
Productivity for Proof Engineering
Mark Staples, Ross Jeffery, June Andronick, Toby Murray, Gerwin Klein, Rafal Kolanski

NICTA, Australia and
University of New South Wales, Australia

Level 4, 223 Anzac Parade, Kensington, NSW 2052 Australia
+61 2 9376 2000

<firstname.lastname>@nicta.com.au

ABSTRACT
Context: Recent projects such as L4.verified (the verification of
the seL4 microkernel) have demonstrated that large-scale formal
program verification is now becoming practical.

Objective: We address an important but unstudied aspect of proof
engineering: proof productivity.

Method: We extracted size and effort data from the history of the
development of nine projects associated with L4.verified.

 Results: We find strong linear relationships between effort and
proof size for projects and for individuals. We discuss
opportunities and limitations with the use of lines of proof as a
size measure, and discuss the importance of understanding proof
productivity for future research.

Conclusions: An understanding of proof productivity will assist
in its further industrial application and provide a basis for cost
estimation and understanding of rework and tool usage.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification–
correctness proofs; D.2.9 [Software Engineering]: Management
– productivity.

General Terms
Management, Measurement, Verification.

Keywords
Proof engineering, Productivity, Proof sizing, Formal verification.

1. INTRODUCTION
The L4.verified project completed the machine-checked formal
verification of the full functional correctness of the source code
(and later also the binary code) of the embedded systems
microkernel seL4 [5]. It demonstrated that the long-held dream for
the use of formal verification in software engineering from
specification through to code is becoming realizable. Formal
verification is cost-effective for some highly critical systems [5],
but is too expensive for most projects. Increasingly, software
systems are safety- or security-critical and so could benefit from
formal verification to provide direct evidence about system
dependability. Nonetheless, to broaden the reach of formal
verification requires that its cost be reduced.

Formal proofs are not present in traditional software engineering,
but are an intrinsic part of projects using formal verification [2].
The major cost in the L4.verified project was the effort required to
create and maintain proofs. While 2.2 person-years were required
to design and implement seL4, the formal verification took more
than 20 person-years [5]. The importance of proof engineering has
been previously recognized for hardware verification [4], and also
for the L4.verified project [2]. However, most proof engineering
research has focused on proposing new technologies. For cost-
effective proof engineering, a key consideration is proof
productivity. Understanding proof productivity is also key for
effort estimation models for projects using formal verification [2].
We report on a study of proof productivity based on a
retrospective analysis of nine formal verification projects. We first
provide background on software development productivity and
proof engineering. Then we describe the method, analysis and
discussion, of our study of overall productivity for these projects,
and of productivity variation across individual engineers. We find
that effort is highly correlated with proof size. This result was
surprising to the verification experts involved in the project:
clearly, there are proofs that are much simpler and less complex
than other proofs, and everyone will have seen small, elegant
mathematical proofs that were very hard to find initially, and so
would need uncharacteristically high effort to produce. Our results
show that this effect did not have a great influence over the
lifetime of larger software verification projects.

2. BACKGROUND
2.1 Software Development Productivity
There is now a good understanding of factors that drive software
development productivity and the differences in productivity
experienced in different organizations and software domains [10].
A distinction is made between context factors, scale factors and
effort drivers. An extensive study [11] identified the most
common context factors as programming language, application
domain, and development type. Factors that influence the effect of
scale are team size, process maturity, project novelty, complexity
of interfaces, and project management complexity [10]. Effort
drivers [11] can include team capability and experience, software
complexity, project constraints, and tool quality and usage.

In software, productivity has usually been measured as output in
terms of lines of code (LOC) or function points produced per unit
of effort expended. So, for example, the European Space Agency
reported 0.35 kLOC per person month for on-board systems and
0.58 kLOC per person-month for “other” systems [10].

2.2 Formal Verification & Proof Engineering
Formal verification can show that all possible behaviors of a
program are allowed by a specification. Unlike testing, formal
verification checks all behaviors for all allowed inputs. The
semantics for programs and specifications are defined by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’14, September 18-19, 2014, Torino, Italy.
Copyright 2014 ACM 978-1-4503-2774-9/14/09 …$15.00.

mathematical models of the behavior and requirements of real-
world computer systems. The checks performed by formal
verification use mathematical proof. Programs can be large and
complex, as is the semantics of real-world computer systems, so
verification proofs are too. Proof engineering is supported by tools
and techniques to manage proof size and complexity. Proofs have
many qualities. The most important is logical soundness, but
despite the size and complexity of verification proofs, their
soundness can be achieved with extremely high confidence using
modern theorem provers such as Isabelle [6], used in the
L4.verified project [5]. Other qualities targeted include readability
[12], and maintainability [3]. Previous research has recognized the
importance of proof productivity [9], but apart from laboratory
experiments on user interaction [1] we find no prior reported
empirical studies of proof productivity.
Isabelle is an interactive theorem prover. Users create proofs by
writing proof scripts, which Isabelle checks for validity by
execution. Theories and formal specifications are also represented
in these scripts. Proofs contain many steps achieved by automated
search or decision procedures, but because of the extreme
complexity of formally verifying deep semantic properties of
programs, fully automatic proof is not feasible. So, these proofs
also contain some hand-guided steps. The overall interaction style
is much like that of programming [1]. In proof engineering, the
most costly input is the time required by proof engineers to create
and maintain proof scripts.

