
Automated Verification of RPC Stub Code

Matthew Fernandez, June Andronick, Gerwin Klein, Ihor Kuz

NICTA and UNSW
Sydney, Australia

{matthew.fernandez,june.andronick,gerwin.klein,ihor.kuz}@nicta.com.au

Abstract. Formal verification has been successfully applied to provide strong
correctness guarantees of software systems, but its application to large code bases
remains an open challenge. The technique of component-based software devel-
opment, traditionally employed for engineering benefit, also aids reasoning about
such systems. While there exist compositional verification techniques that lever-
age the separation implied by a component system architecture, they implicitly
rely on the component platform correctly implementing the isolation and com-
position semantics they assume. Any property proven using these techniques is
vulnerable to being invalidated by a bug in the code of the platform itself. In this
paper, we show how this assumption can be eliminated by automatically gener-
ating machine-checked proofs of the correctness of a component platform’s gen-
erated Remote Procedure Call (RPC) code. We demonstrate how these generated
proofs can be composed with hand-written proofs to yield a system-level property
with equivalent assurance to an entirely hand-written proof. This technique forms
the basis of a scalable approach to formal verification of large software systems.

1 Introduction

In the design of safety- and security-critical software, it is desirable to provide the high
levels of assurance that can be achieved by formal verification. State of the art code-level
verification currently scales to tens of thousands of lines of code [13, 16], while high
assurance software can often exceed one million lines of code. For such large systems,
pervasive code-level verification still is infeasible and new techniques are required.

Component-based software engineering facilitates the design and implementation
of large software systems [25]. This methodology involves specifying a system as a
collection of isolated software elements that communicate via explicit connections, ex-
pressed in an architectural description. An example would be a simple system with
two separate components, a client c and a server s, with a communication connec-
tion between them, allowing c to invoke a function implemented in s. The component
platform would generate so-called glue code to perform argument marshalling and un-
marshalling, and use the underlying operating system’s communication mechanisms to
transfer the data between components. By decomposing the problem of system verifi-
cation along component boundaries, assurance of larger systems becomes tractable. A
proof of system correctness chains together individual correctness proofs of the under-
lying operating system, component platform code, and user-provided component code.

Compositional verification of component systems is not a new concept, with ex-
isting techniques such as [2, 4] aiming to increase scalability through decomposition.

mailto:first-name.last-name@nicta.com.au

However, all existing techniques we are aware of assume that an underlying component
platform correctly implements the isolation and composition semantics they rely upon.
This assumption encompasses the glue code, generated by the component platform. A
defect anywhere in the glue code generation logic can falsify the implicit assumptions
of a compositional reasoning framework and thereby invalidate derived properties [7].

To preserve the abstraction of a component system architecture and to aid reasoning
about component systems, we aim to automate the production of functional correctness
proofs for platform glue code. In this paper, we focus on generated code for Remote
Procedure Calls (RPC) in particular. RPC is a common communication abstraction in
component platforms. We refer to such generated code as RPC stubs in the context of
this paper. Our generated proofs are machine-checked by the interactive theorem prover
Isabelle/HOL [19], and the resulting proofs are designed to be manually composed with
hand-written proofs of user-provided code. Together, the generated and hand-written
proofs can yield a proof of functional correctness of a whole system. Though relying on
generated proof script, the final proof carries the same level of assurance as a manually-
constructed, machine-checked proof.

The main challenge of this work is in generating an Isabelle/HOL proof script that
corresponds to a generated implementation. Since the implementation is derived from
a system architecture description, and the existing code generator is largely string- and
template-based, it is infeasible to provide a single proof for the correctness of any pos-
sible glue code (that is, to verify the generator itself). Instead, we use a translation
validation approach and build on our previous work that demonstrated the absence of
undefined behaviour in component platform glue code [6].

We use an existing component platform, CAmkES [14], and focus on the verifica-
tion of its C backend targeting the seL4 microkernel [13]. In future work, we intend to
leverage the functional correctness proof of seL4, though for now we implicitly assume
the semantics of its system calls in our execution model.

We make the following novel contributions: (i) We demonstrate a technique for au-
tomatically generating functional correctness proofs of generated RPC code, removing
the assumption of correct RPC stubs present in existing compositional reasoning frame-
works and (ii) we present a strategy for composition of automated and manual proofs
that does not require trusting the proof generator.

After describing, in Sect. 2, the runtime environment and the C verification frame-
work we use, we elaborate the proof generation process in Sect. 3 and describe what pre-
cisely the generated proofs show. Being result verification, the approach is best demon-
strated working through an example instance, which we do in Sect. 4. We discuss the
trustworthiness of the resulting property and limitations of our approach in Sect. 5.

