
Exploiting Symmetries by Planning for a Descriptive Quotient

Mohammad Abdulaziz

† and Michael Norrish

† and Charles Gretton

†‡

†Canberra Research Lab., NICTA⇤, †Australian National University, ‡Griffith University

Abstract

We eliminate symmetry from a problem before
searching for a plan. The planning problem with
symmetries is decomposed into a set of isomorphic
subproblems. One plan is computed for a small
planning problem posed by a descriptive quotient,
a description of any such subproblem. A concrete
plan is synthesized by concatenating instantiations
of that one plan for each subproblem. Our approach
is sound.

1 Introduction

The planning and model checking communities have for
some time sought methods to exploit symmetries that occur
in transition systems. The quintessential planning scenario
which exhibits symmetries is GRIPPER. This comprises a
robot whose left and right grippers can be used interchange-
ably in the task of moving a set of N indistinguishable pack-
ages from a source location to a goal location. Intuitively the
left and right grippers are symmetric because if we changed
their names, by interchanging the terms left and right in the
problem description, we are left with an identical problem.
Packages are also interchangeable and symmetric.

One method to exploit symmetry is to perform checking of
properties of interest—e.g., goal reachability—in a quotient
system, which corresponds to a (sometimes exponentially)
smaller bisimulation of the system at hand. Wahl and Don-
aldson (2010) review the related model checking literature.
Such methods were recently adapted for planning and stud-
ied by Pochter et al. (2011), Domshlak et al. (2012; 2013)
and Shleyfman et al. (2015). Related work about state-
based planning in equivalence classes of symmetric states
includes [Guere and Alami, 2001; Fox and Long, 1999;
2002].

Planning in a quotient system, a state s is represented by a
canonical element from its orbit, the set of states which are
symmetric to s. Giving integer labels to packages in GRIP-
PER, when the search encounters a state where the robot is
holding 1 package using 1 gripper, this is represented us-
ing the canonical state where, for example, the left gripper is

⇤NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Coun-
cil through the ICT Centre of Excellence Program.

holding package with identity “1”. Orbit search explores the
quotient system by simulating actions from known canonical
states, and then computing the canonical representations of
resultant states. That canonicalisation step requires the so-
lution to the constructive orbit problem [Clarke et al., 1998]
which is NP-hard [Eugene, 1993]. A key weakness, is that for
each state encountered by the search an intractable canonical-
isation operation is performed. This is mitigated in practice
by using approximate canonicalisation. By forgoing exact
canonicalisation, one encounters a much larger search prob-
lem than necessary. For a GRIPPER instance with 42 pack-
ages, the breadth-first orbit search with approximate canoni-
calisation by Pochter et al. reportedly performs 60.5K state
expansion operations, far more than necessary.

Following the seminal work by Crawford et al. (1996) and
Brown et al. (1996), when planning via constraint satisfac-
tion, known symmetries are exploited by: (i) including sym-
metry breaking constraints, either directly as part of the prob-
lem expression [Joslin and Roy, 1997; Rintanen, 2003], or
(ii) otherwise dynamically as suggested by [Miguel, 2001] as
part of a nogood mechanism. In GRIPPER, we can statically
require that if no package is yet retrieved, then any retrieval
targets package 1 with the left gripper. Dynamically, having
proved that no 3-step plan exists retrieving package 1 with the
left gripper, then no plan of that length exists retrieving pack-
age i 6= 1 using either gripper. Searching using the proposed
dynamic approach is quite weak, as symmetries are only bro-
ken as nogood information becomes available. A weakness
of both approaches is that problems expressed as CSPs in-
clude variables describing the state of the transition system at
different plan steps. Existing approaches do not break sym-
metries across steps, and can therefore waste effort exploring
partial assignments that express executions which visit sym-
metric states at different steps.

Our contribution is a novel procedure for domain-
independent planning with symmetries. Following, e.g.,
Pochter et al., in a first step we infer knowledge about prob-
lem symmetries from the description of the problem. Then
departing from existing approaches, our second step uses
that knowledge to obtain a quotient of the concrete problem
description. Called the descriptive quotient, this describes
any element in the set of isomorphic subproblems which ab-
stractly model the concrete problem. Third, we invoke a plan-
ner once to solve the small problem posed by that descrip-

tive quotient. In the fourth and final step, a concrete plan is
synthesized by concatenating instantiations of that plan for
each isomorphic subproblem. The descriptive quotient of the
aforementioned 42-package GRIPPER instance is solved by
breadth-first search expanding 6 states. Using our approach,
a concrete plan is obtained in under a second. For compar-
ison, LAMA [Richter and Westphal, 2010] takes about 28
seconds.

The non-existence of a plan for the descriptive quotient
does not exclude the possibility of a plan for the concrete
problem. Although sound, in that respect our approach is in-
complete. Having an optimal plan for the quotient does not
guarantee optimality in the concatenated plan. Aside from
computing a plan for the descriptive quotient, the computa-
tionally challenging steps occur in preprocessing:

(i) Identification of problem symmetries from the original
description, a problem as hard as graph isomorphism,
which is not known to be tractable, and

(ii) Computing an appropriate set of sub-problems isomor-
phic to the quotient.

2 Definitions and Notations

We formally define planning problems and related concepts.
Where we do not refer to a specific function, we shall use the
symbol f . We formalise functions as sets of key-value pairs
(k 7! v). We use the term domain mathematically. We write
D(f) for the domain of f , i.e., {k | (k 7! v) 2 f}. We write
R(f) for the range of f , i.e., {v | (k 7! v) 2 f}.

