
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Eisbach

A Proof Method Language for Isabelle

Daniel Matichuk · Toby Murray ·
Makarius Wenzel

Received : date

Abstract Machine-checked proofs are becoming ever-larger, presenting an in-
creasing maintenance challenge. Isabelle’s most popular language interface, Isar, is
attractive for new users, and powerful in the hands of experts, but has previously
lacked a means to write automated proof procedures. This can lead to undesir-
able duplication in large proofs. In this paper we present Eisbach, a proof method
language for Isabelle, which aims to fill this gap by incorporating Isar language
elements, thus making it accessible to end-users. We describe the language and
the design principles on which it was developed. We evaluate its effectiveness by
implementing the most-widely used proof tools in the seL4 verification stack, and
consider its strengths and limitations.

1 Introduction

Machine-checked proofs, developed using interactive proof assistants, present an
increasing maintenance challenge as they become ever larger. For instance, the
proofs and specifications that accompany the formally verified seL4 microkernel1

now comprise 0.5 million lines of Isabelle/HOL [11], while Isabelle’s Archive of
Formal Proofs2 now comprises over 1.5 million lines. Each of these developments
is updated to ensure it runs with each new Isabelle release. The seL4 proofs are
also updated as the seL4 kernel evolves, which is an additional source of proof
maintenance common to other verified software projects.

The Isabelle proof assistant [19, §6] provides various languages for different
purposes. Most commonly used is the Isar language for theory specifications and

D. Matichuk and T. Murray
NICTA, Sydney, Australia
School of Computer Science and Engineering, UNSW, Sydney, Australia

M. Wenzel
http://sketis.net

1 https://github.com/seL4/l4v
2 http://afp.sf.net

http://sketis.net
https://github.com/seL4/l4v
http://afp.sf.net

2 Daniel Matichuk et al.

structured proofs [17]. Isar itself is devoid of computation, but it incorporates ar-
bitrarily complex proof tools called proof methods. Proof methods are traditionally
written in Isabelle/ML: Standard ML that is integrated into the formal context
of Isabelle/Isar, and supports referring to logical entities or Isar elements via an-
tiquotations [18]. While this makes it reasonably easy to access the full power of
ML in proofs, the vast majority of Isabelle theories are written solely in Isar.

The Isar proof language does not support proof procedure definitions directly,
but this hasn’t prevented large verifications from being completed: the seL4 proofs
rely mainly on two custom tactics. This can be partly explained by the power
of existing proof tools in Isabelle/HOL. However, it has arguably led to more
duplication in these proofs than is acceptable; managing duplication has been
a challenge for the seL4 proofs [3]. This duplication makes proof maintenance
difficult, and highlights the barrier to entry when implementing proof tools in
Isabelle/ML. If automation can be expressed at a high level, a wider class of users
can maintain and extend domain-specific proof procedures, which are often more
maintainable than long proof scripts.

In this paper, we present a proof method language for Isabelle, called Eisbach,
that allows writing proof procedures by appealing to existing proof tools with
their usual syntax. The new Isar command method allows proof methods to be
combined, named, and abstracted over terms, facts and other methods. Eisbach
is inspired by Coq’s Ltac [6], and includes similar features such as matching on
facts and the current goal. However, Eisbach’s matching behaves differently from
Ltac’s, especially with respect to backtracking (see Section 3.6). Eisbach continues
the Isabelle philosophy of exposing carefully designed features to the user while
leaving more sophisticated functionality to Isabelle/ML: small snippets of ML may
be easily included on demand. Eisbach benefits from general Isabelle concepts,
while easing their exposure to users: pervasive backtracking, the structured proof
context with named facts, and attributes to declare hints for proof tools.

As a quick motivating example, consider the following lemma which proves a
simple property of lists, by induction on the argument list xs, and application of
the auto proof method with an explicit simplification rule passed as its argument.

lemma length (xs @ ys) = length xs + length ys
by (induct xs ; auto simp: append Nil)

Indeed, as anyone who has worked through the first examples in the
Isabelle/HOL tutorial [15] can attest, many simple properties of lists are proved
using exactly this same procedure, perhaps varying only on the extra simplification
rules to be applied by auto.

The following simple usage of Eisbach defines a new proof method which gen-
eralises this procedure. The method defined identifies a list in the conclusion of
the current subgoal and applies induction to it; all newly emerging subgoals are
solved with auto, with additional simplification rules given as argument.

method induct list uses simps =
(match conclusion in ?P (x :: ′a list) for x ⇒

〈induct x ; auto simp: simps〉)

Now induct list can be called as a proof method to prove simple properties about
lists such as the one above.

lemma length (xs @ ys) = length xs + length ys

Eisbach 3

by (induct list simps: append Nil)

The primary goal of Eisbach is to make writing proofs more productive, to
avoid duplication, and thereby lower the costs of proof maintenance. Its design
principles are:

– To be easy to use for beginners and experts.
– To expose limited functionality, leaving complex functionality to Isabelle/ML.
– Seamless integration with other Isabelle languages.
– To continue Isar’s principle of readable proofs, creating readable proof proce-

dures.

We begin in Section 2 by recalling some concepts of Isabelle and Isar. Section 3
then presents Eisbach, via a tour of its features in a tutorial style, concluding with
the development of a solver for first-order logic. We describe Eisbach’s design and
implementation in Section 4, before evaluating it in Section 5 by implementing the
two most widely-used proof methods of the seL4 verification stack, and comparing
them against their original implementations. Section 6 then surveys related work
on proof programming languages, to put Eisbach in proper context. In Section 7
we compare Eisbach to Coq’s Ltac and Mtac before considering future work and
concluding.

A first version of Eisbach was presented in [13]. The present work is a signif-
icant refinement of that, with an implementation that has been reworked from
the ground up. This implementation was included in the release of Isabelle (May
2015), and others have already taken advantage of Eisbach’s ability to simplify
proofs by reducing proof duplication and increasing concision [10]. In this paper
we purposefully elide a performance evaluation of the current Eisbach implementa-
tion, which represents a compromise between performance and ease of integration
with existing Isabelle internals. While already good enough for the vast majority
of use cases, we expect that Eisbach’s performance will improve yet further with
future Isabelle releases.

2 Some Isabelle Concepts

Isabelle was originally introduced as another Logical Framework by Paulson [16],
to allow rapid prototyping of implementations of inference systems, especially
versions of Martin-Löf type theory. Some key concepts of current Isabelle can
be traced back to this heritage, although today most applications are done in the
object-logic Isabelle/HOL, and the general system framework has changed much
in 25 years.

Isabelle/Pure is a minimal version of higher-order logic, which serves as general
framework for Natural Deduction (with arbitrary nesting of rules). There are Pure
connectives for universal parameters

∧
x . ◊, premises A =⇒ ◊, and a notion of

schematic variables ?x (stripped outermost parameters). The Pure connectives
outline inference rules declaratively, for example:

– conjunction introduction, traditionally
A B

A ∧ B
, is: A =⇒ B =⇒ A ∧ B

– well-founded induction is: wf r =⇒ (
∧

x . (
∧

y . (y , x) ∈ r =⇒ P y) =⇒ P x)
=⇒ P a

4 Daniel Matichuk et al.

To understand the structure of Isabelle/Pure rules, one needs to take the low
syntactic precedence of =⇒/

∧
into account, compared to the embedded connec-

tives ∀ , ∃ , ∧, ∨, −→, ←→, ¬ etc. from the object-logic. Thus the modus-pones
rule looks like this: P −→ Q =⇒ P =⇒ Q, and implication introduction like this:
(P =⇒ Q) =⇒ P −→ Q.

