λs. ({(Normal (), m s)}, False)
Throw throw x λs. ({(Except x, s)}, False)
Cond c L R condition c L R λs. if c s then L s else R s
– fail λs. (∅, True)
Guard t g B guard g condition g skip fail

Table 1. Monadic functions with corresponding Simpl commands.

machine words produced by the existing AutoCorres tool. Auto-
Corres additionally produces a proof that max body refines max ′.

The Simpl language is a general intermediate language for se-
quential imperative programs, geared towards program verification.
It is intentionally verbose and full of low-level detail: the parser is a
trusted piece of the verification chain, and thus aims to produce the
most literal and conservative translation of C possible. These details
include abrupt termination as in return, break and continue,
and a ghost variable global exn var ′ for recording the reason for the
current exception.

The C parser emits inline Guard commands to rule out undefined
behaviour in C, such as divide-by-zero, signed integer overflow, or,
in this case, execution falling off the end of the (non-void) function.

This faithful, literal translation is not easy to reason about.
AutoCorres alleviates this problem for control flow by performing
a number of proof-producing abstraction steps, as depicted in
Fig 1. The first of these is a plain translation from deep to shallow
embedding, which enables equivalence transformations on the
program by rewriting. This shallow embedding forms the monadic
execution model that AutoCorres abstracted programs work in. It
uses an exception monad, which is a state monad with additional
support for non-determinism, exceptions and failure (the latter
representing irrecoverable program failure). The concrete type of
this monad in Isabelle is:

( ′s, ′a, ′e) monadE ≡ ′s⇒ (( ′e + ′a) × ′s) set × bool

The ⇒ stands for the function type that takes a single state ′s as
input and returns a pair (results, failed), made of the set of results
and a boolean failure flag. Non-deterministic functions are modelled
by returning a set of possible results. Each such result contains the
return value (either a normal value Normal ′a, or an exception value
Except ′e) and the resulting state ′s.
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Figure 1. The steps AutoCorres takes to translate a Simpl program to an abstracted output program. Dashed arrows represent unverified
translations, while solid arrows represent verified translations. Each phase beyond parsing is in Isabelle/HOL. Our extensions in this paper are
the Heap Abstraction and Word Abstraction phases.

Table 1 shows the corresponding monad for each imperative
Simpl construct. bind is written as >>= (or using the do . . . od
syntax), and loops are represented by the combinator whileLoop c B i
with loop condition c, body B, and initial loop iterator value i.

This first step is followed by a number of further transformations,
for instance simplifying control flow for abrupt return, eliminating
conservative translation artefacts, discharging guards against unde-
fined behaviour, lifting local variables from the imperative state into
lambda-bound variables in the monad, and type specialisation for
code that can be proved to never fail or never throw an exception.

While clearly useful to the human verification engineer, all of
these transformations are mostly syntactic. The semantic complexity
of C’s data types and reasoning about pointers, which are two of
the largest effort drivers in C source code verification, remain un-
changed. These are what we address in this paper. In the remainder
of this paper, we describe extensions to AutoCorres that add seman-
tic data abstractions with refinement theorems that chain down to
the C code.

3. Word Abstraction
The first key contribution of this paper is automatic and verified inte-
ger abstraction for machine words, allowing mathematical reasoning
over unbounded numbers.

3.1 Arithmetic in C
As a low-level language, C makes no attempt to hide details of
hardware arithmetic to the programmer. For instance, on a 32-bit
system, the range of the signed int datatype is −231 to 231 − 1,
while the range of unsigned int is 0 to 232 − 1. An overflow
occurs when the result of a calculation exceeds this range, while
an underflow occurs when the result is below the minimum value.
When the context is clear, we simply use the term overflow to refer
to both overflow and underflow.

The C standard [14] dictates different behaviours for signed and
unsigned datatypes when overflow occurs. For unsigned datatypes,
the result of the operation is simply calculated modulo 232; for
example 231 × 2 = 0. Signed arithmetic has stricter rules. The
C standard states that it is undefined behaviour for a program to
perform signed arithmetic that overflows: the compiler is free to
assume that such behaviour will never occur and, if it does occur,
is free to exhibit any behaviour it desires. In modern C compilers,
this is not an academic issue: for instance, gcc-4.7 will happily
optimise the signed expression s + 1 > s to true [29].

In the context of program verification, this means that a pro-
gram specification must precisely model unsigned overflow, and
ensure that signed arithmetic operations will not overflow. Norrish’s
C parser ensures this by translating variables to Isabelle/HOL’s fi-
nite word types; unsigned int’s are translated into the unsigned
word32 type, while int’s are translated into the signed sword32 type.
Additionally, for signed operations, the C parser emits guard state-
ments to check that the result does not overflow. For example, the

Incorrect Equation Counter-example

s = s+ 1− 1 s = 231 − 1 (undefined)
s = −(−s) s = −231 (undefined)

u+ 1 > u u = 232 − 1 (incorrect)
u× 2 = 4 −→ u = 2 u = 231 + 2 (incorrect)
−u = u −→ u = 0 u = 231 (incorrect)

Table 2. Examples of incorrect mathematical reasoning in C. Vari-
able s is a 32-bit signed int, while u is a 32-bit unsigned int.

signed C expression a + b is translated into:

do guard (λs. INT MIN ≤ sint a + sint b);
guard (λs. sint a + sint b ≤ INT MAX);
return (a +s b)

od

Here, the function sint of type sword32⇒ int converts the finite 32-bit
signed word type into the unbounded Isabelle/HOL integer type.
The analogous function unat similarly converts unsigned words into
natural numbers, and is used for unsigned expressions. We use the
s suffix (such as on the operator +s) to indicate that the operation
is being carried out on signed words, and use a similar w prefix for
unsigned word arithmetic.

While this approach allows C arithmetic to be correctly modelled,
actually reasoning about it remains burdensome. Table 2 lists some
‘obvious’ mathematical identities that are simply not true when
reasoning about C programs. Further, while Isabelle/HOL contains
extensive libraries of theorems about natural numbers and integers,
these theorems do not apply when verifying C programs. Larger
verification projects also experience the burden of word-proofs:
approximately 25% of the 30 000 lines of proof library developed
in the seL4 project [15] were dedicated to word-arithmetic proofs.