Definition 1 (States and Actions). A planning problem is de-
fined in terms of states and actions:

(i) States are finite maps from variables—i.e., state-
characterizing propositions—to Booleans.

(ii) An action a is a pair of finite maps over subsets of
those variables. The first component of the pair, written
pre(a), is the precondition and the second component of
the pair (eff(a)) is the effect. The domain of an action is
the union of the domains of the two finite maps. For a set
of actions A, we define the set of preconditions pre(A)

as
S

a2A pre(a).

We give examples of states and actions using sets of literals.
For example, {x, y, z} is the state where state variables x and
z are (map to) true, and y is false.

Definition 2 (Planning Problem). A planning problem ⇧ is a
3-tuple hI, A,Gi, with I the initial state of the problem, G a
description of goal states (another finite map from variables
to Booleans), and A a set of actions. We define the domain of
the problem (D(⇧)) to be domain of the initial state (D(I)).
Problem ⇧ is valid if D(G) ✓ D(I), and all actions refer
exclusively to variables that occur in D(I). We only consider
valid problems. Hereafter we refer to the initial state, actions
or goal of problem ⇧ as ⇧.I , ⇧.A or ⇧.G respectively. We
may also omit the ⇧ if it is clear from the context, e.g. I for
⇧.I and Ai for ⇧i.A. A state s is valid with respect to a
planning problem ⇧ if D(s) = D(I).

Definition 3 (Action Execution and Plan). When an action
a is executed at state s, written e(s, a), it produces a suc-
cessor state s0. If pre(a) 6✓ s, then s0 = s. Otherwise
s0 is a valid state where eff(a) ✓ s0 and s(x) = s0(x)
8x 2 D(I) \ D(eff(a)). We lift e to sequences of execu-
tions, taking an action sequence ⇡̇ as the second argument.
So e(s, ⇡̇) denotes the state resulting from successively ap-
plying each action from ⇡̇ in turn, starting from s. An action
sequence is a plan/solution if its execution from I yields a
goal state.
Definition 4 (Subproblem). Problem ⇧1 is a subproblem of
⇧2, written ⇧1 ✓ ⇧2, if D(I1) ✓ D(I2), and if A1 ✓ A2.

Definition 4 purposefully does not consider problem goals.
We later consider subproblems with a variety of goals which
do not all correspond to concrete problem goals. We form
a concrete plan by concatenating plans for subproblems with
such varieties of goals. For example, we will consider sub-
problems from GRIPPER with only one package and one grip-
per, where the goal is to: (i) relocate that package according
to the concrete goal, (ii) additionally free the gripper, and (iii)
additionally have the robot relocate to its starting position. In
this case a concrete plan is formed by concatenating plans for
subproblems given for each distinct package.

We require a few additional notations. Let m be a fi-
nite map, e.g., a state s, the assignments pre(a), etc. Then,
let fLmM be the image of m under function f : the map
{f(k) 7! v | (k 7! v) 2 m}. This is well-defined if
f(k1) = f(k2) implies that m(k1) = m(k2). We lift this
notion of image to other composite types. For example, we
write fL⇧M for the image of ⇧ under f , where all finite maps
in ⇧ are transformed by f .

3 Computing Problem Symmetries

To exploit problem symmetries we must first discover them.
We follow the discovery approach from [Pochter et al., 2011],
restricting ourselves to Boolean-valued variables in D(⇧).
We assume familiarity with groups, subgroups, group ac-
tions, and graph automorphism groups. Symmetries in a
problem description are defined by an automorphism group.
Definition 5 (Problem Automorphism Group). The automor-
phism group of ⇧ is: Aut(⇧) = {� | �L⇧M = ⇧}. Members
of Aut(⇧) are permutations on D(⇧).

A graphical representation of ⇧ is constructed so vertex
symmetries in it correspond to variable symmetries in ⇧. We
follow the graphical representation introduced in [Pochter et
al., 2011].
Definition 6 (Problem Description Graph (PDG)). The (undi-
rected) graph �(⇧) for a planning problem ⇧, is defined as
follows:

(i) �(⇧) has two vertices, v> and v?, for every variable
v 2 D(⇧); two vertices, ap and ae, for every action
a 2 A; and vertex vI for I and vG for G.

(ii) �(⇧) has an edge between v> and v? for all v 2 D(⇧);
between ap and ae for all a 2 A; between ap and v⇤ if
(v 7! ⇤) 2 pre(a), and between ae and v⇤ if (v 7! ⇤) 2
eff(a); between v⇤ and vI if (v 7! ⇤) occurs in I; and
between v⇤ and vG if (v 7! ⇤) occurs in G.

We write V (�) for the set of vertices, and E(�) for edges of
a graph �.
The automorphism group of the PDG, Aut(�(⇧)), is iden-
tified by solving an undirected graph isomorphism problem.
The action of a subgroup of Aut(�(⇧)) on V (�(⇧)) induces
a partition, called the orbits, of V (�(⇧)). We can now define
our quotient structures based on partitions P of D(⇧).
Definition 7 (Quotient Problems and Graphs). Given parti-
tion P of D(⇧), let Q map members of D(⇧) to their equiv-
alence class in P . The descriptive quotient is ⇧/P = QL⇧M,
the image of ⇧ under Q. This is well-defined if P is a set of
orbits. We assume that quotient problems are well-defined.

For graph � and a partition P of its vertices, the quotient
�/P is the graph with a vertex for each p 2 P . �/P has an
edge between any p1, p2 2 P iff � has an edge between any
v 2 p1 and u 2 p2.

