Proof Engineering Considered Essential

Gerwin Klein

NICTA* and UNSW, Sydney, Australia

{first-name.last-name}@nicta.com.au

Abstract. In this talk, I will give an overview of the various formal
verification projects around the evolving seL.4 microkernel, and discuss
our experience in large-scale proof engineering and maintenance.

In particular, the presentation will draw a picture of what these verifi-
cations mean and how they fit together into a whole. Among these are
a number of firsts: the first code-level functional correctness proof of a
general-purpose OS kernel, the first non-interference proof for such a
kernel at the code-level, the first binary-level functional verification of
systems code of this complexity, and the first sound worst-case execution-
time profile for a protected-mode operating system kernel.

Taken together, these projects produced proof artefacts on the order
of 400,000 lines of Isabelle/HOL proof scripts. This order of magnitude
brings engineering aspects to proofs that we so far mostly associate with
software and code. In the second part of the talk, I will report on our
experience in proof engineering methods and tools, and pose a number of
research questions that we think will be important to solve for the wider
scale practical application of such formal methods in industry.

1 The selL4 Verification

This extended abstract contains a brief summary of the sel.4 verification and
proof engineering aspects. A more extensive in-depth overview has appeared
previously [13].

The seL4 kernel is a 3rd generation microkernel in the L4 family [17]. The
purpose of such microkernels is to form the core of the trusted computing base
of any larger-scale system on top. They provide basic operating system (OS)
mechanisms such as virtual memory, synchronous and asynchronous messages,
interrupt handling, and in the case of selL4, capability-based access control. The
idea is that, using these mechanisms, one can isolate software components in
time and space from each other, and therefore not only enable verification of such
components in isolation and in higher-level programming models, but even forego
the formal verification of entire components in a system altogether, and focus
on a small number of trusted critical components instead, without sacrificing
assurance in the critical properties of the overall system [3]. This general idea
is not new. For instance, it can be found for simpler separation kernels in the

* NICTA is funded by the Australian Government through the Department of Communications and
the Australian Research Council through the ICT Centre of Excellence Program



MILS setting [2]. For modern systems, some of the untrusted components will be
an entire monolithic guest OS such as Linux. That is, the microkernel is used
not only for separation, but also as a full virtualisation platform or hypervisor.

This setting provides the motivation for the formal verification of such kernels:
clearly, they are at the centre of trust for the overall system — if the microkernel
misbehaves, no predictions can be made about the security or safety of the overall
system running on it. At the same time, microkernels are small: roughly on the
order of 10,000 lines of C code. The selL4 verification shows that this is now
within reach of full formal code-level verification of functional and non-functional
properties, and with a level of effort that is within a factor of 2-5 of normal
high quality (but not high assurance) software development in this domain. With
further research in proof engineering, automation, and code and proof synthesis,
we think this factor can be brought down to industrially interesting levels, and
in specific cases, can even be made cheaper than standard software development.

Apart from its scale, two main requirements set the verification of sel.4 apart
from other software verification projects: a) the verification is at the code level
(and more recently even at the binary level), and b) it was a strict requirement of
the project not to sacrifice critical runtime performance for ease of verification.

The second requirement is crucial for the real-world applicability of the result.
Especially in microkernels, context switching and message passing performance
is paramount for the usability of the system, because these will become the most
frequently run operation not just of the kernel, but of the entire system. The mere
idea of the first generation of microkernels has famously been criticised for being
prohibitive for system performance and therefore ultimately unusable [24]. Time
has shown this argument wrong. The second generation of microkernels have
demonstrated context switching and message passing performance on par with
standard procedure calls as used in monolithic kernels [17]. The third generation
has added strong access control to the mix without sacrificing this performance.
Such microkernels now power billions of mobile devices, and therefore arguably
have more widespread application than most (or maybe all) standard monolithic
kernels. All this rests on the performance of a few critical operations of such
kernels, and it is no wonder that the field seems obsessed with these numbers.
Using simplifications, abstractions or verification mechanisms that lead to one or
two orders of magnitude slow-down would be unacceptable.