3.2 Word abstraction
Ideally, we would like to abstract word32 and sword32 data types
into unbounded natural numbers and integers respectively; this
would avoid the corner cases described above, and also allow
Isabelle/HOL’s existing proof libraries to be freely used in program
proofs. The question is how this can be done in a sound manner. We
can’t simply pretend that the underlying hardware can perform
arithmetic on arbitrarily large numbers, nor can we ignore C’s
requirement that signed arithmetic never overflows—or can we?

We observe that the program verifier must already prove that
signed arithmetic doesn’t fall out of the range −231 to 231 − 1,
because the C standard demands it. The C parser already inserts
corresponding proof obligations. We can thus abstract sword32 types
into int types, utilising the existing guard statements to know that
the abstract values will always remain in the range of representable
values at the concrete level.

Unsigned arithmetic is slightly more difficult; the Simpl program
will not contain any guards to ensure that overflow doesn’t occur,



and, more importantly, the source C program may actually rely
on overflow to occur. Despite this, for many functions unsigned
overflow is not expected and—if the program verifier is willing to
prove that it does not occur by having additional guard statements
in their abstracted output—we can abstract unsigned arithmetic to
natural numbers. We allow the user to select whether to use word
abstraction or not on a per-function basis.

An example where such abstraction makes sense is in a binary
search that calculates the middle element of an array:

unsigned int m = (l + r) / 2;

A typical verification condition that arises is showing the selected
element remains between the elements l and r:

l <w r −→ l ≤w (l +w r) divw 2 ∧ (l +w r) divw 2 <w r

If the terms l, m and r were of type nat, this theorem is solved
automatically using Isabelle/HOL’s built-in auto tactic. On the
original word32 type, however, an additional precondition unat l
+ unat r < 232 is required and the proof term must be manually
lifted into the naturals before it can finally be solved using existing
theorems in Isabelle/HOL’s library2.

3.3 Performing the abstraction
Our implementation of word abstraction converts local variables
and arguments of functions, but does not attempt to modify values
stored in memory or global variables. This means that the program’s
state remains unmodified, and the abstraction process only has to
adjust expressions in the program.

We generate a refinement theorem showing that the original
concrete program C refines our generated abstract program A:

abs w stmt P rx ex A C ≡
∀ s. P s ∧ ¬ failed (A s) −→

(∀ (r, t)∈results (C s).
case r of

Normal v⇒ (Normal (rx v), t) ∈ results (A s)
| Except e⇒ (Except (ex e), t) ∈ results (A s)) ∧

¬ failed (C s)

The precondition P states under which conditions our abs w stmt
assertion will hold. The theorem states that, assuming the abstract
program doesn’t fail, then (i) if A returns a value, it will be the
same value as C abstracted through the function rx; (ii) similarly, if
A raises an exception, it will have the same value as C abstracted
through ex; (iii) finally, if A doesn’t fail, then neither will C.

Our algorithm for generating an abstracted version of the pro-
gram is in the form of a set of syntax-directed rules. These trans-
lation rules can be applied in any setting, but in our context of
Isabelle/HOL, we use them by (i) first proving the translation rules
correct, and then (ii) using Isabelle/HOL’s resolution engine to apply
these rules. By carrying out these two steps in Isabelle/HOL, we
simultaneously obtain both the abstracted program and an LCF-style
proof of correctness that the abstraction is sound.

We begin this process by generating a schematic lemma where C
is instantiated to the program we want to abstract, while rx and ex
are set to an appropriate abstraction function. The abstract program
A and the precondition P are left unspecified (or schematic) and
are given the notation ?A1 and ?P1 respectively. As our algorithm
proceeds, these values will be incrementally instantiated. For our
midpoint example above, for instance, we start with the tautology:

abs w stmt ?P1 unat id ?A1 (return ((l +w r) divw 2))

abs w stmt ?P1 unat id ?A1 (return ((l +w r) divw 2))

2 A challenge to solve this seemingly trivial goal was issued to 3 experienced
verification engineers, with 10 minutes being the median time required to
discharge the goal. The human effort for the nat version is effectively zero.

Our goal is to discharge the assumption, leaving only the conclusion.
We find a rule from our ruleset that pattern-matches the concrete
program. Table 3 shows a sample of the word abstraction rules
used. In this example, we wish to abstract the return expression in
our concrete program, using the rule WRET. This instantiates A1 to
return ?A2, where ?A2 is a new schematic variable. Similarly, ?P1

in instantiated to (λ . ?P2):
abs w val ?P2 unat ?A2 ((l +w r) divw 2)

abs w stmt (λs. ?P2) unat id
(return ?A2) (return ((l +w r) divw 2))

where abs w val P f a c ≡ P −→ a = f c. That is, under precondition
P, a is the abstract version of c using the abstraction function f . We
again find a rule that matches this new proposition; in this case, WDIV:

abs w val ?P3 unat ?A3 (l +w r)
abs w val ?P4 unat ?A4 2

abs w stmt (λs. ?P3 ∧ ?P4) unat id
(return (?A3 div ?A4)) (return ((l +w r) divw 2))

Applying the rule leaves us with two new assumptions to discharge.
Solving the first will instantiate ?A3, the left-hand side of the
division, while discharging the second will instantiate ?A4, the right-
hand side. We continue this process of discharging assumptions and
creating new ones, using the rules WSUM and WTRIV, until we have no
assumptions left and are left with just the conclusion:

abs w stmt (λs. unat l + unat r ≤ UINT MAX) unat id
(return ((unat l + unat r) div 2)) (return ((l +w r) divw 2))

The values unat l and unat r correspond to the abstract versions of our
concrete program’s input parameters. To convert this theorem into
an abstract function, we replace unat l and unat r with fresh variables.
Additionally, the theorem only holds under the precondition that
unat l + unat r ≤ UINT MAX; we prepend a guard statement ensuring
that this holds. The generated abstraction thus becomes:

do guard (λs. l + r ≤ UINT MAX);
return (l + r div 2)

od

AutoCorres has approximately 40 rules built-in to process all
C statements and expressions, and uses an additional 11 for each
type that needs to be abstracted (e.g., signed words and unsigned
words). While typically these rules need not be modified (or even
understood) by users of AutoCorres, the rule sets can be extended
if the user wishes to abstract code-specific idioms that are sound
at the concrete level but become unprovable after abstraction. For
instance, the expression x > x + y can be used in C to determine
if the unsigned addition of x and y overflows; after unsigned word
abstraction, however, the user will be obliged to prove that x + y
doesn’t overflow, making the test useless. By extending the word-
abstraction rule-set with the custom rule:

abs w val P unat x x ′ abs w val Q unat y y ′

abs w val (P ∧ Q) id (UINT MAX < x + y) (x ′+w y ′<w x ′)

the test will be abstracted into the expression x + y ≤ UINT MAX,
allowing the original intent of the concrete code to be captured in
the abstraction.