To ensure correspondence between PDG symmetries and
problem symmetries, we must ensure incompatible descrip-
tive elements do not coalesce in the same orbit. For exam-
ple, we cannot have action precondition symbols and state-
variables in the same orbit.
Definition 8 (Well-formed Partitions). A partition of
V (�(⇧)) is well-formed iff:

(i) Positive (v>) and negative (v?) variable assignment
vertices only coalesce with ones of the same parity;

(ii) Precondition (ap) and effect (ae) vertices only coalesce
with preconditions and effects respectively, and

(iii) Both vI and vG are always in a singleton.

A well-formed partition ˆP defines a corresponding partition
P of D(⇧), so that �(⇧)/ ˆP is isomorphic to �(⇧/P).

To ensure well-formedness, vertex symmetry is calculated
using the coloured graph-isomorphism procedure (CGIP).
Vertices of distinct colour cannot coalesce in the same orbit.
Vertices of �(⇧) are coloured to ensure the orbits correspond
to a well-formed partition.

4 Computing the Set of Instantiations

Recapping, symmetries in ⇧ are the basis of a partition P
of its domain D(⇧) into orbits. That exposes the descrip-
tive quotient, ⇧/P , an abstract problem whose variables cor-
respond to orbits of concrete symbols. Our task now is to
compute a set of instantiations of the quotient which cover
all the goal variables D(G). Called a covering set of isomor-
phic subproblems, by instantiating a quotient plan for each
subproblem and concatenating the results we intend to arrive
at a concrete plan. We describe a pragmatic approach to ob-
taining that covering set. We establish that a covering set is
not guaranteed to exists, and give an approach to refining par-
titions to mitigate that fact. We derive a theoretical bound on
the necessary size of a covering set, and prove that a general
graph formulation of the problem of computing a covering
instantiation is NP-complete.
Definition 9 (Transversals, Instantiations). A transversal t
is an injective choice function over P such that t(c) 2 c
for every equivalence class c 2 P . A transversal covers v if

v 2 R(t). If P is a partition of D(⇧), we refer to a transver-
sal t of P as an instantiation of ⇧/P . An instantiation t is
consistent with a concrete problem ⇧ if tL⇧/PM ✓ ⇧. When
we use the term “problem” discussing an instantiation t, we
intend tL⇧/PM. Note that D(tL⇧/PM) = R(t).
Example 1. Consider the set {a, b, c, d, e, f}, and the equiv-
alence classes c1 = {a, b}, c2 = {c, d} and c3 = {e, f} of
its members. For the partition P = {c1, c2, c3}, t1 = {c1 7!
a, c2 7! c, c3 7! e} and t2 = {c1 7! b, c2 7! c, c3 7! f} are
two transversals.

For each goal variable in the problem, our approach shall
need to find a consistent instantiation of the quotient which
covers that. We thus face the following problem.

Problem 1. Given ⇧ and a partition P of D(⇧), is there an
instantiation of ⇧/P consistent with ⇧ that covers a variable
v 2 D(⇧)?

Example 2. Consider the planning problem ⇧2 with

⇧2.I = {x, a, b,m, n}
⇧2.A = {({x, a}, {m,x}), ({x, b}, {n, x}), ({}, {x})}
⇧2.G = {m,n}

Let P be {p1 = {x}, p2 = {a, b}, p3 = {m,n}}. Therefore

(⇧2/P).I = {p1, p2, p3}
(⇧2/P).A = {({p1, p2}, {p3, p1}), ({}, {p1})}
(⇧2/P).G = {p3}

Let instantiation t be {p1 7! x, p2 7! a, p3 7! m}.
Then, t covers m, and tL⇧2/PM has I = {x, a,m},
A = {({x, a}, {m,x}), ({}, {x})} and G = {m}. Thus,
tL⇧2/PM ✓ ⇧2, making t a consistent instantiation and so
a solution to Problem 1 with inputs ⇧2, P and m.

4.1 Finding Instantiations: Practice

We now describe how we obtain a set of isomorphic subprob-
lems of ⇧ that covers the goal variables. We compute a set
of instantiations, �, of the quotient ⇧/P . Our algorithm first
initialises that set of instantiations, � := ;. Every iteration of
the main loop computes a consistent instantiation that covers
at least one variable v 2 D(⇧.G). This is done as follows:
we create a new (partial) instantiation t = {pv 7! v}, where
pv is the set in P containing v. Then we determine whether
t can be completed, to instantiate every set in P , while being
consistent at the same time. This determination is achieved
by posing the problem in the theory of uninterpreted func-
tions, and using a satisfiability modulo theory (SMT) solver.
Our encoding in SMT is constructive, and if a completion
of t is possible the solver provides it. If successful, we set
� := � [{t} and G := G \ R(t), and loop. In the case
the SMT solver reports failure, the concrete problem cannot
be covered by instantiations of the descriptive quotient, and
we report failure. In the worst case of D(⇧.G) = D(⇧), our
main loop executes ⌃p2P |p| � |P| + 1 times, and hence we
have that many instantiations.

Scenarios need not admit a consistent instantiation.

Example 3. Take ⇧3 with

⇧3.I = {m,n, l}
⇧3.A = {({m}, {n, l}), ({n}, {m, l})}
⇧3.G = {l,m, n}

Let P = {p1 = {m,n}, p2 = {l}}. The quotient ⇧3/P has

(⇧3/P).I = {p1, p2}
(⇧3/P).A = {({p1}, {p1, p2})}
(⇧3/P).G = {p1, p2}

There are no consistent instantiations of ⇧3/P because m
and n are in the same equivalence class and also occur to-
gether in the same action.