Isabelle/HOL is a rich library of theories and tools on top of Isabelle/Pure. It is
the main workhorse for big applications, but is subsumed by the general concepts
of Isabelle, so it is subsequently not explained further.

The logical framework of Isabelle/Pure is augmented by extra-logical infras-
tructure of Isabelle/Isar, which provides the general setting for structured reason-
ing. The actual Isar proof language [17] is merely an application of that: it provides
particular expressions for human-readable proofs within the generic framework.

Important concepts of the underlying Isabelle/Isar architecture are outlined
below, as relevant for Eisbach.

Fact. While the inference kernel operates on thm entities (as in LCF or HOL),
Isabelle users always encounter results as thm list, which is called fact. This rep-
resents the idea of multiple results, without auxiliary conjunctions to encode it
within the logic. There is notation to append facts, or to project sub-lists, without
any formal reasoning involved.

Goal state. Following [16], the LCF goal state as auxiliary ML data structure is
given up, and replaced by a proven theorem that states that the current subgoals
imply the main conclusion. Goal refinement means to infer forwards on the negative
side of some implication, so it appears like backwards reasoning. The proof starts
with the trivial fact C =⇒ C and concludes with zero subgoals =⇒ C, i.e. C
outright. Administrative goal operations, e.g. shuffling of subgoals or restricted
subgoal views, work by elementary inferences involving =⇒ in Isabelle/Pure. While
outermost implications represent subgoals, outermost goal parameters correspond
to schematic variables (or meta-variables), but the latter aspect is subsequently
ignored for simplicity.

Subgoal structure. An intermediate goal state with n open subgoals has the form
H 1 =⇒ ... H n =⇒ C, each with its own substructure H = (

∧
x . A x =⇒ B x),

for zero or more goal parameters (here just x) and goal premises (here just A x).
Following [16], this local context is implicitly taken into account when natural
deduction rules are composed by lifting, higher-order unification, and backward
chaining. Isar users encounter rule composition frequently in the proof method
rule, and the rule attributes OF or THEN.

Other proof tools may prefer direct access to hypothetical terms and premises,
when inspecting a subgoal. In current Isabelle the concept of subgoal focus
achieves that: the proof context is enriched by the fixed term x and the assumed
fact A x, and the subgoal restricted to B x. After refining that, the result is
retrofitted into the original situation.

Proof context. Motivated by the Isar proof language [17], the structured proof con-
text provides general administrative structure, to complement primitive thm values

Eisbach 5

of the inference kernel. The idea is to provide a first-class representation in ML, of
open situations with hypothetical terms (fixed variable x) and assumptions (hy-
pothetical fact A); Hindley-Milner type discipline with schematic polymorphism
is covered as well. Proof contexts are not restricted to this logical core, but may
contain arbitrary tool-specific context data. A typical example is the standard
environment of facts, which manages both static and dynamic entries: a statically
named fact is interchangeable with its thm list as plain value, but a dynamic fact
is a function that produces a thm list depending on the context.

Attributes. Facts and contexts frequently occur together, and may modify each
other by means of attributes, with concrete syntax in Isar. A rule attribute
modifies a fact depending on the context (e.g. fact [of t] to instantiate term vari-
ables), and a declaration attribute modifies the context depending on a fact
(e.g. fact [simp] to add Simplifier rules to the context). Such declarations for au-
tomated proof tools also work in hypothetical contexts, with fixed x and assumed
A x. There is standard support to maintain named collections of dynamic facts,
with attributes to add or delete list entries, notably via the named theorems
command.

Tactic. Isabelle tactics due to [16] follow the idea behind LCF tactics, but imple-
ment the backwards refinement more directly in the logical framework, without
the replay tactic justifications (which is still seen in HOL or Coq today). The
approach of Isabelle avoids the brittle concentration of primitive inferences when
concluding a proof. Moreover, backtracking is directly built-in, by producing an
unbounded lazy list of results, instead of just zero or one. LCF-style tacticals are
easily recovered, by composing functions that map a goal state to a sequence of
subsequent goal states. Rich varieties of combinators with backtracking are pro-
vided, although present-day proof tools use a more restricted set of combinators.

3 Eisbach

Eisbach provides the ability to write automated reasoning procedures to end-users
of Isabelle, specifically users only familiar with the use of Isabelle/Isar [17]. Eisbach
allows compound proof methods to be named, and to extend the name space of ba-
sic methods accordingly. Method definitions may abstract over parameters: terms,
facts, or other methods. Additionally, Eisbach provides an expressive matching
facility that can be used to manage control flow and perform proof goal analysis
via unification.

Subsequently, we recount some principles of Isar proof methods and then follow
the development of a small first-order logic solver in Eisbach, gradually increasing
its scope and demonstrating the main language elements.

3.1 Isar Proof Methods

Isar is a document-oriented proof language, focusing on producing and presenting
human-readable formal proofs. Such proofs are an argument about why a claim is

6 Daniel Matichuk et al.

true, with invocations to proof methods to decompose a claim into multiple goals
or to solve outstanding proof goals. Isar proof method invocations come in two
forms: structured and unstructured.3

The structured form is “by method1 method2”, where the initial method1 per-
forms the main backwards refinement of the goal, and the terminal method2 (which
is optional) may solve emerging subgoals; the proof is implicitly closed by zero or
more assumption steps to finish-off trivial subgoals. For example, “by (induct n)
simp all” splits-up a problem by induction and solves the emerging cases by sim-
plification; or “by (rule impI)” applies a single rule and expects the remaining
goal state to be trivial up to unification. It is also possible to leave arguments to
the rule method implicit, which means that declarations from the context are used
instead: “by rule” is a structured application of a standard rule, which occurs so
frequently that it may be abbreviated as “..” (two dots).

The unstructured form is “apply method”, which applies the proof method to
the goal without insisting the proof be completed; further apply commands may
follow to continue the proof, until it is eventually concluded by the command done
(without implicit assumption steps). After two or three apply steps, the foresee-
able structure of the reasoning is usually lost, and the Isar proof text degenerates
into a proof script : understanding it later typically requires manual inspection of
its intermediate goal states.

Isar method expressions may combine basic proof methods using method com-
binators. Unlike former LCF tacticals, there is only a minimal repertoire (with
built-in backtracking): sequential composition, alternative choice, repeated appli-
cation. Such methods are used in-place, to address a particular proof problem in
a given situation. At the end of each apply command, the first successful result
from all those produced is retained. The back command invokes explicit back-
tracking: it shifts the list of results from the previous invocation to access the next
possible result. Toplevel backtracking is mainly for experimental exploration, not
for production proofs.

3.2 Combinators and Backtracking

The following standard combinators for proof methods are available in Isar:

1. Sequential composition of two methods with implicit backtracking: the expres-
sion “method1, method2” applies method1, which may produce a set of possible
results (new proof goals), before applying method2 to all possible goal states
produced by method1. Effectively this produces all results in which the appli-
cation of method1 followed by method2 is successful.

2. Alternative composition: “method1 | method2” tries method1 and falls through
to method2 when method1 fails (yields no results).

3. Suppression of failure: “method?” turns failure of method into an identity step
on the goal state.

4. Repeated method application: “method+” repeatedly applies method (at least
once) until it fails.

3 This distinction should not be confused with that between structured and unstructured
proofs: structured proofs usually contain at most one structured method invocation (the final
one); unstructured proofs contain few (if any) unstructured method invocations.

Eisbach 7

The subsequent example illustrates a proof method expression with combinators:

lemma P ∧ Q −→ P
by ((rule impI , (erule conjE)?) | assumption)+

Informally, this says: “Apply the implication introduction rule, followed by
optionally eliminating any conjunctions in the assumptions. If this fails, solve the
goal with an assumption. Repeat this action until it fails.”