The first requirement — code-level verification instead of verification on
high-level models or manual abstractions — was important to achieve a higher
degree of assurance in the first place, and later turned out to be indispensable
for maintaining the verification of an evolving code base. The various separate
verification projects around sel.4 took place over a period of almost a decade, but
they fully integrate and provide machine-checked theorems over the same code
base (except the worst-case execution-time (WCET) analysis, which uses different
techniques). Whenever the code or design of the kernel changes, which happens
regularly, it is trivial and automatic to check which parts of the verification break
and need to be updated. This would be next to impossible if there was a manual
abstraction step involved from the artefact the machine runs to the artefact



the proof is concerned with. It has often been observed that even light-weight
application of formal methods brings significant benefit early in the life cycle of a
project. Our experience shows that strong benefits can be sustained throughout
the much longer maintenance phase of software systems. As I will show in the
talk, maintaining proofs together with code is not without cost, but at least in
the area of critical high-assurance systems changes can now be made with strong
confidence, and without paying the cost of full expensive re-certification.

The talk will describe the current state of the formal verification of the sel.4
kernel, which is conducted almost exclusively in the LCF-style [10] interactive
proof assistant Isabelle/HOL [20]. The exceptions are binary verification, which
uses a mix of Isabelle, HOL4 [23] and automatic SMT solvers, and the WCET
analysis, which uses the Chronos tool, manual proof and model checking for the
elimination of infeasible paths.

In particular, the verification contains the following proofs:

— functional correctness [14] between an abstract higher-order logic specifi-
cation of selLl4 and its C code semantics, including the verification of a
high-performance message-passing code path [13];

— functional correctness between the C code semantics and the binary of the
seL4 kernel after compilation and linking [21], based on the well-validate
Cambridge ARM semantics [7];

— the security property integrity [22], which roughly says that the kernel will

not let user code change data without explicit write permission;

the security property non-interference [19,18], which includes confidentiality

and together with integrity provides isolation, which implies availability and

spacial separation;

correct user-level system initialisation on top of the kernel [5], according to

static system descriptions in the capability distribution language capDL [15],

with a formal connection to the security theorems mentioned above [13];

a sound binary-level WCET profile obtained by static analysis [4], which is

one of the key ingredients to providing temporal isolation.

Verification can never be absolute; it must always make fundamental assump-
tions. In this work we verify the kernel with high-level security properties down
to the binary level, but we still assume correctness of TLB and cache flushing
operations as well as the correctness of machine interface functions implemented
in handwritten assembly. Of course, we also assume hardware correctness. We
give details on the precise assumptions of this verification and how they can be
reduced even further elsewhere [13].

The initial functional correctness verification of sel.4 took 12 person years
of work for the proof itself, and another 12-13 person years for developing
tools, libraries, and frameworks. Together, these produced about 200,000 lines of
Isabelle/HOL proof scripts [14].

The subsequent verification projects on security and system properties on top
of this functional correctness proof were drastically cheaper, for instance less than
8 person months for the proof of integrity, and about 2 person years for the proof
of non-interference [13]. During these subsequent projects, the seL4 kernel evolved.



While there were no code-level defects to fix in the verified code base, changes
included performance improvements, API simplifications, additional features,
and occasional fixes to parts of the non-verified code base of seL.4, such as the
initialisation and assembly portions of the kernel. Some of these changes were
motivated by security proofs, for instance to simplify them, or to add a scheduler
with separation properties. Other changes were motivated by applications the
group was building on top of the kernel, such as a high-performance data base [11].

This additional work increased the overall proof size to roughly 400,000 lines
of Isabelle proof script. Other projects of similar order of magnitude include the
verified compiler CompCert [16], the Verisoft project [1] that addressed a whole
system stack, and the four colour theorem [8,9].