3. METHOD AND DATA
We conducted a retrospective study of projects creating formal
specifications and proofs built on the main L4.verified result. For
the first five projects in Table 1 we derived new data sourced from
management records, weekly reports, and the Mercurial version
control repository used to record changes to the proof scripts.
Data on the final four projects in Table 1 was sourced from
projects reported in [5] with additional input from project
managers. Below we describe the projects, how we measured
effort and size, and the productivity factors we studied.

3.1 Projects Studied
We selected nine non-trivial completed projects with cleanly
identifiable outcomes (i.e. not intermingled with other work),
which all used Isabelle for proof or specification. The L4.verified
project and follow-up work produced three formal specifications
of seL4, at increasing level of abstraction: the Exec specification
models an (executable) representation of seL4's design1; the
Abstract specification is a complete functional specification; and
the CapDL specification is used to initialize sel4-based systems
by only describing the capabilities (access rights) between
components, abstracting away everything else. The six other
artifacts we study here are proofs. Three of them are proofs of
refinement: Code-to-Exec, Exec-to-Abstract and Abstract-to-
CapDL. They show that all the behaviors of one specification
(e.g., Exec) are included in the behavior of a more abstract
specification (e.g., Abstract). We also study two security proofs:
Info.flow and Integrity, showing that (the abstract specification of)
sel4 enforces information flow and integrity of components
running on top, according to a given security policy describing

1 This executable specification is generated from a Haskell

implementation of seL4. The effort numbers reported here for
producing Exec include the effort of producing the Haskell
implementation, plus the effort of producing the Haskell-to-
Isabelle translator.

allowed access rights. The last proof we study links a capDL
description to the corresponding security policy. The original
L4.verified project produced Code-to-Exec Refinement, Exec-to-
Abstract Refinement, Exec Spec, and Abstract Spec. Together,
these produce the proof of functional correctness of seL4,
showing that seL4's C code is correct with respect to its
functional, abstract specification. The proofs are described
elsewhere [5]. For each project, we explicitly defined the subset of
the overall repository containing just the relevant proof script files
and changes occurring during the term of the project. All projects
worked with the same background theory from L4.verified, and
used a broadly consistent proof scripting style.

3.2 Measuring Input (Effort)
Effort was determined by managers for each individual for each
project, where possible using weekly reports from individuals. For
each person, for each week, fractions of a person-week were
recorded for each of ‘Initial Discussion’, ‘Actual Proof’, ‘Tool
Improvement’, ‘Other Project’, ‘No PR’, and ‘Leave’. ‘No PR’
was recorded when no progress report or other historical record
was available for an individual in a week. These fractions were
checked to sum to the EFT-person-week (1.0 for full-time staff)
for each week for each person. In productivity calculations below,
we measure total effort as the sum of ‘Initial Discussion’ and
‘Actual Proof’, and add ‘No PR’ values in sensitivity analyses.

As a data quality check, we cross-referenced effort records with
Mercurial. The only “missing” changes were for people with zero
proof effort (their effort was on other work). Some changes were
made by people with no effort records, but after review, these
were judged by the project managers to have been a small number
of inconsequential changes, and were excluded from analyses. As
noted above, data for the first five projects in Table 1 was derived
anew for this paper while data for the final four projects was
derived from the earlier paper [5] with assistance from the
authors.

3.3 Measuring Output (Proofs)
We measured Isabelle proof scripts using two variations on Lines
of Proof, analogous to Lines of Code from traditional software
development. (We discuss this in section 5.1.) For each change,
Mercurial reports lines added (including lines modified), lines
deleted (including lines modified), and the parent commit(s). We
exclude changes that only merge parallel work, and so all changes
that we consider (except for the first) have exactly one parent. We
excluded large outliers (less than 1% of changes) that were only
textual or syntactic changes (i.e. had no substantive proof work) –
these were mostly file or constant renames. We define lines-work
as the sum of raw lines added and deleted. For each change in
each proof, we examine the repository at that time and calculate
the normalized line count of the proof by excluding comments and
white-space. We define repo-delta as the absolute difference in
this size for each change compared to its parent. This is somewhat
like lines added minus lines deleted. Neither is an ideal measure
of output or work: lines-work includes all comments and white
space and double-counts modified lines, whereas repo-delta
excludes modified lines. Nonetheless, they provide bounds on the
“true” lines of work. Final size is final lines of proof.

