
Perentie: Modular Trace Refinement
and Selective Value Tracking
(Competition Contribution)

Franck Cassez1,2, Takashi Matsuoka1, Edward Pierzchalski1, Nathan Smyth1

1 NICTA?, Sydney, Australia
2 UNSW, Sydney, Australia

Abstract. Perentie is a software analysis tool based on iterative re-
finement of trace abstraction: if the refinement process terminates, the
program is either declared correct or a counterexample is provided and
the program is incorrect.

1 Overview

Perentie is a software analysis tool based on iterative refinement of trace ab-
straction [1,2], which is a CEGAR-like automata-based technique. The control
flow graph (CFG) of a program is viewed as a finite automaton. The accepting
states of the CFG are the states reached after a program assertion is violated.
This finite automaton generates a language, the trace abstraction, of traces that
are sequences of uninterpreted instructions. Consequently, all the (uninterpreted)
traces accepted by the CFG are error traces leading to an error state.

Checking whether a program is correct amounts to determining whether the
language of the CFG contains a feasible error trace. This is performed by an
iterative refinement of the trace abstraction.

Our version of refinement of trace abstraction builds on top of our modular
inter-procedural analysis algorithm [3]. Moreover, as the iterative refinement
may not terminate, Perentie limits the number of iterations of the refinement
phase and if it is inconclusive, it complements it with a second more precise
refinement analysis, where it tracks the values of some variables that precisely
define some branching conditions. If this second phase is inconclusive as well,
the overall analysis is inconclusive (output is UNKNOWN, otherwise the status
(TRUE, FALSE) of the program is settled.

? NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program. This material is based on research sponsored by Air Force Research Labo-
ratory and the Defense Advanced Research Projects Agency (DARPA) under agree-
ment number FA8750-12-9-0179. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Air Force Research Laboratory, the
Defense Advanced Research Projects Agency or the U.S. Government.



2 Software Architecture

Perentie’s core engine is developed in Scala. Perentie is flexible and can be
configured from the command line by setting a maximum number of iterations
for the first refinement phase, and a maximum state space size for the second
phase. In this second phase, where some variable values are tracked, the state
space may become infinite and this is why we set a bound to ensure termination.

Front end: The front end parser is built on top of the Edison Design Group
(EDG) parser. It reads a C source file and generates an XML representation of
the C program. The representation is passed on to our own XML parser (written
in Scala) that builds a CFG for every function in the source file.

Middle end: Perentie implements a library for manipulating automata in-
cluding operations like product, union, (lazy) complement, DFS. This allows to
extract candidate witness (uninterpreted) error traces from the CFG. Feasibil-
ity of a trace is checked using an SMT-solver by encoding the trace in static
single assignment (SSA) form into a logical formula and checking for satisfia-
bility. When the trace is infeasible, an interpolant automaton [1,3] is computed
from a sequence of interpolants [1]. The standard construction requires an inter-
polating SMT-theorem prover to compute the interpolants from the infeasible
trace. As those theorem provers are generally unable to produce interpolants for
formulas containing arrays, we have implemented an alternative construction in
the style of the weakest pre-condition computation that can compute inductive
interpolants, and thus handle programs with arrays.

Back end: Perentie uses SMTInterpol [4] to check satisfiability of SSA formu-
las. When a program does not contain array variables, it is also used to generate
inductive interpolants. Our software architecture is designed to accommodate
any SMTLIB2 compliant solver and Z3 is currently being interfaced (although
too late to be used for this competition).

3 Strengths and Weaknesses

This first version of Perentie has limited capabilities in terms of supported data
structures. Pointers or structs, or arrays of non-integer type are not supported
yet, and Perentie will abort the parsing phase with an inconclusive result.
Moreover, data types such as unsigned int are treated as int, and we assume
unbounded integers. Although our analysis is sound with unbounded integers,
it may generate some false negatives when the actual data type is a bounded
integer (overflows/underflows are ignored).

One of the major strengths Perentie is that it can discover loop invariants
and prove correctness (generate Hoare triples) for programs with parameterised
loop bounds (e.g., in the loop-new sub-category). The drawback is that to com-
pute useful loop invariants, an interpolating SMT-solver is needed. For the time

2



being, SMTInterpol [4] supports interpolants only for the theory of Linear
Integer Arithmetic. This prevents us from automatically discovering loop in-
variants when the SMT-solver theory does not support interpolation, e.g., when
arrays or non-linear arithmetic expressions are used in the program3. Another
nice feature of Perentie is its modular analysis [3] that avoids inlining functions
calls but this feature does not help much in SV-COMP 2015.

4 Set Up and Configuration

Participation statement: Perentie opts-out from all categories (including Over-
all) and participates in the Loops.set sub-category of the Control Flow and Integer
Variables category.

Set up and configuration: Perentie is available at http://ssrg.nicta.com.

au/projects/software-verification/perentie/. The submitted version to
SV-COMP 2015 is version 2014-10-31. The current version of Perentie requires
a 64-bit (x86-64) Linux system, Java (JRE) 6 or higher and gcc. Command
line usage is bash perentie.sh <c-file>. Usage, set up and configuration is
described in the README.txt file in the tarball. For this competition, we use
Perentie in sound4 mode: if we can determine the result TRUE/FALSE, we
output it, otherwise our analysis is inconclusive (parse errors, unsupported data
types, theory not supported by the solver) we output UNKNOWN.

5 Software Project and Contributors

Perentie is developed and hosted by NICTA, Australia, and is currently closed
source software. We would like to thank Pablo Gonzalez de Aledo Marugan,
University of Cantabria, Spain, for helpful discussions.

References

1. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In
Palsberg, J., Su, Z., eds.: SAS. Vol. 5673 of LNCS., Springer (2009) 69–85

2. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In Sharygina, N., Veith, H., eds.: CAV. Vol. 8044 of LNCS., Springer
(2013) 36–52

3. Cassez, F., Müller, C., Burnett, K.: Summary-based inter-procedural analysis via
modular trace refinement. In FSTTCS 2014, December 15-17, New Dehli, India. Vol.
29 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014) 545–556

4. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT Solver.
In Donaldson, A.F., Parker, D., eds.: SPIN. Vol. 7385 of LNCS., Springer (2012)
248–254

3 This happens only a handful of times in the Loop category.
4 Due to our assumption that integers are unbounded, our analysis is sound only when

no overflows occur. Two programs do have overflows related bugs and results in false
negatives in our analysis.

3


