
136 | Device Driver Synthesis

Contributors

Intel® Technology Journal | Volume 17, Issue 2, 2013

Automatic Device Driver Synthesis is a research collaboration project between
Intel and National Information Communications Technology Australia
(NICTA) that aims to synthesize device drivers automatically using formal
OS and device specifications. We have built a tool chain that uses Simics*
DML Device model sources as an input to the driver synthesis tool chain. The
tool chain has a frontend compiler that extracts the device behavior from the
Device Modeling Language (DML) model and outputs a formal representation
of the device behavior that we refer to as a device specification. The driver
synthesis tool combines this specification with a similar O/S specification and
applies the principles of game theory to compute a winning strategy on behalf
of the driver and eventually converts it into driver C code. This approach aims
to use the existing device models for producing device drivers resulting in
highly reliable drivers and faster time to market. We have synthesized a number
of drivers using our tool chain. Some examples include legacy IDE controller,
UART, SDHCI controller, and a minimal Ethernet adapter.

Introduction
A device driver is the part of the operating system (OS) that is responsible
for controlling an input/output (I/O) device. There is wealth of research[1][2]
showing that drivers are a primary source of bugs, and driver development is a
major bottleneck for platform validation and time to market. Figure 1 shows
the conventional driver development process, where a driver writer uses two
informal documents, OS and device specifications, to convert a series of OS
requests to device commands. The process of device driver creation can be
error prone and tedious. One of the main reasons is that the driver writer uses
informal documents that are susceptible to misinterpretation. In addition, the
driver writer has to have domain knowledge of both the OS and the device. In
many cases driver writers also reuse existing driver code to write a new driver,
inheriting any existing bugs in the process.

We propose to improve the driver development process by automatically
synthesizing drivers from formal OS and device specifications, as shown in
Figure 2. This is based on the fact that all the information needed to control
a device from software is available during the design of the device. The idea is
to represent this knowledge, so as to enable synthesizing driver automatically.

For device formal specification, we plan to leverage the high-level device
models either written by hardware designers or for software simulation for
virtual platforms. We are building a tool chain that applies the principles of

“Device drivers are the major cause of

operating system failures”

Device Driver Synthesis

Mona Vij
Intel Labs, Intel Corporation

John Keys
Intel Labs, Intel Corporation

Arun Raghunath
Intel Labs, Intel Corporation

Scott Hahn
Intel Labs, Intel Corporation

Vincent Zimmer
Software and Solutions Group,
Intel Corporation

Leonid Ryzhyk
University of Toronto

Adam Walker
NICTA

Alexander Legg
NICTA

Device Driver Synthesis | 137

Intel® Technology Journal | Volume 17, Issue 2, 2013

Figure 1: Conventional driver development
(Source: Intel Corporation, 2011)

Figure 2: Driver synthesis
(Source: Intel Corporation, 2011)

Driver
Implementation

Informal Documents

OS
Spec

Device
Spec

Conventional Driver Development

Driver Synthesis

Driver
Implementation

Driver
Synthesis

Tool

Formal
Specification

Formal OS Spec

< / >

Formal Device Spec

< / >

Driver
Synthesis

Tool

“Driver synthesis from formal

specifications”

Intel® Technology Journal | Volume 17, Issue 2, 2013

138 | Device Driver Synthesis

game theory and synthesizes the driver code from formal specifications. This
approach improves driver reliability by reducing manual intervention, avoiding
misinterpretation of device documents by driver writers. Moreover, given a
device specification, drivers can be generated automatically for all supported
operating systems, thereby eliminating the costs associated with porting drivers.
With this approach of driver development, DML device models are used not
only for simulation, but for driver generation as well. The driver synthesis tool
chain also provides some additional capabilities like a state space explorer that
aids in DML device model debugging. Overall this approach results in correct
drivers and improves time to market by moving development earlier in design
cycle, leading to cost reduction.

In the long run we plan to support large classes of devices with this tool, from
very simple to complex devices, as long as their behavior can be represented as
a state machine. We can’t synthesize drivers that perform complex computation
and are difficult to represent as a state machine. In addition, we don’t plan to
support drivers for devices that are based on programmable cores, such as high-
end graphics or network processors.

High Level Architecture
Device driver synthesis aims to create device driver code automatically from
hardware specifications of a device. Figure 3 shows various components in the
driver synthesis tool chain that begins with formal specifications and converts
it to various intermediate forms before finally emitting the device driver code.
We formalize the driver synthesis problem as a game between the driver and
its environment, which consists of the device, additional device interfaces (for
example, network) and the operating system. The formal specification of the
device and OS interface, together, define the “rules” of a two-player zero-sum

“Game theory in driver development”

Figure 3: Driver synthesis tool chain
(Source: Intel Corporation, 2013)

State Space
Explorer

Code
Generator

OS
Specification

Strategy
Generator

AbstractorFront-end
Compilers

Winning
Strategy

Driver
Code

Abstract State
Machine

Concrete State
Machine

Class
Specification Counter-example

Device
Specification

Device Driver Synthesis | 139

Intel® Technology Journal | Volume 17, Issue 2, 2013

game. The driver assumes the role of the first player and the environment (OS,
media, and so on) describe the moves of the “opponent.” In the context of the
game, modeling the environment as an “opponent” puts more emphasis on
the environmental events that lead to failure than those that are benign. The
environment begins all games with moves that represent OS-to-driver requests.
In response to these moves, the driver must try and make “moves” (that is, send
commands to the device) to push the device to a winning state, corresponding
to a correct device response for the given OS request. The moves chosen by the
driver should be such that no matter what external event occurs, the device and
driver can either correctly service the OS request or fail gracefully and continue
to operate correctly in the future. Effectively the tool constructs a driver
algorithm that guarantees that the driver is able to correctly satisfy all OS
requests given any feasible driver behavior. We call such an algorithm a winning
strategy on behalf of the driver.