As well as the above lemma, this invocation will prove the correctness of a
small class of propositional logic tautologies. With the method command we can
define a proof method that makes the above functionality available generally.

method prop solver1 =
((rule impI , (erule conjE)?) | assumption)+

lemma P ∧ Q ∧ R −→ P
by prop solver1

3.3 Fact Abstraction

We can generalize prop solver1 by abstracting it over the introduction and elimina-
tion rules it currently applies. In the previous example, the facts impI and conjE
are static. They are evaluated once when the method is defined and cannot be
changed later. This makes the method stable in the sense of static scoping : nam-
ing another fact impI in a later context won’t affect the behaviour of prop solver1.
To instead pass these facts to the method when it is invoked, we can declare some
fact-parameters with the uses keyword.

method prop solver2 uses intros elims =
((rule intros, (erule elims)?) | assumption)+

lemma P ∧ Q ∧ R −→ P ∧ (Q −→ R)
by (prop solver2 intros: impI conjI elims: conjE)

In this particular example, however, providing these rules on each invocation
of prop solver2 is cumbersome. In the following section we will see how we can
create an Eisbach method that is extensible, but also has a database of fact hints
that are implicitly used.

3.3.1 Named Theorems

A named theorem is a fact whose contents are produced dynamically within the
current proof context. The Isar command named theorems provides simple
access to this concept: it declares a dynamic fact with corresponding attribute
(see Section 2) for managing this particular data slot in the context.

named theorems intros

So far intros refers to the empty fact. Using the Isar command declare we
may apply declaration attributes to the context. Below we declare both conjI and
impI as intros, adding them to the named theorem slot.

declare conjI [intros] and impI [intros]

8 Daniel Matichuk et al.

We can refer to named theorems as dynamic facts within a particular proof
context, which are evaluated whenever the method is invoked. Instead of explicitly
providing these arguments to prop solver2 on each invocation, we can instead refer
to these named theorems.

named theorems elims
declare conjE [elims]

method prop solver3 =
((rule intros, (erule elims)?) | assumption)+

lemma P ∧ Q −→ P
by prop solver3

Often these named theorems need to be augmented on the spot, when a method
is invoked. The declares keyword in the signature of method adds the common
method syntax method decl : facts for each named theorem decl.

method prop solver4 declares intros elims =
((rule intros, (erule elims)?) | assumption)+

lemma P ∧ (P −→ Q) −→ Q ∧ P
by (prop solver4 elims: impE intros: conjI)

3.4 Term Abstraction

Named theorems, as seen in the previous section, are used to provide large collec-
tions of managed facts to methods. The uses keyword may alternatively be used to
abstract a method over facts which are not named theorems. These fact arguments
are not declared in the context and thus must be provided on each invocation of
a method, as they are empty by default. This can be used, for example, when a
fact is meant to perform a specialized task within a method.

Methods can also abstract over terms using the for keyword, optionally pro-
viding type constraints. For instance, the following proof method intro ex takes a
term y of any type, which it uses to instantiate the x -variable of exI (existential
introduction) before applying the result as a rule. The instantiation is performed
here by Isar’s where attribute. If the current subgoal is to find a witness for the
given predicate Q, then this has the effect of committing to y.

method intro ex for Q :: ′a ⇒ bool and y :: ′a =
(rule exI [where P = Q and x = y])

The term parameters y and Q can be used arbitrarily inside the method body,
as part of attribute applications or arguments to other methods. The expression
is type-checked as far as possible when the method is defined, however dynamic
type errors can still occur when it is invoked (e.g. when terms are instantiated in a
parameterized fact). Actual term arguments are supplied positionally, in the same
order as in the method definition.

lemma P a =⇒ ∃ x . P x
by (intro ex P a)

Eisbach 9

3.5 Custom Combinators

The built-in method combinators of Isar (see Section 3.2) were originally meant
as an exercise in minimalism, without systematic ways to add new combinators.
There were also technical restrictions in the representation of proof states and
the intentional lack of sub-goal addressing that made it difficult to provide some
popular tactic combinators from the past. This has been refined for the purpose
of Eisbach as follows.

First of all, there is a new method combinator for structured concatenation:
“method1 ; method2” is similar to “method1, method2”, but method2 is invoked on
on all subgoals that have newly emerged from method1. This is useful to handle
cases where the number of subgoals produced by a method is determined dynam-
ically at run-time.

method conj with uses rule =
(intro conjI ; intro rule)

lemma
assumes A: P
shows P ∧ P ∧ P
by (conj with rule: A)

Moreover, Eisbach method definitions may take other methods as arguments,
and thus implement method combinators with prefix syntax. For example, to more
usefully exploit Isabelle’s backtracking, it can often be useful to require a method
to solve all produced subgoals. This can easily be written as a higher-order method
using “;”. The methods keyword denotes method parameters that are other proof
methods to be invoked by the method being defined.

method solve methods m = (m ; fail)

Given some method-argument m, solve 〈m〉 applies the method m and then
fails whenever m produces any new unsolved subgoals — i.e. when m fails to
completely discharge the goal it was applied to.

With these simple features we are ready to write our first non-trivial proof
method. Returning to the first-order logic example, the following method definition
applies various rules with their canonical methods.

named theorems subst

method prop solver declares intros elims subst =
(assumption |

rule intros | erule elims |
subst subst | subst (asm) subst |
(erule notE ; solve 〈prop solver〉))+

The only non-trivial part above is the final alternative (erule notE ; solve
〈prop solver 〉). Here, in the case that all other alternatives fail, the method takes
one of the assumptions ¬ P of the current goal and eliminates it with the rule
notE, causing the goal to be proved to become P. The method then recursively in-
vokes itself on the remaining goals. The job of the recursive call is to demonstrate
that there is a contradiction in the original assumptions (i.e. that P can be derived
from them). Note this recursive invocation is applied with the solve method com-
binator to ensure that a contradiction will indeed be shown. In the case where a

10 Daniel Matichuk et al.

contradiction cannot be found, backtracking will occur and a different assumption
¬ Q will be chosen for elimination.

Note that the recursive call to prop solver does not have any parameters passed
to it. Recall that fact parameters, e.g. intros, elims, and subst, are managed by
declarations in the current proof context. They will therefore be passed to any
recursive call to prop solver and, more generally, any invocation of a method which
declares these named theorems.

After declaring some standard rules to the context, the prop solver becomes
capable of solving non-trivial propositional tautologies.

lemmas [intros] =
conjI — P =⇒ Q =⇒ P ∧ Q
impI — (P =⇒ Q) =⇒ P −→ Q
disjCI — (¬ Q =⇒ P) =⇒ P ∨ Q
iffI — (P =⇒ Q) =⇒ (Q =⇒ P) =⇒ P ←→ Q
notI — (P =⇒ False) =⇒ ¬ P

lemmas [elims] =
impCE — P −→ Q =⇒ (¬ P =⇒ R) =⇒ (Q =⇒ R) =⇒ R
conjE — P ∧ Q =⇒ (P =⇒ Q =⇒ R) =⇒ R
disjE — P ∨ Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

lemma (A ∨ B) ∧ (A −→ C) ∧ (B −→ C) −→ C
by prop solver

3.6 Matching

So far we have seen methods defined as simple combinations of other methods.
Some familiar programming language concepts have been introduced (i.e. abstrac-
tion and recursion). The only control flow has been implicitly the result of back-
tracking. When designing more sophisticated proof methods this proves too re-
strictive and too difficult to manage conceptually.

