
CAmkES Glue Code Semantics

Matthew Fernandez, Peter Gammie, June Andronick, Gerwin Klein, Ihor Kuz

April 2013

NICTA is funded by the Australian Government through the Department of Communications and the Australian
Research Council through the ICT Centre of Excellence Program. NICTA is also funded and supported by the
Australian Capital Territory, the New South Wales, Queensland and Victorian Governments, the Australian National
University, the University of New South Wales, the University of Melbourne, the University of Queensland, the
University of Sydney, Griffith University, Queensland University of Technology, Monash University and other
university partners.

Copyright c© 2013 NICTA, ABN 62 102 206 173. All rights reserved except those specified herein.

This material is based on research sponsored by Air Force Research Laboratory and the Defense Advanced Research
Projects Agency (DARPA) under agreement number FA8750-12-9-0179. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory,
the Defense Advanced Research Projects Agency or the U.S.Government.

2

Abstract

This document describes the formal dynamic semantics of CAmkES glue code, in particular of
the communication stubs generated for components at compile time. The semantics is based on a
simple concurrent imperative language with message passing that is easy to extend and instantiate
for specific applications. Instead of one generic semantics for all systems, we take the approach
of generating a high-level semantic description for each specific ADL component specification to
ease verification of specific systems in the future.
We show the definitions and types for expressing components and glue code, and provide some
examples of generated Isabelle theories with synchronous, asynchronous, and shared memory
communication.

3

Contents

1 Introduction 6

2 Concurrent Imperative Syntax and Semantics 8

3 Datatypes 12
3.1 Messages . 12
3.2 Local State . 13
3.3 Components . 14
3.4 Global State . 14

4 Convenience Definitions 15
4.1 Local Component Operations . 15

4.1.1 UNIVc . 15
4.1.2 Internal Step . 15
4.1.3 User Steps . 15

4.2 Communication Component Operations . 16
4.2.1 Discard Messages . 16
4.2.2 Arbitrary Requests . 16
4.2.3 Arbitrary Responses . 16
4.2.4 Event Emit . 16
4.2.5 Event Poll . 17
4.2.6 Event Wait . 17
4.2.7 Memory Read . 17
4.2.8 Memory Write . 18

5 Connector Components 19
5.1 Event Components . 19
5.2 Shared Memory Components . 20

6 Component Behaviour 21
6.1 Local Component State . 22
6.2 Untrusted Components . 22
6.3 Trusted Components . 22

7 Example – Procedures 23
7.1 Generated Base Theory . 24

7.1.1 Types . 24

4

7.1.2 Interface Primitives . 24
7.1.3 Instantiations of Primitives . 26

7.2 Generated System Theory . 28
7.2.1 Types . 28
7.2.2 Untrusted Components . 28
7.2.3 Component Instances . 29
7.2.4 Initial State . 29

8 Example – Events 30
8.1 Generated Base Theory . 30

8.1.1 Types . 30
8.1.2 Interface Primitives . 31
8.1.3 Instantiations of Primitives . 31

8.2 Generated System Theory . 32
8.2.1 Types . 32
8.2.2 Untrusted Components . 32
8.2.3 Event Components . 33
8.2.4 Component Instances . 33
8.2.5 Initial State . 33

9 Example – Dataports 35
9.1 Generated Base Theory . 35

9.1.1 Types . 35
9.1.2 Interface Primitives . 36
9.1.3 Instantiations of Primitives . 37

9.2 Generated System Theory . 38
9.2.1 Types . 38
9.2.2 Untrusted Components . 38
9.2.3 Component Instances . 39
9.2.4 Shared Memory Components . 39
9.2.5 Initial State . 39

10 Example – System Level Reasoning 41
10.1 Architectural Properties . 42
10.2 Behavioural Properties . 43

5

1 Introduction

This document shows the formal Isabelle/HOL [3] specification of the behaviour of CAmkES
component systems defined by ADL descriptions [2]. This formal specification is intended to
apply to the glue code; the generated communication stubs that are provided to the user by the
CAmkES platform. It extends and supplements the previous report which described the static
semantics of component and system specifications [1]. Together these two reports form the formal
specification of the CAmkES ADL. Although this is its most interesting part, the specification
presented here goes beyond providing just the glue code semantics. Instead we provide an abstract
high-level specification of the behaviour of an entire CAmkES component system.
The specification is high-level, because it abstracts from the underlying kernel mechanisms and
message formats. Instead, it is based on a general concurrent message passing framework that can
transmit messages of arbitrary high-level types. Instantiating this framework we restrict it to the
kinds of message types of the ADL description and map CAmkES mechanisms to the message
passing primitives. Showing that the kernel and glue code indeed implement this high-level
semantic view is the main proof obligation of the future glue code correctness proof.
The idea of the specification is to provide a high-level view of the behaviour of a component
system using semantic mechanisms that nevertheless map reasonably easily to the glue code
implementation and the underlying kernel mechanisms that provide architecture and communi-
cation boundary enforcement. The basic communication principle of the underlying semantic
framework is synchronous message passing. This is presented in a way that makes it convenient
to additionally model atomic asynchronous events and shared memory reads/writes by adding
intermediate simulated components. These intermediate model processes map to kernel event
buffers and the usual behaviour of shared memory pages. At the expense of making the shared
memory component more complex, it would be feasible to explicitly include the effects of weak
memory models. We do not do this here, because the intended application scenario is a unicore
setting.
Similar to how the instantiation of a component system is generated from its ADL description
in conjunction with provided user code, we generate the formal specification of a complete
CAmkES component system from the same ADL description together with a set of generic
base definitions in this document and a set of user-provided behaviour definitions for trusted
components. Trusted components are those that are claimed to be more constrained in their
behaviour than the architecture boundaries enforce.
The remainder of this report is structured as follows. We first introduce the semantic concurrency
framework the glue code definitions are based on, in Chapter 2. We then proceed to define the
basic data types that instantiate this semantic framework to CAmkES systems, in Chapter 3. After
this, in Chapter 4 we can define the building blocks that the generated glue code specifications
will further instantiate and use. Chapter 5 defines the intermediate event and memory components

6

mentioned above and Chapter 6 provides default instantiations of types and definitions that the
user may choose to override.
Chapter 7, Chapter 8 and Chapter 9 show example specifications produced from a number of
small CAmkES ADL descriptions, illustrating the output of the generation phase. These examples
show the actual glue code specifications that fit the corresponding generated C code. A more
detailed system is presented in Chapter 10 to illustrate how to define and use trusted components.

7

2 Concurrent Imperative Syntax and
Semantics

This chapter introduces a small concurrent imperative language with synchronous message
passing. The sequential part of the language is a standard, minimal, Turing-complete While-
language. It is sufficient to express the semantics of CAmkES glue code and the behaviour of
small trusted components. It can be extended easily with procedures and other programming
language concepts in standard ways if the behaviour of larger trusted components needs to be
described. For this document, we concentrate on the ADL and glue code semantics and keep the
language as simple as possible.
The message passing mechanism is a slight variation of standard synchronous message passing
instructions send and receive that would map directly to seL4 synchronous IPC. The standard
mechanism in labelled transition systems would identify the message with a message label and
potentially a payload. In our setting, we extend this concept slightly to the instructions Request
and Receive that come with two labels, one for a question and one for the corresponding answer
that is provided in the same execution step. The standard mechanism can be obtained simply by
leaving out answers, e.g. by setting the answer type to unit.
We additionally allow these messages to depend on the state when they are sent as a question and
to modify the local state to store the content of an answer.
This variation allows us to conveniently use the same mechanism for modelling memory for
instance, where the response from memory is instantaneous, or to model asynchronous messages,
where the effect is simply to store the message in a buffer.
Below follows the datatype for sequential commands in the language. We first define the type of
(shallowly embedded) boolean expressions to be a function from the state ’s to bool.

type synonym ’s bexp = "’s ⇒ bool"

The type of sequential commands itself is parameterised by a type ’a for answers, a type ’q for
questions, and the type ’s for the state of the program.
The alternatives of the data type are the usual:
• Skip, which does nothing,
• a local operation that can model any function on the local state ’s, such as a variable

assignment for instance,
• standard sequential composition,
• standard if-then-else,
• standard while loops with a boolean expression and a body,
• binary non-deterministic choice,

8

• message sending (request),
• and finally message receiving (response).