2 Background

2.1 seL4

To date, seL4 is the only general purpose operating system kernel with a code-level
proof of functional correctness [13]. It contains around 9700 lines of C that have been
proven to implement an abstract specification of the kernel’s behaviour. The verification
of seL4 extends to access control and information flow guarantees [17, 24].

c s

Fig. 1. Example CAmkES system architecture

The microkernel provides a minimal number of services to userspace processes,
with abstractions for processor time (threads) and virtual memory. All authority in seL4
is provided through capabilities, kernel-administered access tokens for resources. Com-
munication is achieved by having a capability to an endpoint object and invoking this
capability. Capabilities have associated rights, with a write capability required to send
on an endpoint and read capability to receive on an endpoint. The kernel provides a
synchronous Inter-Process Communication (IPC) mechanism that allows a sender to
transfer up to 484 bytes to a cooperative receiver from a fixed window of their address
space known as their IPC buffer. The IPC buffer is accessed by a pair of utility func-
tions, seL4 GetMR and seL4 SetMR, that are provided for reading and writing individ-
ual words at offsets into the buffer. For further information about the seL4 primitives,
the reader is referred to the programmer’s reference [26].

2.2 CAmkES

CAmkES is a component platform for implementing microkernel-based embedded sys-
tems [14]. A user provides a high-level architectural description of her system, and code
implementing the logic of each component in the system. At compile time, CAmkES
generates glue code to establish and enforce communication channels between the
user’s component instances, as described in her architectural description. For each com-
ponent instance, its user-provided code and generated code are compiled and linked
together to form an executable image. We focus on CAmkES’ C backend for seL4 in
this work, as representative of an environment for building high assurance systems. The
correctness guarantees of seL4 present a strong foundation and C requires no implicit
assumption of a correct language runtime.

CAmkES architectures are limited to static systems and all components are instanti-
ated on system start. Three communication abstractions are available for system design:
dataports, events and procedures. Procedures, which we focus on in this work, are used
for representing communication in the style of synchronous function calls. Their se-
mantics follows the well known Remote Procedure Call abstraction, so we use RPC ter-
minology to refer to them. At compile time, CAmkES generates RPC stubs to perform
argument marshalling, argument unmarshalling, and kernel invocations to transfer con-
trol and data between components. Because all communication channels are established
statically and are local to a processor, communication runtime failures in CAmkES sys-
tems can only occur by defects in the underlying kernel or generated glue code. In this
work, we prove the absence of defects in the generated glue code and use a formally
verified kernel as substrate.

Component architectures are often represented diagrammatically as a set of boxes
for the component instances and arrows for the connections between them. Fig. 1 pro-
vides an example, showing two connected component instances. Here s implements a
single procedural interface, containing one or more exposed methods. An interface of

the same type is expected by c. The two interfaces are connected, such that s provides
the interface c is using. Though Fig. 1 only shows basic functionality, the full feature
set of CAmkES is sufficient to build complex systems such as network routers and file
systems. We will elaborate the example from Fig. 1 in Sect. 4.

2.3 Verification Framework

To reason about C programs, we first translate them into Isabelle/HOL. We initially
use the C-to-Simpl parser [27, 29] to translate source code to a representation in the
generic imperative language Simpl [23] in Isabelle/HOL. This translation is designed
to be as straightforward as possible and to match the semantics of a large subset of
C99 [12]. Following this, we use the AutoCorres tool [10, 11] to perform further au-
tomatically verified transformations within Isabelle/HOL that abstract the Simpl repre-
sentation, resulting in a monadic functional specification that more closely resembles
the programmer’s intuition and facilitates reasoning on top. The C-to-Simpl parser’s
initial translation step can be independently validated using binary verification [24].

To reason about abstracted C programs, we adopt a variant of Hoare triples for stat-
ing the pre- and post-conditions of a potentially nondeterministic monadic function [5],
which, in addition to transforming the state, may return a value or may fail. The fol-
lowing notation states that, if the pre-condition P holds and the function f terminates
normally, then the post-condition Q will hold after f has executed.

{|P|} f {|Q|}
P is a predicate over the initial state (memory, global structures, etc.), whereas Q is a
predicate over two parameters: the return value of f and the final state.

The above statement allows for the possibility that f fails or does not terminate, for
example, by performing an operation with undefined behaviour in C. To express total
correctness of f, we use the following variant that requires termination and absence of
failure, including absence of guard violations.

{|P|} f {|Q|}!
In the remainder of this paper we use the following notation to refer to the initial

state in the post-condition, for example, to express that the effect of a given C function f
is to modify the state according to a specification function g, ignoring f ’s return value.

{|λs. s = s0|} f {|λ s. s = g s0|}!
We refer to [5] for further details of this Hoare calculus for monadic functions.

3 Generating Correct RPC Stubs

Our anticipated process for verifying a component-based system is depicted in Fig. 2,
where solid borders surround user-provided artefacts and dashed borders surround gen-
erated artefacts. The CAmkES platform generates a generic theorem of the correctness
of RPC stub code for each procedure, alongside the generated code itself. The formal
representations of the RPC stub functions in these theorems are derived by the C-to-
Simpl parser directly from the generated code. The user can then instantiate the generic
theorems for specific correctness properties.

CAmkES

user-provided
architectural
description

user-provided
code

C

generated
RPC stub
theorem

Isabellegenerated
glue code

C

system-level
correctness

theorem

Isabelle

compiler

✍user instantiation

component
instance
images

binary

C-to-Simpl

Fig. 2. Workflow for producing a proof of system correctness

In the context of RPC stubs, it is not immediately clear what “correctness” means
for generated code. In this section, we explain our criteria for correct RPC stubs and
elaborate on what precisely is proven in the Isabelle/HOL theories we generate.