Tool Inputs
The tool takes multiple formal specifications as input, as described in the
following subsections.

Device Class Specification
The Device Class specification models states, events, and functions common to
all devices of a given class in an OS-independent and device-implementation–
independent manner. The specification describes events that represent
interactions between the device and its environment (that is, connected media,
external devices, and so on). Events may also represent completion of individual
device requests such as setting a configuration. The states describe logical device
states applicable to devices of class, such as configured states, initial state, and so
on. In addition, the specification may describe sub-states that a device is expected
to transition through in order to complete a device function. In addition, the
specification also defines all constant values given to or received from devices of
class, such as baud rates, configuration values, and I/O signals.

Device Class specifications need only be written once per device class and
can be used with different OS specifications and devices of the same class
from different vendors. We believe a model similar to USB’s Device Working
Group (DWG) would work best for establishing industry‐wide device class
specifications. In this model, classes of devices are identified and a working
group (WG) is established for each class, drawing WG membership from
interested parties who tend to be the leaders and experts in a specific device
class. The WG then develops a class specification by consensus, with the result
typically being subject to approval of the parent organization.

OS Interface Specification
The OS Interface specification describes legal sequences of interactions between
the driver and the OS as well as the expected device response on completion of
each OS request. It models when events defined in the device-class specification
must be raised in response to OS requests. This specification does not specify
how the events in the device-class specification are generated, since that should

“Device class specification models

states, events and functions common to

all devices in a class”

Intel® Technology Journal | Volume 17, Issue 2, 2013

140 | Device Driver Synthesis

be part of the device specification. It is up to the synthesis algorithm to derive
the necessary steps for generating these events in response to OS requests.

Ideally, the OS specification for a specific OS will be produced by the entity
that produces the OS. This specification needs to be written once per OS per
device class and when a new OS release occurs; minimal change should be
required to adapt the specification.

Device Specification
Device specifications are device-specific instantiations of device class
specifications. They model the device behavior and the externally visible
artifacts of the device. In particular, they model externally visible registers
and device operations that result from the reading or writing of said registers.
The device response depends on the register values and device internal state,
such as, for example, whether the device is initialized or waiting for a request
to complete. These responses include but are not limited to updating register
values, generating interrupts, triggering one or more external events, and
interactions with other subsystems. These specifications are written at a high
level of abstraction and ignore detailed internal architecture and timing.

Individual device specifications must be produced by the device vendor.
In the case of industry-standard devices such as EHCI and XHCI (USB) and
SDHCI (MMC/SDIO), a single device specification can be produced by the
entity responsible for the standard and used for any device that meets the
standard. In the case where a device is industry standard but also contains
vendor‐specific extensions, the device vendor becomes the responsible party.
The vendor can import the industry-standard specification to specify device
core functionality, but still remains responsible for specifying the vendor
extensions.

Tool Outputs
The tool processes the input specifications and applies the principles of game
theory to produce driver code.

Driver Code
The tool produces C code when it finds a successful strategy. In some cases
driver writers will need to develop manual wrappers to integrate the code
with the OS.

No single entity can be identified as the entity responsible for producing
device driver binaries. Industry history suggests three potential sources: OS
vendor, hardware vendor, and platform integrator. OS vendors generate
large numbers of device drivers, tied to OS release cycles. Hardware vendors
produce drivers when 1) the target OS vendor does not support the device
(in particular for new hardware), and 2) when the need for the driver falls
between OS release cycles. Platform integrators generate device drivers when
the driver is not provided by the OS vendor or the device vendor, or they
built the device themselves.

“The tool produces “C” code as output

if it finds a successful strategy”

Device Driver Synthesis | 141

Intel® Technology Journal | Volume 17, Issue 2, 2013

Table 1 illustrates the interdependence between the three entities

Entity Produces Consumes

Device Class WG Device Class
Specification

n/a

OS Vendor OS Specification Device Class Specification
Device Vendor Device Specification Device Class Specification
Platform Integrator n/a Device Class Specification

OS Specification
Device Specification

Table 1: Specification Producers and Consumers
(Source: Intel Corporation, 2013)

DML Models for Driver Synthesis
Device Driver synthesis aims to synthesize drivers automatically from formal
specifications, so availability of a device specification is a key to success of the
tool. If a device specification has to be created specifically for synthesis, then
we’ve only accomplished the shifting of efforts from driver development to
specification development, rather than solving the problem. In addition there is
no way to validate the manually developed model to make sure that it models
the device operation properly.

There are many high-level device specification languages that are
currently used by hardware manufacturers including SystemC, System
Verilog, and Simics DML. To ensure that the driver synthesis tools
are widely applicable, the architecture provides for multiple frontend
compilers that convert specifications written in a given language into an
intermediate language Termite Specification Language (TSL) developed
by us. TSL provides a means for concise description of FSM states and
transitions and is used as the FSM external representation by all other
tool-chain components.

Wind River Simics* is becoming the platform of choice for virtual
platforms at Intel. Many DML models already exist and are being used
successfully in virtual platforms. If a particular DML model doesn’t exist,
then writing the model contributes to synthesis as well as virtual platforms.
We have developed a frontend compiler for DML for using DML models
with our tool chain.