In Isabelle, this is:

datatype (’a, ’q, ’s) com

= Skip ("SKIP")

| LocalOp "’s ⇒ ’s set"

| Seq "(’a, ’q, ’s) com" "(’a, ’q, ’s) com"

(infixr ";;" 60)

| If "’s bexp" "(’a, ’q, ’s) com" "(’a, ’q, ’s) com"

("(IF _/ THEN _/ ELSE _)" [0, 61] 61)

| While "’s bexp" "(’a, ’q, ’s) com"

("(WHILE _/ DO _)" [0, 61] 61)

| Choose "(’a, ’q, ’s) com" "(’a, ’q, ’s) com"

(infixl "t" 20)

| Request "’s ⇒ ’q set" "’a ⇒ ’s ⇒ ’s set"

| Response "’q ⇒ ’s ⇒ (’s × ’a) set"

For notational convenience we introduce infinite loops as an abbreviation. They are for instance
used in event handling loops.

abbreviation
LOOP_syn ("LOOP/ _")

where
"LOOP c ≡ WHILE (λ_. True) DO c"

After the sequential part, we are now ready to define the externally-visible communication
behaviour of a process.
A process can make three kinds of labelled steps: internal τ steps, message sends, and message
receives. Both of the latter are annotated with the action/payload of both the request and
instantaneous response (if any) of that message.

datatype (’a, ’q) seq_label

= SL_Internal ("τ")
| SL_Send ’q ’a ("�_, _�")

| SL_Receive ’q ’a ("�_, _�")

The following inductive definition now gives the small-step or structural operational semantics of
the sequential part of the language. The semantics judgment is a relation between configurations,
labels, and follow-on configurations. A configuration consists, as is usual in such settings, of a
command and local state ’s.
The two interesting rules are at the top: a Request action val command can make a step labelled
as �α, β� from state s to s’ if α is one of the actions that is enabled by action in state s, and
if val extracts s’ from the response β in s. Similarly, a Response action command progresses
from s to s’ with label �α, β� if β is among the possible responses for the request α, and if s’
is in the possible successor states after potentially extracting α’s payload into the local state.
The other rules are a standard small-step semantics for a minimal nondeterministic imperative
language. Local and terminating steps produce τ transitions, all other labels are passed through

9

appropriately.
inductive small_step ::

"(’a, ’q, ’s) com × ’s ⇒ (’a, ’q) seq_label ⇒
(’a, ’q, ’s) com × ’s ⇒ bool"

("_ →_ _" [55, 0, 56] 55)

where
Request:

"[[α ∈ action s; s’ ∈ val β s]] =⇒
(Request action val, s) →�α, β� (SKIP, s’)"

| Response:

"(s’, β) ∈ action α s =⇒ (Response action, s) →�α, β� (SKIP, s’)"

| LocalOp:

"s’ ∈ R s =⇒ (LocalOp R, s) →τ (SKIP, s’)"

| Seq1:

"(c1, s) →α (SKIP, s’) =⇒ (c1;; c2, s) →α (c2, s’)"

| Seq2:

"[[(c1, s) →α (c1’, s’); c1’ 6= SKIP]] =⇒ (c1;; c2, s) →α (c1’;; c2, s’)"

| IfTrue:

"[[b s; (c1, s) →α (c1’, s’)]] =⇒ (IF b THEN c1 ELSE c2, s) →α (c1’, s’)"

| IfFalse:

"[[¬ b s; (c2, s) →α (c2’, s’)]] =⇒ (IF b THEN c1 ELSE c2, s) →α (c2’, s’)"

| WhileTrue:

"[[b s; (c, s) →α (c’, s’)]] =⇒
(WHILE b DO c, s) →α (c’;; WHILE b DO c, s’)"

| WhileFalse:

"¬ b s =⇒ (WHILE b DO c, s) →τ (SKIP, s)"

| Choose1:

"(c1, s) →α (c1’, s’) =⇒ (c1 t c2, s) →α (c1’, s’)"

| Choose2:

"(c2, s) →α (c2’, s’) =⇒ (c1 t c2, s) →α (c2’, s’)"

Note that the generic nature of the LocalOp command lets us choose the atomicity of local actions
as appropriate for the language. Since we are in a message passing setting, the atomicity of
internal τ actions is not important for the generation of verification conditions.
With the semantics for the sequential part, we can now define composition of sequential processes
into systems.
For this purpose, we define the global state of a component system as a function from process
names ’proc to configurations. The type ’proc will later be instantiated with a type that
enumerates precisely all process names in the system.
type synonym (’a, ’proc, ’q, ’s) global_state =

"’proc ⇒ ((’a, ’q, ’s) com × ’s)"

With this, we can now define an execution step of the overall system as either any enabled

10

internal τ step of any process, or as a communication step between two processes. For such
a communication step to occur, two different processes p1 and p2 must be ready to execute a
request/response pair with matching labels α and β.

inductive
system_step ::

"(’a, ’proc, ’q, ’s) global_state ⇒ (’a, ’proc, ’q, ’s) global_state ⇒ bool"

("_ → _" [55, 56] 55)

where
LocalStep:

"[[gs p →τ c’; gs’ = gs(p := c’)]] =⇒ gs → gs’"

| CommunicationStep:

"[[gs p1 →�α, β� c1’; gs p2 →�α, β� c2’; p1 6= p2;

gs’ = gs(p1 := c1’, p2 := c2’)]]
=⇒ gs → gs’"

From this point, we could go on to provide the usual definitions of finite and infinite execution
traces and properties on these, depending on which flavour of properties are desired for a specific
verification (e.g. invariants, safety, liveness). For the purposes of defining the glue-code semantics
we only need the one-step execution, and can therefore leave open which expressive power is
desired on top of this semantic structure.
This concludes the definition of the small concurrent imperative base language. In the following,
we use this language to express the high-level semantics of CAmkES ADL glue code as it maps
to the seL4 microkernel.

11

3 Datatypes

This chapter builds up the basic data types that are necessary to cast CAmkES glue code in
terms of the concurrent imperative language. In particular, we define data types for the kinds
of variables glue code interacts with, the type of messages that CAmkES components send and
receive, the local state of components, the resulting type of components and finally the partially
instantiated, but still generic, global state of a component system.

3.1 Messages

Processes communicate via messages, which represent IPC payloads in seL4. The only message
operations performed in a CAmkES system are initiated by the glue code. Variable data contained
in messages are represented using the following data type. This is conceptually equivalent to
param_type from the ADL model, with a value attached.

datatype variable

= Boolean bool

| Char char

| Integer int

| Number nat

| String string

| Array "variable list"

Messages are sent from one process to another as questions and acknowledged with answers.
Communication with function call semantics – ‘procedures’ in CAmkES terminology – is
represented by a sequence of two transmissions; a call and the return. The call message takes a
nat parameter that is an index indicating which method of the relevant procedure is being invoked.
The variable list of a call message contains all the input parameters, while the variable list of a
return message contains the return value, if there is one, and the output parameters.
Event and shared memory connections are modelled using an intermediate component. This is
explained in more detail in Chapter 5.

datatype question_data

— Inter-component questions
= Call nat "variable list"

| Return "variable list"

— Questions from components to events
| Set

| Poll

— Questions from components to shared memory
| Read nat

| Write nat variable

12

datatype answer_data

— Answers from events to components
= Pending bool

— Answers from shared memory to components
| Value variable

— An answer that conveys no information
| Void

record (’channel) question =

q_channel :: ’channel

q_data :: question_data

record (’channel) answer =

a_channel :: ’channel

a_data :: answer_data

Message transmission is accomplished using a matching pair of Request and Response actions.
This correspondence arises from using the same channel in a question and answer. A channel in
this representation corresponds to a connection in the implementation.