Let f be the RPC stub code that provides a conduit for invoking a remote function g.
Then, intuitively, invocation of f should be somehow equivalent to a direct invocation
of g, were it colocated with the caller.

Since, by design, it is expected that the RPC code perform observable actions, we
cannot expect full equivalence. However, we do expect to be able to lift suitable correct-
ness specifications in the form of Hoare triples about g from the remote context into the
local context. We state the correctness of glue code by specifying this lifting, and the
generated glue code proofs establish that this specification lifting is indeed achieved.
The generality of the specifications we allow for g, implies not only what the glue code
must do, but also what it must not do (e.g. interfere with g’s private state or the caller’s
private state). We expect this form of statement and mechanism to readily generalise to
the other transport mechanisms component platforms provide.

To be useful, the proofs we generate must be composable with (almost) arbitrary
user-provided proofs, both of functions g, and of the contexts where g and f are used.
We allow the proof engineer to state and prove the correctness criteria of her own func-
tions after generation of the proofs of RPC stub correctness. To accomplish this, we
parameterise the generated proofs within an Isabelle locale. Isabelle locales are named
contexts containing fixed parameters, assumptions and definitions [28]. We show an
informal version of the template of the locale we generate in Fig. 3, and refer to lines
from it in the following discussion.

For each user-provided function g, we assume locale parameters Pg and Qg that cap-
ture the pre-condition and post-condition of g (lines 2-4). The generated proofs and
specification for f then describe under which circumstances Pg and Qg specify the be-
haviour of the function f, including the RPC stubs for g.

Not all Pg and Qg are suitable. In particular, they must not make statements about
glue code variables and memory. We refer to this as wellformedness of the pre- and
post-condition. An example of this is shown in lines (5-7) of Fig. 3, which require that
Pg and Qg do not depend on the contents of the IPC buffer. Ideally, this would already be

1 locale rpcstubs =
2 fixes Pg :: lifted globals⇒ ...⇒ bool
3 fixes Qg :: lifted globals⇒ lifted globals⇒ ...⇒ bool
4 assumes g wp: {|λs. s = s0 ∧ inv s ∧ Pg s ...|} g {|λr s. inv s ∧ Qg s0 s ...|}!
5 assumes g stable setmr1: ∀ s i x. Pg (setMR s i x) = Pg s
6 assumes g stable setmr2: ∀ s i x. Qg (setMR s i x) = Qg s
7 assumes g stable setmr3: ∀ s0 s i x. Qg s0 (setMR s i x) = Qg s0 s
8
9 theorem f wp:

10 {|λs. s = s0 ∧ inv s ∧ ... ∧ Pg s ...|}
11 do f marshal ...;
12 g internal;
13 f unmarshal ...
14 od
15 {|λr s. inv s ∧ Qg s0 s ...|}!

Fig. 3. RPC locale template

achieved by language scoping mechanisms, but C provides no guarantees and Isabelle
no scoping. Instead we phrase these conditions as explicit locale assumptions that the
proof engineer must discharge when making use of the generated proofs.

In addition to restrictions on Pg and Qg, we also require restrictions on the behaviour
of g: it must not modify glue-code internal state. We refer to this as the user function
being well behaved. This is included in the explicit locale assumption in line 4 of Fig. 3
as inv s and must be discharged later by the proof engineer.

The template for the parameterised correctness theorem that is produced appears in
lines 9-15 of Fig. 3. This theorem lifts the Hoare triple over g, to a Hoare triple over f,
where f is represented by a specific sequence of glue code operations, expressed in a
syntax similar to Haskell’s do notation. When f is called, it marshals arguments into the
sender’s IPC buffer (line 11), then performs an seL4 system call to transfer this data to
the waiting receiver’s stub. On the receiver’s side (line 12), arguments are unmarshalled
and the user’s implementation, g, is invoked. When g returns, the receiver’s stub mar-
shals return arguments and performs another system call to transfer data back to the
sender. Finally, f unmarshals return arguments and returns to the caller (line 13). The
seL4 system calls do not occur in this theorem; this means that for now we axiomatise
the semantics of these seL4 system calls as a direct function call from f to the receiver’s
stub code.

To utilise the generated proofs, for instance in the context of hand-written proofs of
further user-provided code, the proof engineer instantiates (interprets in Isabelle par-
lance) the generated locale by providing specific pre- and post-conditions for g and
discharging the locale assumptions. The manual inputs are the specific pre- and post-
conditions for g, a proof that g satisfies these, a proof that Pg and Qg are wellformed,
and a proof that g itself is well behaved. The result is a specific Hoare triple about f
that can be used in further proofs.

Neither proving wellformedness of Pg and Qg nor proving g is well behaved is oner-
ous. They can mostly be discharged automatically once the user-code and specification

1 procedure Swapper {
2 unsigned int swap(inout int a, inout int b);
3 }
4
5 component Client { control; uses Swapper cs; }
6
7 component Service { provides Swapper ss; }
8
9 assembly {

10 composition {
11 component Client c;
12 component Service s;
13 connection seL4RPCSimple conn(from c.cs, to s.ss);
14 }
15 }

Fig. 4. Example system specification in CAmkES

are provided. The work for proving something about an RPC function f is reduced to
proving almost the same property about g, pretending that it runs locally.