DML to TSL Compiler
DML has been designed to facilitate fast model development by software
engineers. It is a very forgiving language in general, allowing forward
referencing, type casting, and automatic C-style type promotion. TSL, on the
other hand, is very restrictive. For example, it does not provide type promotion
or casting or allow forward references.

“Availability of a device model is key

to the success of the tool”

Intel® Technology Journal | Volume 17, Issue 2, 2013

142 | Device Driver Synthesis

One of the goals of the project is to not modify the actual device models, since
we do not want our use of the models to impact their original use in virtual
platforms and we do not want to force a fork of the models, which might lead
to issues with bug-fix propagation. We have built a DML compiler that tries
to deal with the DML to TSL conversion automatically, but in some cases we
do need to modify the model. Currently we do modify the model directly, but
all of the modifications we currently make to the actual model could instead
be kept in a separate annotations file, thereby leaving the model pristine. This
support will be added in the future versions of the tool.

Extracting Device Behavior from DML Models
Conceptually, DML architecture is very similar to event-driven GUI
architectures. A DML model can be thought of as a collection of responses,
where each response corresponds to a message or a set of inputs. Responses
execute instantaneously; that is, simulation time does not advance while an
individual response is executing, and blocking in a handler is prohibited.
Response execution always begins with an external call of an interface method
and completes with the return to the external caller.

TSL models express device behaviors as a collection of variables that represent
device state and a collection of transitions to these state variables. Given a set of
input state changes, each individual transition describes the cascade of changes to
other state variables in response to the input changes. In addition, each transition
may have guarding constraints that allow it to be enabled or disabled depending
on current device state. Similarly to DML, TSL transitions are also instantaneous.
While they resemble code, a TSL transition can also be thought of as a formula that
computes next state S′given current state S and inputs I: S′ = fTrans(S, I).

Conceptually, DML model structure closely corresponds to the TSL structure.
A single TSL transition maps directly to an execution trace of a DML interface
method and its called methods. The TSL state variables map directly to the
collection of DML registers, fields, attribute objects, and data objects.

Before we can begin extraction, we build out an in-memory representation of
the model. This involves application of templates to DML objects, evaluation
of parameters, expansion of select and foreach keywords, and evaluation and
pruning/expansion of if object statements. Each of these steps can result
in significant model changes so evaluation of the model really cannot be
performed without these steps.

We begin the extraction process by collecting the model variables that will
become the TSL state variables. All data objects and attributes are added to the
collection as they are encountered. Fields are added only if their alloc parameter
is true (that is, model space is allocated for its contents). Registers are added
only if they do not contain fields and their alloc parameter is true.

We identify the individual transitions to be extracted (transition entry points)
by identifying and collecting all exported interface methods contained in the
models. As well as explicit interfaces, this set also contains the read/write bank

“DML compiler extracts the relevant

device behavior from DML device

models.”

Device Driver Synthesis | 143

Intel® Technology Journal | Volume 17, Issue 2, 2013

access methods for all register banks present. We also add transitions for each
DML event object and after keyword encountered in the model, along with a
1-bit guard variable for each event or after transition.

After identifying the entry points, we can begin extraction of the transitions.
This is done by first copying the method containing the entry point, then
replacing each call or inline statement with the body of the target method. This
is repeated recursively until no call or inline statements remain and we are left
with a full code trace through all branches of the call. As an optimization, we
concurrently evaluate if statement conditions to prune branches that will never
be taken because they will always be false.

Besides state variables, TSL allows for temporary variables. These are global
in scope but do not retain values across transitions. TSL has no notion of
transition-local variables. As part of the transition extraction, we must convert
all local variables found in DML methods to TSL temporary variables. Because
of TSL’s global scoping, some amount of variable name mangling is required
to ensure unique variable names.

TSL restricts transitions from modifying a variable more than once per
transition. This requires us to analyze each extracted transition and introduce
new temporary variables and assignments when violations are identified.

TSL also requires that any single transition must update all state variables.
To meet this requirement, we analyze each branch in the transition for
assignment statements. For each variable assigned, we add an identity
assignment (state’ = state;) to the corresponding branch. We complete this
requirement by adding identity assignments to the end of the transition for
all remaining unassigned state variables.

The following subsections describe how our frontend DML compiler deals
with the conversion from DML to TSL.

DML Templates
Development of the compiler caused us to study several of the import files in
great detail, specifically dml-builtins.dml and utility.dml, leading us to realize
the power of well-planned template and parameter use. This in turn allowed us
to write “extensions” in DML itself, rather than extending the language.

The file dml-builtins.dml provides the glue that ties banks, registers, and fields
together, as well as providing default methods and parameters for most types of
DML objects. Unfortunately, it is so closely tied to the Simics DML compiler,
dmlc, that we could not use it without porting it. Our first porting task was
to create our own versions of the methods that are “intercepted by the DML
compiler.” These methods are involved in the read/write access fan-out from
bank objects to registers and fields.

For Simics device I/O, the bank method access() serves as the primary entry
point for the I/O-memory interface (register read/write operations). Instead
of a single method that takes direction and size as parameters, TSL uses a set

“The tool converts models into an

intermediate representation called

TSL that is amenable for analysis and

synthesis”

Intel® Technology Journal | Volume 17, Issue 2, 2013

144 | Device Driver Synthesis

of entry points: read8(), write8(), read16(), write16(), read32(), and write32().
To accomplish this change, we modified the behavior of our bank objects to
create parameters containing lists of mapped registers of specific sizes: mapped_
regs8, mapped_regs16, and mapped_regs32. We also defined an iioregion
interface with methods corresponding to the TSL requirements and modified
the default “bank” template in our dml-builtins.dml file to implement the
iioregion interface and instantiate the individual access methods as applicable.
In addition, we added the ability to turn off access for banks we were not
interested in. For instance, we may be working with a PCI-based UART where
we are interested in the UART register banks but not the PCI configuration
space register banks. This control allows us to extract UART register-related
transitions while ignoring PCI-configuration related ones.