Our example demonstrates a common scenario in the IPC
benchmarks, where a partition P of D(⇧) does not admit
a consistent instantiation because variables that occur in the
same action coalesce in the same member of P . We resolve
this situation by refining the partition produced using CGIP
to avoid having such variables coalesce in the same orbit.
For a p 2 P , consider the graph �(p) with vertices p and
edges {{x, y} | 9a 2 ⇧.A ^ {x, y} ✓ D(a) ^ x 6= y}.
The chromatic number N of �(p) gives us the number of
colours needed to colour the corresponding vertices p̂ 2 ˆP
in the PDG. Where two variables occur in the same action,
their vertices in p̂ are coloured differently. For every p 2 P ,
we use an SMT solver to calculate the required chromatic
numbers N and graph colourings for �(p), then we colour
the corresponding vertices in the PDG according to the com-
puted N -colouring of �(p). Lastly, we again pass the PDG to
a CGIP after it is recoloured. In 4 benchmark sets the thus-
revised partition admits a consistent instantiation where the
initial partition does not. Although the chromatic number
problem is NP-complete, this step is not a bottleneck in prac-
tice because the size of the instances that need to be solved is
bounded above by the size of the largest variables orbit.

4.2 Finding Instantiations: Theory

We first develop a theoretical bound on the number
of required instantiations—by treating abstract covering
transversals—that is tight compared to our pragmatic solu-
tion above. To characterise the complexity of our instantia-
tion problem, we then study the general problem of comput-
ing covering transversals.
Theorem 1 (B. McKay, 2014). Let G be a group acting on a
set V (e.g., D(⇧)). Suppose t is a transversal of O, a set of
orbits induced by the action of G on V . Take S = ⌃o2O|o|
and M = maxo2O |o|. Where • is composition, there will
always be a set of transversals T with size M ln(S) such
that

(i) Each element t0 2 T satisfies t0
= � • t for some

� 2 G, and
(ii) For every v 2 V , it has an element t0 that covers v.

Proof. Take N = M ln(S) and let H be a subset of G ob-
tained by drawing N permutations of V independently at ran-
dom with replacement. For any orbit o 2 O, the probabil-
ity for a v 2 o is not in R(� • t) for a randomly drawn

� 2 H is 1 � 1/|o|. Let T = {� • t | � 2 H} and
ˆR =

S
(RLT M). Drawing N times from G to construct H ,

the probability that v 62 ˆR is (1 � 1/|o|)N . Consider the
random quantity Z = |V \ ˆR| with expected value E(Z) =

⌃o2O|o|(1�1/|o|)N . Since 1�x < e�x for x > 0, we obtain
E(Z) < ⌃o2O|o|e(�N/|o|) Se�N/M

= Se� ln(S). From
xe� ln(x)

= 1, it follows that E(Z) < 1. Since Z 2 N, then
probability Z = 0 is more than 0, and thus N transversals of
O suffice to cover V .

We conjecture that a much smaller number of transversals is
actually required, and in all our experimentation have found
that the following conjecture is not violated:
Conjecture 1. Let G be a group acting on a set V (e.g.,
D(⇧)). Suppose t is a transversal of O, a set of orbits in-
duced by the action of G on V . Take M = maxo2O |o|.
Where • is composition, there will always be a set of transver-
sals T with size M such that

(i) Each element t0 2 T satisfies t0
= � • t for some

� 2 G, and
(ii) For every v 2 V , it has an element t0 that covers v.

We are left to formulate and study a general problem of
instantiation, treating it as one of finding graph transversals.
Definition 10 (Consistent Graph Transversals). For a graph
� and a partition P of V (�), a transversal t of P is con-
sistent with � when an edge between p1 and p2 in E(�/P)

exists iff there is an edge between t(p1) and t(p2) in E(�).
Example 4. Take � to be the hexagon that we have il-
lustrated twice below in order to depict partitions P1 =

{{a, b}, {c, d}, {e, f}} and P2 = {p0 = {a, b, f}, p00 =

{c, d, e}} on the left and right, respectively.

ab

c

d e

f

ab

c

d e

f

The vertices of �/P1 (a 3-clique) and �/P2 (a 2-clique)
are indicated above by red outlines. There is no consistent
transversal of P1 (LHS) because there is no 3-clique sub-
graph of � with one vertex from each set in P1. For �/P2

(RHS), t1 = {p0 7! f, p00 7! e} is a transversal of P2 con-
sistent with �, because the subgraph of � induced by {e, f}
is a 2-clique with one vertex from each of p0 and p00.

A transversal of a well-formed ˆP consistent with �(⇧) is iso-
morphic to an instantiation of ⇧/P consistent with ⇧. Ac-
cordingly, Problem 1 is an instance of the following.
Problem 2. Given �, a partition P of V (�) and v 2 V (�),
is there a consistent transversal of P which covers v?
We now derive the complexity of Problem 2. We first show
that the following problem is NP-complete, and use that result
to show that Problem 2 is also NP-complete.
Problem 3. Given graph � and a partition P of V (�), is
there a transversal of P consistent with �?

Lemma 1. Problem 3 is NP-complete.