Word abstraction is effective: for example, AutoCorres’s output
of the max function in Fig 2 precisely matches Isabelle’s built-in
definition of max on the nat’s; further, AutoCorres’s abstraction
of the standard C implementation of Euclid’s greatest-common-
denominator algorithm is equal to return (gcd a b), where gcd is
Isabelle’s implementation on the nat’s. More complex usages to
word arithmetic invariably cause the abstracted program to also be
more complex, as the user becomes obliged to prove the arithmetic
does not overflow. In our experience, however, the abstracted version
tends to be far simpler to reason about than the original input
program.



abs w stmt P rx1 ex L L ′

∀ r r ′. abs w val True rx1 r r ′−→
(abs w stmt (Q r) rx2 ex (R r) (R ′ r ′))

abs w stmt P rx2 ex
(do v← L; guard (Q v); R v od) (L ′>>= R ′)

WBIND

∀ s. abs w val (Q s) rx a c

abs w stmt Q rx ex (return a) (return c)
WRET

abs w val P unat a a ′ abs w val Q unat b b ′

abs w val (P ∧ Q ∧ a + b ≤ UINT MAX) unat (a + b) (a ′+w b ′)
WLE

abs w val P unat a a ′ abs w val Q unat b b ′

abs w val (P ∧ Q ∧ a + b ≤ UINT MAX) unat (a + b) (a ′+w b ′)
WSUM

abs w val P unat a a ′ abs w val Q unat b b ′

abs w val (P ∧ Q) unat (a div b) (a ′ divw b ′)
WDIV

abs w val True f (f b) b
WTRIV

Table 3. A selection of word abstraction rules. The Operators +w,
divw and ≤w operate on word32 types, while unannotated operators
are over the natural numbers.

Finally, this proof-producing method of abstracting programs
gives end-users an assurance that the output of AutoCorres is sound:
the word abstraction proofs fit into a chain of proofs linking the
original C-Simpl input to the final AutoCorres output.

4. Heap Abstraction
This section presents the second key contribution of this paper. We
automatically lift reasoning from low-level C memory to a more
abstract notion of multiple separate heaps that is commonly used in
high-level reasoning about pointer algorithms, while still allowing
the user to carry out low-level reasoning on specific functions that
require it. As with the previous section, we do so while generating a
proof of correctness showing that the abstraction is sound.

4.1 Byte-level versus typed-heap reasoning
C programs frequently require low-level access to memory. This
includes accessing memory in a byte-by-byte manner (such as
memcpy or memset implementations) or reusing the same region of
memory as a different type (such as in unions, malloc or free).

When reasoning about C programs, one of the first questions
to arise is how memory, or the system’s heap, should be formally
modelled. A typical approach in higher-level languages such as
Java [28] is to represent the contents of memory locations as a
datatype:

datatype value = Int int | Float float | IntPtr addr | · · ·

The heap can then be modelled as a function of type addr ⇒
value converting addresses to their values. However, such a heap
representation prevents us from performing the byte-level reasoning
described above.

An alternative approach is to simply model memory as a function
from addresses to individual bytes. For example, on a 32-bit system,
the heap would have type word32⇒ word8. On the surface, this naı̈ve
approach has many benefits: it is easy to understand, faithful to how
the hardware functions at a low level, and allows low-level C code
that interacts with memory at a low level (such as memcpy, memset,
casting pointers between types, etc.) to be reasoned about. While
not perfect (for example, there is no way to represent unmapped

void swap(unsigned ∗a, unsigned ∗b)
{

unsigned t = ∗a;
∗a = ∗b;
∗b = t;

}

swap ′ a b ≡
do guard (λs. ptr aligned a ∧ 0 /∈ {a .. +obj size a});

t← gets (λs. read (heap ′ s) a);
guard (λs. ptr aligned b ∧ 0 /∈ {b .. +obj size b});
modify (λs. heap ′ update (λs ′. write s ′ a (read (heap ′ s) b)) s);
modify (heap ′ update (λs. write s b t))

od

Figure 3. A simple implementation of swap in ANSI C, and its
translation by AutoCorres, without heap abstraction.

or invalid addresses), if we are unable to reason about this simple
model, we are going to struggle with anything more sophisticated.

Even this simple heap model, unfortunately, is difficult to work
with. Consider the simple word-swap function shown in Fig 3 with
its translation into Isabelle/HOL using an unmodified version of
AutoCorres. We may wish to prove the Hoare-triple:

{|λs. read (heap ′ s) a = va ∧ read (heap ′ s) b = vb|}
swap ′ a b
{|λrv s. read (heap ′ s) a = vb ∧ read (heap ′ s) b = va|}

Here, the function read takes the current state of the system’s heap
and a pointer of type ′a ptr, and decodes the bytes at this location
into an object of type ′a (in this example, a word32). The Hoare-triple
states that if a contains value va and b contains value vb in our initial
state, then the two values will be swapped in the final state.

This statement is not correct as written, however. For the post-
condition to hold, the precondition must be strengthened to ensure
that: (i) the pointers a and b are aligned to a 4-byte boundary; (ii) the
pointers a and b are not NULL; (iii) the pointers a and b do not wrap
around the end of the address space; and (iv) the pointers a and b do
not partially overlap (though if the pointers are equal, the function
remains correct). The first three of these additional conditions are
required by the C standard, while the fourth is required for the
post-condition to hold3.

Taking these additional preconditions into account, the correct
Hoare-triple for this function is:

{|λs. (read (heap ′ s) a = x ∧ read (heap ′ s) b = y) ∧
(ptr aligned a ∧ ptr aligned b) ∧
(0 /∈ {a .. +obj size a} ∧ 0 /∈ {b .. +obj size b}) ∧
(a 6= b −→ {a .. +obj size a} ∩ {b .. +obj size b} = ∅)|}

swap ′ a b
{|λrv s. read (heap ′ s) a = y ∧ read (heap ′ s) b = x|}

Here, ptr aligned indicates that a pointer of type ′a ptr has the correct
alignment required by type ′a, while {a .. +obj size a} indicates the
range of memory addresses occupied by the object in memory. With
this strengthened precondition, this Hoare-triple can now be proven
correct, with a little manual reasoning showing that updating parts
of the heap disjoint to a read don’t affect that read.