3.2 Local State

In this section we define the local state of components. There are three kinds of components:
user-defined, event buffers, and shared memory.
We keep the local state of a component parameterised to allow the user to represent as much (or
as little) of the concrete state of a component as appropriate for a specific verification. If the local
state of a component is not relevant to our current aim, it can be instantiated with unit.
As mentioned, communication channels involving events and shared memory are modelled using
an intermediate component with its own local state. For events, the intermediate component has a
single bit of state indicating whether there is a pending signal or not. This is consistent with the
desired semantics of the implementation, that emitting an event that is already pending has no
effect.
The local state of a shared memory component is a mapping from address offsets (or indicies) to
variable values. At this level of abstraction, every shared memory region is considered infinite
and all operations on the region are represented as manipulations of well-defined types. There is
no loss of expressiveness here as raw byte accesses can be represented by mapping each offset to
a variable of subtype Number.

datatype ’component_state local_state

= Component ’component_state

| Event bool

| Memory "(nat, variable) map"

13

3.3 Components

We model each component in the system as a process. The type itself is only partially instantiated
to let the type representing the local state of a component be stated more precisely later as
described above.

type synonym (’channel, ’component_state) comp =

"(’channel answer, ’channel question, ’component_state local_state) com"

3.4 Global State

The global state of a system is a mapping from component instance identifiers to a pair of compo-
nent (i.e. program text) and local state. The global state and local state types are parameterised
with general types so they can be instantiated to specifically apply to a given system. During
generation, a global state is derived that covers all component instances; that is, the generated
global state is total.

type synonym (’inst, ’channel, ’component_state) global_state =

"(’inst, (’channel, ’component_state) comp ×
’component_state local_state) map"

14

4 Convenience Definitions

This section defines static functionality that the generated glue code semantics relies on. It
provides the basic building blocks for the CAmkES communication mechanisms. They can also
be used as building blocks for users describing the behaviour of trusted components.

4.1 Local Component Operations

4.1.1 UNIVc

The set of all possible states a component can be in. This is essentially any local state with the
exception of the states representing events and shared memory.

definition
UNIVc :: "’component_state local_state set"

where
"UNIVc ≡ {x. case x of Component _ ⇒ True | _ ⇒ False}"

4.1.2 Internal Step

An internal step in a component that arbitrarily modifies its own local state. Note that it is not
possible for an event or shared memory component to take this step.

definition
internal :: "’component_state local_state ⇒

’component_state local_state set"

where
"internal s ≡ case s of Component _ ⇒ UNIVc | _ ⇒ {}"

4.1.3 User Steps

A representation of internal in the concurrent imperative language. That is, an arbitrary local
step.

definition
UserStep :: "(’channel, ’component_state) comp"

where
"UserStep ≡ LocalOp internal"

15

4.2 Communication Component Operations

4.2.1 Discard Messages

Receive a Void message and do nothing in reaction.

definition
discard :: "’channel answer ⇒ ’component_state local_state ⇒

’component_state local_state set"

where
"discard a s ≡ if a_data a = Void then {s} else {}"

4.2.2 Arbitrary Requests

Non-deterministically send any message on a given channel. This provides a way of specifying
unconstrained behaviour of a component given access to a particular channel. The command
produces the set of all messages on a given channel as possible questions and receives any
response with a fully nondeterministic local state update.

definition
ArbitraryRequest :: "’channel ⇒ (’channel, ’component_state) comp"

where
"ArbitraryRequest c ≡ Request (λ_. {x. q_channel x = c}) (λ_ _. UNIVc)"

4.2.3 Arbitrary Responses

Non-deterministically receive any message on a given channel. The command receives any
message, makes a nondeterministic local state update, and returns the set of all possible responses
β on the given channel.

definition
ArbitraryResponse :: "’channel ⇒ (’channel, ’component_state) comp"

where
"ArbitraryResponse c ≡
Response (λ_ _. {(s’,β). s’ ∈ UNIVc ∧ a_channel β = c})"

4.2.4 Event Emit

Emit an event. The command sends the message Set on the given channel and discards any
response to model asynchronous behaviour with respect to the event buffer components. The
message is independent of the local state s.

definition
EventEmit :: "’channel ⇒ (’channel, ’component_state) comp"

where
"EventEmit c ≡ Request (λs. {(|q_channel = c, q_data = Set|)}) discard"

16

4.2.5 Event Poll

Poll for a pending event from an asynchronous buffer component. The command sends a Poll

message to the buffer component, and expects a message a back that has the form Pending b

with a boolean payload b. This payload is embedded in the local state of the component using the
user-provided function embed.

definition
EventPoll :: "’channel ⇒

(’component_state local_state ⇒ bool ⇒ ’component_state local_state) ⇒
(’channel, ’component_state) comp"

where
"EventPoll c embed ≡

Request (λ_. {(|q_channel = c, q_data = Poll|)})
(λa s. case a_data a of Pending b ⇒ {embed s b} | _ ⇒ {})"

4.2.6 Event Wait

Wait for a pending event. The command takes a channel c, and embedding function embed (see
above). Because the set of target states is only non-empty when the pending bit of the polled
event is set, this has the effect of blocking the component’s execution until the event is available.

definition
EventWait :: "’channel ⇒
(’component_state local_state ⇒ bool ⇒ ’component_state local_state) ⇒
(’channel, ’component_state) comp"

where
"EventWait c embed ≡

Request (λ_. {(|q_channel = c, q_data = Poll|)})
(λa s. case a_data a of Pending b ⇒ if b then {embed s b} else {}

| _ ⇒ {})"

4.2.7 Memory Read

Read from a shared memory location. As mentioned above, shared memory is modelled as a
separate process in our glue code semantics. The command below issues a Read request message
to this process with a specified address, and expects an immediate response of the form Value v

back, which is embedded into the local state with the same mechanism as above.

definition
MemoryRead :: "’channel ⇒
(’component_state local_state ⇒ nat) ⇒
(’component_state local_state ⇒ variable ⇒ ’component_state local_state) ⇒
(’channel, ’component_state) comp"

where
"MemoryRead c addr embed ≡

Request (λs. {(|q_channel = c, q_data = Read (addr s)|)})
(λa s. case a_data a of Value v ⇒ {embed s v} | _ ⇒ {})"

17

4.2.8 Memory Write

Write to a shared memory location. The command sends a Write message to the memory
component with specified address and value (which are extracted from the local state) and does
not expect a response.

definition
MemoryWrite :: "’channel ⇒ (’component_state local_state ⇒ nat) ⇒
(’component_state local_state ⇒ variable) ⇒
(’channel, ’component_state) comp"

where
"MemoryWrite c addr val ≡
Request (λs. {(|q_channel = c, q_data = Write (addr s) (val s)|)}) discard"

This concludes the list of the basic operations from which the glue code is composed. We now
proceed to define the intermediate communication components for events and shared memory.

18

5 Connector Components

As mentioned in previous sections, we represent events and shared memory as components. These
connector components, unlike the component instances in the system, always have a well-defined,
constrained execution because they are effectively implemented by the kernel. This section
outlines the definition of the program text and local state of these components.
The semantics of small steps in the concurrent imperative language are such that a request and a
response can only correspond and allow a global state transition when the question and answer
match. Additionally, all communication between component instances and connector components
is atomic, in the sense that they involve a single global transition consisting of a single request-
response pair. The implication of this is that an untrusted component cannot disrupt the execution
of an event or shared memory component causing it to stop responding to other components.
Untrusted component definitions may contain unsafe transitions involving malformed messages,
but these transitions can never be taken in a global step because there is no corresponding unsafe
step in the connector component definition.