Early on, we discovered that our game-playing solver did not always follow the rules
that driver writers do. Specifically, it would attempt device register access before the
driver’s probe() routine had been called. To solve this issue, we added a guarding
constraint to the access methods, blocking them until probe() had been called. The
following is a portion of our dml-builtins file illustrating these changes:

// io_waits_for_probe – define to block IOs before probe() is called
parameter io_waits_for_probe default undefined;
// conditionally create a variable to track if probe() has been called
if (defined $dev.io_waits_for_probe) {
 data uint1 probe_called;
}

template bank {
.
.
.
// extensions for tsl
parameter mapped_regs32 default undefined;
parameter mapped_regs16 default undefined;
parameter mapped_regs8 default undefined;

// controls if bank-related transitions will be emitted
parameter emit_accessors default true;

if ($this.emit_accessors == true) {

// not emitted if bank has no visible registers
if (defined $this.mapped_registers) {

// The TSL access interface
implement iioregion {
	 // Does bank contain mapped 8-bit registers?
	 if (defined $parent.mapped_regs8) {

“Built-in templates for register access

provide a software interface to the

device internals with appropriate

constraints”

Device Driver Synthesis | 145

Intel® Technology Journal | Volume 17, Issue 2, 2013

	 // emit guard if we need to wait for probe
	 if (defined $dev.io_waits_for_probe) {
	 parameter guard_read8 = ($dev.probe_called == 1);
	 }
	 // and emit the read access method
	 method read8(uint32 roffs8) -> (uint1 rstatus, uint8 rval8) {

Event objects presented another challenge. In Simics, execution of an event
object’s event() method is constrained by its posted state. It can only be called
if it has previously been posted to an event queue. In TSL, no such queues
exist. This is further compounded by the almost 100-percent rate of models
overloading the default event() method. We needed to constrain the event()
method to only run when posted, and we needed to retain control of the
event’s entry point so we could apply the constraint and perform constraint
housekeeping. Again, we were able to perform the bulk of this work by
modifying the default event template:

template event {
.
.
.
// variable to track posted state
data uint1 _posted_;

// methods to manipulate posted state
method post(when, data) {$this._posted_ = 1;}
method remove(data) {$this._posted_ = 0;}
method _cancel_all() {$this._posted_ = 0;}

// instantiate an event “wrapper” entrypoint
implement event_entry {

//entry point only enabled when event is posted
parameter guard_pre_event = ($_posted_ != 0);

method pre_event(void *param) {
// housekeeping – reset posted state
$_posted_ = 0; //Clear posted flag and call event
// call control to real handler
inline $parent.event(param);

}

Unused Code
There is some code in DML device models that is for DML infrastructure and
not for device operations. Our tool has no need for such code and we needed
a way to eliminate such code from models without modifying the models. We
have defined a few annotations for use in the models. They all begin with the
sequence //@ and so are transparent to the Simics DML compiler. We use the
pair //@ignore and //@resume to hide portions of DML from our DML tool.

“Event handling is challenging in

TSL, as there are no queues. ”

Intel® Technology Journal | Volume 17, Issue 2, 2013

146 | Device Driver Synthesis

We have used these to some extent in the models but mostly use them in our
copies of the system import files, the DML equivalent of user/include/*.h.

Width Conversion
TSL does not support type promotion or casting, so our DML compiler
performs a significant amount of expression rewriting in order to provide explicit
width conversions. Width conversion to a wider type requires the original
assignment be converted to a conjunction of two assignments, the original
assignment and a second assignment to the extra bits. For example, assuming a
32-bit variable named foo and a 16-bit variable name bar, the statement:

foo = bar;

becomes:

((foo[15:0] = bar) && (foo[31:16] = 0))

In some cases, the format of a DML expression may prevent our tool from
being able to make this modification. For instance, the DML expression:

foo = (somevar == 0) ? bar :0;

cannot be modified because the conversion is only needed conditionally but
can only be expressed in terms of the global foo, not the conditional bar. In
these cases, we rewrite the DML in a form that allows for the conversion:

if (somevar == 0)
		 foo = bar;
else
		 foo = 0;

This rewriting provides separate conditional assignments to foo, allowing each
to be converted as needed.

Arithmetic Operations
Current version of TSL does not support arithmetic operations (such as 1, 2, 3, 4,
or modulo) or magnitude comparison operations (such as <, <5, >, or > 5).
At this point this is just a limitation of our tool and we plan to add this support
in our tool soon. For dealing with this issue for now, our tool detects cases where
power-of-2 techniques can be used instead and performs automatic conversion.
The detection depends on one of the operands being a constant power-of-2
value. In cases where this is not obvious, we have to modify the model by hand.

Some models contain complex arithmetic expressions that calculate some
binning value based on one or more inputs. In these cases, we have replaced the

“The TSL compiler performs strict

type checking requiring the DML

compiler to coalesce types by rewriting

expressions in the emitted TSL”

Device Driver Synthesis | 147

Intel® Technology Journal | Volume 17, Issue 2, 2013

arithmetic expressions with if-else trees or switch statements coded to achieve
the same result without arithmetic.