We therefore introduce the match method, which provides more direct access
to the higher-order matching facility at the core of Isabelle. It is implemented as
a separate proof method (in Isabelle/ML), and thus can be directly applied to
proofs. However, it is most useful when applied in the context of writing Eisbach
method definitions.

Matching allows methods to introspect the goal state, and to implement more
explicit control flow. In the basic case, a term or fact ts is given to match against
as a match target, along with a collection of pattern-method pairs (p, m): roughly
speaking, when the pattern p matches any member of ts, the inner method m will
be executed.

Consider the following example:

lemma
fixes P
assumes X :

Q −→ P
Q

shows P
by (match X in I : Q −→ P and I ′: Q ⇒ 〈rule mp [OF I I ′]〉)

Here we have a structured Isar proof, with the named assumption X and a conclu-
sion P. With the match method we can find the local facts Q −→ P and Q, binding

Eisbach 11

them separately as I and I ′. We then specialize the modus-ponens rule Q −→ P
=⇒ Q =⇒ P to these facts to solve the goal. Here we were able to match against
an assumption out of the Isar proof state. In general, however, proof subgoals can
be unstructured, with goal parameters and premises arising from rule application.
For example, an unstructured version of the previous proof state would be the
Pure implication

∧
P . Q −→ P =⇒ Q =⇒ P. Here the premises Q −→ P and Q

are unnamed and P is a quantified variable (or goal parameter) rather than a fixed
term.

To handle unstructured subgoals, match uses subgoal focusing (see also Sec-
tion 4) to produce structured goals out of unstructured ones. In place of fact or
term, we may give the keyword premises as the match target. This causes a sub-
goal focus on the first subgoal, lifting local goal parameters to fixed term variables
and premises into hypothetical theorems. The match is performed against these
theorems, naming them and binding them as appropriate. Similarly giving the
keyword conclusion matches against the conclusion of the first subgoal.

An unstructured version of the previous example can then be similarly solved
through focusing.

lemma
∧

P . Q −→ P =⇒ Q =⇒ P
by (match premises in I : Q −→ ?A and I ′: Q ⇒ 〈rule mp [OF I I ′]〉)

In this example the goal parameter P is first fixed as an anonymous internal
term (e.g. P), and then the premises Q −→ P and Q are assumed as hypothet-
ical theorems. In the first pattern, the schematic variable ?A acts as a wildcard,
and thus the pattern Q −→ ?A matches the first premise by matching ?A to the
newly-fixed P . The second pattern then matches the second premise Q, binding
it to I ′. Finally the inner method is executed, similar to the previous example,
and successfully solves the goal.

Match variables may be specified by giving a list of for-fixes after the pattern
description. These variables are then considered wildcards, similar to schematics.
In contrast to schematic variables, however, for-fixed terms are bound to the
result of the match, and may be referred to inside of the inner method body. In
the previous example we could not give Q −→ P as a match pattern, because P
cannot be referred to directly. If we want to refer to P directly we must first bind
it with a for-fix in a pattern.

lemma
∧

P . Q −→ P =⇒ Q =⇒ P
by (match premises in I : Q −→ A and I ′: Q for A ⇒

〈match conclusion in A ⇒ 〈rule mp [OF I I ′]〉〉)

In this example A is a match variable which is effectively bound to the goal
parameter P upon a successful match. The inner match then matches the now-
bound A (bound to P) against the conclusion (also P), finally applying the spe-
cialized rule to solve the goal.

In the following example we extract the predicate of an existentially quantified
conclusion in the current subgoal and search the current premises for a matching
fact. If both matches are successful, we then instantiate the existential introduction
rule with both the witness and predicate, solving with the matched premise.

method solve ex =
(match conclusion in ∃ x . Q x for Q ⇒

〈match premises in U : Q y for y ⇒
〈rule exI [where P = Q and x = y, OF U]〉〉)

12 Daniel Matichuk et al.

The first match matches the pattern ∃ x . Q x against the current conclusion,
binding the term Q in the inner match. Next the pattern Q y is matched against all
premises of the current subgoal. In this case Q is fixed and y may be instantiated.
Once a match is found, the local fact U is bound to the matching premise and
the variable y is bound to the matching witness. The existential introduction
rule exI : P x =⇒ ∃ x . P x is then instantiated with y as the witness and Q as
the predicate, with its proof obligation solved by the local fact U (using the Isar
attribute OF). The following example is a trivial use of this method.

lemma halts p =⇒ ∃ x . halts x
by solve ex

Within a match pattern for a fact, each outermost quantifier specifies the
requirement that a matching fact must have a schematic variable at that point.
This gives a corresponding name to this “slot” for the purposes of forming a static
closure, allowing the where attribute to perform an instantiation at run-time.

lemma
assumes A: Q =⇒ False
shows ¬ Q
by (match intros in X :

∧
P . (P =⇒ False) =⇒ ¬ P ⇒

〈rule X [where P = Q , OF A]〉)

Subgoal focusing converts the outermost quantifiers of premises into schemat-
ics when lifting them to hypothetical facts. This allows us to instantiate them
with where when using an appropriate match pattern.

lemma (
∧

x :: ′a. A x =⇒ B x) =⇒ A y =⇒ B y
by (match premises in I :

∧
x :: ′a. ?P x =⇒ ?Q x ⇒

〈rule I [where x = y]〉)

Multiple pattern-method pairs can be given to match, separated by a “ ”.
These patterns are considered top-down, executing the inner method m of the
first pattern which is satisfied by the current match target. By default, matching
performs extensive backtracking by attempting all valid variable and fact bindings
according to the given pattern. In particular, all unifiers for a given pattern will be
explored, as well as each matching fact. The inner method m will be re-executed
for each different variable/fact binding during backtracking. A successful match
is considered a cut-point for backtracking. Specifically, once a match is made no
other pattern-method pairs will be considered.

The method foo below fails for all goals that are conjunctions. Any such goal
will match the first pattern, causing the second pattern (that would otherwise
match all goals) to never be considered. If multiple unifiers exist for the pattern
?P ∧ ?Q against the current goal, then the failing method fail will be (uselessly)
tried for all of them.

method foo =
(match conclusion in ?P ∧ ?Q ⇒ 〈fail〉 ?R ⇒ 〈prop solver〉)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [6],
which will attempt all patterns in a match before failing. This means that the
failure of an inner method that is executed after a successful match does not, in
Ltac, cause the entire match to fail, whereas it does in Eisbach. In Eisbach the
distinction is important due to the pervasive use of backtracking. When a method
is used in a combinator chain, its failure becomes significant because it signals

Eisbach 13

previously applied methods to move to the next result. Therefore, it is necessary
for match to not mask such failure. In contrast to supplying multiple pattern-
method pairs to a single match, we can combine multiple invocations of match
with the “| combinator. This allows inner methods to instead “fall through” upon
failure. The following proof method, for example, always invokes prop solver for
all goals because its first alternative either never matches or (if it does match)
always fails.

method foo1 =
(match conclusion in ?P ∧ ?Q ⇒ 〈fail〉)
| (match conclusion in ?R ⇒ 〈prop solver〉)

Backtracking may be controlled more precisely by marking individual patterns
as cut. This causes backtracking to not progress beyond this pattern: once a match
is found no others will be considered.

method foo2 =
(match premises in I : P ∧ Q (cut) and I ′: P −→ ?U for P Q ⇒

〈rule mp [OF I ′ I [THEN conjunct1]]〉)

In this example, once a conjunction is found (P ∧ Q), all possible implications
of P in the premises are considered, evaluating the inner rule with each conse-
quent. No other conjunctions will be considered, with method failure occurring
once all implications of the form P −→ ?U have been explored. Here the left-right
processing of individual patterns is important, as all patterns after of the cut will
maintain their usual backtracking behaviour.

lemma A ∧ B =⇒ A −→ D =⇒ A −→ C =⇒ C
by foo2

lemma C ∧ D =⇒ A ∧ B =⇒ A −→ C =⇒ C
by (foo2 | prop solver)

In this example, the first lemma is solved by foo2, by first picking A −→ D
for I ′, then backtracking and ultimately succeeding after picking A −→ C. In the
second lemma, however, C ∧ D is matched first, the second pattern in the match
cannot be found and so the method fails, falling through to prop solver.