3.4 Productivity Factors
We identified potentially important factors in section 2.1. The
context factors (programming language, application domain, and
development type) are all constant for our projects. The scale
factor of process maturity is constant, but team size and

novelty/complexity vary. The effort driver of tool quality and
usage is constant, but others vary in our projects.

We investigated the following project-level factors: final size of
the project (excluding comments and white-space); maximum
team size; schedule pressure (as a project constraint); and overall
difficulty (reflecting novelty and complexity). Schedule pressure
and overall difficulty were recorded on a 5-point Likert scale from
very high to very low. Assessments of factors for each project
were jointly agreed by two managers. We also investigated four
individuals factors, i.e. years experience with: Isabelle, formal
methods or theorem proving (including Isabelle), the domain (of
operating system development or verification), and work on
L4.verified projects specifically. These values were collated by a
project manager in consultation with the individual engineers.

4. ANALYSIS AND RESULTS
We present results first for the nine projects overall, and then for
the 24 individual contributions to five of those projects for which
we had the data (first 5 in Table 1). Both R and SPSS V22 was
used for analysis.

4.1 Overall Project Productivity
Table 1 shows characteristics for the nine projects.

Table 1 Characteristics of the nine projects. Final Size is in
kilo-Lines of Proof, Total Effort in person-weeks. Schedule
Pressure and Overall Difficulty range from very low to very
high. Maximum Team Size is headcount.

 Final
Size

Total
Effort

Sched.
Press.

Overall
Diffic.

Max
Team

CapDL Spec 2.14 27.5 AV LO 5
CapDL-policy
proof 0.85 11.3 LO AV 1

Abstract-to-
CapDL
Refinement

20.4 66 AV AV 5

Integrity 7.05 28.5 V.HI HI 4

Info. Flow 27.1 75.9 V.HI V.HI 8
Exec- to-
Abstract
Refinement

96.6 368 HI V.HI 6

Code-to-Exec
Refinement 53.34 138 V.HI HI 6

Exec Spec
Haskell 6.01 92 AV HI 1

Abstract Spec 4.9 15.3 AV AV 3

Productivity varies, but this is explained by a constant overhead:
Total Effort = 9.98 + 3.35*Final Size. Figure 1 shows this linear
relationship. For our nine projects, the correlation is strong
(R2=0.914, p<.001), and not sensitive to inclusion of the ‘No PR’
effort. (We recognize the limitations arising from our small
sample size.) ‘Final’ size was taken from the end of the initial
development periods, to match the periods for the reported effort.
Person-years from [5] are scaled to person-weeks assuming 230
working days per year and 5 days per week. Visually, there may
be two outliers, both from [5]: the very large abstract refinement
proof, and the very detailed executable specification. Effort for
the latter includes the two person-years spent programming the
Haskell prototype of seL4. Although the correlation is high, we
investigated possible project-level productivity factors in multiple

regressions. The effect of these is small and not significant at
0.05, but there was weak evidence that schedule pressure is
associated with decreased effort, and overall difficulty and max.
team size with increased effort. These results are consistent with
prior research [10]. We also investigated each possible individual
productivity factor (the various types of years of experience) in
multiple regressions against individuals’ total effort. There was no
evidence that any were significant in this dataset.

Figure 1 Scatter plot of project total effort vs. final size

4.2 Individual Productivity
Figure 2 shows the linear relationship between size and effort for
all of the 24 individual contributions to five of the projects for
which we had individual data. The correlation is very strong
(R2=0.93, p<0.001), and is not sensitive to inclusion of the ‘No
PR’ effort (R2=0.92, p<0.001). With the alternative size measure
lines-work, there are of course different coefficients for the line of
best fit, but again there is a strong linear relationship (R2=0.91,

Figure 2 Scatter plot of total effort vs. sum of repo-delta size of
all changes made in the 24 individual contributions to the four
proofs and the specification.
p<0.001 for total effort, and R2=0.91, p<0.001 with ‘No PR’
included). Final size is not meaningful for individuals’ work, so is
not examined.

5. DISCUSSION
5.1 Sizing Proofs
Lines of Code is widely known to be an imperfect measure of
software. Lines of Proof is likewise problematic and improved
size measures are required. An ideal measure of size would reflect
the size of the proof problem: the difficulty or content of the proof
goal. For formal verification this should reflect the specification
[8] and the program.

Fine-grained measures of effort spent on individual proofs are
difficult to collect in practice. However, we have found Lines of
Proof are very highly correlated with effort. This may support the
use of lines as a proxy for effort in future research. Given a
consistent proof style, this result could help to validate new size
measures against lines of individual proofs. Alternatively, under a
given size measure, this result may help to validate productivity
improvements from new proof engineering technologies.