Driver Verification Using DML models
We use the same Simics model that is used to synthesize the driver in the
Simics framework to execute and test the synthesized driver.

For some of the devices for which the hardware is available, we also tested the
driver on actual hardware.

Tool Chain Capabilities
The synthesis tool chain has some additional capabilities that can be useful to a
DML model writer. In the following sections we describe these capabilities and
how a DML model writer can use it to their advantage.

State Space Explorer
The driver synthesis tool chain includes a utility that allows a user to visually
inspect the combined device and OS state machine. The utility is a state space
explorer, a graphical user interface that allows the user to perform various
operations on the state machine, like analyzing available driver actions in a given
device state, applying an action from the current state and inspecting the changes
to the device state, and viewing the effect of external environment events.

While the state space explorer is a critical component of a tool chain that
synthesizes driver code, it also offers capabilities that can be quite useful to a
DML model developer.

Visual Model Debugger
As illustrated in Figure 4, the state space explorer GUI allows a DML model
developer to visualize the device model as a directed graph where each node
in the graph represents a state (or a set of states) and each arc in the graph
represents a transition from one state to another.

The GUI allows a model user to inspect the values of any device internal
variable in a given state by simply clicking on the node in the graph
representing the state. A pane on the left lists all the device internal variables,
and clicking on a particular state node causes this list to be updated with the
values of each variable in that state.

Further, from a given state, the GUI allows a user to pick the next transition
which would move the device state machine to another state. While this
feature is somewhat similar to the step or next operation in a traditional
software debugger, the event-driven nature of a DML model requires the
tool to provide more flexibility. The events triggering state transitions are
broadly classified into events that can be controlled by software and those
that depend on the environment (like platform hardware interrupt, line
unplugged, and so on) and therefore cannot be controlled by the device
or software. The tool allows a user to choose which event occurs next in a

“State space explorer allows the model

developer to visualize the device

model”

Intel® Technology Journal | Volume 17, Issue 2, 2013

148 | Device Driver Synthesis

given device state. The choice includes both controllable and uncontrollable
events. In the case of software-controlled actions, the user can also specify the
parameters of the action.

Figure 4: State space explorer GUI. The right pane shows the device model as a directed graph. The left pane shows device
internal variable values.
(Source: Intel Corporation, 2013)

The capabilities described above (inspecting device variable values and directing
the state machine by choosing the next transition via the GUI) allow the model
writer to use the state space explorer as a debugging aid, examining the effect of
(a chain of) events on the device.

Counterexample Generation
The primary challenge in exploring the state space of a hardware device model
is its huge size, which would quickly make visualization incomprehensible and
state management cumbersome. The GUI explorer utility in the synthesis tool
chain employs numerous techniques, built on a foundation of formal methods
and symbolic execution to address this issue. These techniques include:

●● aggregating states with the same properties with respect to the DML mode
code into a set of states and displaying the entire set as one node

●● symbolic representation of the model code, which allows abstracting
the model variables (which can have a massive number of values)

“State space explorer provides a

counter example when no winning

driver strategy exists”

Device Driver Synthesis | 149

Intel® Technology Journal | Volume 17, Issue 2, 2013

into Boolean predicates that distinguish specific paths through
the code

●● showing only relevant subset of actions and parameter values when adding
a state transition

●● automatically “running” (tracing out a path in the device state machine) till
a specified “way-point condition” (a predicate expressed over device model
variables) is true

One of the most useful capabilities from a model developer’s perspective is the
tool’s ability to generate counterexamples. The normal operating mode is to
develop a successful strategy for the driver, but when the model is buggy such
that it is impossible to generate a successful driver strategy, the tool generates a
counterexample, that is, a set of actions on the state machine demonstrating how
the driver can be prevented from moving the state machine into a desired goal state.
This is possible since the tool is built on top of a formal representation of the model.

Providing counterexamples is very useful to a model developer as they can be
presented with a specific sequence of actions on the device model that would
lead the model into an undesirable state.

Scenario Replication
Device programming sequences typically involve massaging of OS input
parameters, a long series of register reads/writes, and require specific
environment conditions (such as network connectivity for a successful packet
transmission) to hold. In order to assist the tool user in efficiently exploring the
device state space and quickly repeating long repetitive action sequences, the
GUI allows saving traces of action sequences, also known as state transitions,
from any given state. In any subsequent run of the tool, as long as the model
remains unmodified, the same scenario can be replicated by bringing the model
to the same start state and then loading the trace saved.

This capability can be very useful for software-hardware co-development
allowing device-driver and device-model developers to work together closely.
The driver developer can initiate some OS-based scenario and capture its effect
on the device model internals for the model developer to replicate. Typically
such errors (for example, race conditions, synchronization errors, or deadlocks)
involve very specific interactions of the software, device, environment, and
OS actions, making it hard for model developers to replicate the exact error
conditions being encountered in a complete system. While Simics does
allow easily simulating the complete system state to replicate errors, the
model developer would still need to instrument the DML model code with
appropriate debug logic (typically log messages, to determine the root cause of
the problem). The distinction is similar to classic software debugging done by
adding code to print debug messages versus using a debugger to find problems.

The combination of the capabilities to explore model state space,
counterexample generation and scenario replication allows a DML model
writer to quickly narrow the search for bugs in DML device models as they are
directly able to examine the device-internal state in the discovered failure paths.