Sect. 4 provides a worked example of how exactly to achieve this.

4 Methodology Demonstrated on Example System

4.1 Component Architecture

The simplified example depicted previously in Fig. 1, describes an RPC interface pro-
vided by s and used by c. Fig. 4 shows the textual description of this system in CAmkES.
It starts with the procedure interface definition Swapper (lines 1-3), comprising one
method swap. The method takes two integer parameters that are used as both inputs and
outputs, and also returns an unsigned integer value. The specification proceeds to define
two component types, Client (line 5) and Service (line 7). Client has an active thread
of execution, denoted by the control keyword and expects an instance of the Swapper
interface under the name cs. Service is reactive, indicated by the lack of the control
keyword, and implements an instance of the Swapper interface under the name ss.

The final block describes the architecture of the composed system. There is a single
instance of each component type (lines 11-12) and the outgoing interface, expected by c,
is provided by s via a connection conn of type seL4RPCSimple. The connection type de-
termines the underlying transport for communication at runtime. Here, seL4RPCSimple
is a type for RPC communication in the C language that uses the component instances’
IPC buffers and an seL4 endpoint to pass arguments and return values.

The system we have just described contains a component instance s that exports a
method for swapping the values of two integer parameters. The semantics we give to
the swap method is not described in the architecture description. It is instead defined
by user-provided code discussed in Sect. 4.2.

Component architectures would typically have many more procedures, interfaces,
components, and connections. Though we have used this approach on larger systems,
for simplicity of presentation we keep the system small in this example. There are few

1 static unsigned int counter;
2
3 unsigned int
4 ss_swap(int *a, int *b){
5 int temp = *a;
6 *a = *b; *b = temp;
7 counter++;
8 return counter;
9 }

Fig. 5. User-provided source code of Service

1 int run(void) {
2 int x = 3;
3 int y = 5;
4 unsigned int i;
5 i = cs_swap(&x, &y);
6 return 0;
7 }

Fig. 6. User-provided source code of Client

surprises and minimal manual work involved in moving to larger systems, chiefly be-
cause the lemma statements and generated proofs we go on to describe work for arbi-
trary numbers of components and connections, and the glue code proofs are pair-wise
independent, so the proof size scales linearly in the size of the architecture.

4.2 User and Generated Code

The engineer developing a component system provides code for each component type
in the system. Conceptually, she provides the contents of each of the boxes of an archi-
tectural diagram such as Fig. 1.

Fig. 5 and Fig. 6 give the C code for the components Service and Client, respectively.
The code for Service exports a function, ss swap, that swaps the value of two integer
pointers and increments a global counter, returning the new value of the counter. The
code for Client comprises a function, run, that acts as the component’s entry point. It
calls the function cs swap with two local values it wishes to exchange. No code needs
to be provided for cs swap as this is what the component platform generates. The
example demonstrates that our framework can handle bidirectional parameters, return
values and manipulation of component-global state.

Note that this code is provided once per component type and then re-used for every
instance of that type. In our example, there is only one instance of each type (c of type
Client and s of type Service) so each piece of user code is only used once.

Fig. 7 and Fig. 8 show the RPC stubs automatically produced by CAmkES for
this system. The first of these receives the user’s call to cs swap, marshals function
arguments into c’s IPC buffer and then invokes a capability to an seL4 endpoint to
transfer the data to s. After receiving s’s reply, it unmarshals the response and returns
to the user. The second RPC stub operating in s’s address space, receives an incoming
call from c as an invocation of the function ss swap internal. It unmarshals the call
arguments, calls the user’s implementation from Fig. 5, marshals the user’s return values
into s’s IPC buffer and then sends this reply message to c.

The stub for s is more complex than the stub for c as it has to deal with pointers
that are part of the stub’s private state. These pointers are accessed via the functions
get swap a and get swap b, which are only expected to be called from the stub code.

Though the user designing a component system may think of her architecture as
depicted in Fig. 1, the system at runtime is shown more precisely in Fig. 9. Each com-
ponent instance is comprised of the code the user has provided (shown in solid boxes)

1 static unsigned int cs_swap_marshal(int a, int b) {
2 unsigned int index = 0;
3 seL4_SetMR(index, 0); index++;
4 seL4_SetMR(index, (seL4_Word)a); index++;
5 seL4_SetMR(index, (seL4_Word)b); index++;
6 return index;
7 }
8
9 static void cs_swap_call(unsigned int length) {

10 seL4_MessageInfo_t info =
11 seL4_MessageInfo_new(0, 0, 0, length);
12 (void)seL4_Call(6, info); /* Call the seL4 endpoint */
13 }
14
15 static unsigned int cs_swap_unmarshal(int *a, int *b) {
16 unsigned int index = 0;
17 unsigned int ret = (unsigned int)seL4_GetMR(index); index++;
18 *a = (int)seL4_GetMR(index); index++;
19 *b = (int)seL4_GetMR(index); index++;
20 return ret;
21 }
22
23 unsigned int cs_swap(int *a, int *b) {
24 unsigned int length = cs_swap_marshal(*a, *b);
25 cs_swap_call(length);
26 unsigned int ret = cs_swap_unmarshal(a, b);
27 return ret;
28 }