Proof. Membership in NP is given because a transversal’s
consistency can clearly be tested in polynomial-time. We then
show the problem is NP-hard by demonstrating a polynomial-
time reduction from SAT. Consider SAT problems given by
formulae ' in conjunctive normal form. Assume every pair
of clauses is mutually satisfiable—i.e., for clauses c1, c2 2 ',
for two literals `1 2 c1 and `2 2 c2 we have `1 6= ¬`2
(when this assumption is violated, unsatisfiability can be de-
cided in polynomial-time). Consider the graph �('), where
V (�(')) = {v`c | c 2 ', ` 2 c}, and E(�(')) =

{{v`1c1 , v`2c2} | c1, c2 2 ', `1 2 c1, `2 2 c2, `1 6= ¬`2}.
Now let P = {{v`c | ` 2 c} | c 2 '}. Note that P is a par-
tition of V (�(')) and every set in P corresponds to a clause
in '. Because all the clauses in ' are mutually satisfiable, the
quotient �(')/P is a clique. Now we prove there is a model
for ' iff there is a transversal of P consistent with �('). ())

A model M has the property 8c 2 '. 9` 2 c. M |= `. Due
to the correspondence between sets in P and clauses in ', a
transversal t of P can be constructed by selecting one satis-
fied literal from each clause. Based on a model, t will never
select conflicting literals. All members of R(t) are pairwise
connected, so t is consistent with �(') as required. (() By
definition t is consistent with �('), so the subgraph of � in-
duced by R(t) is a clique. Let L be literals corresponding to
R(t), and note that its elements are pairwise consistent. A
model M for ' is constructed by assigning v to > where v
occurs positively in L, and to ? otherwise.

Theorem 2. Problem 2 is NP-complete.

Proof. Consistency of a transversal t is clearly polynomial-
time testable, as is the coverage condition that v 2 R(t).
Thus, we have membership in NP. NP-hardness follows from
the following reduction from Problem 3 (P3). Taking P and
� as inputs to P3, construct the graph �

0, where: V (�

0
) =

V (�) [{v}, v an auxiliary vertex; and E(�

0
) = E(�) [

{{v, u} | u 2 V (�)}. There is a solution to P3 with inputs
� and P iff P2 is soluble with inputs �

0, P [{{v}} (= P 0)
and v. ()) If t is a transversal of P consistent with �, then
t[{{v} 7! v}(= t0) is a transversal of P 0. As v is fully con-
nected, t0 is consistent with �

0. t0 is a solution to P2 because
v 2 R(t0

). (() If t0 is a solution to P2 with inputs �0, P 0

and v, then t0 is a transversal of P 0, and also P . All edges
in E(�

0
) are in E(�), with the exception of those adjacent v,

and since t0 is consistent with �

0, then t0 is consistent with
�. Thus, t0 solves P3.

Note: the NP-hard canonicalisation problem—the opti-
misation problem posed at each state encountered by orbit
search—is not known to be in NP. Our above results imply
that exploitation of symmetry via instantiation poses a deci-
sion problem in NP that needs to be solved only once.

5 Concrete Plan from Quotient Plan

Having computed isomorphic subproblems � that cover the
goals of ⇧, a concrete plan is a concatenation of plans for
members of �. However, this is not always straightforward.

Example 5. Take ⇧2, P and t from Example 2. Note t0
=

{p1 7! x, p2 7! b, p3 7! n} is also an instantiation of ⇧2/P
consistent with ⇧2. Observe that {tL⇧2/PM,t0L⇧2/PM}
covers the concrete goal G = {m,n}. A plan for ⇧2/P
is ⇡̇0

= ({p1, p2}, {p3, p1}) and its two instantiations are
tL⇡̇0M = ({x, a}, {m,x}) and t0L⇡̇0M = ({x, b}, {n, x}).
Concatenating tL⇡̇0M and t0L⇡̇0M in any order does not solve
⇧2 because both plans require x initially, but do not establish
it. To overcome this issue in practice, before we solve ⇧2/P
we augment its goal with the assignment p1 7! >.

We now give conditions under which concatenation is
valid, and detail the quotient-goal augmentation step we use
to ensure validity in practice. We shall use the well-known
notion of projection, where Y ⌫X is a version of Y with all
elements mentioning an element not in X removed.1 In ad-
dition, we will write Y ⌫X to mean Y ⌫D(X), for the common
case where we wish to project with respect to all the variables
in the domain of a problem, state or set of assignments.

Definition 11 (Needed Assignments, Preceding Problem).
Needed assignments, N (⇧), are assignments in the precondi-
tions of actions and goal conditions that also occur in I , i.e.,
N (⇧) = (pre(A) [G) \ I . Problem ⇧1 is said to precede
⇧2, written ⇧1 B ⇧2, iff

G1⌫N (⇧2)
= (I2⌫⇧1

)⌫N (⇧2) ^ G1⌫⇧2
= G2⌫⇧1

(i) The needed assignments of ⇧2 which a plan for ⇧1 could
modify occur in G1, and

(ii) G2 contains all the assignments in G1 which a plan for
⇧2 might modify.

Example 6. Consider ⇧2 and ⇧3 from Examples 2 and 3 re-
spectively. N (⇧2) = {x, a, b} and N (⇧3) = G1 = {m,n}.
Since G2⌫N (⇧3)

= G2, (I3⌫⇧2
)⌫N (⇧3)

= G2, G2⌫⇧3
= G2

and G3⌫⇧2
= G2, we have ⇧2 B ⇧3.

Writing ⇡̇i·⇡̇j for concatenation of plans ⇡̇i, ⇡̇i+1 . . . ⇡̇j , a
simple inductive argument gives the following:

Lemma 2. Let ⇧1 . . .⇧N be a set of problems satisfying ⇧jB
⇧k for all j < k N . For 1 i N if state s satisfies
Ii ✓ s and ⇡̇i solves ⇧i, then e(s, ⇡̇1·⇡̇N)⌫Gi

= Gi.

Take problem ⇧ and a set of problems ⇧, we say that ⇧ cov-
ers ⇧ iff 8g 2 G. 9⇧0 2 ⇧. g 2 G0 and 8⇧0 2 ⇧. ⇧0 ✓ ⇧.
I.e., every goal from ⇧ is stated in one or more members of
⇧, a set of subproblems of ⇧.