Clearly, if we wish to verify functions with significantly more
complexity than swap, a better approach is needed.

3 Low-level language aficionados will observe that in this simple example
not all the preconditions are strictly required: for instance, if the pointers a
and b are both aligned, then they can’t wrap around the edge of memory, nor
can they partially overlap. However, in more complex examples—such as
swapping larger structs—all of these preconditions are required.
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Figure 4. The heap lifting function.

4.2 The heap lifting approach
As we will see with the related work in Sec 6, most C verification
frameworks aim at a high-level memory model, easing the reasoning
about programs that interact with memory. Keeping the ability to
do byte-level reasoning, and providing formal argument about the
soundness of the high-level model are two essential characteristics,
which Tuch et al.’s heap lifting logic [27] provides. Our work
builds on Tuch’s approach, while addressing its scalability problem
explained further below. We hide the underlying C memory and
provide the user with pure abstracted heaps, exposing the underlying
model only when explicitly requested to.

In Tuch’s model, ghost state annotations are added to the C
source code to indicate what concrete type each address in the heap
should be interpreted as. Each address in memory can be marked
as either the first byte of a C type, such as an int or struct node;
the footprint of an earlier type, where the address simply continues a
previous type; or untyped memory. Such type tag source annotations
are typically required only after particular addresses in memory
need to be treated as a different type, such as calls to malloc or
free; the rest can be inferred automatically.

Tuch next defines a class of functions heap lift (see Fig 4) that
projects the byte-level heap (of type word32⇒ word8) into a partial
object-level heap (of type ′a ptr⇒ ′a option):

heap lift s p ≡
if type tag valid s p ∧ ptr aligned p ∧ 0 /∈ {p .. +obj size p}
then Some (read s p) else None

The Isabelle ′a option type has two possible values: None or Some a,
where a is an element of type ′a. The function “the” is defined such
that the (Some x) = x holds.

In the lifted heap, a particular address contains a valid object if
and only if (i) the entire range of addresses occupied by the object
are correctly tagged; (ii) the pointer being accessed is correctly
aligned; and (iii) the pointer is not NULL and does not wrap around
the end of the address space. If any of these conditions fail to hold,
the address resolves to None. The definition of the projected heap
immediately gives rise to the following rules:

heap lift s p = Some v

ptr aligned p

heap lift s p = Some v

0 /∈ {p .. +obj size p}

Informally, if a value is non-None on the projected heap, then the
pointer to it is valid on the concrete heap.

Moreover, the user can reason that objects in the projected heap
cannot partially overlap other objects or alias objects of different
types: for two objects to partially overlap, one object’s type tags
would be incorrect. This means that writes to valid addresses are
equivalent to functional updates on the projected heap:

heap lift s p = Some v ′

heap lift (write s p v) = (heap lift s)(p := Some v)

Here, f (n := v) indicates function f is updated at n to value v.
Reasoning at the level of lifted heaps greatly simplifies proofs

interacting with the heap. The correctness statement of our swap
function becomes:

{|λs. heap lift (heap ′ s) a = Some va ∧
(heap lift (heap ′ s) b = Some vb)|}

swap ′ a b
{|λrv s. heap lift (heap ′ s) a = Some vb ∧

(heap lift (heap ′ s) b = Some va)|}

This can be proved by simply unfolding the definition of swap ′,
executing a VCG and running Isabelle/HOL’s auto tactic with the
above rules.

4.3 Limitations of the heap lifting approach
Tuch’s heap lifting approach relies heavily on Isabelle’s simplifier
to automatically apply recursive conditional rewrite rules to change
low-level C operations into high-level heap updates. As programs
become more complex, so does application of the lifting predicates.
For instance, consider Suzuki’s challenge [26] to prove that the
following fragment returns 4 under the assumption that the four
pointers w, x, y and z are distinct:

w−>next = x; x−>next = y; y−>next = z; x−>next = z;
w−>data = 1; x−>data = 2; y−>data = 3; z−>data = 4;
return w−>next−>next−>data;

On this fragment of code, Isabelle/HOL fails to apply the heap-
lifting rules described above. The primary problem is the deep
nesting of write operations, preventing Isabelle’s simplifier from
identifying which rewrite rules to apply, because their recursive
preconditions become too large and too deep. Basically, at even
a moderately larger scale, the prover is already overloaded just
applying heap abstraction, and never proceeds to reasoning about
the actual semantics of the program.

Ad hoc heap lifting is also unsatisfactory on a more fundamental
usability level: while C programs need byte-level access to memory
on occasion, most C functions are type-safe. Ideally, for the majority
of type-safe code, we should present the user with a specification
that operates directly on the lifted heap, instead of requiring the user
to manually appeal to heap abstraction predicates.

4.4 Adding a state abstraction step
The approach we propose in this paper is to add an abstraction step
where we automatically translate the byte-level heap model within
the state into a multiple, typed-heaps state. We abstract the record
type globals, generated by the C parser to represent programs states,
into a new record type abs globals containing one heap per type used
in the program. Reasoning on such an abstracted state removes the
need to invoke lifting rewrite rules.

We start by analysing the source program to determine which
types the program accesses on the heap, i.e., which types are used as
arguments to the read and write functions described above. For each
heap type ′a required, we place two functions into the abs globals
record: an is valid function of type ′a ptr ⇒ bool and a heap
function of type ′a ptr ⇒ ′a. The former function determines if a
particular address contains a valid value (that is, ∃ x. heap lift s p =
Some x), while the latter function contains the actual values of each
address (the (heap lift s p)):

record abs globals =
is valid w32 :: word32 ptr⇒ bool
heap w32 :: word32 ptr⇒ word32
is valid node C :: node C ptr⇒ bool
heap node C :: node C ptr⇒ node C
· · ·

While splitting data and validity information initially appears more
complex than simply having a partial function ′a ptr⇒ ′a option, we



abs h stmt L ′ L ∀ r. abs h stmt (R ′ r) (R r)

abs h stmt (L ′>>= R ′) (L >>= R)
HBIND

abs h val P a c

abs h stmt (do guard P; gets a od) (gets c)
HGETS

abs h modifies P a c

abs h stmt (do guard P; modify a od) (modify c)
HMODIFY

abs h val P a c
abs h val (λs. P s ∧ is valid w32 s (a s)) (λs. True)

(λs. ptr aligned (c s) ∧ 0 /∈ {c s .. +obj size (c s)})

HPTR

Table 4. Syntax-directed rules used while abstracting swap.

have found this approach allows a greater separation of concerns
between what data is contained at an address, and which addresses
are valid. Further, while the data at a particular address frequently
changes, the validity of an address rarely changes. Splitting the two
dimensions makes it clear that changes to one are independent of
the other.

