
Case Study: Static Security Analysis of the
Android Goldfish Kernel

Tao Liu1 and Ralf Huuck2

1 University of New South Wales, Sydney, Australia
tao.liu4@unsw.edu.au

2 NICTA? and Red Lizard Software, Sydney, Australia
ralf.huuck@nicta.com

Abstract. In this work we present an industry-driven case study of
applying static program analysis to the Android kernel. In particular, we
investigate the ability of open source tools as represented by Cppcheck
and of commercial tools as represented by Goanna to detect security
vulnerabilities. In our case study, we explore static security checking
along the dimensions of setup effort, run time, quality of results and
usability for large code bases. We present the results we obtained from
analyzing the Android Goldfish kernel module of around 740 kLoC of
C/C++ code. Moreover, we highlight some lessons learned that might
serve as a guidance for future applications.

1 Introduction

The Android operating system as developed by Google has reached universal
prominence as the most popular OS for mobile devices. More recently Android
is advancing into adjacent domains including automotive, medical devices and
home automation systems.

Given Android’s ubiquitous presence the operating system’s overall security
is deemed to be paramount. However, while the design of Android has been
relatively stable over time, firmware and drivers are constantly changing leading
to different software versions on almost a monthly schedule. Given the size of the
Android OS with millions of lines of code spread over 10, 000 files, managing the
security implications manually is a arduous task. As such, many organizations
either trust new updates and hope to detect any anomalies during integration
or system testing, or they rely on complimentary automated tools such a static
program analysis [1] to achieve a minimum level of assurance.

This work is a case study of using static program analysis tools for security
checking of the Android kernel. It was developed in conjunction with the static
analysis tools company Red Lizard Software and driven by their customers in
the telecommunication and entertainment devices market. The goal of the case

? NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.



study was to evaluate the overall lifecycle effort and benefits of using static
analysis tools for security checking. This includes: setup and integration effort,
run time and analysis bottlenecks, ease of evaluating the results and quality of
the results. Moreover, the case study involved Red Lizard Software’s own tool
Goanna [2] as well as the popular open source tool Cppcheck3.

In the following we give an introduction to the tools and environments used,
explain the results we obtained and give a summary of our observations that
might be helpful for others in similar circumstances.

2 Experimental Setup and Evaluation

Tools. We choose two static analysis tools for our case study representing two
different classes of software checking tools: Cppcheck, a free GPL licensed tool
for checking generic problems in C/C++ code including memory leaks, out of
bounds arrays, and null pointer dereferences. Cppcheck aims at having zero
false positives. The second tool, Goanna, is a commercial static analysis tool
developed around software verification techniques such as model checking, SMT
solving and abstract interpretation. Its aims at deep analysis that is scalable to
large code bases.

The purpose of this evaluation is not to decide on a better tool, but to
explore differences and strengths of each tool. Moreover, the tools where chosen
based on their availability to the authors and the good reputation of Cppcheck.
While Goanna is representing the commercial tool space, we would not expect
fundamental differences from similar commercial tools. Further comparisons can
be found in the NIST SAMATE program [3] and earlier evaluations [4].

Android Kernel. As a test bed the Android Goldfish 3.4 kernel was chosen.
This is a generic kernel for software emulation of various hardware platforms of
interest to Red Lizard Sofwtare’s customers. The Goldfish kernel contains the
essence of the recent Android releases KitKat and Lollipop and has around 740k
lines of code.

Configuration. The analysis was run using Goanna 3.4.1 and Cppcheck 1.68. We
focused on the security relevant checks for each tool including buffer overflows,
null pointer issues or tainted data. This resulted in 27 specific categories for
Cppcheck and 46 for Goanna. All experiments were run on a quadcore Dell
PowerEdge 1950 2.66GHz with 16 GB of RAM running Ubuntu 12.10.

2.1 Evaluation Results

Installation and Configuration. Both Cppcheck and Goanna have been straight
forward to install. Cppcheck comes as a drop-in binary and Goanna has an
installer file. Configuring Cppcheck required running all check with subsequent
filtering results as there is no method to select individual checks. For Goanna
the defaults of the security package were selected.

3 http://cppcheck.sourceforge.net/

2



Running the Analysis. Goanna parses the source code and does handle includes,
preprocessing and macro expansion. It gets the necessary information after mon-
itoring the native build process for relevant compiler and linker calls. In contrast,
Cppcheck does not fully parse the code, but scans the actual text of the source
files. As a result it be run on any file or from a directory. We used the Goanna
facility to determine the relevant set of files in the build and passed those files to
Cppcheck. The overall run time for Cppcheck on the Android Goldfish 3.4 ker-
nel was just under 10 minutes, while the same run took 75 minutes for Goanna.
Compilation itself is slightly over 8 minutes.