Theorem 3. Consider a set ⇧1 . . .⇧N of problems that cov-
ers ⇧, satisfying ⇧j B⇧k for all j < k N . For 1 i N
if ⇡̇i is a plan for ⇧i, then ⇡̇1·⇡̇N is a plan for ⇧.

This theorem follows directly from the fact that the set of
problems covers ⇧ and from Lemma 2.

We now address the question: When can plans for a set of
isomorphic subproblems be concatenated to provide a con-
crete plan? We provide sufficient conditions in terms of the
concepts of common and sustainable variables.

1A formal definition was given recently by Helmert et al. (2014).

Definition 12 (Common Variables). For a set of instantia-
tions �, the set of common variables, written

T
v �, com-

prises variables in
S

t2� R(t) that occur in the ranges of
more than one member of �.
Definition 13 (Sustainable Variables). A set of variables V
in a problem ⇧ is sustainable iff I⌫V = G⌫V .
Theorem 4. Take problem ⇧, partition P of D(⇧) where
the quotient ⇧/P(= ⇧0) is well-defined, with solution ⇡̇0,
and consistent instantiations �. Suppose {tL⇧0M | t 2
�}(= ⇧) covers ⇧, and QL

T
v �M \ D(N (⇧0

))—i.e., based
on Definition 7, the orbits of common variables from needed
assignments—are sustainable in ⇧0. Then any concatenation
of the plans {tL⇡̇0M | t 2 �} solves ⇧.

Proof. Identify the elements in � by indices in {1..|�|}. Let
k 2 {1..|�|} and ⇧k = tkL⇧0M, and note R(tk) = D(⇧k).
Take ti,tj 2 �, where i, j 2 {1..|�|} and i 6= j.
We first show that ⇧i B ⇧j . For any p 2 P , ti(p) =

tj(p) if ti(p) 2 R(ti) \ R(tj). Therefore, Ii⌫⇧j
=

Ij⌫⇧i and Gi⌫⇧j
= Gj⌫⇧i , providing the right conjunct

in Definition 11. For the left conjunct, note D(N (⇧j)) ✓
D(⇧j) and D(⇧i) \ D(⇧j) ✓

T
v �. The sustainability

premise—Q(

T
v �) \ D(N (⇧0

)) is sustainable in ⇧0—then
provides that D(⇧i) \ D(N (⇧j)) is sustainable in ⇧i—i.e.,
Ii⌫N (⇧j)

= Gi⌫N (⇧j). Thus Gi⌫N (⇧j)
= (Ij⌫⇧i

)⌫N (⇧j),
and we conclude ⇧iB⇧j . Since a plan tkL⇡̇0M solves tkL⇧0M,
(tkL⇧0M).I ✓ ⇧.I , therefore as per Theorem 3 a solution to
⇧ is ⇡̇1·⇡̇N .

In practice we take V ⇤
= QL

T
v �M \ D(N (⇧/P)),

and augment the goal of the quotient ⇧/P by adding
(⇧/P).I⌫V ⇤

. Call the resulting problem ⇧q and its solution
⇡̇q . Theorem 4 shows that any concatenation of the plans
{tL⇡̇qM | t 2 �} solves ⇧. Thus, our approach is sound.
Example 7. Take ⇧2, P , t and t0 from Example 5. There
is one common variable, {x} =

T
v � from the orbit

{p1} = QL
T

v �M. Here N (⇧2/P) = {p1, p2}, and the or-
bit of the common needed variable is {p1} = QL

T
v �M \

N (⇧2/P). To solve ⇧2 via solving ⇧2/P , we augment
the goal (⇧2/P).G with the assignment to p1 in (⇧2/P).I .
The resulting problem, ⇧q

2, is equal to ⇧2/P except that
it has the goals ⇧q

2.G = {p1, p3}. A plan for ⇧q
2 is

⇡̇q
= ({p1, p2}, {p3, p1})({}, {p1}), and two instantiations

of it are tL⇡̇qM = ({x, a}, {m,x})({}, {x}) and t0L⇡̇qM =

({x, b}, {n, x})({}, {x}). Concatenating tL⇡̇qM and t0L⇡̇qM
in any order solves ⇧2.

6 Experimental Results

Implemented in C++,2 our approach uses: NAUTY\TRACES
to calculate symmetries [McKay and Piperno, 2014]; Z3 to
find isomorphic subproblems [de Moura and Bjørner, 2008];
and the initial-plan search by LAMA as the base plan-
ner [Richter and Westphal, 2010]. We limit base planner
runtimes to 30 minutes.

2
bitbucket.org/MohammadAbdulaziz/planning.

git in codeBase.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2000 4000 6000 8000 10000 12000 14000 16000

Co
un

t o
f A

ct
io

ns
 in

 Q
uo

tie
nt

Count of Actions in Concrete Problem

Number of Actions in Problem Description

Figure 1: Scatter-plot comparing the number of actions in
problem posed by descriptive quotient vs. concrete problem,
with red line plotting f(x) = x.

By running our algorithm, we obtained a set of benchmarks
with soluble descriptive quotients whose solutions can be in-
stantiated to concrete plans. That set includes 439 problems,
from 16 IPC benchmarks and 4 benchmarks from [Porco et
al., 2013]. In all our experimentation we identified 120 in-
stances where we were able to confirm that the descriptive
quotient does not have a solution and the concrete problem
does. Figure 1 plots the sizes, in terms of the number of
actions, of concrete and quotient problem descriptions. The
plotted data shows that the descriptive quotient can be much
smaller than its concrete counterpart. In just over 15% of
instances the quotient has less than half the number of ac-
tions. Here, we also analyzed what aspects of our approach
are computationally expensive. In 79% of cases 99% of the
runtime of our approach is executing the base planner. In 96%

of cases 95% of the runtime of our approach is executing the
base planner. Overall, 3% of time is spent in instantiation and
finding chromatic numbers.