3.7 Premises within a Subgoal Focus

Subgoal focusing provides a structured form of a subgoal, allowing for more ex-
pressive introspection of the goal state. This requires some consideration in order
to be used effectively. When the keyword premises is given as the match target,
the premises of the subgoal are lifted into hypothetical theorems, which can be
found and named via match patterns. Additionally these premises are stripped
from the subgoal, leaving only the conclusion. This renders them inaccessible to
standard proof methods which operate on the premises, such as frule (forward
reasoning from premises) or erule (eliminating/decomposing premises). Naive us-
age of these methods within a match will most likely not function as the method
author intended.

method my allE bad for y :: ′a =
(match premises in I : ∀ x :: ′a. ?Q x ⇒

〈erule allE [where x = y]〉)

14 Daniel Matichuk et al.

Here we take a single parameter y and specialize the universal elimination rule
(∀ x . P x =⇒ (P x =⇒ R) =⇒ R) to it, then attempt to apply this specialized
rule with erule. The method erule will attempt to unify with a universal quantifier
in the premises that matches the type of y. Suppose we tried to use my allE bad
to prove a trivial lemma the following:

lemma ∀ x . P x =⇒ P a
apply (my allE bad a)?
oops

When my allE bad is invoked, since premises causes a focus, the premise ∀ x . P x
is nowhere to be found, and thus my allE bad will always fail.4 If focusing instead
left the premises in place, using methods like erule would lead to unintended
behaviour, specifically during backtracking. In my allE bad, erule could choose an
alternate premise while backtracking, while leaving I bound to the original match.
In the case of more complex inner methods, where either I or bound terms are
used, this would almost certainly not be the intended behaviour.

An alternative implementation would be to specialize the elimination rule to
the bound term and apply it with rule instead of erule.

method my allE almost for y :: ′a =
(match premises in I : ∀ x :: ′a. ?Q x ⇒

〈rule allE [where x = y, OF I]〉)

This method will insert a specialized duplicate of a universally quantified
premise. Although this will successfully apply in the presence of such a premise,
it is not likely the intended behaviour. To understand why, consider the following
example:

lemma ∀ x . P x =⇒ P a
apply (my allE almost a)
apply (my allE almost a)
by assumption

Here, after applying my allE almost, the goal state is: ∀ x . P x =⇒ P a =⇒ P a.
Observe that the premise P a has been inserted as intended, but that the original
premise ∀ x . P x still remains. A second application of my allE almost therefore
succeeds, yielding a goal state of ∀ x . P x =⇒ P a =⇒ P a =⇒ P a. Repeated
application of my allE almost would thus produce an infinite stream of duplicate
specialized premises, due to the original premise never being removed. To address
this, matched premises may be declared with the thin attribute. This will hide the
premise from subsequent inner matches, and remove it from the list of premises
after the inner method has finished. It can be considered analogous to the old-style
thin tac, used for removing goal premises that match a given pattern.

To complete our example, the correct implementation of the method will thin
the premise from the match and then apply it to the specialized elimination rule.

method my allE for y :: ′a =
(match premises in I [thin]: ∀ x :: ′a. ?Q x ⇒

〈rule allE [where x = y, OF I]〉)

lemma ∀ x . P x =⇒ ∀ x . Q x =⇒ P y ∧ Q y
by (my allE y)+ (rule conjI)

4 This is why we need to use the ? combinator in this example and the oops keyword to
terminate an unfinished proof.

Eisbach 15

Other attributes may also be applied to matched facts. This is most applicable
when focusing, in order to inform methods which would otherwise use premises
implicitly.

lemma A ←→ B =⇒ (A −→ B) ∧ (B −→ A)
by (match premises in I [subst]: ?P ←→ ?Q ⇒ 〈prop solver〉)

In this example, the pattern ?P ←→ ?Q matches against the premise A ←→
B and binds it to the local fact I. Additionally it declares this fact as a subst rule,
adding it to the subst named theorem for the duration of the match. This is then
implicitly used by prop solver to solve the goal.

3.8 Example

We complete our tour of the features of Eisbach by extending the propositional
logic solver presented earlier to first-order logic. The following method instantiates
universally quantified assumptions by simple guessing, relying on backtracking to
find the correct instantiation. Specifically, it instantiates assumptions of the form
∀ x . ?P x by finding some type-correct term y by matching other assumptions
against ?H y, using type annotations to ensure that the types match correctly. The
matched universal quantifier is marked as thin to remove it from the premises,
while using the universal elimination rule allE to specialize U to y. The same
matching is also performed against the conclusion to find possible instantiations
there as well.

method guess all =
(match premises in U [thin]: ∀ x . P (x :: ′a) for P ⇒

〈(match premises in ?H (y :: ′a) for y ⇒
〈rule allE [where x = y, OF U]〉)? ,

(match conclusion in ?H (y :: ′a) for y ⇒
〈rule allE [where x = y, OF U]〉)? 〉)

The pattern ?H y is used to find arbitrary subterms y within the premises
or conclusion of the current goal. It makes use of Isabelle/Pure’s workhorse
of higher-order unification (although matching involves pattern-matching only).
While such a pattern-match need not bind all variables to be valid, to avoid triv-
ial matches, match considers only those matches that bind all for-fixed variables
mentioned in the pattern.

The inner-match must be duplicated over both the premises and conclusion
because they are logically different entities: the premises are facts, in that they
are (assumed) true; the conclusion is not and must be proved, and so is a term.
This might look strange to users of Coq’s Ltac, where these notions are identified;
however, it does not limit the expressivity of Eisbach.

The thin attribute is necessary here in order to guarantee termination (see Sec-
tion 3.6). However, since the premise is “consumed”, care must be taken to ensure
that this does not render the goal unsolvable (i.e. in the case where the premise
needs to be specialized multiple times). Here we assume that this is handled by
a previous application of prop solver, which decomposes the goal into sufficiently
small subgoals such that only a single instantiation is required.

Similar to our previous solve ex method, we introduce a method which at-
tempts to guess at an appropriate witness for an existential proof. In this case,

16 Daniel Matichuk et al.

however, the method simply guesses the witness based on terms found in the
current premises, again using higher-order matching as in the guess all method
above.

method guess ex =
(match conclusion in
∃ x . P (x :: ′a) for P ⇒

〈match premises in ?H (x :: ′a) for x ⇒
〈rule exI [where x = x and P = P]〉〉)

These methods can now be combined into a surprisingly powerful first-order
solver.

method fol solver =
((prop solver | guess ex | guess all) ; solve 〈fol solver〉)

The use of solve above ensures that the recursive subgoals are solved. With-
out it, the recursive call could terminate prematurely and leave the goal in an
unsolvable state (due to an incorrect guess for a quantifier instantiation).