5.1 Event Components

We represent a CAmkES event connector as a component always listening for Set or Poll

questions that then simultaneously responds with the relevant answer. In particular, the local state
is expected to be of the form Event s, and the component listens to messages of the form Set or
Poll. No other messages are enabled. If a Set is received, the local state becomes Event True,
and the response back is Void. If the message is Poll, the local event state is cleared, and the
response message contains the previous event state s.

definition
event :: "’channel ⇒ (’channel, ’component_state) comp"

where
"event c ≡ LOOP

Response (λq s’. case s’ of Event s ⇒
(case q_data q of

Set ⇒ {(Event True, (|a_channel = q_channel q, a_data = Void|))}
| Poll ⇒ {(Event False, (|a_channel = q_channel q, a_data = Pending s|))}
| _ ⇒ {}))"

An event component always starts without a pending event.

definition
init_event_state :: "’component_state local_state"

where
"init_event_state ≡ Event False"

19

5.2 Shared Memory Components

We represent shared memory as an always listening component that reads or writes information
into its local state. Executing these reads and writes unconditionally accurately represents the
behaviour of a read/write region of memory. The implementation is similar to event, it merely
replaces a one-place buffer with a map.

definition
memory :: "’channel ⇒ (’channel, ’component_state) comp"

where
"memory c ≡ LOOP

Response (λq s’. case s’ of Memory s ⇒
(case q_data q of

Read addr ⇒ {(Memory s,

(|a_channel = q_channel q, a_data = Value (the (s addr))|))}
| Write addr val ⇒ {(Memory (s(addr 7→ val)),

(|a_channel = q_channel q, a_data = Void|))})
| _ ⇒ {})"

The initial state of a shared memory component is an empty map. A shared memory region is
assumed to be zeroed on startup.

definition
init_memory_state :: "’component_state local_state"

where
"init_memory_state ≡ Memory empty"

In CAmkES ADL descriptions, shared memory regions can have a type, typically defined as a C
struct. For now only the default type Buf is represented in this model. The model can be trivially
extended to represent user types as components with a memory local state that have additional
constraints on what can be read from or written to the state.

type synonym Bufd_channel = unit

definition
Bufd :: "(Bufd_channel ⇒ ’channel) ⇒ (’channel, ’component_state) comp"

where
"Bufd ch ≡ memory (ch ())"

20

6 Component Behaviour

The definitions of a full system are expected to come from a combination of generated and
user-provided theories. The CAmkES generator utility creates a base theory using the types and
definitions previously discussed that defines primitive operations of a specific system. The user is
then expected to provide a theory that defines the trusted components of the system, building on
top of these definitions. The generator also produces a theory describing the system as a whole
that builds on top of the user’s intermediate theory. Final reasoning about system properties is
expected to be done in another theory building on this generated system theory.
These theory dependencies are depicted in Figure 6.1.

Base

User

System

Final

User-provided

Generated

Figure 6.1: Theorem dependencies

The remainder of this section describes the default contents of the intermediate user theory if
none other is provided.

When using the generated theories, the user is expected to provide the following type instantiations
and definitions:

• A type for component_state representing the local state that should be represented for
each component;
• An initial component_state for untrusted components to be given on startup; and
• A (possibly empty) mapping from component instance identifiers to trusted component

definitions.

21

If parts of this are unnecessary for the user’s aims, then they can import the default implementa-
tions described below.

6.1 Local Component State

The user should specify a type for component_state if they want to reason about the behaviour
of user-provided code. If not, then the type unit captures the irrelevance of this.

type synonym component_state = unit

The generated theories need to be provided with a default value for the local state type. This is
used as the initial local state for untrusted components. This definition must be visible even if
there are no untrusted components in the system, although in this case it will not be used.

definition
init_component_state :: component_state

where
"init_component_state ≡ ()"

6.2 Untrusted Components

Any component which does not have its definition supplied will be given a generated definition
that allows it to non-deterministically perform any local operation or send or receive anything
on any channel available to it. Without providing definitions of any trusted components it will
generally be impossible to reason about anything beyond architectural properties of the system.

6.3 Trusted Components

Trusted components should be given a defined program text (type component) and an initial local
state. The user should provide a definition of trusted, a mapping from component instances
to a pair of component and initial local state. Any instance not present in the mapping will be
assigned the broad definition described in the previous paragraph.
The default mapping is as defined below, empty, causing all instances to fall back on their
untrusted definitions. The types component and lstate are overridden in the generated theories
and do not need to be provided here or by the user, but they make the definition of trusted more
readable.

type synonym (’channel) component = "(’channel, component_state) comp"

type synonym lstate = "component_state local_state"

definition
trusted :: "(’inst, (’channel component × lstate)) map"

where
"trusted ≡ empty"

22

7 Example – Procedures

In this section we provide an example of the generated types and definitions that are derived from
a CAmkES procedure interface. Throughout, this section uses an example system involving two
components defined by the following CAmkES specification:

p r o c e d u r e Simple {

s m a l l s t r i n g echo_string(i n s m a l l s t r i n g s);

i n t echo_int(i n i n t i);

i n t echo_parameter(i n i n t pin , out i n t pout);

};

component Client {

c o n t r o l ;
u s e s Simple s;

}

component Echo {

p r o v i d e s Simple s;

}

a s s e m b l y {

c o m p o s i t i o n {

component Echo echo;

component Client client;

c o n n e c t i o n seL4RPC simple(from client.s, t o echo.s);

}

}

The system can be depicted as two components connected with a single interface, in Figure 7.1.

echo client

Figure 7.1: Hello world

The types and definitions presented in this section are semantically identical to those generated
for the system above. However, the order in which entities are introduced and the white space has

23

been modified for better readability.

7.1 Generated Base Theory

7.1.1 Types

Data types are generated to enumerate the connections in the system, channel, and the component
instances in the system, inst. As this system only has a single connection, the channel data type
is trivial. Note that the inst type enumerates component instances, not component types.

datatype channel

= simple

datatype inst

= client

| echo

For each component type, a data type is generated that enumerates the interfaces of that compo-
nent.

datatype Client_channel

= Client_s

datatype Echo_channel

= Echo_s

This type does not indicate whether the interfaces are outgoing or incoming, or what type of
interface they represent. All component type definitions are parameterised with a mapping from
this type to channel. When a component type is instantiated, this mapping must be specified to
describe the architecture of the system. In this example system, both component instances each
have their single interface mapped to the only connection, simple.

7.1.2 Interface Primitives

This section describes the glue code specifications generated for each interface of each component
type. For an outgoing procedure interface, a definition is generated for each method in that
interface, prefixed by “Call”, the component name and the interface name. These can be composed
with each other and user-provided steps to form a process that describes the execution of the
component.
The interface in this example has three methods, echo_string, echo_int and echo_parameter,
hence three separate call definitions are generated. These functions take a sequence of embedding
and projection functions into and out of the component’s local state. The types of these functions
are derived from the parameter types of the method and are used for marshalling arguments.
For example, echo_string takes a smallstring input parameter, s, which necessitates a pro-
jection function, sP , as a parameter to Call_Client_s_echo_string. Conversely, the method
returns a smallstring parameter, necessitating an embedding function, embed as a parameter. In

24

general, an input parameter requires a projection, an output parameter or return value requires an
embedding and an input/output parameter requires both.

definition
Call_Client_s_echo_string :: "(Client_channel ⇒ channel) ⇒
(’cs local_state ⇒ string) ⇒
(’cs local_state ⇒ string ⇒ ’cs local_state) ⇒
(channel, ’cs) comp"

where
"Call_Client_s_echo_string ch sP embed ≡
Request (λs. {(|q_channel = ch Client_s,

q_data = Call 0 (String (sP s) # [])|)}) discard ;;

Response (λq s. case q_data q of Return xs ⇒
{(embed s (case hd xs of String v ⇒ v),

(|a_channel = ch Client_s, a_data = Void|))} | _ ⇒ {})"

definition
Call_Client_s_echo_int :: "(Client_channel ⇒ channel) ⇒
(’cs local_state ⇒ int) ⇒
(’cs local_state ⇒ int ⇒ ’cs local_state) ⇒
(channel, ’cs) comp"

where
"Call_Client_s_echo_int ch iP embed ≡
Request (λs. {(|q_channel = ch Client_s,

q_data = Call 1 (Integer (iP s) # [])|)}) discard ;;