We examined where our approach is comparatively scal-
able and fast compared to the base planner. For 430 instances
where the base planner and our approach are successful, Fig-
ure 2 displays the speedup factors where planning via the
descriptive quotient is comparatively fast. Overall, for 68%
of instances our approach is comparatively fast, and in 15%

planning via the quotient is at least twice as fast. With few
exceptions, instances where our approach is at least twice as
fast are from GRIPPER, HIKING, MPRIME, MYSTERY, PAR-
CPRINTER, PIPESWORLD, TPP and VISITALL. In 5 problems
from HIKING, 2 from PARCPRINTER, 1 from TETRIS and 1

from KCOLOURABILITY, the base planner cannot solve the
concrete problem, but can solve the quotient. Planning via
the quotient can also be slow, primarily due to the extra cost
of finding symmetries,3 and because LAMA is heuristic and
occasionally finds that the quotient poses a more challeng-
ing problem. Figure 3 provides the dual to Figure 2, show-
ing cases where planning directly for the concrete problem

3If symmetries are given as part of the problem description, or if
one resorts to more heuristic methods of discovering them, such as
those described by [Guere and Alami, 2001; Fox and Long, 2002],
this burden is relieved.

Speedup With Symmetry Exploitation

Speedup Factor = (Quotient−runtime / Concrete−runtime)

F
re

q
u

e
n

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0
1

2

Figure 2: Plots histogram of speedup factors experienced
when planning with symmetry exploitation, reporting only
for instances where planning via the quotient is faster, and
only for instances where the base planner takes > 5 seconds.

is comparatively fast. This is the case in 32% instances, and
indeed in 2% our approach is at least twice as slow.

Finally, it is worth highlighting the difference between
searching for a plan in the state-space of the descriptive quo-
tient versus approximate orbit search—i.e., searching for a
plan in an approximation of the quotient state-space—as is
done in the state-of-the-art techniques for exploiting sym-
metries in planning.4 In comparing those approaches, we
measure the number of states expanded using a breadth-first
search. We consider the IPC instances GRIPPER-20 and
MPRIME-21, the largest instances from domains GRIPPER
and MPRIME reported solved by Pochter et al. (2011) us-
ing breadth-first search. Those authors report the number of
states expanded to be 60.5K and 438K, respectively. Using
that search to solve the problem posed by our descriptive quo-
tient, we expand 6 and 203K states, respectively.

7 Conclusions, Related and Future Work

We plan with symmetries using the small descriptive quo-
tient of the concrete problem description. A concrete plan
is obtained by concatenating instantiations of the plan for
the descriptive quotient. Unlike existing approaches, our
search for a plan does not need to reason about symmetries
between concrete states and the effects of actions on those.
Plan search can be performed by an off-the-shelf SAT/CSP
solver, in which case symmetry breaking constraints are not
required. Alternatively, using a state-based planner we avoid
repeated (approximate) solution to the intractable canonical-

4Such a comparison is admittedly unfair, as the problem posed by
a descriptive quotient is not a bisimulation of the concrete problem.

Speedup Without Symmetry Exploitation

Speedup Factor = (Concrete−runtime / Quotient−runtime)

F
re

q
u

e
n

cy

0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Figure 3: Plots histogram of speedup factors experienced
when planning without symmetry exploitation, reporting
only for instances where planning for the concrete problem
directly is faster, and only for instances where the base plan-
ner takes > 5 seconds.

isation problem, a clear bottleneck of recent planning algo-
rithms. In this respect, our approach is similar to searching in
a counting abstraction, as surveyed by [Wahl and Donaldson,
2010]. That approach treats a transition system isomorphic to
the quotient transition system. That system has a state-space
which can be exponentially larger than that of a descriptive
quotient—i.e., the descriptive quotient will model 1 object,
whereas the quotient transition system models N symmetric
objects. Existing state-based methods also plan in that rela-
tively large quotient system, and face an additional intractable
problem for every encountered state. By employing approxi-
mate canonicalisation, such methods face a state-space much
larger than that posed by the quotient system, which can be
exponentially larger than that posed by a descriptive quotient.

Our approach decomposes a problem into subproblems,
and in that respect is related to factored planning [Amir and
Engelhardt, 2003; Brafman and Domshlak, 2006; Kelareva et
al., 2007]. There are close ties between factored planning,
identifying tractable classes of planning problem, and deriva-
tion of tight plan length upper bounds—i.e., in the sense
developed in [Rintanen and Gretton, 2013]. We therefore
note that (i) the relationship between symmetry and upper
bounds has been explored previously, and (ii) symmetries
have started to be explored in a factored planning setting.
Guere and Alami (2001) propose to plan via a shape-graph,
a compact description of the problem state space in which
states are represented by equivalence classes of symmetric
states. As well as planning by searching in that graph, us-
ing the diameter of the shape-graph Guere and Alami are
able to calculate tight upper bounds for the highly sym-
metric GRIPPER and BLOCKS-WORLD domains. Symme-

tries were explored in factored planning in the context of
merge-and-shrink heuristics [Helmert et al., 2014]. Sievers
et al. (2015) developed a symmetry guided merging operation
which yields relatively compact heuristic models, improving
the scalability of that approach. Future research may explore
descriptive quotients: to develop heuristics, to characterise
tractable classes, and to develop bounding methods.