After declaring some standard rules in the context, this method is capable of
solving various example problems.

declare
allI [intros] — (

∧
x . P x) =⇒ ∀ x . P x

exE [elims] — ∃ x . P x =⇒ (
∧

x . P x =⇒ Q) =⇒ Q
ex simps [subst]
all simps [subst]

lemma (∀ x . P x) ∧ (∀ x . Q x) =⇒ (∀ x . P x ∧ Q x)
and ∃ x . P x −→ (∀ x . P x)
and (∃ x . ∀ y. R x y) −→ (∀ y. ∃ x . R x y)
by fol solver+

4 Design and Implementation

A core design goal of Eisbach is a seamless integration with other Isabelle lan-
guages, notably Isar, ML, and object-logics. The primary motivation clearly being
to make it accessible to existing Isabelle/Isar users, with a secondary objective of
both forward and backward compatibility.

4.1 Readable Proof Methods

In Isar there is a clear distinction between a structured and an unstructured proof.
The former makes use of the rich reasoning framework provided by Isar, while the
latter relies more heavily on the implicit behaviour of proof methods. An un-
structured proof cannot be understood without checking the proof in Isabelle and
inspecting the subgoal state at each stage of the proof. This can create significant
issues during proof maintenance phases, where a proof needs to be updated in
response to an update to a specification or to Isabelle itself. The original intention
of a proof cannot be easily extracted from the unstructured proof script, and a
now-failing proof may require significant time and effort to perform the necessary
archaeological exploration of its history to recover some insight.

Eisbach 17

One of the aims of Eisbach is to address this by providing a means to de-
scribe reasoning procedures. A proof method designed to solve a particular class
of problems serves as a better record of the author’s intent than an ad-hoc series
of general tools. Arguably this simply shifts the problem of proof maintenance to
that of proof method maintenance, and indeed this is a well-known concern in Ltac
today. This indicates the necessity for writing proof methods that are readable and
thus also maintainable.

In Eisbach, match can be considered as a structured language element, and is
meant to serve both as implementation and documentation. Many methods shown
here could have been implemented without using match, but would have been
significantly more difficult to understand, and may happen to work in unintended
cases. In practice, a match pattern is a much more explicit description of the
expected goal state than, for example, the expectation that erule successfully finds
an appropriate premise for the given rule. As with Isar, Eisbach method authors
are free to use as much structure as they consider necessary for their specific
application.

4.2 Static Closure of Concrete Syntax

Isabelle provides a rich selection of powerful proof methods, each with its own
concrete syntax, which is implemented by parser combinators in ML. Additionally,
Isabelle’s theorem attributes, which perform context and fact transformations,
have their own parsers. Rather than re-write all tools from the libraries to support
Eisbach, we build on existing features of the Isabelle parsing framework whereby
tokens have values (types, terms, facts etc.) assigned to them implicitly during
parsing.

This syntax/value assignment mechanism was originally introduced to support
locale expressions in the sense of [1]. Thus expressions over facts and attributes
became transformable by morphisms, to move them from an abstract locale context
to a concrete application context.5

The same principle of syntax closure and interpretation is now the main
workhorse of Eisbach. After some modifications, it works for method expressions
as well, including their embedded facts and attribute expressions. For example,
the basic method “(simp add : foo [OF bar])” is wrapped up as static closure,
where the embedded fact expression “foo [OF bar]” is treated like a pre-evaluated
constant.

Eisbach then simply serves as an interpretation environment for the carefully
prepared method syntax tokens. When a proof method is applied Eisbach instanti-
ates these token values appropriately (via some morphism), based on the supplied
arguments to the method or results of matching, and then executes the result-
ing method body. Although this presents some technical challenges and required
various modifications of the Isar implementation itself, this proves to be a very
effective solution to performing this kind of language extension.

5 See also [2] for a recent exposition of the possibilities of locales and locale interpretations
via morphisms in Isabelle.

18 Daniel Matichuk et al.

4.3 Subgoal Focusing

In Isabelle/Pure there is a logical distinction between universally quantified param-
eters (like x in

∧
x . P x) and arbitrary-but-fixed terms (like a in P a). A subgoal

in the former form does not allow the x to be explicitly referenced, because it is
hidden within a closed formula; for example, my fact [where y = x] does not pro-
duce a valid theorem. Historically, some special tactics were provided to descend
into the sub-goal structure and provide ad-hoc access to its local parameters: these
are available in Isar via so-called improper methods (like rule tac).

Likewise, premises within a subgoal are not yet local facts. In a structured Isar
proof, assumptions are stated explicitly in the text via assumes or assume and
are accessible to attributes etc. In contrast, the local prefix A =⇒ ◊ of a subgoal
is not accessible to structured reasoning.

The Isar proof language accommodates this situation by a canonical nested
proof consisting of fix/assume/show of as follows:

have
∧

x . A x =⇒ B x
proof −

fix x
assume A x
show B x 〈proof 〉

qed

Isabelle/ML already provides systematic support for this subgoal focusing. For
Eisbach, we incorporated that into the language with some concrete syntax, to
allow the user to write methods that can operate within the local subgoal structure
as required. Focusing creates a new goal out of a given subgoal, but with its
parameters turned into fixed variables (actual terms), and premises into local
assumptions (actual facts). This allows for uniform treatment of the goal state
when matching and parameter passing. In Eisbach’s match method, focusing is
accessed by specifying the keyword conclusion or premises as the match target
(see Section 3.6).

5 Application and Evaluation

To evaluate Eisbach we re-implemented two existing proof methods: wp and wpc,
which are Verification Condition Generators currently released as part of the
seL4 proof. They were used extensively in the full functional correctness proof
of seL4 [12] for both invariant and refinement proofs. They were originally de-
signed for performing “weakest-precondition” style reasoning against a shallowly
embedded monadic Hoare logic [5]. The intelligence of these methods lies in their
large collection of stored facts, and have proven to be more generally useful in
other projects [14].

Together these two methods comprise 500 lines of Isabelle/ML, and 60 lines of
Isabelle/Isar for setup. However, we implement them (below) in Eisbach almost
trivially.

The Eisbach implementation of wp is nothing more than the structured applica-
tion of some dynamic facts: wp supplies facts about monadic functions (e.g. Hoare

Eisbach 19

triples), wp comb contains decomposition rules for postconditions, and wp split
splits goals across monadic binds.

named theorems wp and wp comb and wp split

method wp declares wp wp comb wp split =
((rule wp | (rule wp comb, rule wp)) | rule wp split)+

This obscures some details from the original implementation, in particular
that the collection of wp rules grows quite large and relying exclusively on rule
resolution to apply it is costly. This suggests potential improvements to Eisbach,
such as allowing facts in the context to be explicitly indexed.

The Eisbach implementation of wpc is slightly more involved. Rather than
a named theorem or keyword, the given match target is an ML expression. This
expression uses a custom attribute get split rule (defined in ML) that retrieves the
case-split rule for a given term. Such rules are used to decompose case distinctions
on datatypes. The apply split method simply applies the retrieved case-split rule
after decomposing it into an implication.

attribute setup get split rule =
〈Args.term >> (fn t =>

Thm.rule attribute (fn context => fn =>
(case get split rule (Context .proof of context) t of

SOME thm => thm
| NONE => Drule.dummy thm)))〉

method apply split for f :: ′a and R :: ′a ⇒ bool=
(match [[get split rule f]] in U : (?x :: bool) = ?y ⇒

〈match U [THEN iffD2] in U ′:
∧

H . ?A =⇒ H (?z :: ′c) ⇒
〈match (R) in R ′ :: ′c ⇒ bool for R ′ ⇒

〈rule U ′[where H =R ′]〉〉〉)

We defined another higher-order method repeat new to repeatedly apply a
provided method m to all produced subgoals.

method repeat new methods m = (m ; (repeat new 〈m〉)?)