Fig. 7. Generated stub for c

1 /* User-provided implementation. */
2 extern unsigned int ss_swap(int *a, int *b);
3
4 static void ss_swap_unmarshal(int *a, int *b) {
5 unsigned int index = 1;
6 *a = seL4_GetMR(index); index++;
7 *b = seL4_GetMR(index); index++;
8 }
9

10 static unsigned int ss_swap_invoke(int *a, int *b) {
11 return ss_swap(a, b);
12 }
13
14 static unsigned int ss_swap_marshal(unsigned int ret, int a, int b) {
15 unsigned int index = 0;
16 seL4_SetMR(index, (seL4_Word)ret); index++;
17 seL4_SetMR(index, (seL4_Word)a); index++;
18 seL4_SetMR(index, (seL4_Word)b); index++;
19 return index;
20 }
21
22 unsigned int ss_swap_internal(void) {
23 int *a = get_swap_a();
24 int *b = get_swap_b();
25 ss_swap_unmarshal(a, b);
26 unsigned int ret = ss_swap_invoke(a, b);
27 unsigned int length = ss_swap_marshal(ret, *a, *b);
28 return length;
29 }

Fig. 8. Generated stub for s

int run(void) {
 int x = 3;
 int y = 5;
a

 unsigned int i = cs_swap(&x, &y);
a

 return 0;
}

unsigned int ss_swap(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
a

 counter++;
a

 return counter;
}

unsigned int cs_swap(int *a, int *b) {
 unsigned int length = cs_swap_marshal(*a, *b);
a

 cs_swap_call(length);
a

 unsigned int ret = cs_swap_unmarshal(a, b);
a

 return ret;
}

unsigned int ss_swap_internal(void) {
 int *a = get_swap_a();
 int *b = get_swap_b();
a

 ss_swap_unmarshal(a, b);
a

 unsigned int ret = ss_swap_invoke(a, b);
a

 unsigned int length = ss_swap_marshal(ret, *a, *b);
a

 return length;
}

seL4

Fig. 9. Example system at runtime

1 {|λs. s = s0 ∧ ptr valid s32 s x ∧ ptr valid s32 s y|}
2 ss swap x y
3 {|λr s. r = counter s0 + 1 ∧ counter s = r ∧
4 heap w32 s (ptr coerce x) = heap w32 s0 (ptr coerce y) ∧
5 heap w32 s (ptr coerce y) = heap w32 s0 (ptr coerce x)|}!

Fig. 10. A ‘natural’ correctness property if ss swap were a local function

and the generated stubs (shown in dashed boxes). When c invokes cs swap, which the
user thinks of as an RPC to s, c’s RPC stub runs and performs an seL4 system call. The
seL4 kernel invokes the RPC stub of s which then calls the user’s ss swap function,
making it seem as if this function call came directly from c. On return from ss swap,
the RPC stub returns the response via seL4 to c’s RPC stub, which in turn delivers this
to cs swap. This control flow has the effect of allowing the user to design her sys-
tem and reason about it in terms of abstract RPC operations, while CAmkES and seL4
implement the underlying communication mechanism.

4.3 Generated Proofs

The aim of the generated proofs is to guarantee the correctness of the RPC code pro-
duced by the component platform, intuitively showing that using the component plat-
form gives the same assurance as running the function locally. The verification effort
required from the proof engineer should therefore be comparable to the effort that would
have been required to show the correctness of a local call.

For our example, Fig. 10 shows a ‘natural’ correctness property for ss swap that
might be used if it were just a local function. The pre-condition (line 1) requires that x
and y are valid pointers. More precisely, the expression ptr valid s32 st p requires that
the pointer p is a valid reference to a signed 32-bit value in state st.

1 swap a b ≡ do cs swap marshal (*a) (*b);
2 ss swap internal;
3 cs swap unmarshal a b
4 od

Fig. 11. A convenience abbreviation for the RPC invocation of ss swap

1 {|λs. s = s0 ∧ inv s ∧ ptr valid s32 s p0 out ∧ ptr valid s32 s p1 out ∧
2 distinct [p0 out, p1 out] ∧
3 (∀ s1 s2 v. Qss swap s1 (update s32 s2 p0 out v) = Qss swap s1 s2) ∧
4 (∀ s1 s2 v. Qss swap s1 (update s32 s2 p1 out v) = Qss swap s1 s2) ∧
5 Pss swap s p0 p1|}
6 do cs swap marshal p0 p1;
7 ss swap internal;
8 cs swap unmarshal p0 out p1 out
9 od

10 {|λr s. inv s ∧ Qss swap s0 s r p0 (ucast (heap w32 s (ptr coerce p0 out)))
11 p1 (ucast (heap w32 s (ptr coerce p1 out)))|}!

Fig. 12. Generated RPC stub equivalence lemma

The post-condition states that the value of the global counter will be updated and re-
turned (line 3) and that the values at the pointers x and y will be swapped (lines 4-5). The
function ptr coerce is analogous to type casting in C and the expression heap w32 st p
returns the value pointed to by p in the state st. It is straightforward to prove this property
using the existing translation tools and manual reasoning. It would also be straightfor-
ward to then use the resulting lemma in proofs for functions that call ss swap directly.