Response (λq s. case q_data q of Return xs ⇒
{(embed s (case hd xs of Integer v ⇒ v),

(|a_channel = ch Client_s, a_data = Void|))} | _ ⇒ {})"

definition
Call_Client_s_echo_parameter :: "(Client_channel ⇒ channel) ⇒
(’cs local_state ⇒ int) ⇒
(’cs local_state ⇒ int ⇒ int ⇒ ’cs local_state) ⇒
(channel, ’cs) comp"

where
"Call_Client_s_echo_parameter ch pinP embed ≡
Request (λs. {(|q_channel = ch Client_s,

q_data = Call 2 (Integer (pinP s) # [])|)}) discard ;;

Response (λq s. case q_data q of Return xs ⇒
{(embed s (case hd xs of Integer v ⇒ v) (case xs ! 1 of Integer v ⇒ v),

(|a_channel = ch Client_s, a_data = Void|))} | _ ⇒ {})"

For an incoming procedure interface, a single definition is generated with the prefix “Recv”, the
component’s name and the interface name. There is a single defintion on the incoming side,
rather than one per interface, to match the semantics of the implementation. That is, the blocking
receive followed by method dispatch are captured in this definition. Projection and embedding
functions are again necessitated, but their roles are reversed.
Each receive definition is also parameterised with a process for each method representing
the user-provided implementation of this method. For example, in the definition below, the

25

Echo_s_echo_string parameter is expected to be the user’s implementation of the echo_string

method.

definition
Recv_Echo_s :: "(Echo_channel ⇒ channel) ⇒
(’cs local_state ⇒ string ⇒ ’cs local_state) ⇒
(channel, ’cs) comp ⇒ (’cs local_state ⇒ string) ⇒
(’cs local_state ⇒ int ⇒ ’cs local_state) ⇒
(channel, ’cs) comp ⇒ (’cs local_state ⇒ int) ⇒
(’cs local_state ⇒ int ⇒ ’cs local_state) ⇒ (channel, ’cs) comp ⇒
(’cs local_state ⇒ int) ⇒ (’cs local_state ⇒ int) ⇒
(channel, ’cs) comp"

where
"Recv_Echo_s ch echo_stringE Echo_s_echo_string echo_string_returnP

echo_intE Echo_s_echo_int echo_int_returnP echo_parameterE
Echo_s_echo_parameter echo_parameter_returnP echo_parameter_poutP ≡
(Response (λq s. case q_data q of Call n xs ⇒
(if n = 0 then {(echo_stringE s (case xs ! 0 of String v ⇒ v),

(|a_channel = ch Echo_s, a_data = Void|))} else {}) | _ ⇒ {}) ;;

Echo_s_echo_string ;;

Request (λs. {(|q_channel = ch Echo_s,

q_data = Return (String (echo_string_returnP s) # [])|)}) discard)

t
(Response (λq s. case q_data q of Call n xs ⇒
(if n = 1 then {(echo_intE s (case xs ! 0 of Integer v ⇒ v),

(|a_channel = ch Echo_s, a_data = Void|))} else {}) | _ ⇒ {}) ;;

Echo_s_echo_int ;;

Request (λs. {(|q_channel = ch Echo_s,

q_data = Return (Integer (echo_int_returnP s) # [])|)}) discard)

t
(Response (λq s. case q_data q of Call n xs ⇒
(if n = 2 then {(echo_parameterE s (case xs ! 0 of Integer v ⇒ v),

(|a_channel = ch Echo_s, a_data = Void|))} else {}) | _ ⇒ {}) ;;

Echo_s_echo_parameter ;;

Request (λs. {(|q_channel = ch Echo_s,

q_data = Return (Integer (echo_parameter_returnP s) #

Integer (echo_parameter_poutP s) # [])|)}) discard)"

7.1.3 Instantiations of Primitives

With the component type definitions in place, the definitions of component instance primitives are
much simpler as they are partial applications of the component type definitions. A call definition
is generated for each method in each outgoing interface in each component instance that partially
applies the call definitions described in Section 7.1.2 with a mapping from the component’s
interface to the system connection.
The parameter used to specialise the component primitives, a function from that component’s
channel type to the system channel type, is derived from the architecture of the system. In this
example the instance client has its interface s connected to the connection simple. Thus its

26

primitives are expressed using a function that maps its channel type Client_s to the corresponding
system channel, simple. In the case of this example where the client instance has a single
interface, the function could be given as λ_. simple, but for simplicity the generator does not
make this optimisation.

definition
Call_client_s_echo_string :: "(’cs local_state ⇒ string) ⇒
(’cs local_state ⇒ string ⇒ ’cs local_state) ⇒
(channel, ’cs) comp"

where
"Call_client_s_echo_string ≡
Call_Client_s_echo_string (λc. case c of Client_s ⇒ simple)"

definition
Call_client_s_echo_int :: "(’cs local_state ⇒ int) ⇒
(’cs local_state ⇒ int ⇒ ’cs local_state) ⇒
(channel, ’cs) comp"

where
"Call_client_s_echo_int ≡
Call_Client_s_echo_int (λc. case c of Client_s ⇒ simple)"

definition
Call_client_s_echo_parameter :: "(’cs local_state ⇒ int) ⇒
(’cs local_state ⇒ int ⇒ int ⇒ ’cs local_state) ⇒
(channel, ’cs) comp"

where
"Call_client_s_echo_parameter ≡
Call_Client_s_echo_parameter (λc. case c of Client_s ⇒ simple)"

Similarly, a receive definition is generated for each incoming interface in each component
instance.

definition
Recv_echo_s :: "(’cs local_state ⇒ string ⇒ ’cs local_state) ⇒

(channel, ’cs) comp ⇒ (’cs local_state ⇒ string) ⇒
(’cs local_state ⇒ int ⇒ ’cs local_state) ⇒
(channel, ’cs) comp ⇒ (’cs local_state ⇒ int) ⇒
(’cs local_state ⇒ int ⇒ ’cs local_state) ⇒
(channel, ’cs) comp ⇒ (’cs local_state ⇒ int) ⇒
(’cs local_state ⇒ int) ⇒ (channel, ’cs) comp"

where
"Recv_echo_s ≡ Recv_Echo_s (λc. case c of Echo_s ⇒ simple)"

27

7.2 Generated System Theory

7.2.1 Types

At the system level, type instantiations are provided for components and local and global state.
These are derived by simply instantiating the relevant types with the types generated in the
base theory. Note that the component_state type is expected to be provided by the user in their
intermediate theory.

type synonym component = "(channel, component_state) comp"

type synonym lstate = "component_state local_state"

type synonym gstate = "(inst, channel, component_state) global_state"

7.2.2 Untrusted Components

For each component type, a definition is generated that describes its execution without specifying
the behaviour of any user-provided code. These definitions allow the component to perform any
manipulation of its local state or to send or receive any message on the interfaces available to it.
These definitions are intended for use in a system composition when the behaviour of a specific
component is not relevant to the desirable property of the whole system. These definitions are
more general than the implementation allows, in that they permit an untrusted component to
perform actions such as sending on an incoming interface which may not be possible in the
implementation.
Recall from Chapter 6 that the user is expected to provide a mapping describing trusted com-
ponents in their intermediate theory. A definition of untrusted execution for each component is
generated regardless of whether all instances of that component in the current system have trusted
specifications or not.

definition
Client_untrusted :: "(Client_channel ⇒ channel) ⇒ component"

where
"Client_untrusted ch ≡

LOOP (

UserStep

t ArbitraryRequest (ch Client_s)

t ArbitraryResponse (ch Client_s))"

definition
Echo_untrusted :: "(Echo_channel ⇒ channel) ⇒ component"

where
"Echo_untrusted ch ≡

LOOP (

UserStep

t ArbitraryRequest (ch Echo_s)

t ArbitraryResponse (ch Echo_s))"