“Visual tool allows for scenario

replication by supporting save and

restore feature”

Intel® Technology Journal | Volume 17, Issue 2, 2013

150 | Device Driver Synthesis

Prototype Device Drivers
We have successfully synthesized device drivers for multiple nontrivial devices
using DML device models. We used some existing models and developed
some from scratch. For all the drivers the synthesized code was limited
to driver code that handles device specific operations like initialization,
configuration, and data transfer. We embedded this synthesized driver code
in manually developed wrappers for code that involves OS and bus resource
allocation and any data transformation. Resource allocation includes allocating
IRQ lines, setting up DMA descriptor rings, creating mappings for memory-
mapped device regions, and so on. Data transformations performed by drivers
include preprocessing data buffers sent to the device, such as, for example,
changing their alignment or padding, and postprocessing data received from
the device, such as extracting checksum from a network packet. While many
of these operations can in principle be formalized and synthesized using the
game-based approach, we believe that a different formalism is needed to
automate synthesis of this functionality. We successfully synthesized low-level
drivers for the following devices:

●● Legacy IDE Controller –Linux driver from manually developed DML
model from device datasheet

●● W5100 Embedded Ethernet Controller – Native firmware driver from
manually developed DML model from device datasheet

●● Intel PRO/1000 Ethernet Controller – Linux driver from manually
developed DML model from device datasheet

●● UART NS16450 – Linux driver from existing DML device model
●● SD Host controller – EFI driver from existing DML model

SD Host Controller Case Study
This section describes the steps involved in synthesizing a UEFI SD Host
controller driver from scratch. This case study is considered in detail here
because it is based on using a preexisting device model. As such, it is the most
representative of the intended use of this technology.

Input Specifications
Driver synthesis requires three input specifications for the device. This section
describes the steps involved in acquiring/developing three input specifications.

Device Specification
We used an existing SD host controller DML device model from Simics
team as our device specification. As we began to examine the model to
determine where the device‐class related annotations should be placed, we
noticed that unlike the other DML models we had worked with, this model
did not account for in‐flight data transfer times. All data transfers to or
from the card model happened instantaneously. Our past experience led

“The synthesis tool has been used to

successfully generate device drivers for

several non-trivial devices”

Device Driver Synthesis | 151

Intel® Technology Journal | Volume 17, Issue 2, 2013

us to believe that we would not be able to successfully synthesize a driver
from a model in this condition. The problem is that the instantaneous
completion leads the synthesis algorithm to assume that any operation
started in cycle x will be complete in cycle (x + 1), eliminating the need to
poll status registers for an indication of completion, and so on. Therefore,
our first step became a rewrite step.

We rewrote the model to account for the in‐flight times and validated the
changes using a stock Linux image with the Linux SD Host driver, running on
the Simics Framework. We submitted patches for these changes to Simics.

We then began the task of annotating the model with Device Class events and
attempting synthesis. As this model was the most complex model we had tried to
date, we immediately ran into problems. The complexity of the model resulted in
an output TSL file with 6.8 Kb of state space (global variables), another 12.3 Kb
for temporary variables, and 45 separate transitions. This extreme size resulted
in tool-chain execution times in excess of 4 hours. As we were still trying to
determine the correct locations for annotations, the extreme execution time was a
significant hindrance to forward progress.

Since the model is a full model, it contains transfer modes and registers that
would not be used in our project. In an attempt to reduce the overall size and
complexity, we tweaked the model to hide the unused transfer modes and
registers. This reduced model has 2.5 Kb of global variable space, 1.5 Kb of
temporary variable space, and 14 separate transitions. This reduced tool-chain
execution time to tens of minutes.

We also had to make a few changes to the model for TSL compatibility
issues. These changes included rewriting arrayed register definitions without
arrays, statement adjustments to allow width conversions, and elimination of
arithmetic operations.

Class Specification
We needed to define this specification from scratch as it does not exist today.
Normally we expect it to be published with the device industry standard
specification. This specification defines all the interfaces supported by the SD
Host controller device that are expected to be supported by all the drivers. We
started with SD host controller standard specification[6] and defined the class
interfaces. This is defined as a Word document. The class interfaces are the
points of synchronization between OS and device specifications. We will use
these interfaces to annotate both the OS and device specifications.

OS Specification
We chose to synthesize the SD host controller driver for UEFI (Unified
Extended Firmware Interface). We used UEFI documentation[5] to define this
specification. The SD host controller driver is the lowest level driver in the
layered driver stack. The OS specification for this driver was motivated by the
interfaces expected by the media layer driver.

“The SD host controller DML model

was annotated to work with the tool”

Intel® Technology Journal | Volume 17, Issue 2, 2013

152 | Device Driver Synthesis

These interfaces are codified by the main UEFI specification and expose
abstractions such as block device access, such as the EFI_BLOCK_IO_
PROTOCOL. The generic services in the EFI_BLOCK_IO_PROTOCOL,
such as ReadBlocks(), WriteBlocks(), and Reset(), need to be refined to an
implementation that meets the requirements of the underlying hardware
controllers. Today the requirements of the UEFI specification and its associated
driver model, along with the semantics of the hardware, are all managed by
the developer as part of the code creation process. This process is error fraught,
and most developers typically take an existing driver source and “port” it to the
requirements of the new hardware. As such, there is no guarantee of correctness,
with flawed “existing sources” being evolved via this porting process.

Instead, with the driver synthesis, a single instance of an OS specification for a class
of devices can be married to a specific device specification, such as the DML for the
hardware, to derive the source. This removes the errant human interpretation of the
UEFI specification and the hardware host controller interface definition.

This is an important issue in that the UEFI firmware on the system board is
considered hardware by many end users of the platform. And with the trust
guarantees around platforms based upon UEFI Secure Boot[7], assurance
considerations, such as correctness of the implementation, gain even more
importance as all of the UEFI drivers and components are in the same trusted
computing base.