Quantitative Results. Goanna reported 279 potential issues from 14 categories
out of the total 46 security checks4. Cppcheck reported 37 potential issues in
3 categories (Null Pointer warnings and errors, and Memory Leaks) for the
same code base. Additionally we made use of Cppchecks ability to run over any
file even if not in the build to include all driver files for all platforms in a second
experiment. For the latter Cppcheck reported 755 issues in 10 categories.

We manually evaluated how many of the reported issues are false positives,
i.e., where the tool spuriously warns, to determine the actual true positive (TP)
rate. We used a random sample size of 20 for each category of each tool. Only
4 categories in of each tool had more than 20 warnings. Only 1 category more
than 100 warning and was as such under-sampled. We did not have any means
to determine the false negative rate, i.e., the number of issues that are in the
code and are missed.

Firstly, for the 37 issues Cppcheck detected in the actual build the Null

Pointer errors had a 67% TP rate, while the weaker Null Pointer warnings
had a 21% TP rate. The Memory Leak issues were all false positives. Only about
one third of all reported issues were true positives. However, for the second
experiment scanning all remaining kernel files Cppcheck had a much better TP
rate of 76% when averaging out over the reported 10 categories. Only only 2
categories had less than 50% TP rates and 6 categories at TP rates of 90% or
higher.

Secondly, for Goanna’s 279 reported issues in 14 categories the lowest TP rate
was of any category was 67% (two of three bugs were correct) and 11 categories
had a TP rate of 90% or higher. Averaged out over the 14 categories Goanna’s
TP rate was 94%. We were advised by Red Lizard Software, however, that this
TP rate was better than what usually should be expected from such a tool.

Thirdly, we examined the overlap between Goanna’s 279 reported issues and
Cppcheck’s 37. Only a combined 23 issues were in files, where both tools reported
a warning. For those files Cppcheck reported 11 warnings with 9 false positives
and Goanna 12 warnings with 3 false positives. No two of the same false positives
were reported by both tools, but all true positives of Cppcheck in the overlap were
also correctly reported by Goanna. Outside the files where both tools reported
and issue there were 8 TPs by Cppcheck not reported by Goanna, the remaining
Goanna TPs were not reported by Cppcheck.

4 all raw data available at http://www.cse.unsw.edu.au/~rhuuck/fm15

3



Qualitative Results. Generally, the cause of bugs differed a lot between the two
tools. Cppcheck’s bugs tend to be patterns such as a constant 0 that is used later
as a divisor or an explicit Null pointer being referenced close by. The Goanna
bugs tended to be much deeper involving computation of data or passing of
values between functions. At the same time it took the evaluator much longer
to determine the truth of a Cppcheck warning as the tool outputs a line number
with a rather simple message. Goanna additionally provided a compact trace
through the program with explanatory text, making an assessment easier. One
of the easier to rectify drawbacks of Cppcheck was the absence of a reference
manual, leading to some steep learning curve and a degree of guesswork for
causes of claimed errors.

3 Lessons

There are a few key observation from our case study: Both tools where simple to
setup, had reasonable sets of security checks and had no problems scaling to the
Android kernel as such. Also, both tools had medium to very low rates of false
positives rates making them applicable in practice. We suspect that the Android
code’s maturity makes it easier to understand for tools as well.

Major differences are: The Cppcheck issues were much shallower than the
Goanna issues, although still relevant. A cause is Cppcheck’s absence of full
parsing and reliance on pattern matching instead. This has the advantage though
of easy applicability and the ability to scan all files even outside the build. In
contrast, Goanna analyzes what is being build, which has its pros and cons.

As a summary, we believe that Cppcheck is a useful first line of defense with
very low run time overhead. Its key role is quick scanning of code under devel-
opment. Goanna or similar commercial tools appear much more comprehensive
in its analysis suitable for higher levels of assurance, while also requiring slightly
more run time.

While we were able to asses the check results for both tools, we do not know
the implications of the bugs we found. Currently, we are in the process of feeding
our findings back to both the Android developers as well as Red Lizard Software
and its customers.

References

1. Nielson, F., Nielson, H.R., Hankin, C.L.: Principles of Program Analysis. Springer
(1999)

2. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model checking
software at compile time. In: Proceedings of the First Joint IEEE/IFIP Symposium
on Theoretical Aspects of Software Engineering. TASE ’07, Washington, DC, USA,
IEEE Computer Society (2007) 45–56

3. Okun, V., Delaitre, A., Black, P.E.: Report on the Third Static Analysis Tool
Exposition (SATE 2010) . Technical report, NIST (2011) Special Report 500-283.

4. Emanuelsson, P., Nilsson, U.: A comparative study of industrial static analysis
tools. Electron. Notes Theor. Comput. Sci. 217 (July 2008) 5–21

4