4.5 Abstracting programs to typed-heaps states
We wish to generate both a new version of the input program using
the new abstract state and a proof showing that our abstraction
is correct: that the input concrete program C refines the abstract
one A (here concrete just refers to the state before applying heap
abstraction). For this, we need a refinement relation between their
states. So for each C, we generate a state abstraction function st of
type globals⇒ abs globals, where the abstract validity functions have
the value heap lift s p 6= None and the abstract data functions have
the value the (heap lift s p). We then show refinement using:

abs h stmt A C ≡
∀ s. ¬ failed (A (st s)) −→

(∀ (r, t)∈results (C s).
case r of

Normal r⇒ (Normal r, st t) ∈ results (A (st s))
| Except r⇒ (Except r, st t) ∈ results (A (st s))) ∧

¬ failed (C s)

Informally, the abs h stmt predicate states that a monadic program C
is a refinement of an abstract program A when the state is abstracted
using st if—for all states where A does not fail—then, for every
concrete state that program C produces, program A produces a
corresponding abstract state. Additionally, for each abstract state,
if program A does not fail, then neither will C. The first of these
conditions states that program A produces a superset of states of
program C. Thus, if a property holds for all states in program A, then
we can reason that it also holds on program C. The second condition
allows us to reason that program C will never fail by proving that
program A never fails. With these two conditions, we can typically
prove useful properties about our original concrete program without
needing to ever reason on it directly, as we will demonstrate in Sec 5.

Our algorithm to generate the abstract program again uses a set
of syntax-directed rules to translate statements and expressions in
our concrete program to abstract equivalents. As in word abstraction,
we apply the rules using Isabelle/HOL’s unification engine to
simultaneously generate the abstract version of the program and
a proof that the abstraction is sound. Table 4 shows a subset of the
35 rules built into AutoCorres used for heap abstraction.

The rules split into three categories: (i) abs h stmt rules,
which abstract statements; (ii) abs h modifies rules, which ab-
stract abs h modifies statements that perform heap updates; and
(iii) abs h val rules, which abstract expressions, where:

abs h val P a c ≡ ∀ s. P (st s) −→ c s = a (st s)

do guard (λs. is valid w32 s a);
t← gets (λs. s[a]);
guard (λs. is valid w32 s b);
modify (λs. s[a := s[b]]);
modify (λs. s[b := t])

od

Figure 5. The swap function translated by AutoCorres with heap
abstraction enabled.

abs h modifies P a c ≡ ∀ s. P (st s) −→ st (c s) = a (st s)

Informally, when carrying out heap abstraction, three primary cases
must be handled:

Heap reads: Operations on the concrete specification that access
the heap, such as read, need to be abstracted into an access
of the equivalent abstract function. One difficulty is that for
many concrete operations, the abstract equivalent is only sound
under side-conditions: a read is only equivalent to a functional
access if the pointer being read from is valid. To resolve this,
when translating an expression, we emit suitable abstract guard
statements for each translated expression.

Heap modifies: Operations that modify the heap are handled sim-
ilarly to heap reads. A write operation becomes a functional
update on the appropriate heap, again with the side-condition
that the pointer being written to is valid.

Guard statements: Guards on the concrete specification are ab-
stracted into accesses of the appropriate is valid function, in
particular guard statements that pointers are aligned (ptr aligned),
are non-NULL and don’t wrap memory (0 /∈ {p .. +obj size p}).

Some care must also be taken with C structures. The C parser
translates field accesses such as p−>data into pointer offset values,
such as read s (Ptr (ptr val p +w offset ′′data ′′)). A naı̈ve translation
of such a term will convert this into direct pointer access of data,
while we would prefer to present to the user this statement as
accessing the data C field of the node C record.

Fig 5 shows the swap program after heap abstraction has been
applied. We use the notation s[p] and s[p := v] for reading and writing
to the appropriate heap for pointer p in state s, respectively. As
expected, read and write operations on the heap are converted to
functional accesses and updates, while checks of pointers have been
abstracted into checks on the is valid w32 function. Our correctness
statement for swap is as follows:

{|λs. is valid w32 s a ∧ is valid w32 s b ∧ s[a] = x ∧ s[b] = y|}
swap ′ a b
{|λrv s. is valid w32 s a ∧ is valid w32 s b ∧ s[a] = y ∧ s[b] = x|}

This goal is automatically discharged by applying a VCG and
running Isabelle/HOL’s built-in auto tactic, without needing to
appeal to further rules. Since we have eliminated any application
of complex conditional rewrites for the prover in a separate guided
abstraction phase, Isabelle can now work directly on simpler data
types with all the power of its built-in automation.

More complex examples, such as Suzuki’s challenge described
above, can also be solved simply: Isabelle/HOL’s auto immediately
discharges the generated verification conditions. This is a first
indication that we have solved the inherent scalability problem
of Tuch’s approach. Sec 5 will show in more detail that our
abstracted programs are now as easy to reason about as higher-level
specifications that have been manually tuned for formal verification.

Our abstraction is integrated into AutoCorres, which generates
heap-lifted specifications with a formal proof that they are correct
abstractions of their input C programs. The internal rules used to
carry out the abstraction need not be understood by users of Auto-
Corres, but, like with word abstraction, can be extended by end-users



Program LoC Functions
CPU Time (s) Lines of Spec Avg. Term Size

C PARSER AUTOCORRES C PARSER AUTOCORRES C PARSER AUTOCORRES

seL4 kernel 10 121 551 1443.6 2368.1 20 576 11 928 318 112
CapDL SysInit 2 079 163 130.9 743.3 3 353 2 183 184 72
Piccolo kernel 936 56 37.6 214.9 1 748 1 198 372 182
eChronos 563 40 11.7 62.8 715 537 180 108
Schorr-Waite 19 1 2.9 8.7 120 57 766 311

Table 5. Comparison of the specifications generated by Norrish’s C parser and our modifications to AutoCorres of 5 larger C programs. CPU
time measurements are recorded on a 3.3GHz Intel Xeon E5-2643 with 128GiB of RAM.

to add additional support for abstracting code-level idioms used by
a particular program.