In order to reason about execution in our example component-based system, we
wish to claim that invoking c’s stub, cs swap, is equivalent to invoking ss swap di-
rectly. In this work, we are focussing on the generated glue code. This means we do not
yet connect to the formal seL4 specification, but instead axiomatise the seL4 Call as
a direct invocation of ss swap internal, which is the effect of this system call. We
intend to replace this axiomatisation with the seL4 specification in future work as dis-
cussed in Sect. 5.2. For now, the resulting sequence of operations that we wish to claim
is equivalent to ss swap is shown in Fig. 11. The steps are: marshalling in c, then
the entire execution in s, including unmarshalling, executing ss swap, and marshalling
results, and finally unmarshalling of the result in c again.

The pre-condition and post-condition of ss swap that the generated proofs are
parameterised with are referred to as Pss swap and Qss swap, respectively. The pre-
condition is a predicate over the initial state and values of the input arguments to
ss swap. The post-condition is a predicate over the initial state, final state, return value,
input arguments and output arguments to ss swap. The types of these parameters may
seem unnecessarily verbose, but they provide the user with the flexibility to state any
correctness property that is expressible of a direct invocation of ss swap.

Fig. 12 shows the correctness statement that the generated proof for the RPC stub
provides. Though this appears larger and more dense than that in Fig. 10, it is not much

more complicated. The expression inv s, present in both the pre- and post-conditions,
captures the assumptions on user code mentioned in Sect. 3: in particular that user code
does not violate the stub code’s invariant which usually is easiest achieved by showing
that it does not access glue code private state at all. The ptr valid s32 pre-conditions
(line 1) are familiar from the previous lemma. The distinct pre-condition (line 2) re-
quires that the two pointers involved are not equal. While not strictly necessary in this
case, the generated proofs conservatively require absence of aliasing between any user-
provided pointers. This requirement, which is not an assumption of the implementation
itself, is a convenience to ease the proof which we intend to remove in future.

The next two conjuncts (lines 3-4) state that the user’s post-condition must not ac-
cess the values of the pointer arguments through its final state parameter. This seems
counter-intuitive, but we use it to allow internal stub code variables to substitute for
the user’s pointers when marshalling and unmarshalling arguments. That is, the user’s
post-condition can depend on the values of the arguments, but cannot depend on their
addresses. The final conjunct (line 5) states that the user’s pre-condition must hold prior
to execution.

The post-condition (lines 10-11) is simpler, merely stating that the user’s post-
condition holds in addition to the glue code invariants. Here, ucast converts an unsigned
32-bit value to a signed 32-bit value.

For readability, we have omitted the proofs of the generated lemmas in this sec-
tion, which themselves are also generated. However, the full CAmkES specification,
user-provided code and framework for generating and validating the proofs we have
described in this section are available online.1

4.4 User Instantiation

With the generated lemma from Fig. 12, all that remains is for the user to instantiate
the locale with her specific pre- and post-condition and provide proofs for the locale
assumptions, in particular the correctness of her ss swap function. The natural pre-
condition for this function is that from Fig. 10, but this is already subsumed by the
generated pre-condition in Fig. 12. Therefore the user may instantiate her pre-condition
to just λ s a b. True.

The natural post-condition, shown in Fig. 13, differs slightly from that of Fig. 10 as
well. The first two conjuncts (line 1) are familiar from Fig. 10 and state the modifica-
tion to, and return of, the global counter. The next (line 2) states that the initial state
and the final state have identical sets of valid 32-bit pointers; that is, ss swap does not
invalidate any int pointers. This condition is relied upon by the generated proofs in
assuming that internal pointers used for marshalling and unmarshalling are not invali-
dated by running user code. The final two conjuncts (line 3) are the equivalent of the
final two from Fig. 10, though note that the user can now more conveniently express the
property in terms of values, rather than pointer dereferences.

Having shown that this pre- and post-condition are wellformed and that the user-
provided code is well behaved, the generated lemma is instantiated as shown in Fig. 14.

1 https://github.com/seL4/camkes-manifest/tree/FM2015

https://github.com/seL4/camkes-manifest/tree/FM2015

1 Qss swap s0 s r a b a out b out ≡ r = counter s0 + 1 ∧ counter s = r ∧
2 is valid w32 s0 = is valid w32 s ∧
3 a out = b ∧ b out = a

Fig. 13. User-instantiated post-condition

1 {|λs. s = s0 ∧ inv s ∧ ptr valid s32 s p0 out ∧ ptr valid s32 s p1 out ∧
2 distinct [p0 out, p1 out]|}
3 do cs swap marshal p0 p1;
4 ss swap internal;
5 cs swap unmarshal p0 out p1 out
6 od
7 {|λr s. inv s ∧ r = counter s0 + 1 ∧ counter s = r ∧
8 is valid w32 s0 = is valid w32 s ∧
9 ucast (heap w32 s (ptr coerce p0 out)) = p1 ∧

10 ucast (heap w32 s (ptr coerce p1 out)) = p0|}!

Fig. 14. Instantiated generated correctness lemma

Note that this is simpler than the generic lemma of Fig. 12 because some of the pre-
conditions can be automatically discharged by simplification. The idea is that this will
always be the case for well-behaved functions.