Acknowledgement

We would like to thank Brendan McKay, Miquel Ramı́rez,
Patrik Haslum and Alban Grastien for useful discussions.

References

[Amir and Engelhardt, 2003] Eyal Amir and Barbara Engel-
hardt. Factored planning. In IJCAI, volume 3, pages 929–
935. Citeseer, 2003.

[Brafman and Domshlak, 2006] Ronen I Brafman and
Carmel Domshlak. Factored planning: How, when, and
when not. In AAAI, volume 6, pages 809–814, 2006.

[Brown et al., 1996] Cynthia A. Brown, Larry Finkelstein,
and Paul Walton Purdom Jr. Backtrack searching in the
presence of symmetry. Nord. J. Comput., 3(3):203–219,
1996.

[Clarke et al., 1998] Edmund M Clarke, E Allen Emerson,
Somesh Jha, and A Prasad Sistla. Symmetry reductions
in model checking. In Computer Aided Verification, pages
147–158. Springer, 1998.

[Crawford et al., 1996] James Crawford, Matthew Ginsberg,
Eugene Luks, and Amitabha Roy. Symmetry-breaking
predicates for search problems. KR, 96:148–159, 1996.

[de Moura and Bjørner, 2008] Leonardo de Moura and
Nikolaj Bjørner. Z3: An efficient SMT solver, 2008.

[Domshlak et al., 2012] Carmel Domshlak, Michael Katz,
and Alexander Shleyfman. Enhanced symmetry break-
ing in cost-optimal planning as forward search. In ICAPS,
2012.

[Domshlak et al., 2013] Carmel Domshlak, Michael Katz,
and Alexander Shleyfman. Symmetry breaking: Satisfic-
ing planning and landmark heuristics. In ICAPS, 2013.

[Eugene, 1993] M Eugene. Permutation groups and
polynomial-time computation. In Groups and Computa-
tion: Workshop on Groups and Computation, October 7-
10, 1991, volume 11, page 139. American Mathematical
Soc., 1993.

[Fox and Long, 1999] Maria Fox and Derek Long. The de-
tection and exploitation of symmetry in planning prob-
lems. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, IJCAI 99, Stock-
holm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450
pages, pages 956–961, 1999.

[Fox and Long, 2002] Maria Fox and Derek Long. Extend-
ing the exploitation of symmetries in planning. In Pro-
ceedings of the Sixth International Conference on Arti-
ficial Intelligence Planning Systems, April 23-27, 2002,
Toulouse, France, pages 83–91, 2002.

[Guere and Alami, 2001] Emmanuel Guere and Rachid
Alami. One action is enough to plan. In Proceedings
of the Seventeenth International Joint Conference on
Artificial Intelligence, IJCAI 2001, Seattle, Washington,
USA, August 4-10, 2001, pages 439–444, 2001.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg
Hoffmann, and Raz Nissim. Merge-and-shrink abstrac-
tion: A method for generating lower bounds in factored
state spaces. Journal of the ACM (JACM), 61(3):16, 2014.

[Joslin and Roy, 1997] David Joslin and Amitabha Roy. Ex-
ploiting symmetry in lifted CSPs. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence
and Ninth Innovative Applications of Artificial Intelligence
Conference, AAAI 97, IAAI 97, July 27-31, 1997, Provi-
dence, Rhode Island., pages 197–202, 1997.

[Kelareva et al., 2007] Elena Kelareva, Olivier Buffet, Jinbo
Huang, and Sylvie Thiébaux. Factored planning using de-
composition trees. In IJCAI, pages 1942–1947, 2007.

[McKay and Piperno, 2014] Brendan D. McKay and Adolfo
Piperno. Practical graph isomorphism, {II}. Journal of
Symbolic Computation, 60(0):94 – 112, 2014.

[Miguel, 2001] Ian Miguel. Symmetry-breaking in planning:
Schematic constraints. In Proceedings of the CP01 Work-
shop on Symmetry in Constraints, pages 17–24, 2001.

[Pochter et al., 2011] Nir Pochter, Aviv Zohar, and Jeffrey S
Rosenschein. Exploiting problem symmetries in state-
based planners. In AAAI, 2011.

[Porco et al., 2013] Aldo Porco, Alejandro Machado, and
Blai Bonet. Automatic reductions from PH into STRIPS or
how to generate short problems with very long solutions.
In ICAPS, 2013.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. Journal of Artificial Intel-
ligence Research, 39(1):127–177, 2010.

[Rintanen and Gretton, 2013] Jussi Rintanen and Charles
Gretton. Computing upper bounds on lengths of transition
sequences. In IJCAI, 2013.

[Rintanen, 2003] Jussi Rintanen. Symmetry reduction for
SAT representations of transition systems. In ICAPS,
pages 32–41, 2003.

[Shleyfman et al., 2015] Alexander Shleyfman, Michael
Katz, Malte Helmert, Silvan Sievers, and Martin Wehrle.
Heuristics and symmetries in classical planning. In AAAI,
2015.

[Sievers et al., 2015] Silvan Sievers, Martin Wehrle, Malte
Helmert, Alexander Shleyfman, and Michael Katz. Fac-
tored symmetries for merge-and-shrink abstractions. In
Proc. 29th National Conf. on Artificial Intelligence. AAAI
Press, 2015.

[Wahl and Donaldson, 2010] Thomas Wahl and Alastair F.
Donaldson. Replication and abstraction: Symmetry in
automated formal verification. Symmetry, 2(2):799–847,
2010.