4.6 Mixing low-level and high-level code
One of our original motivations for using C was its ability to access
the heap at a low-level. Heap abstracted code, however, requires that
memory is firmly tagged to being accessed only as a single type,
preventing type-unsafe functions such as memset from being used.

Our solution is to allow the user to indicate which functions
should be abstracted and which should remain in the low-level
memory model. The former gain the benefits of simplified reasoning
with heap abstraction, while the latter allows type-unsafe operations.

Calls from abstracted code to low-level code use the function
exec concrete M, where M is the low-level function to be executed.
exec concrete non-deterministically selects a low-level state corre-
sponding to the current high-level state, executes the monad M, and
then translates the resulting low-level state back into an abstracted
state. The following Hoare rule allows reasoning about calls to
exec concrete (where st is the state translation function):

{|λs. P (st s)|} M {|λr s. Q r (st s)|}
{|P|} exec concrete M {|Q|}

An analogous function exec abstract allows calls to abstracted
functions from low-level code. With these constructs, we have
proven properties such as:

{|λs. is valid w32 s p|}
exec concrete (memset ′ p 0 4)
{|λ s. is valid w32 s p ∧ s[p] = 0|}

This triple states that the call to the type-unsafe memset function,
which sets 4 bytes at location p to 0, has the effect of performing
an update on the abstracted word32 heap. While proving this rule
requires low-level reasoning, once in place, the user can simply
reason about the abstract behaviour of memset without further low-
level reasoning.

5. Case Studies
In this section, we give statistics on applying AutoCorres in larger
projects, and examine two smaller examples to demonstrate that we
indeed achieve abstraction and increased verification productivity.

5.1 Automatic abstraction in the large
While the examples shown in this paper are very simple, AutoCorres
is designed to scale to non-trivial applications, and is being used in
several ongoing verification projects. These projects are: (i) CapDL
SysInit, a user-level program designed to bootstrap complex systems
running on the seL4 microkernel; (ii) eChronos, a high-assurance
real-time operating system for small micro-controllers without
memory protection; (iii) Piccolo, a prototype separation kernel;
and (iv) the seL4 microkernel [15], a formally verified operating
system kernel. The first three of these projects are aiming to prove

full functional verification of low-level C code from existing high-
level specifications. AutoCorres is being used to reduce the effort of
such proofs by minimising the gap between function specification
and the code level. For the seL4 microkernel, AutoCorres is being
trialled as a method of reducing proof maintenance costs when new
functionality is added to the kernel.

Table 5 gives statistics for these projects, including number of
functions and lines of code. We additionally provide the metrics
lines of specification and term size for both the output of Norrish’s
C parser and AutoCorres. Since both tools directly emit terms
in Isabelle/HOL’s internal representation, we estimate the former
number by using Isabelle/HOL’s pretty printer for the generated
definitions. The term size metric measures the number of nodes in
the abstract syntax tree of a specification. While neither metric is a
perfect match for specification complexity, the numbers reinforce
our intuition that the output of AutoCorres is significantly simpler
than that of the C parser with lines of spec ranging from 25% to
53% smaller and the term sizes ranging from 40% to 61% smaller.
While AutoCorres has a longer running time than the C parser, for
both tools this cost tends to be a one-off, where the results of the
translation can be saved and reused. Further, AutoCorres translates
functions in parallel, so real time is significantly less than CPU time.

We know of two further larger-scale projects that use AutoCorres
in ongoing C verifications: the verification of a flash file system, and
the verification of LEDA graph library checkers [22]. Statistics have
not yet been obtained for these projects.

While there is clear interest in using the tool from independent
verification projects, the numbers above can only give an indirect
indication of effort reduction; more conclusive results on this
scale will only be available when these longer-running projects are
completed. In the meantime, to demonstrate that AutoCorres indeed
achieves significant abstraction and reduces verification effort, we
examine two concrete examples: in place-list reversal and the Schorr-
Waite algorithm.

The Schorr-Waite algorithm, Richard Bornat famously argued,
is “the first mountain that any formalism for pointer aliasing should
climb.” [5]. His advice has not gone unheeded, with many papers
demonstrating new program verification techniques on the algorithm:
Hubert and Marché, for instance, already verified a concrete C imple-
mentation using the Caduceus verification condition generator and
the Coq theorem prover [13]. Earlier still, Mehta and Nipkow [18]
verified the algorithm on a simple high-level imperative language in
Isabelle/HOL, producing a readable machine-checked proof.

From our perspective, the latter proof is interesting because
it verifies the Schorr-Waite algorithm on an idealised imperative
language. The heap uses a Burstall-Bornat split heap memory
model [5]; there is no concept of invalid pointers, such as unaligned
pointers or unmapped memory, and the address space is infinite. All
of these assumptions fail to hold on a low-level language such as C.

A useful benchmark, then, is to determine if we can implement
this algorithm in standard C, automatically abstract the program
with AutoCorres, and apply Mehta and Nipkow’s existing proofs—



struct node ∗reverse(struct node ∗list) {
struct node ∗rev = NULL;
while (list) {

struct node ∗next = list−>next;
list−>next = rev; rev = list; list = next;

}
return rev;

}

reverse ′ list ≡
do (list, rev)←

whileLoop (λ(list, rev) s. list 6= NULL)
(λ(list, rev).

do guard (λs. is valid node C s list);
next← gets (λa. a[list]→next);
modify (λs. s[list→next := rev]);
return (next, list)

od)
(list, NULL);

return rev
od

Figure 6. ANSI C implementation of in-place linked list reversal,
and its translation by AutoCorres.

written nearly a decade before AutoCorres was even conceived and
carried out on a very abstract heap—to the result. We do not expect
the proof to apply unchanged, but the goal is for any changes to be
minimal.