“Strong assurance guarantees needed

for firmware along with the extensive

specifications available in UEFI

make EFI drivers an ideal target for

synthesis”

UEFI defines a stylized model of system booting that includes interfaces between
several different executable entities, including UEFI drivers, as shown in Figure 5.

Figure 5: UEFI boot sequence
(Source: Intel Corporation, 2013)

Security
(SEC)

Pre EFI
Initialization

(PEl)

Driver
Execution

Environment
(DXE)

Boot Dev
Select
(BDS)

Transient
System Load

(TSL)

Run Time
(RT)

After
Life
(AL)

UEFI
Interfaces

V
er

ify

Pre
Verifier

OS-Present
App

Final OS
Environment

Final OS
Boot Loader

Transient OS
Boot Loader

Transient OS
Environment

OS-Absent
App

Boot
Manager

Device,
Bus, or
Service
Driver

Intrinsic
Services

EFIDriver
Dispatcher

Security

Board
Init

Chipset
Init

CPU
Init

?

[. .Platform Initialization. .]Power on Shutdown[. . . .OS Boot. . . .]

Device Driver Synthesis | 153

Intel® Technology Journal | Volume 17, Issue 2, 2013

Specification Synchronization
We used the class specification as synchronization between the OS and device
specification. This involved using the class interfaces in the OS specification at
the synchronization points. Finding the correct synchronization points involved
studying the DML device model. Finding the correct place to annotate the
device model depends on the way the model is written. It was a fairly simple
process to annotate the SD host controller and EFI OS specifications.

Integration
Once we had the three inputs ready, it was an iterative process to input them
through our tool chain to synthesize the driver. We did not synthesize the
configuration interfaces for this device, but synthesized the main function to
send a command to the card. At the end of this step we were able to synthesize
the device driver strategy for this driver.

Code Generation
Code generation proved much mode tedious than anticipated. At the time of
writing, our synthesis tool does not support fully automatic code generation.
Instead, it allows the user to interactively construct driver source code by
selecting one of several possible actions proposed by the winning strategy in
each state. Ongoing research on this problem is focusing on techniques for
fully automatic code generation as well as on improved methods for interactive
user-guided code generation (see the section “User-Guided Synthesis”).

Testing and Validation
We used the Simics simulator of a target platform based on the Intel® Core™ i7
processor for testing this EFI driver. This model does not contain an integrated
SD host controller so our first step involved adding our SDHCI device model
to the platform. We created a Python wrapper to instantiate our SDHCI model
and Simics MMC Card model and integrated the wrapper into platform model
startup script. The startup script was modified to connect the host controller to
the platform model through an unused South Bridge PCI bus slot.

With the platform model extended, the next step was to validate the extended
model. This was done using the Linux image supplied with the platform model. We
booted the image in Simics and recompiled the kernel to create a loadable Linux
SDHCI driver. We updated the Linux image to retain the new driver modules. We
were then able to load the SDHCI driver and validate our SDHCI-MMC card
model combination using Linux file-system commands targeted to the MMC card.

Our next step was to establish an EFI baseline image. To achieve this goal,
we built an EFI image with an existing SD host controller driver and tested
that simulation environment. We then integrated our driver with the EFI
code base, replacing the existing driver. We needed to develop some wrapper
code to integrate in EFI environment. We then built and tested this driver on
the Simics simulator and successfully brought up the SD host controller and
performed read/write operations to the SD card.

“The synthesized code generated by the

tool was tested in the Simics simulator

with an Intel® Core™ i7 based

platform model”

Intel® Technology Journal | Volume 17, Issue 2, 2013

154 | Device Driver Synthesis

User-Guided Synthesis
Our initial approach with this project was complete automatic synthesis, where
once the specifications are available, a push-button approach will result in a
driver. In practice we realized that users want much more control over the
structure of the driver code. In addition, in some cases synthesis gets stuck, and
having users provide some simple hints can make the job of the synthesis tool
much easier. Given these findings we decided to make a shift toward user-
guided synthesis, as illustrated in Figure 6.

“User guided synthesis allows a driver

writer to have fine grained control

over the driver synthesis process”

Figure 6: Guided synthesis spectrum
(Source: NICTA, 2013)

To this end we plan on using driver templates that specify the driver
structure. The user can add additional constraints on the synthesized driver
by defining a device-specific driver template that can include some hints,
or anything that is specific to a device. We plan on supporting a complete
spectrum from fully automatic synthesis, where the device-specific template
is empty, to the other extreme, where the user manually writes the complete
driver in device-specific template and our tool can then act as a verifier to
verify the driver against input specifications. We think the sweet spot is
somewhere in the middle, where the user specifies some code structure and
constraints in the device-specific template and generates more usable and
readable code (see Figure 7).

We are also working on an interactive code generation GUI that gives user
the flexibility to add any code at code generation steps. Any code manually
added this way using the code generation GUI is saved by adding it back to
the template and will automatically be available at the next iteration. Using
a combination of templates and code generation GUI, our tool chain will
provide user control over generated code at all stages of synthesis. Even though
the user gets complete control, our tool chain will validate that the user has
added correct code. Any errors caused by the user will result in synthesis failure
and not an incorrect driver.

Guided Synthesis Spectrum

Fully Automatic Synthesis

Empty Driver
Template

Synthesised Driver

Hybrid Approach

Modified Driver
Template

Synthesised Driver

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,snd);

send(){

}

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,rcv);

receive(){

}

Verification

Manually Developed
Driver

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,rcv);

receive(){

}

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,snd);

send(){

}

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,snd);

send(){

}

write(ctl,flags);
write(irq_en,Oxff);
write(cmd,rcv);

receive(){

}

receive(){
 ...
}

send(){
 ...
}

receive(){

}

write(ctl,0);

...

send(){

}

...