28

7.2.3 Component Instances

As was the case for the instantiation of primitives in Section 7.1.3, with the definition of an
untrusted component’s execution generated previously, a definition of the execution of an untrusted
instance can be formed by partially applying the component definition. A definition of untrusted
execution is generated for each component instance, whether it is required or not.

definition
client_untrusted :: component

where
"client_untrusted ≡ Client_untrusted (λc. case c of Client_s ⇒ simple)"

definition
echo_untrusted :: component

where
"echo_untrusted ≡ Echo_untrusted (λc. case c of Echo_s ⇒ simple)"

7.2.4 Initial State

The final generated definition is the initial state of the system. Following the type instantiations
in Section 7.2.1, the initial global state is a mapping from component instance names to a pair of
their program text and local state. The generated definition looks for the instance’s definition in
the (user-provided) mapping of trusted instances and, if it does not find this, falls back on the
generated untrusted definitions.

definition
gs0 :: gstate

where
"gs0 p ≡ case trusted p of Some s ⇒ Some s | _ ⇒
(case p of client ⇒ Some (client_untrusted, Component init_component_state)

| echo ⇒ Some (echo_untrusted, Component init_component_state))"

29

8 Example – Events

This section provides an example following on from Chapter 7 that gives an example of the
corresponding definitions that are generated for a system involving CAmkES events. A system
defined by the following specification will be used throughout:

component Emitter {

c o n t r o l ;
e m i t s SomethingHappenedEvent ev;

}

component Collector {

c o n t r o l ;
consumes SomethingHappenedEvent ev;

}

a s s e m b l y {

c o m p o s i t i o n {

component Emitter source;

component Collector sink;

c o n n e c t i o n seL4Asynch simpleEvent1(from source.ev , t o sink.ev);

}

}

8.1 Generated Base Theory

8.1.1 Types

The data types generated for a system involving events are similar to those for a system involving
procedures, however an additional instance is derived for every connection in the system that
carries event messages. This generated instance models the state of the event; that is, whether it
is pending or not.

datatype channel

= simpleEvent1

datatype inst

= sink

| source

| simpleEvent1e

datatype Collector_channel

30

= Collector_ev

datatype Emitter_channel

= Emitter_ev

8.1.2 Interface Primitives

For each component type with a consumes interface, two primitives are generated for each
interface. These correspond to the wait and poll functions in generated glue code. As for
procedures, embed functions must be supplied by the user to save the result of the operation into
the component’s local state.
Event callbacks are not currently represented. These can be represented by hand in the intermedi-
ate user theory. We plan to extend the generator in future to wrap this functionality in a primitive
for the user.

definition
Poll_Collector_ev :: "(Collector_channel ⇒ channel) ⇒
(’cs local_state ⇒ bool ⇒ ’cs local_state) ⇒ (channel, ’cs) comp"

where
"Poll_Collector_ev ch embed ≡ EventPoll (ch Collector_ev) embed"

definition
Wait_Collector_ev :: "(Collector_channel ⇒ channel) ⇒
(’cs local_state ⇒ bool ⇒ ’cs local_state) ⇒ (channel, ’cs) comp"

where
"Wait_Collector_ev ch embed ≡ EventWait (ch Collector_ev) embed"

For each component type with an emits interface, a single primitive is generated to correpond
to the emit function in the glue code. The emit definition needs no embedding or projection
functions because it is state-independent.

definition
Emit_Emitter_ev :: "(Emitter_channel ⇒ channel) ⇒ (channel, ’cs) comp"

where
"Emit_Emitter_ev ch ≡ EventEmit (ch Emitter_ev)"

8.1.3 Instantiations of Primitives

As for procedure interfaces, the event primitives are specialised for each interface in the system
by partially applying them with a function mapping the interface to the relevant – in this case the
only – system connection.

definition
Poll_sink_ev :: "(’cs local_state ⇒ bool ⇒ ’cs local_state) ⇒
(channel, ’cs) comp"

where
"Poll_sink_ev ≡

Poll_Collector_ev (λc. case c of Collector_ev ⇒ simpleEvent1)"

31

definition
Wait_sink_ev :: "(’cs local_state ⇒ bool ⇒ ’cs local_state) ⇒
(channel, ’cs) comp"

where
"Wait_sink_ev ≡

Wait_Collector_ev (λc. case c of Collector_ev ⇒ simpleEvent1)"

definition
Emit_source_ev :: "(channel, ’cs) comp"

where
"Emit_source_ev ≡
Emit_Emitter_ev (λc. case c of Emitter_ev ⇒ simpleEvent1)"

8.2 Generated System Theory

8.2.1 Types

Identical types to those presented in Section 7.2.1 are generated for a system involving events.

type synonym component = "(channel, component_state) comp"

type synonym lstate = "component_state local_state"

type synonym gstate = "(inst, channel, component_state) global_state"

8.2.2 Untrusted Components

As before, an untrusted definition is generated for each component type that permits any local
operation or sending or receiving on any available interface.

definition
Collector_untrusted :: "(Collector_channel ⇒ channel) ⇒ component"

where
"Collector_untrusted ch ≡
LOOP (

UserStep

t ArbitraryRequest (ch Collector_ev)

t ArbitraryResponse (ch Collector_ev))"

definition
Emitter_untrusted :: "(Emitter_channel ⇒ channel) ⇒ component"

where
"Emitter_untrusted ch ≡
LOOP (

UserStep

t ArbitraryRequest (ch Emitter_ev)

t ArbitraryResponse (ch Emitter_ev))"

32

8.2.3 Event Components

For each connection in the system over which events are transmitted, a definition is generated
of a component type that models the state of the event. The type enumerating the interfaces of
this component is expressed as unit because, naturally, there is only a single interface to this
introduced component. The details of the execution of the component can largely be expressed
statically, and are captured by the definition, event, described in Section 5.1.

type synonym SomethingHappenedEvent_channel = unit

definition
SomethingHappenedEvent :: "(SomethingHappenedEvent_channel ⇒ channel) ⇒
component"

where
"SomethingHappenedEvent ch ≡ event (ch ())"

8.2.4 Component Instances

The definitions of untrusted component instances are generated as in Chapter 7, but a definition is
also derived for an instance of the introduced component. There is no opportunity for the user to
provide a definition of the trusted execution of this component, because we already know exactly
what actions this component takes. Being part of the component platform itself, we can generate
a definition that exactly expresses its execution.

definition
sink_untrusted :: component

where
"sink_untrusted ≡
Collector_untrusted (λc. case c of Collector_ev ⇒ simpleEvent1)"

definition
source_untrusted :: component

where
"source_untrusted ≡
Emitter_untrusted (λc. case c of Emitter_ev ⇒ simpleEvent1)"

definition
simpleEvent1e_instance :: component

where
"simpleEvent1e_instance ≡ SomethingHappenedEvent (λ_. simpleEvent1)"

8.2.5 Initial State

The generated global state for this system also contains a case for the introduced event component,
mapping to the instance definition presented above and the common initial event state. While
this definition of the global state makes it possible for the user to override the mapping of
simpleEvent1e in trusted, there is no practical reason to do this.

definition

33

gs0 :: gstate

where
"gs0 p ≡ case trusted p of Some s ⇒ Some s | _ ⇒
(case p of sink ⇒ Some (sink_untrusted, Component init_component_state)

| source ⇒ Some (source_untrusted, Component init_component_state)

| simpleEvent1e ⇒ Some (simpleEvent1e_instance, init_event_state))"

34

9 Example – Dataports

This section provides an example of generated types and definitions derived from a CAmkES
dataport interface. The following example system is used throughout this section:

component DataportTest {

c o n t r o l ;
d a t a p o r t Buf d1;

d a t a p o r t Buf d2;

}

a s s e m b l y {

c o m p o s i t i o n {

component DataportTest comp1;

component DataportTest comp2;

c o n n e c t i o n seL4SharedData simple1(from comp1.d1, t o comp2.d2);

c o n n e c t i o n seL4SharedData simple2(from comp2.d1, t o comp1.d2);

}

}

Note that this system also, unlike the previous two examples, contains a component type that is
instantiated twice.