5.2 In-place list reversal
Before we examine Schorr-Waite, we set the stage with the simpler
example of in-place linked list reversal, which has become the hello
world of pointer aliasing programs. The list-reversal function takes
a singly-linked list, destructively modifies it so that the order of the
nodes is reversed, and returns a pointer to the head of the new list.

Mehta and Nipkow used this example as an introductory exercise
in their work [18], so it serves as a good example for demonstrating
the differences between their program representations and those of
AutoCorres. To carry out their proof, Mehta and Nipkow developed
a simple while language. The language doesn’t have a concept of
a heap; instead, memory is modelled as global variables with the
function type ′a ref ⇒ ′a, where ′a ref can either be a Ref pointer
or Null. These heaps are modified by assigning a new value to the
variables, typically with only a single address updated. There is one
such heap variable for each record field and type in the program.

For in-place list reversal, Mehta and Nipkow’s algorithm and
proof statement is as follows:

{List next p Ps}
q := Null;
WHILE p 6= Null INV {. . . } DO

t := p; p := next (addr p); next := next(t→ q); q := t
OD
{List next q (rev Ps)}

The predicate List next p Ps indicates that there is a valid linked list in
the heap next starting from address p. The list Ps states the pointers
of every node in the linked list, and has a definition equivalent to:

List h p [] = (p = Null)
List h p (x·xs) = (p = Ref x ∧ List h (h x) xs)

Their proof proceeds by building a library of theorems about the
behaviour of the List predicate, providing an invariant for the while
loop, running a VCG on the statement, and finally discharging the
goals using built-in Isabelle/HOL tactics. The bulk of the work is in
the library of list theorems, with just a few lines of main proof.

{R = reachable (relS {l, r}) {root} ∧ (∀ x. ¬ m x) ∧ iR = r ∧ iL = l}
t := root; p := Null;
WHILE p 6= Null ∨ t 6= Null ∧ ¬ tˆ.m INV {. . . } DO

IF t = Null ∨ tˆ.m THEN
IF pˆ.c THEN

q := t; t := p; p := pˆ.r; tˆ.r := q
ELSE

q := t; t := pˆ.r; pˆ.r := pˆ.l; pˆ.l := q; pˆ.c := True
FI

ELSE
q := p; p := t; t := tˆ.l; pˆ.l := q; pˆ.m := True; pˆ.c := False

FI
OD
{(∀ x. (x ∈ R) = m x) ∧ r = iR ∧ l = iL}

Figure 7. Mehta and Nipkow’s correctness statement of the Schorr-
Waite algorithm, reproduced from [18].

Fig 6 shows our C implementation of Mehta and Nipkow’s list
reversal, together with the corresponding output of AutoCorres. To
port the proof, we had to resolve the following three differences:

(i) Valid addresses in the original proof are differentiated from
the Null pointer using the ′a ref data type, while C uses the NULL
sentinel value. This difference alone required tweaks in the majority
of list definitions and proof statements; despite this, we could use
the original proof scripts mostly unchanged.

(ii) In Mehta and Nipkow’s proof there is no concept of an invalid
heap access as there is in C. In contrast, the output of AutoCorres
contains guard statements to ensure that pointer accesses are valid.
We were able to adjust the definition of List to additionally assert
that all elements in the list are valid pointers; this was enough to
automatically discharge the guards in the final proof.

(iii) The original proof shows partial correctness, while Auto-
Corres requires total correctness for its refinement theorem to hold.
We extended Mehta and Nipkow’s proof to include a termination
argument; in particular, we showed that the size of the list yet to be
reversed is decreasing. This argument carries over to AutoCorres.

With these adjustments, we could complete the same main proof
of correctness using the same loop invariant as Mehta and Nipkow.
Overall, only minor effort was required to get a C-level correctness
guarantee out of a high-level algorithmic proof.

5.3 Schorr-Waite algorithm
The Schorr-Waite algorithm [24] enumerates all nodes in a graph.
While such a problem can be trivially solved using a stack linear in
the size of the graph, the Schorr-Waite algorithm requires only two
bits of storage per node. The algorithm achieves this by reversing
pointers as it walks the graph so that it is able to backtrack in
memory, and later restoring the pointers so that the original input
graph is restored by the end of the algorithm. Because of its low
memory requirements, the Schorr-Waite algorithm was originally
proposed as the core element of a mark-and-sweep garbage collector;
graph nodes not reached by the algorithm are no longer live, so
can be reallocated. For brevity, we do not attempt to describe the
algorithm in detail, but instead refer interested readers to one of the
many descriptions available [13, 18, 24].

We base our C implementation shown in Fig 8 directly off
the high-level imperative implementation of Mehta and Nipkow,
reproduced in Fig 7. Each graph node contains two pointers l and r
pointing to the left and right child respectively. Additionally, each
graph node contains two bits. The marked bit m is set when a node
has been visited by the algorithm. When the algorithm completes,
all nodes reachable from the root will have their marked bit set.
The child bit c is used to track which children of the current node
have already been visited. Mehta and Nipkow’s proof states that,



assuming R is the set of nodes reachable from the root of the graph
root and that no nodes are marked, then, after the algorithm finishes,
all nodes in the set of addresses R will be marked, and the pointers
of all nodes will match what they started as. The implementation
uses the same while-language as in the previous example, but with
the additional syntax aˆ.f for accessing the heap f at location a and
a := f ˆ.v for updating the heap f at location a to value v.

After translating our C implementation of Schorr-Waite using
our extended version of AutoCorres, we reuse Mehta and Nipkow’s
existing proof script to verify the algorithm. This reuse presents the
same set of differences as in the list reversal problem:

(i) Again, replacing ′a ref with NULL sentinel C pointers causes no
significant semantic changes to the proof, but does require updates
to the base definitions.

(ii) Since the original model has no concept of invalid addresses,
it is not possible to construct an invalid graph in Mehta and Nipkow’s
memory model, as every graph shape is supported by the algorithm.
We have no such luxury, so we need to add a new precondition that
all nodes in the set of reachable addresses R are valid and a new
invariant repeating this fact.

(iii) Again, the original proof is a partial correctness result, while
we desire total correctness. We modify Mehta and Nipkow’s proof to
include a new termination argument, requiring around 160 lines of
new proof script. In particular, we annotate the main loop body with
the measure used in Bornat’s proof [5], and show that it decreases.