While projects of this size clearly are not yet mainstream, and may not
become mainstream for academia, we should expect an increase in scale from
academic to industrial proofs similar to the increase in scale from academic to
industrial software projects. There is little research on managing proofs and
formal verification on this scale, even though we can expect verification artefacts
to be one or two orders of magnitude larger than the corresponding code artefacts.
Of course, we are not the first to recognise the issue of scale for proofs. All of
the other large-scale verification projects above make note of it, as did previous
hardware verifications [12].

We define a large scale proof as one that no single person can fully understand
in detail at any one time. Only collaboration and tool support make it possible
to conduct and check such proofs with confidence.

Many of the issues faced in such verification projects are similar to those in
software engineering: there is the matter of merely browsing, understanding, and
finding intermediate facts in a large code or proof base; there are dependencies
between lemmas, definitions, theories, and other proof artefacts that are similar
to dependencies between classes, objects, modules, and functions; there is the
issue of refactoring existing proofs either for better maintainability or readability,
or even for more generality and additional purposes; and there are questions
of architecture, design, and modularity in proofs as well as code. Some of the
proof structure often mirrors the corresponding code structure, other parts do
not necessarily have to do so. For large scale proofs, we also see issues of project
management, cost and effort estimation, and team communication. These again
have similarities with software engineering, but also have their unique challenges.

Based on our experience in the verification projects mentioned above, the
following research questions would be interesting and beneficial to solve.

1. What are the fundamental differences and similarities between proof engi-
neering and software engineering?

2. Can we estimate time and effort for a specific proof up front, and with
which confidence? Related questions are: can we predict the size of the proof
artefacts a project will produce? Are they related to effort? Can we predict
the complexity or difficulty of a proof given artefacts that are available early
in the project life cycle, such as initial specifications and/or code prototypes?



3. Which technical tools known from traditional software development could
make an even higher impact on proof engineering? Emerging prover IDEs [25]
for instance can provide more semantic information than typical program-
ming IDEs, and refactoring tools can be more aggressive than their code
counterparts because the result is easily checked.

4. Are there more fundamental ways in which proof irrelevance, formal abstrac-
tion, and modularity can be exploited for the management of large scale
proofs?

5. Can concepts such as code complexity or technical debt be transferred to
proofs in a useful way?

6. Are the fundamental aspects of proof library design that are different to
software libraries? What are the proof and specification patterns?

7. Empirical software engineering has identified a number of “laws” that sta-
tistically apply to the development of large software projects [6]. Which of
these continue to hold for proofs? Are there new specific correlations that
hold for large scale proofs?

Some of these questions do already receive some attention, but not yet to the
degree required for making significant broader progress in this area.

This is clearly just a subjective subset of research question in this space. As
software engineering has done for code development, we think that addressing
such questions for large-scale proofs will have a positive impact not only on
the industrial feasibility of large verification projects, but also on the every-day
development of smaller proofs.

References

1. Alkassar, E., Hillebrand, M., Leinenbach, D., Schirmer, N., Starostin, A., Tsyban,
A.: Balancing the load — leveraging a semantics stack for systems verification.
JAR: Special Issue Operat. Syst. Verification 42, Numbers 2—4 (2009) 389-454

2. Alves-Foss, J., Oman, P.W., Taylor, C., Harrison, S.: The MILS architecture for
high-assurance embedded systems. Int. J. Emb. Syst. 2 (2006) 239-247

3. Andronick, J., Greenaway, D., Elphinstone, K.: Towards proving security in the
presence of large untrusted components. In Klein, G., Huuck, R., Schlich, B., eds.:
5th SSV, Vancouver, Canada, USENIX (Oct 2010)

4. Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., Heiser, G.: Timing
analysis of a protected operating system kernel. In: 32nd RTSS, Vienna, Austria
(Nov 2011) 339-348