Device Driver Synthesis | 155

Intel® Technology Journal | Volume 17, Issue 2, 2013

Future and Summary
Using existing device models for driver synthesis is a great start, but in practice
we realized that we had to modify and annotate the models extensively in order
to make them suitable for synthesis. In the future we hope to work with model
writers to lay down requirements for writing device models with synthesis in
mind, so as to reduce manual intervention to annotate or modify the models.

Complete References
[1]	 A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An

empirical study of operating systems errors. In 18th SOSP, pages
73–88, Lake Louise, Alta, Canada, Oct 2001.

[2]	 A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP
kernel crash analysis. In 20th LISA, pages 101–111, Washington,
DC, USA, 2006.

[3]	 N. Piterman and A. Pnueli, “Synthesis of reactive designs,”
in Proceedings of Verification, Model Checking, and Abstract
Implementation (VMCAI), 2006.

[4]	 R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Transactions on Computers, Vols. C-35, no. 8,
pp. 667–691, August 1986.

[5]	 Unified EFI Forum, [Online]. Available: www.uefi.org/home.

[6]	 SD Association, “SD Host Controller Standard Specification
Version 4.00,” SD Association, 2012.

“Synthesis with user guidance has a

potential to achieve the holy grail of

fine grained user control with formal

guarantees of correctness for generated

device drivers”

Figure 7: User-Guided synthesis with templates
(Source: NICTA, 2013)

Manual code is added back
to the template and can be
reused at the next iteration

OS Model

The user controls synthesized
code via interactive code

generation toolDevice Spec

Device-specific
Driver

Template

Driver
Template

Driver
Implementation

Intel® Technology Journal | Volume 17, Issue 2, 2013

156 | Device Driver Synthesis

[7]	 Magnus Nystrom, Martin Nicholes, Vincent Zimmer, “UEFI
Networking and Pre-OS Security,” in Intel Technology Journal -
UEFI Today: Boostrapping the Continuum, Volume 15, Issue 1,
pp. 80–101, October 2011

Author Biographies
Mona Vij is a researcher in Intel Labs. She has been a security and operating
systems researcher for over 20 years. She has a Masters in Computer Science
from the University of Delhi, India and a Bachelor of Science in Mathematics
from St Stephen’s College, Delhi.

John Keys is a Staff Engineer in Intel Labs. He has been developing low-level
software for over 25 years, for both PCs and embedded platforms. He has
experience with a wide range of hardware devices, CPUs, operating systems,
processor architectures, and platforms from bare-metal to PC to satellites
and tunnel boring machines. He has made significant contributions to the
development of PCMCIA and USB technologies and standards. Through this
leading edge work, he also became an expert in “hacking” an existing platform
to add new capabilities, beginning with plug-and-play support for MS-
DOS3.2. John has been with Intel for 14 years in a variety of positions. Prior
to joining Intel, he was the VP of Software for MCCI in Ithaca, NY.

Arun Raghunath is a Senior Software Engineer in Intel Labs. He has a Masters
in Computer Science from University of Southern California, and a Bachelors
in Computer Science & Engineering from Pune University, India.

He has been a Systems software researcher at Intel for the last 14 years. He has
authored 5 conference papers, 1 book chapter and holds 8 patents in the areas
of High performance computer networking, Operating Systems, Compilers
and multi-core parallelization.

Scott Hahn is a Principal Engineer in the Systems Architecture Lab within
Intel Labs where he leads the Operating Systems Research team. His team
primarily focuses on the interaction of system SW and HW. Their projects
cover multiple areas including storage, scheduling, memory and device drivers.
Scott has been with Intel since 1994 and joined Intel Labs in 2006. Prior to
joining Intel Labs, he was an architect in the LAN Access Division (LAD)
where he worked on a number of network technologies and was the lead
architect of Intel’s Active Management Technology (Intel® AMT). Scott also
worked in Intel's Supercomputer Systems Division where he was responsible
for developing Intel's IP over ATM solution for the world’s first TeraFLOP
super computer. Scott has published over 15 technical papers, holds 13 patents,
and has received an Intel Achievement Award for his work on Intel® AMT.

Vincent Zimmer is a principal engineer in the Software and Services Group
at Intel. He has been firmware developer for over 20 years. He has a Bachelor
of Science in electrical engineering from Cornell University, Ithaca, NY, and a
Master of Science in computer science and engineering from the University of

Device Driver Synthesis | 157

Intel® Technology Journal | Volume 17, Issue 2, 2013

Washington, Seattle, WA. He has published three books, two book chapters,
one IETF RFC, ten publications and over 270 US patents.

Leonid Ryzhyk is a Postdoctoral Fellow at the University of Toronto and
Researcher at NICTA. He obtained a PhD in Computer Science from the
University of New South Wales, Sydney, Australia in 2010. He received his
Bachelor’s and Master’s degrees in Computer Science from the National
Technical University of Ukraine in 2000 and 2002.

Adam Walker is a PhD student at the University of New South Wales, Sydney,
Australia. He obtained his Bachelor’s degree from the University of Auckland,
New Zealand in 2008.

Alexander Legg is a PhD student at the University of New South Wales,
working with NICTA in Sydney, Australia. He received a Bachelor of
Information Technology (Hons) from the University of Sydney in 2011.