Overall, while several changes were required to the base defini-
tions of Mehta and Nipkow’s proof script to apply it to the output
of AutoCorres, most of these changes were simple, while the main
body of the original proof could be used unchanged. Table 6 shows
the number of lines for our modified proof and for Mehta and Nip-
kow’s original. The list definitions shared 48 lines (76%) while the
main body of the proof shared 335 lines (66%). Of the remaining
lines, the majority of changes were differences in program syntax
and subtle differences in the output of the VCG tools.

We also include numbers from Hubert and Marché’s Coq proof of
a C implementation semantically equivalent to our implementation.
Lines of proof script are not directly comparable between the
two provers: Isabelle/HOL tends to provide more automation than
Coq (often resulting in smaller proof scripts); however, Mehta and
Nipkow’s proof was intended to be highly readable (leading to a
longer, more verbose proof script). Generously assuming Isabelle to
be twice as productive as Coq, the size reduction compared to the
previous C verification is striking.

Overall, in both examples we were able to apply an existing
proof of an abstract algorithm almost directly to our automatically
produced abstraction of a low-level C implementation. Even without
taking into account that we proved stronger statements than the orig-
inal, the size increase was moderate at most, and, more importantly,
the proof complexity remained unchanged, with unchanged or only
minimally adjusted invariants. This clearly shows that C verification
can be performed from first principles at a comfortable level of
abstraction.

6. Related Work
Abstracting finite machine words into ideal integers is a standard
technique for manual algorithm verification, formal or informal,
which is famously [4, 29] easy to get wrong. Most modern C
verification frameworks work directly with finite machine arithmetic,
preferring the incurred cost over potential unsoundness. Of the large
source code verifications to date, the Verisoft project [1] abstracted
finite machine types to ideal integers in a manual proof at the ISA
level, inducing similar guards to ours on the source code level. In
comparison, our abstraction is fully automatic and can be selective.

As mentioned, our heap abstraction approach builds on Tuch
et al.’s [27] base memory model, bypassing their shallow version

void schorr waite(struct node ∗root) {
struct node ∗t = root, ∗p = NULL, ∗q;
while (p != NULL || (t != NULL && !t−>m)) {
if (t == NULL || t−>m) {
if (p−>c) {

q = t; t = p; p = p−>r; t−>r = q;
} else {

q = t; t = p−>r; p−>r = p−>l;
p−>l = q; p−>c = 1;
}
} else {

q = p; p = t; t = t−>l; p−>l = q;
p−>m = 1; p−>c = 0;
}
}
}

Figure 8. Our implementation of the Schorr-Waite algorithm in C.

Component This Work M/N H/M

List definitions 64 62 ∼ 900
Partial correctness 528 489 ∼ 1 400Fault freedom 44 —
Termination 160 — ∼ 900
Miscellaneous 11 26 —

Total 807 577 3317

Table 6. A comparison of the lines of proof required for our work,
for Mehta and Nipkow’s proof [18] in Isabelle/HOL (M/N), and
Hubert and Marché’s proof [13] in Coq (H/M).

of heap lifting, but retaining the foundational aspect of deriving
all higher-level concepts from first principle. Later work indicated
significant manual effort in the use of Tuch’s model at larger
scale [30]. Our main contribution over Tuch is to break the barrier
to larger-scale application and provide a scalable, fully automatic,
and easy to use abstraction on top of this foundational model. We
inherit the ability to soundly drop down to byte-level reasoning for
type-unsafe code.

Other memory models include reasoning on the low level only,
for instance the C compiler verification in CompCert [17]. Similarly,
Ellison and Roşu [9] define a highly complete and validated C
semantics with a memory model that is essentially a map to blocks
of bytes. This is closer to the C standard than our base model, but
verification relying on the standard alone is insufficient, since it
is routinely violated on purpose in systems code [15]. Our model
makes explicit compiler and architecture assumptions, and we use
binary translation validation [25] to prove that the compiler correctly
implements our model even when the code violates the standard.

Most C verification frameworks strive for abstraction and some
aim to consolidate low- and high-level views. Usually this is not
done foundationally, but axiomatically. Moy’s translation of C into
the FramaC framework with the Jessie-plugin for instance [19],
provides an axiomatic typed-heap memory model with limited
support for pointer casts. The SMT-based VCC tool [8], originally
with an untyped memory model, also supports a typed semantics,
but the abstraction is justified by a pen and paper argument only.

Other approaches use separation logic to reason about C mem-
ory [2], which can be defined directly on a low-level memory view.
The program logic used to reason on C is largely orthogonal to the
memory model. For instance, it is trivial to instantiate our abstracted
heaps into existing separation logic frameworks [16].



Chlipala [6] proposes manually-guided proof-producing abstrac-
tion directly from machine code. Our work aims for full automation.
The approaches are not incompatible: one could imagine a fully
automated abstraction in our style as far as it carries and continuing
manually in Chlipala’s style from there on.

To summarise, the key differentiator of our heap abstraction work
is that it allows reasoning (i) at both a typed-heap model and byte
level, (ii) that the lifting is automatic, (iii) that the tool supports
any C Standard retyping/casting operations, and (iv) provides an
LCF-style foundational proof.

7. Conclusion
We have presented two automatic, proof-producing abstractions that
significantly ease the interactive formal verification of C programs.
Both are implemented in the AutoCorres tool, on top of an existing C
verification framework with a proof chain down to binary code [25].

We have demonstrated in two case studies how the verification of
low-level C code can now proceed on the same level of abstraction
as previous verifications of idealised algorithms.

The automated abstractions provide an obvious reduction of
cognitive complexity for the verification engineer, with an associated
increase in human productivity and potential for further mechanical
automation. This is not the only benefit of the approach. Compared
to just a better VCG with more automation for a specific logic, the
automated abstraction approach is agnostic about the logic and the
kind of verification to be conducted. For instance, it is easy to use a
separation logic on top, to connect to a VCG, to make our output an
intermediate step in a larger refinement proof, or to use it as a base-
level model for proving non-interference in the style of Murray et
al [20]. These are diverse logics that can be chosen freely depending
on the application area. A purely VCG-based approach would have
to decide up front to support a specific one.
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AutoCorres is currently being used in a num-
ber of larger C verification projects at different
institutions, including the verification of a complex
large-scale graph library, the verification of a file
system, and the verification of a real-time operating
system for high-assurance systems.

Finally, the AutoCorres tool described in this
paper is available under an open-source BSD-style
license at [10].
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