This method is then used in conjunction with worker lemmas to produce one
subgoal for each constructor.

method wpc ′ declares wpc helper =
(rule wpc helperI ,

repeat new 〈rule wpc processor〉 ; (rule wpc helper))

Finally, wpc matches the underlying monadic function out of the current Hoare
triple subgoal.

method wpc =
(match conclusion in
{|P |} f {|Q |} for f P Q ⇒

〈apply split f λf . {|P |} f {|Q |}〉
{|P |} f {|Q |},{|E |} for f P Q E ⇒

〈apply split f λf . {|P |} f {|Q |},{|E |}〉, wpc ′)

Together, combined with a large body of existing lemmas, these methods calcu-
late weakest-precondition style proof obligations for the monadic Hoare logic of [5].
Additionally, with appropriate lemmas and some additional match conditions for
wpc, these methods are easily extended to other calculi such as the relational Hoare
logic from [14].

20 Daniel Matichuk et al.

To demonstrate the effectiveness of these re-implemented methods, we re-ran
the invariant proofs for the seL4 abstract functional specification6 using them
in place of their original implementations. These proofs constitute about 60,000
lines, including whitespace and comments. About 100 lines of Isabelle/ML were
required to maintain syntactic compatibility, and an approximately 0.5% change
to the proof text itself was required to resolve cases where proofs relied on quirky
behaviour of the original methods in very specific situations.

6 Related Work

The relation of proofs versus programs, proof languages versus programming lan-
guages, and ultimately the quest for adequate proof programming languages opens
a vast space of possibilities that have emerged in the past decades, but the general
problem was never settled satisfactorily. Different interactive provers have their
own cultural traditions and approaches, and there is often some confusion about
basic notions and terminology. Subsequently we briefly sketch important lines of
programmable interactive proof assistants in the LCF tradition, which includes
the HOL family, Coq, and Isabelle itself.

The original LCF proof assistant [9] has pioneered a notion of tactics and
tacticals (i.e. operators on tactics) that can be still seen in its descendants today.
An LCF tactic is a proof strategy that reduces a goal state to zero or more
subgoals that are sufficient to solve the problem. Tactics work in the opposite
direction than inferences of the core logic, which take known facts to derive new
ones.

This duality of backward reasoning from goals versus forward reasoning from
facts is reconciled by tactic justifications: a tactic both performs the goal reduction
and records an inference for the inverse direction. At the very end of a tactical
proof, all justifications are composed like a proof tree, to produce the final theorem.
This could result in a late failure to finish the actual proof, e.g. due to programming
errors in the tactic implementation.

ML was invented for LCF as the Meta Language to implement tactics and
other tools around the core logical engine. Proofs are typically written as ML
scripts, but the activity of building up new theory content and associated tactics
is often hard to distinguish from mere application of existing tools from some
library. The bias towards adhoc proof programming was much stronger in LCF
than in Isabelle theories today.

The HOL family [19, §1] continues the LCF tradition with ML as the main
integrating platform for all activities of theory and proof tool development (using
Standard ML or OCaml). Due to the universality of ML, it is of course possible to
implement different interface languages on the spot. This has been done as various
“Mizar modes” to imitate the mathematical proof language of Mizar [19, §2], or
as “SSReflect for HOL Light” that has emerged in the Flyspeck project, inspired
by SSReflect for Coq [7].

The HOL family has the advantage that explorations of new possibilities are
easy to get started on the bare-bones ML top-level interface. HOL Light is partic-

6 See https://github.com/NICTA/l4v/tree/master/proof/invariant-abstract

https://github.com/NICTA/l4v/tree/master/proof/invariant-abstract

Eisbach 21

ularly strong in its minimalistic approach. In contrast, Isabelle tools need to take
substantial system infrastructure and common conveniences for end-users into ac-
count, before anything new can be added.

Coq [19, §4] started as another branch of the LCF family in 1985, but with
quite different answers to old questions of how proofs and programs are related.
While the HOL systems have replaced LCF’s Logic of Computable Functions by
simply-typed classical set-theory (retaining the key role of the Meta Language),
Coq has internalized computational aspects into its type-theoretic logical environ-
ment. Consequently, the OCaml substrate of Coq is mainly seen as the system
bootstrap language, and has become difficult to access for Coq users. Implement-
ing some Coq plug-in requires separate compilation of OCaml modules which are
then linked with the toplevel application. An alternative is to drop into an adhoc
OCaml shell interactively, but this only works for the bytecode compiler, not the
native compiler (which is preferred by default).

Since Coq can be understood as a dependently-typed functional programming
language in its own right, it is natural to delegate more and more proof tool
development into it, to achieve a grand-unified formal system eventually. A well-
established approach is to use computational reflection in order to turn formally
specified and proven proof procedures into inferences that don’t leave any trace
in the proof object. Recent work on Mtac [20] even incorporates a full tactic
programming language into Coq itself.

Ltac is the untyped tactic scripting language for Coq [6], and has been suc-
cessfully applied in large Coq theory developments [4]. It has familiar functional
language elements, such as higher-order functions and let-bindings. However, it
contains imperative elements as well, namely the implicit passing of the proof goal
as global state. The main functionality of Ltac is provided by a match construct for
performing both goal and term analysis. Matching performs proof search through
implicit backtracking across matches, attempting multiple unifications and falling
through to other patterns upon failure. Although syntactically similar to the match
keyword in the term language of Coq, Ltac tactics have a different formal status
than Coq functions. Although this serves to distinguish logical function applica-
tion from on-line computation, it can result in obscure type errors that happen
dynamically at run-time.

SSReflect [7] is the common label for various tools and techniques for proof
engineering in Coq that have emerged from large verification projects by Gonthier.
This includes a sophisticated proof scripting language that provides fine-grained
control over moves within the logical subgoal structure, and nested contexts for
single-step equational reasoning. Actual small-scale reflection refers to implemen-
tation techniques within Coq, for propositional manipulations that could be done
in HOL-based systems by more elementary means; the experimental SSReflect for
HOL-Light re-uses the proof scripting language and its name, but without doing
any reflection (this is neither possible nor required in HOL).

SSReflect emphasizes concrete proof scripts for particular problems, not general
proof automation. Scripts written by an expert of SSReflect can be understood by
the same, without stepping through the sequence of goal states in the proof assis-
tant. General tools may be implemented nonetheless, by going into the Coq logic.
The SSReflect toolbox includes specific support for generic theory development
based on canonical structures.

22 Daniel Matichuk et al.

Mtac is a recently developed typed tactic language for Coq [20]. It follows an
approach of dependently-typed functional programming: the behaviour of Mtactics
may be characterized within the logical language of the prover. Mtac is notable by
taking the existing language and type-system of Coq (including type-inference),
and merely adds a minimal collection of monadic operations to represent impure
aspects of tactical programming as first-class citizens: unbounded search, excep-
tions, and matching against logical syntax. Thus the formerly separate aspect of
tactical programming in Ltac is incorporated into the logical language of Coq,
which is made even more expressive to provide a uniform basis for all develop-
ments of theories, proofs, and proof tools. Thanks to strong static typing, Mtac
avoids the dynamic type errors of Ltac. More recent work combines Mtac with
SSReflect [8], to internalize a generic proof programming language into Coq, in
analogy to the well-known type-class approach of Haskell.

This uniform proof language approach is quite elegant for Coq, but it relies on
the inherent qualities of the Coq logic and its built-in computational approach.
In contrast, the greater LCF family has always embraced multiple languages that
serve different purposes: classic LCF-style systems are more relaxed about separat-
ing logical foundations from computation outside of it; potentially with access to
external programs or network services. Eisbach continues this philosophy of extra-
logical additions to an existing system. In Isabelle, the art of integrating different
languages into one system (not one logic) is particularly emphasized: standard syn-
tactic devices for quotation and anti-quotation support embedded sub-languages
easily.