5. Boyton, A.,; Andronick, J., Bannister, C., Fernandez, M., Gao, X., Greenaway, D.,
Klein, G., Lewis, C., Sewell, T.: Formally verified system initialisation. In Lindsay
Groves, Jing Sun, ed.: 15th ICFEM, Queenstown, New Zealand, Springer (Oct
2013) 70-85

6. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering:
Empirical Observations, Laws and Theories. Pearson, Addison Wesley (2003)

7. Fox, A., Myreen, M.: A trustworthy monadic formalization of the ARMv7 instruction
set architecture. In Kaufmann, M., Paulson, L.C., eds.: 1st ITP. Volume 6172 of
LNCS., Edinburgh, UK, Springer (Jul 2010) 243-258



10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

Gonthier, G.: A computer-checked proof of the four colour theorem. http://
research.microsoft.com/en-us/people/gonthier/4colproof.pdf (2005)
Gonthier, G.: Formal proof — the four-color theorem. Notices of the American
Mathematical Society 55(11) (2008) 1382-1393

Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF. Volume 78 of
LNCS. Springer (1979)

Heiser, G., Le Sueur, E., Danis, A., Budzynowski, A., Salomie, T.I., Alonso, G.:
RapiLog: Reducing system complexity through verification. In: EuroSys, Prague,
Czech Republic (Apr 2013) 323-336

Kaivola, R., Kohatsu, K.: Proof engineering in the large: Formal verification of
pentium®) 4 floating-point divider. In: Correct Hardware Design and Verification
Methods, Springer (2001) 196-211

Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems (TOCS) 32(1) (Feb 2014) 2:1-2:70

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.:
sel4: Formal verification of an OS kernel. In: SOSP, Big Sky, MT, USA, ACM
(Oct 2009) 207-220

Kuz, 1., Klein, G., Lewis, C., Walker, A.: capDL: A language for describing
capability-based systems. In: 1st APSys, New Delhi, India (Aug 2010) 31-36
Leroy, X.: Formal certification of a compiler back-end, or: Programming a compiler
with a proof assistant. In Morrisett, J.G., Jones, S.L.P., eds.: 33rd POPL, Charleston,
SC, USA, ACM (2006) 42-54

Liedtke, J.: Towards real microkernels. CACM 39(9) (Sep 1996) 70-77

Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., Gao, X., Klein, G.: selL4: from general purpose to a proof of information flow
enforcement. In: IEEE Symp. Security & Privacy, San Francisco, CA (May 2013)
415-429

Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for
operating system kernels. In Chris Hawblitzel and Dale Miller, ed.: The Second
International Conference on Certified Programs and Proofs, Kyoto, Springer (Dec
2012) 126-142

Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

Sewell, T., Myreen, M., Klein, G.: Translation validation for a verified OS kernel.
In: PLDI, Seattle, Washington, USA, ACM (Jun 2013) 471-481

Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: sel.4
enforces integrity. In van Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk,
F., eds.: 2nd ITP. Volume 6898 of LNCS., Nijmegen, The Netherlands, Springer
(Aug 2011) 325-340

Slind, K., Norrish, M.: A brief overview of HOL4. In Otmane Ait Mohamed,
Csar Muoz and Sofine Tahar, ed.: Theorem Proving in Higher Order Logics, 20th
International Conference, Montral, Canada, Springer (Aug 2008) 28-32
Tannenbaum, A., Torwalds, L.: LINUX is obsolete. Discussion on comp.os.minix,
https://groups.google.com/forum/#!topic/comp.os.minix/wlhwl6QWltI

1992

(VVenz)eL M.: Isabelle/jEdit - a prover IDE within the PIDE framework. In Jeuring,
J., Campbell, J.A., Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V.,
eds.: Conferences on Intelligent Computer Mathematics (CICM) / Mathematical
Knowledge Management. Volume 7362 of LNCS., Springer (2012) 468-471


http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf
http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf
https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QWltI

	Proof Engineering Considered Essential