9.1 Generated Base Theory

9.1.1 Types

As with the previous examples, a type is generated for the connections in the system and the
component instances in the system. The data type, channel, is as before, but inst also contains a
member generated for each connection in the system involving a dataport.

datatype channel

= simple2

| simple1

datatype inst

= comp2

| comp1

| simple2d
| simple1d

The type for the interfaces of the single component in the system is generated as in the previous
examples.

35

datatype DataportTest_channel

= DataportTest_d2

| DataportTest_d1

9.1.2 Interface Primitives

For each dataport interface of each component type, definitions are generated for performing
a read or write to the dataport. Like events, the details of these operations can be determined
statically and are captured in the definitions, MemoryRead and MemoryWrite.
Read and write are unconditionally generated for each dataport interface because all dataports
are read/write memory regions. Should the CAmkES model be extended to allow read-only or
write-only dataports only the relevant single operation would be generated here.

definition
Read_DataportTest_d2 :: "(DataportTest_channel ⇒ channel) ⇒
(’cs local_state ⇒ nat) ⇒
(’cs local_state ⇒ variable ⇒ ’cs local_state) ⇒ (channel, ’cs) comp"

where
"Read_DataportTest_d2 ch addr embed ≡

MemoryRead (ch DataportTest_d2) addr embed"

definition
Write_DataportTest_d2 :: "(DataportTest_channel ⇒ channel) ⇒
(’cs local_state ⇒ nat) ⇒ (’cs local_state ⇒ variable) ⇒
(channel, ’cs) comp"

where
"Write_DataportTest_d2 ch addr proj ≡

MemoryWrite (ch DataportTest_d2) addr proj"

definition
Read_DataportTest_d1 :: "(DataportTest_channel ⇒ channel) ⇒
(’cs local_state ⇒ nat) ⇒
(’cs local_state ⇒ variable ⇒ ’cs local_state) ⇒ (channel, ’cs) comp"

where
"Read_DataportTest_d1 ch addr embed ≡
MemoryRead (ch DataportTest_d1) addr embed"

definition
Write_DataportTest_d1 :: "(DataportTest_channel ⇒ channel) ⇒
(’cs local_state ⇒ nat) ⇒ (’cs local_state ⇒ variable) ⇒
(channel, ’cs) comp"

where
"Write_DataportTest_d1 ch addr proj ≡

MemoryWrite (ch DataportTest_d1) addr proj"

36

9.1.3 Instantiations of Primitives

The specialisation of the primitives from Section 9.1.2 is similar to the previous examples, except
that multiple instantiations for each are generated because the component type DataportTest is
instantiated twice in this system.

definition
Read_comp2_d2 :: "(’cs local_state ⇒ nat) ⇒

(’cs local_state ⇒ variable ⇒ ’cs local_state) ⇒ (channel, ’cs) comp"

where
"Read_comp2_d2 ≡
Read_DataportTest_d2 (λc. case c of DataportTest_d1 ⇒ simple2

| DataportTest_d2 ⇒ simple1)"

definition
Write_comp2_d2 :: "(’cs local_state ⇒ nat) ⇒
(’cs local_state ⇒ variable) ⇒ (channel, ’cs) comp"

where
"Write_comp2_d2 ≡
Write_DataportTest_d2 (λc. case c of DataportTest_d1 ⇒ simple2

| DataportTest_d2 ⇒ simple1)"

definition
Read_comp2_d1 :: "(’cs local_state ⇒ nat) ⇒

(’cs local_state ⇒ variable ⇒ ’cs local_state) ⇒ (channel, ’cs) comp"

where
"Read_comp2_d1 ≡
Read_DataportTest_d1 (λc. case c of DataportTest_d1 ⇒ simple2

| DataportTest_d2 ⇒ simple1)"

definition
Write_comp2_d1 :: "(’cs local_state ⇒ nat) ⇒

(’cs local_state ⇒ variable) ⇒ (channel, ’cs) comp"

where
"Write_comp2_d1 ≡
Write_DataportTest_d1 (λc. case c of DataportTest_d1 ⇒ simple2

| DataportTest_d2 ⇒ simple1)"

definition
Read_comp1_d2 :: "(’cs local_state ⇒ nat) ⇒

(’cs local_state ⇒ variable ⇒ ’cs local_state) ⇒ (channel, ’cs) comp"

where
"Read_comp1_d2 ≡
Read_DataportTest_d2 (λc. case c of DataportTest_d2 ⇒ simple2

| DataportTest_d1 ⇒ simple1)"

definition
Write_comp1_d2 :: "(’cs local_state ⇒ nat) ⇒

(’cs local_state ⇒ variable) ⇒ (channel, ’cs) comp"

37

where
"Write_comp1_d2 ≡
Write_DataportTest_d2 (λc. case c of DataportTest_d2 ⇒ simple2

| DataportTest_d1 ⇒ simple1)"

definition
Read_comp1_d1 :: "(’cs local_state ⇒ nat) ⇒

(’cs local_state ⇒ variable ⇒ ’cs local_state) ⇒ (channel, ’cs) comp"

where
"Read_comp1_d1 ≡
Read_DataportTest_d1 (λc. case c of DataportTest_d2 ⇒ simple2

| DataportTest_d1 ⇒ simple1)"

definition
Write_comp1_d1 :: "(’cs local_state ⇒ nat) ⇒

(’cs local_state ⇒ variable) ⇒ (channel, ’cs) comp"

where
"Write_comp1_d1 ≡
Write_DataportTest_d1 (λc. case c of DataportTest_d2 ⇒ simple2

| DataportTest_d1 ⇒ simple1)"

9.2 Generated System Theory

9.2.1 Types

At the system level we have the now familiar generated types.

type synonym component = "(channel, component_state) comp"

type synonym lstate = "component_state local_state"

type synonym gstate = "(inst, channel, component_state) global_state"

9.2.2 Untrusted Components

A definition is generated for the untrusted execution of the component, DataportTest. In this
definition there are two interfaces the component can send and receive on, but the other details of
the definition are identical to the previous examples.

definition
DataportTest_untrusted :: "(DataportTest_channel ⇒ channel) ⇒ component"

where
"DataportTest_untrusted ch ≡
LOOP (

UserStep

t ArbitraryRequest (ch DataportTest_d2)

t ArbitraryResponse (ch DataportTest_d2)

t ArbitraryRequest (ch DataportTest_d1)

38

t ArbitraryResponse (ch DataportTest_d1))"

9.2.3 Component Instances

The definitions for untrusted execution of the two component instances are generated by partially
applying the untrusted definition of DataportTest with different functions mapping its interfaces
to connections. In this way, two processes are formed that have identical local behaviour, but
have different effects when they perform communication actions.

definition
comp2_untrusted :: component

where
"comp2_untrusted ≡

DataportTest_untrusted (λc. case c of DataportTest_d1 ⇒ simple2

| DataportTest_d2 ⇒ simple1)"

definition
comp1_untrusted :: component

where
"comp1_untrusted ≡
DataportTest_untrusted (λc. case c of DataportTest_d2 ⇒ simple2

| DataportTest_d1 ⇒ simple1)"

9.2.4 Shared Memory Components

A component instance is generated for each connection involving a dataport, as mentioned
previously. As for events, the user is given no opportunity to provide trusted definitions for these
instances because we can automatically generate their precise behaviour without ambiguity.

definition
simple2d_instance :: component

where
"simple2d_instance ≡ Bufd (λ_. simple2)"

definition
simple1d_instance :: component

where
"simple1d_instance ≡ Bufd (λ_. simple1)"

9.2.5 Initial State

The initial state for this system includes cases for the introduced shared memory components,
using the definitions presented above. Both begin in the common initial memory state containing
the empty map.