To demonstrate that this lemma can be used in further hand-written proofs, we con-
sider a sample property of the ss swap function, that swapping two pointers twice
returns the pointers to their original value. This property is shown in Fig. 15 and has
a straightforward proof stemming from the lemma in Fig. 14. Again, as intended, this
final lemma is much simpler than the intermediate generated forms, requiring only the
stub code invariant, the user’s properties of the pointer arguments and inequality of the
two pointers.

5 Discussion

5.1 Trusting Generated Proofs

Having proven a system property by composing manual proofs with generated proofs,
it is reasonable to ask what elements of the proof infrastructure need to be trusted.
Isabelle/HOL is an LCF-style theorem prover [9], meaning that any proof within it
relies only on the correctness of a small proof kernel. While we retain the assumption
on the correctness of the Isabelle/HOL kernel, we would like to avoid requiring the user
to trust additional tools.

We have not proven correctness of the code and proof generator itself. However, the
proofs it produces are checked by Isabelle/HOL against the representation of the gener-
ated code presented by the C-to-Simpl translation. That means the proof generator does
not need to be trusted, but the C-to-Simpl translation does. As mentioned in Sect. 2.3,
there is separate work that reduces this trust even further and can be used to connect the
Isabelle C semantics directly to binary code [24].

1 {|λs. s = s0 ∧ inv s ∧ ptr valid s32 s x ∧ ptr valid s32 s y ∧ x 6= y|}
2 do swap x y;
3 swap y x
4 od
5 {|λ s. inv s ∧
6 ucast (heap w32 s (ptr coerce y)) = ucast (heap w32 s0 (ptr coerce y)) ∧
7 ucast (heap w32 s (ptr coerce x)) = ucast (heap w32 s0 (ptr coerce x))|}!

Fig. 15. Applying generated proofs: swapping pointers twice returns them to their original state

A fully manual proof using the same C verification infrastructure would end up with
the same level of trustworthiness in the resulting property. The automation we provide
saves the user the time and effort on tedious proofs, without increasing her assumptions.

5.2 Assumptions, Limitations and Future Work

Our generated proofs have limitations that we intend to lift in future work. In this section
we make these explicit and discuss how they may be removed.

CAmkES supports a wide range of data types for RPC parameters, including lan-
guage independent types such as int and string, C-specific types such as uint64 t

and more general arbitrary types that are represented by a typedef in C. Additionally,
arrays of any type from these categories are supported. The generated proofs currently
only handle RPC interfaces using C-specific integer types and language independent
types excluding string. This limitation is driven by pragmatics and is not fundamen-
tal to the system design. A future iteration of the tool will support all CAmkES data
types.

The semantics of the seL4 system calls that we use is currently implicitly assumed
in the generated proofs. In particular, we assume that the IPC primitives transfer the
sender’s IPC buffer to the receiver. This is the case in seL4. This implicit assumption
could be eliminated by connecting to the existing seL4 specifications for these system
calls and composing them with the RPC stub proofs. This connection to seL4 would
also solve the following two limitations.

The current structure of the generated proofs would permit heap accesses that cross
component boundaries. This most closely models colocating two components in a sin-
gle address space. While the generated proofs do not assume or rely on this property,
the framework currently does not prevent the proof engineer from making use of it. A
user-provided proof written for a context where a global variable of component A is
accessible in component B would be unsound in the case where the components are
isolated from each other. In other words, connecting the model to the full seL4 speci-
fication with a setup where address spaces are not shared, would fail. Future versions
of the framework could enforce this separation of component heaps from the outset
using separation logic [22] and thereby ensure that user-provided proofs will compose
correctly in a final system instance.

As a final limitation, the execution model used in our proofs relies on the seL4
kernel to be configured correctly. In particular, the proofs in this work describe the

correctness of communication code in a CAmkES system. This communication is ef-
fected by operating on seL4 capabilities, unforgeable access tokens that are distributed
to components on start up. Their presence is necessary to ensure the expected semantics
of the system calls we assume. Furthermore, the absence of additional capabilities to
component-private memory will guarantee isolation between components. An approach
for removing this limitation would be to target the existing seL4 initialisation frame-
work that has been verified to correctly configure userspace systems [3]. This proof can
compose with our framework, but we do not yet show that the input CAmkES delivers
to this initialiser implements the user’s architecture description.

As far as we are aware none of these limitations are fundamental problems of the
approach. The aim of this paper is to show the feasibility of automatically generating
correctness proofs for glue code. The instantiation of these proofs to the seL4 execution
environment can be achieved separately in future work.

6 Related Work

The proofs of generated code we have presented in this work are produced by the same
tool [14] that generates the RPC stubs themselves. We do not rely on the correctness of
the generator, or any implicit correspondence between the generated code and proofs as
they are checked by Isabelle/HOL. In this sense, our approach is inspired by translation
validation [20] and proof-carrying code [18].

Many verification frameworks have been proposed in the past for dealing with
component-based systems, for example [1, 2, 8]. Our framework provides similar func-
tionality. The work on which we report is not specifically aimed at increasing the ease
of compositional reasoning. Instead, where our work differs is that we do not implicitly
assume the correctness of generated RPC stubs, and instead provide an accompanying
formal proof. To our knowledge, no current component-based verification framework
provides such an automated code-level proof of generated platform code.