7 Conclusion and Future Work

In this paper we have presented Eisbach, a high-level language for writing proof
methods in Isabelle/Isar. It supports familiar Isar language elements, such as
method combinators and theorem attributes, as well as being compatible with
existing Isabelle proof methods. An expressive match method enables the use
of higher-order matching against facts and subgoals to provide control flow. We
showed that existing methods used in large-scale proofs can be easily implemented
in Eisbach. The resulting implementations are far smaller, and easier to under-
stand.

Of the proof programming languages mentioned in Section 6, Eisbach resem-
bles Coq’s Ltac most closely, which was done on purpose. However, it seamlessly
integrates with core Isabelle technologies (fact collections, pervasive backtracking,
subgoal focusing) to allow powerful proof methods to be easily and succinctly writ-
ten. When building on top of Isabelle/Isar, it made most sense to implement an
untyped proof programming language, rather than trying to emulate ideas from
languages like Mtac. This is because we wanted Eisbach to be able to invoke ex-
isting Isar proof methods, which are untyped. While the absence of typed proof
procedures hasn’t hindered the development of large-scale proofs, the ability to an-
notate proof methods with information about how they are expected to transform
the proof state is potentially attractive. Although higher-order methods, like solve
(see Section 3.5), can approximate run-time method contracts, we would be free to
implement arbitrary contract specification languages because proof methods exist

Eisbach 23

outside the logic of Isabelle/Pure. However this avenue of further research remains
unexplored so far.

One of Eisbach’s greatest virtues is that it provides a framework for thinking
of proof methods like programming language elements. This applies to methods
written in Eisbach, like solve, but also to those written in Isabelle/ML. A good
example of the latter is the match method which, while its implementation is
entirely independent of the method command, became necessary to implement
only in the presence of Eisbach. The method language of Isar was already arbi-
trarily expressive, as methods define their own syntax. Eisbach now opens up this
space allowing users to write methods that serve as elements of a high-level method
programming language, rather than one-off proof tools. Thus methods that may
have had little use in proof scripts now become useful, and in the case of match
incredibly powerful, as elements of Eisbach-defined proof methods.

Eisbach can already be effectively used to write real-world proof tools, al-
though it still lacks some important features. Firstly, some debugging features are
planned, beyond the current solution of manually printing intermediate goal states.
Traces of matches and method applications will be presented, ideally with some
level of interaction from the user. Additionally more structured language elements
would provide a more natural integration with Isar (e.g. explicit subgoal produc-
tion and addressing). We would also like Eisbach to support parallel evaluation by
default. Method combinators outline a certain structure that should be used as a
parallel skeleton wherever possible. For example, the “;” combinator could use a
parallel version of the underlying tactical THEN_ALL_NEW, analogous to the existing
PARALLEL_GOALS tactical of Isabelle/ML.

Acknowledgements

We would like to thank Gerwin Klein, who was involved in the discussions on the
design of Eisbach and who provided early feedback on this paper. Thanks also to
Peter Gammie, Magnus Myreen, and Thomas Sewell for feedback on drafts of this
paper.

NICTA is funded by the Australian Government through the Department of
Communications and the Australian Research Council through the ICT Centre of
Excellence Program.

References

1. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: S. Berardi, M. Coppo,
F. Damiani (eds.) Types for Proofs and Programs (TYPES 2003), Lecture Notes in Com-
puter Science, vol. 3085. Springer (2003). DOI 10.1007/978-3-540-24849-1 3

2. Ballarin, C.: Locales: A module system for mathematical theories. Journal of Automated
Reasoning 52(2), 123–153 (2014). DOI 10.1007/s10817-013-9284-7

3. Bourke, T., Daum, M., Klein, G., Kolanski, R.: Challenges and experiences in man-
aging large-scale proofs. In: M. Wenzel (ed.) Conferences on Intelligent Computer
Mathematics (CICM) / Mathematical Knowledge Management. Springer (2012). DOI
10.1007/978-3-642-31374-5 3

4. Chlipala, A.: Mostly-automated verification of low-level programs in computational sepa-
ration logic. ACM SIGPLAN Notices 46(6), 234 (2011). DOI 10.1145/1993316.1993526

24 Daniel Matichuk et al.

5. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement.
In: O.A. Mohamed, C. Muñoz, S. Tahar (eds.) 21st TPHOLs, LNCS, vol. 5170, pp. 167–
182. Springer, Montreal, Canada (2008). DOI 10.1007/978-3-540-71067-7 16

6. Delahaye, D.: A tactic language for the system Coq. In: Int. Conf. Logic for Progr.,
Artificial Intelligence & Reasoning, LNCS, vol. 1955. Springer (2000). DOI 10.1007/
3-540-44404-1 7

7. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J. Formalized
Reasoning 3(2) (2010). DOI 10.6092/issn.1972-5787/1979

8. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation
less ad hoc. J. Funct. Program. 23(4), 357–401 (2013). DOI 10.1017/S0956796813000051

9. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanized Logic of
Computation. LNCS 78. Springer (1979). DOI 10.1007/3-540-09724-4

10. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system types.
In: C. Urban, X. Zhang (eds.) Interactive Theorem Proving, Lecture Notes in Computer
Science, vol. 9236, pp. 203–220. Springer International Publishing (2015). DOI 10.1007/
978-3-319-22102-1 13. URL http://dx.doi.org/10.1007/978-3-319-22102-1 13

11. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R., Heiser, G.:
Comprehensive formal verification of an OS microkernel. ACM Transactions on Computer
Systems (TOCS) 32(1), 2 (2014). DOI 10.1145/2560537

12. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an OS kernel. In: SOSP, pp. 207–220. ACM, Big Sky, MT, USA (2009).
DOI 10.1145/1629575.1629596

13. Matichuk, D., Wenzel, M., Murray, T.: An Isabelle proof method language. In: G. Klein,
R. Gamboa (eds.) Interactive Theorem Proving — 5th International Conference, ITP
2014, Vienna, Austria, Lecture Notes in Computer Science, vol. 8558. Springer (2014).
DOI 10.1007/978-3-319-08970-6 25

14. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for operat-
ing system kernels. In: Chris Hawblitzel and Dale Miller (ed.) The Second International
Conference on Certified Programs and Proofs, pp. 126–142. Springer, Kyoto (2012). DOI
10.1007/978-3-642-35308-6 12

15. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, Lecture Notes in Computer Science, vol. 2283. Springer Verlag (2002). DOI
10.1007/3-540-45949-9

16. Paulson, L.C.: Isabelle: the next 700 theorem provers. In: P. Odifreddi (ed.) Logic and
Computer Science. Academic Press (1990)

17. Wenzel, M.: Isabelle/Isar — a versatile environment for human-readable formal proof
documents. Ph.D. thesis, Technische Universität München (2002)

18. Wenzel, M., Chaieb, A.: SML with antiquotations embedded into Isabelle/Isar. In:
J. Carette, F. Wiedijk (eds.) Workshop on Programming Languages for Mechanized Math-
ematics (PLMMS 2007). Hagenberg, Austria (2007)

19. Wiedijk, F. (ed.): The Seventeen Provers of the World, vol. 3600 (2006). DOI 10.1007/
11542384 1

20. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: a monad
for typed tactic programming in Coq. In: G. Morrisett, T. Uustalu (eds.) ICFP. ACM
(2013). DOI 10.1017/S0956796813000051

http://dx.doi.org/10.1007/978-3-319-22102-1_13

	Introduction
	Some Isabelle Concepts
	Eisbach
	Design and Implementation
	Application and Evaluation
	Related Work
	Conclusion and Future Work