definition
gs0 :: gstate

where
"gs0 p ≡ case trusted p of Some s ⇒ Some s | _ ⇒

39

(case p of comp2 ⇒ Some (comp2_untrusted, Component init_component_state)

| comp1 ⇒ Some (comp1_untrusted, Component init_component_state)

| simple2d ⇒ Some (simple2d_instance, init_memory_state)

| simple1d ⇒ Some (simple1d_instance, init_memory_state))"

40

10 Example – System Level Reasoning

This section provides an example of a more detailed CAmkES system and reasoning about a
system level property of such a system. The example system is described by the following
specification:

p r o c e d u r e Lookup {

s m a l l s t r i n g get_value(i n s m a l l s t r i n g id);

};

component Client {

c o n t r o l ;
u s e s Lookup l;

}

component Store {

p r o v i d e s Lookup l;

}

component Filter {

p r o v i d e s Lookup external;

u s e s Lookup backing;

}

a s s e m b l y {

c o m p o s i t i o n {

component Filter filter;

component Client client;

component Store store;

c o n n e c t i o n seL4RPC one(from client.l, t o filter.external);

c o n n e c t i o n seL4RPC two(from filter.backing , t o store.l);

}

}

It consists of an instance, client, that reads values out of a key-value store in the instance, store.
Its access is mediated by the instance filter that prevents it reading the value “baz” associated
with the key “secret”.
The generated types and definitions are omitted, but they are similar to those described in
Chapter 7.

41

store filter client

Figure 10.1: Example filter system

10.1 Architectural Properties

Using the most generalised (untrusted) version of the system, we cannot show anything except
architectural properties. These are true by construction of the generated system. To demonstrate
this, we show a proof that the client and store instances cannot directly communicate.
First we introduce some definitions to aid the statement of the property. A predicate specifying
that a component sends on a given channel is defined as sends_on.

fun
sends_on :: "channel ⇒ component ⇒ bool"

where
"sends_on c (Request f _) = (∃ s. ∃ q ∈ f s. q_channel q = c)"

| "sends_on c (a ;; b) = (sends_on c a ∨ sends_on c b)"

| "sends_on c (IF cond THEN a ELSE b) =

(∀ s. cond s ∧ sends_on c a ∨ ¬ cond s ∧ sends_on c b)"

| "sends_on c (WHILE cond DO a) = (∀ s. cond s ∧ sends_on c a ∨ ¬ cond s)"

| "sends_on c (a t b) = (sends_on c a ∨ sends_on c b)"

| "sends_on _ _ = False"

The corresponding predicate for receiving on a channel is defined as receives_on.

fun
receives_on :: "channel ⇒ component ⇒ bool"

where
"receives_on c (Response f) = (∃ q s. ∃ a ∈ f q s. a_channel (snd a) = c)"

| "receives_on c (a ;; b) = (receives_on c a ∨ receives_on c b)"

| "receives_on c (IF cond THEN a ELSE b) =

(∀ s. cond s ∧ receives_on c a ∨ ¬ cond s ∧ receives_on c b)"

| "receives_on c (WHILE cond DO a) =

(∀ s. cond s ∧ receives_on c a ∨ ¬ cond s)"

| "receives_on c (a t b) = (receives_on c a ∨ receives_on c b)"

| "receives_on _ _ = False"

Now whether a component communicates on a channel can be defined as the disjunction of these
two.

definition
communicates_on :: "channel ⇒ component ⇒ bool"

where
"communicates_on ch c ≡ sends_on ch c ∨ receives_on ch c"

We can now state, and prove, the property that client and store never directly communicate.

42

lemma "∀ c.
¬(communicates_on c client_untrusted ∧ communicates_on c store_untrusted)"

unfolding communicates_on_def client_untrusted_def Client_untrusted_def

store_untrusted_def Store_untrusted_def

apply clarsimp

unfolding UserStep_def ArbitraryRequest_def ArbitraryResponse_def

apply clarsimp

apply (case_tac c, clarsimp+)

done

Were we to try reasoning about a property of the system that depended upon the behaviour of any
component in the system, we would not be able to do it using the existing definitions. To show a
property of this form we need to provide a more precise definition of the critical components. An
example of this is shown in the next section.

10.2 Behavioural Properties

To reason about the behaviour of components themselves, we need to provide more information
in the intermediate user theory. In this section we present an example of this and a proof that
client never receives the secret, “baz”. This property is dependent on the behaviour of filter,
to which client is directly connected.

First we specify a more precise set of messages to be sent by filter. We define its valid reponses
as only the value “bar” or the empty string, “”.

definition
filter_responses :: "channel question set"

where
"filter_responses ≡ {x. ∃ v ∈ {’’bar’’, ’’’’}. q_data x = Return [String v]}"

Then we give a more constrained definition of filter that no longer allows it to send any
message on the channel connected to client. Note that for the target property we can still leave
the remainder of its behaviour arbitrary.

definition
filter_trusted :: component

where
"filter_trusted ≡
LOOP (

UserStep

t ArbitraryRequest two

t ArbitraryResponse two

t ArbitraryResponse one

t Request (λ_. filter_responses) discard)"

This trusted definition of filter is passed to the generated system theory in the definition of
trusted.

definition

43

trusted :: "(inst, (component × lstate)) map"

where
"trusted ≡ [filter 7→ (filter_trusted, Component init_component_state)]"

Now it’s possible to state and prove the desired property of the system; that client never receives
the secret “baz”.

lemma "∀ p. ∃ e s. gs0 p = Some (e, s) ∧
(e = client_untrusted ∨
¬(∃ c. sends e {x. q_channel x = c ∧ q_data x = Return [String ’’baz’’]} ∧
receives_on c client_untrusted))"

unfolding gs0_def trusted_def apply clarsimp

apply (case_tac p, clarsimp)

unfolding store_untrusted_def Store_untrusted_def apply clarsimp

unfolding UserStep_def ArbitraryRequest_def ArbitraryResponse_def

apply clarsimp

unfolding client_untrusted_def Client_untrusted_def apply clarsimp

unfolding UserStep_def ArbitraryRequest_def ArbitraryResponse_def

apply clarsimp

apply clarsimp

apply clarsimp

unfolding filter_trusted_def UserStep_def ArbitraryRequest_def

ArbitraryResponse_def apply clarsimp

unfolding filter_responses_def apply clarsimp

done

44

Bibliography

[1] Ihor Kuz, Matthew Fernandez, Gerwin Klein, and Toby Murray. CAmkES manual and
formalisation. Technical report, NICTA, October 2012.

[2] Ihor Kuz, Yan Liu, Ian Gorton, and Gernot Heiser. CAmkES: A component model for secure
microkernel-based embedded systems. Journal of Systems and Software Special Edition on
Component-Based Software Engineering of Trustworthy Embedded Systems, 80(5):687–699,
May 2007.

[3] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer
Verlag, 2002.

45

	Introduction
	Concurrent Imperative Syntax and Semantics
	Datatypes
	Messages
	Local State
	Components
	Global State

	Convenience Definitions
	Local Component Operations
	UNIVc
	Internal Step
	User Steps

	Communication Component Operations
	Discard Messages
	Arbitrary Requests
	Arbitrary Responses
	Event Emit
	Event Poll
	Event Wait
	Memory Read
	Memory Write

	Connector Components
	Event Components
	Shared Memory Components

	Component Behaviour
	Local Component State
	Untrusted Components
	Trusted Components

	Example – Procedures
	Generated Base Theory
	Types
	Interface Primitives
	Instantiations of Primitives

	Generated System Theory
	Types
	Untrusted Components
	Component Instances
	Initial State

	Example – Events
	Generated Base Theory
	Types
	Interface Primitives
	Instantiations of Primitives

	Generated System Theory
	Types
	Untrusted Components
	Event Components
	Component Instances
	Initial State

	Example – Dataports
	Generated Base Theory
	Types
	Interface Primitives
	Instantiations of Primitives

	Generated System Theory
	Types
	Untrusted Components
	Component Instances
	Shared Memory Components
	Initial State

	Example – System Level Reasoning
	Architectural Properties
	Behavioural Properties