5.2 Threats to Validity
In software engineering it is common to consider experimental
validity in terms of construct, internal, and external validity [13].
Runeson and Höst [7] add reliability to this list. We discuss above
the construct validity concern of Lines of Proof being a poor
measure of size. The size measures lines-work and repo-delta both
have limitations as discussed in section 3.3, but bound the true
value of lines changed, and our overall results are supported under
either measure. Subjective measures used in this study have been
carefully defined for the persons from whom measures were
obtained so as to avoid construct validity issues to the extent
possible. There is a possibility that factors not measured in this
study have an impact on productivity. Because the interaction
style of our proofs resembles programming [1], we have carefully
investigated factors previously reported to affect programming
productivity, in order to ensure internal validity in our study. Our
use of projects from a single context (L4.verified) aids internal
validity, but limits external validity. It is not yet known if or how
our findings may generalize to formal verification projects beyond
L4.verified. We tried to ensure reliability of data collection and
analysis by having a review process with multiple researchers.

6. CONCLUSIONS AND FUTURE WORK
Proof engineering research can help to bring the benefits of formal
verification to more software engineering projects, but the
assessment of cost-effectiveness of formal verification (and its
improvement) hinges on understanding proof productivity. We
have shown that proof effort and size are very strongly linearly
related, in our study of nine projects building on L4.verified [5].
This result holds for the projects overall, but also for the
individuals working within those projects.

An understanding of proof productivity can inform the creation of
cost estimation models to select formal methods in projects, and
also for detailed project planning. As with software development,
proof productivity is likely to be affected by rework. We have
seen initial evidence for this in the differences between sum of
lines-work and final size. Deeper study is required on the impact
of dependencies on proof rework and concurrent work.

Improvements to proof engineering may derive from proof
automation, structures for reuse, refactoring, or proof patterns. A
key question will be: do new tools or techniques improve on
existing levels of proof productivity? The results in this paper
provide an initial benchmark of proof productivity for future
research. However, as discussed, Lines of Proof is a poor size
measure for this, and improved size measures are required.

7. ACKNOWLEDGMENTS
Rafal Kolanski carried out this work while at NICTA and UNSW,
but is now at Purdue University. NICTA is funded by the
Australian Government through the Department of
Communications and the Australian Research Council through the
ICT Centre of Excellence Program.

8. REFERENCES
[1] Aitken, J. S., Gray, P., Melham, T., and Thomas, M. 1998.

Interactive theorem proving: an empirical study of user
activity, Journal of Symbolic Computation, vol. 25 (2).

[2] Andronick, J., Jeffery, R., Klein, G., Kolanski, R., Staples,
M., Zhang, H., and Zhu, L. 2012. Large-scale formal
verification in practice: a process perspective. ICSE 2012.
1002-1011.

[3] Curzon, P. 1995. The importance of proof maintenance and
reengineering. Int. Workshop on Higher Order Logic
Theorem Proving and Its Applications: B-Track, 17-32.

[4] Kaivola, R. and Kohatsu, K. 2003. Proof engineering in the
large: formal verification of Pentium4 floating-point divider.
Int J Softw Tools Technol Transfer, vol. 4 (3), 323-334.

[5] Klein, G., Andronick, J., Elphinstone, K., Murray, T.,
Sewell, T., Kolanski, R., and Heiser, G. Comprehensive
formal verification of an OS microkernel. ACM Trans.
Comp. Sys. Vol. 32 (1), 2:1-2:70.

[6] Nipkow, T., Paulson, L., and Wenzel, M. 2002.
Isabelle/HOL – A Proof Assistant for Higher-Order Logic.
LNCS vol. 2283.

[7] Runeson, P. and Höst, M. 2008. Guidelines for conducting
and reporting case study research in software engineering,
Empirical Software Engineering, vol. 14 (2), 131 – 164.

[8] Staples, M., Kolanski, R., Klein, G., Lewis, C., Andronick,
J., Murray, T., Jeffery, R., and Bass, L. 2013. Formal
specifications better than function points for code sizing.
ICSE 2013. 1257-1260.

[9] Syme, D. 1998. Interaction for declarative theorem proving.
Available from http://research.microsoft.com

[10] Trendowicz, A. and Jeffery, R. 2014. Software project effort
estimation: Foundations and best practice guidelines for
success, Springer.

[11] Trendowicz, A. and Münch, J. 2009. Factors influencing
software development productivity – State of the art and
industrial experiences, Advances in Computers, vol. 77.

[12] Wenzel, M. M. 2001. Isabelle/Isar – a versatile environment
for human-readable formal proof documents. PhD thesis,
Technische Universität München.

[13] Wright, H.K., Kim, M., and Perry, D.E. 2010. Validity
concerns in software engineering research, Proc. of FoSER
2010, 411-414.