With respect to correct code generation and chained proofs, our work shares aspects
with compiler verification. The CompCert verified compiler [15] and recent extensions
to apply verification across translation units [21] have similarities, but work in a more
controlled environment which enables more automated techniques. Our focus is on pro-
viding a compositional environment for interactive theorem proving that integrates with
a larger interactive proof about the behaviour of the system, allowing the user a high
degree of expressivity and control over the correctness properties they prove.

7 Conclusions

As the amount of code in high assurance systems increases, the only feasible approach
to software verification is the application of compositional techniques. Existing frame-
works for the verification of component-based systems all assume the correctness of
the generated code of the component platform. In this work, we have demonstrated a
technique for removing this assumption in the case of RPC stubs. We have shown how
to compose generated RPC stub proofs with hand-written proofs to eventually yield a
system-level correctness guarantee. By reducing the assumptions in component-based

reasoning, we increase the reach of formal verification and raise the bar for assurance
of large software systems.

Acknowledgements

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

This material is based on research sponsored by Air Force Research Laboratory
and the Defense Advanced Research Projects Agency (DARPA) under agreement num-
ber FA8750-12-9-0179. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either ex-
pressed or implied, of Air Force Research Laboratory, the Defense Advanced Research
Projects Agency or the U.S. Government.

Bibliography

[1] Adamek, J.: Static analysis of component systems using behavior protocols. In:
OOPSLA, Anaheim, CA, US (Oct 2003) 116–117

[2] Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. Softw.
28(3) (2011) 41–48

[3] Boyton, A., Andronick, J., Bannister, C., Fernandez, M., Gao, X., Greenaway, D.,
Klein, G., Lewis, C., Sewell, T.: Formally verified system initialisation. In: 15th
ICFEM, Queenstown, New Zealand (Oct 2013) 70–85

[4] Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: 9th TACAS, Warsaw, Poland (2003) 331–346

[5] Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable
refinement. In: 21st TPHOLs, Montreal, Canada (Aug 2008) 167–182

[6] Fernandez, M., Kuz, I., Klein, G., Andronick, J.: Towards a verified component
platform. In: PLOS, Farmington, PA, USA (Nov 2013) 6

[7] Fisler, K., Krishnamurthi, S.: Decomposing verification around end-user features.
In: VSTTE 2005. (Oct 2005) 74–81

[8] Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: 17th ASE, Edinburgh, UK (Sep 2002) 3–12

[9] Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF. Volume 78 of
LNCS. (1979)

[10] Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified
abstraction of C. In: 3rd ITP. Volume 7406 of LNCS., Princeton, New Jersey
(Aug 2012) 99–115

[11] Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff:
Formal verification of C code without the pain. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Edinburgh, UK (Jun 2014) 429–439

[12] ISO/IEC: Programming languages — C. Technical Report 9899:TC2, ISO/IEC
JTC1/SC22/WG14 (May 2005)

[13] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. In: SOSP, Big Sky, MT,
USA (Oct 2009) 207–220

[14] Kuz, I., Liu, Y., Gorton, I., Heiser, G.: CAmkES: A component model for secure
microkernel-based embedded systems. Journal of Systems and Software Special
Edition on Component-Based Software Engineering of Trustworthy Embedded
Systems 80(5) (May 2007) 687–699

[15] Leroy, X.: Formal certification of a compiler back-end, or: Programming a com-
piler with a proof assistant. In: 33rd POPL, Charleston, SC, USA (2006) 42–54

[16] Leroy, X.: A formally verified compiler back-end. JAR 43(4) (2009) 363–446
[17] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,

C., Gao, X., Klein, G.: seL4: from general purpose to a proof of information flow

enforcement. In: IEEE Symp. Security & Privacy, San Francisco, CA (May 2013)
415–429

[18] Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: 2nd
OSDI, Seattle, WA, US (Oct 1996) 229–243

[19] Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. (2002)

[20] Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: 4th TACAS,
Lisbon, Portugal (Mar 1998) 151–166

[21] Ramananandro, T., Shao, Z., Weng, S.C., Koenig, J., Fu, Y.: A compositional
semantics for verified separate compilation and linking. In: 4th CPP, Mumbai,
India (Jan 2015) 3–14

[22] Reynolds, J.C.: Separation logic: A logic for mutable data structures, Copenhagen,
Denmark (Jul 2002)

[23] Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL.
PhD thesis, Technische Universität München (2006)

[24] Sewell, T., Myreen, M., Klein, G.: Translation validation for a verified OS kernel.
In: PLDI, Seattle, Washington, USA (Jun 2013) 471–481

[25] Szyperski, C.: Component Software: Beyond Object-Oriented Programming, Es-
sex, England (1997)

[26] Trustworthy Systems Team: seL4 v1.03, release 2014-08-10 (Aug 2014)
[27] Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: 34th

POPL, Nice, France (Jan 2007) 97–108
[28] Wenzel, M.: The Isabelle/Isar Reference Manual. (Aug 2014)
[29] Winwood, S., Klein, G., Sewell, T., Andronick, J., Cock, D., Norrish, M.: Mind

the gap: A verification framework for low-level C. In: 22nd TPHOLs. Volume
5674 of LNCS., Munich, Germany (Aug 2009) 500–515

	Automated Verification of RPC Stub Code

