
Structure Preserving Bisimilarity,

Supporting an Operational Petri Net Semantics of CCSP

Rob J. van Glabbeek12

1 NICTA⋆, Sydney, Australia
2 Computer Science and Engineering, UNSW, Sydney, Australia

Abstract. In 1987 Ernst-Rüdiger Olderog provided an operational Petri net se-

mantics for a subset of CCSP, the union of Milner’s CCS and Hoare’s CSP. It

assigns to each process term in the subset a labelled, safe place/transition net.

To demonstrate the correctness of the approach, Olderog established agreement

(1) with the standard interleaving semantics of CCSP up to strong bisimulation

equivalence, and (2) with standard denotational interpretations of CCSP opera-

tors in terms of Petri nets up to a suitable semantic equivalence that fully respects

the causal structure of nets. For the latter he employed a linear-time semantic

equivalence, namely having the same causal nets.

This paper strengthens (2), employing a novel branching-time version of

this semantics—structure preserving bisimilarity—that moreover preserves in-

evitability. I establish that it is a congruence for the operators of CCSP.

1 Introduction

The system description languages CCS and CSP have converged to one theory of pro-

cesses which—following a suggestion of M. Nielsen—was called “CCSP” in [26]. The

standard semantics of this language is in terms of labelled transition systems modulo

strong bisimilarity, or some coarser semantic equivalence. In the case of CCS, a labelled

transition system is obtained by taking as states the closed CCS expressions, and as tran-

sitions those that are derivable from a collection of rules by induction on the structure

of these expressions [24]; this is called a (structural) operational semantics [30]. The

semantics of CSP was originally given in quite a different way [3,20], but [28] provided

an operational semantics of CSP in the same style as the one of CCS, and showed its

consistency with the original semantics.

Such semantics abstract from concurrency relations between actions by reducing

concurrency to interleaving. An alternative semantics, explicitly modelling concurrency

relations, requires models like Petri nets [33] or event structures [25,36]. In [36,21]

non-interleaving semantics for variants of CCSP are given in terms of event structures.

However, infinite event structures are needed to model simple systems involving loops,

whereas Petri nets, like labelled transition systems, offer finite representations for some

such systems. Denotational semantics in terms of Petri nets of the essential CCSP op-

erators are given in [18,35,16]—see [27] for more references. Yet a satisfactory deno-

tational Petri net semantics treating recursion has to my knowledge not been proposed.

⋆ NICTA is funded by the Australian Government through the Department of Communications

and the Australian Research Council through the ICT Centre of Excellence Program.

2 R.J. van Glabbeek

Olderog [26,27] closed this gap by giving an operational net semantics in the style

of [30,24] for a subset of CCSP including recursion—to be precise: guarded recursion.

To demonstrate the correctness of his approach, Olderog proposed two fundamental

properties such a semantics should have, and established that both of them hold [27]:

– Retrievability. The standard interleaving semantics for process terms should be re-

trievable from the net semantics.

– Concurrency. The net semantics should represent the intended concurrency of pro-

cess terms.

The second requirement was not met by an earlier operational net semantics from [5].

To formalise the first requirement, Olderog notes that a Petri net induces a labelled

transition system through the firing relation between markings—the interleaving case

graph—and requires that the interpretation of any CCSP expression as a state in a la-

belled transition system through the standard interleaving semantics of CCSP should be

strongly bisimilar to the interpretation of this expression as a marking in the interleaving

case graph induced by its net semantics.

To formalise the second requirement, he notes that the intended concurrency of

process terms is clearly represented in the standard denotational semantics of CCSP

operators [18,35,16], and thus requires that the result of applying a CCSP operator to

its arguments according to this denotational semantics yields a similar result as doing

this according to the new operational semantics. The correct representation of recursion

follows from the correct representation of the other operators through the observation

that a recursive call has the very same interpretation as a Petri net as its unfolding.

A crucial parameter in this formalisation is the meaning of “similar”. A logical

choice would be semantic equivalence according to one of the non-interleaving equiv-

alences found in the literature, where a finer or more discriminating semantics gives a

stronger result. To match the concurrency requirement, this equivalence should respect

concurrency, in that it only identifies nets which display the same concurrency rela-

tions. In this philosophy, the semantics of a CCSP expression is not so much a Petri

net, but a semantic equivalence class of Petri nets, i.e. a Petri net after abstraction from

irrelevant differences between nets. For this idea to be entirely consistent, one needs to

require that the chosen equivalence is a congruence for all CCSP constructs, so that the

meaning of the composition of two systems, both represented as equivalence classes of

nets, is independent of the choice of representative Petri nets within these classes.

Instead of selecting such an equivalence, Olderog instantiates “similar” in the above

formalisation of the second requirement with strongly bisimilar, a new relation between

nets that should not be confused with the traditional relation of strong bisimilarity

between labelled transition systems. As shown in [1], strong bisimilarity fails to be

an equivalence: it is reflexive and symmetric, but not transitive.

As pointed out in [27, Page 37] this general shortcoming of strong bisimilarity “does

not affect the purpose of this relation” in that book: there it “serves as an auxiliary no-

tion in proving that structurally different nets are causally equivalent”. Here causal

equivalence means having the same causal nets, where causal nets [29,34] model con-

current computations or executions of Petri nets. So in effect Olderog does choose a

semantic equivalence on Petri nets, namely having the same concurrent computations

as modelled by causal nets. This equivalence fully respects concurrency.

Structure Preserving Bisimilarity 3

1.1 Structure preserving bisimilarity

The contribution of the present paper is a strengthening of this choice of a semantic

equivalence on Petri nets. I propose the novel structure preserving bisimulation equiv-

alence on Petri nets, and establish that the result of applying a CCSP operator to its ar-

guments according to the standard denotational semantics yields a structure preserving

bisimilar result as doing this according to Olderog’s operational semantics. The latter

is an immediate consequence of the observation that structure preserving bisimilarity

between two nets is implied by Olderog’s strong bisimilarity.

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib

≈tree

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

BRANCHING TIME

LINEAR TIME

ABSTRACT FROM CAUSALITY/CONCURRENCY CAPTURE CAUSALITY/CONCURRENCY

Fig. 1. A spectrum of semantic equivalences on Petri nets

Figure 1 shows a map of some equivalence relations on nets found in the literature,

in relation to the new structure preserving bisimilarity, ↔sp. The equivalences become

finer when moving up or to the right; thus coarser or less discriminating when follow-

ing the arrows. The rectangle from ≈it to ≈h is taken from [10]. The vertical axis is

the linear time – branching time spectrum, with trace equivalence at the bottom and

(strong) bisimulation equivalence, or bisimilarity, at the top. A host of intermediate

equivalences is discussed in [11]. The key difference is that linear time equivalences,

like trace equivalence, only consider the set of possible executions of a process, whereas

branching time equivalences, like bisimilarity, additionally take into account at which

point the choice between two executions is made. The horizontal axis indicates to what

extent concurrency information is taken into account. Interleaving equivalences—on

the left—fully abstract from concurrency by reducing it to arbitrary interleaving; step

equivalences additionally take into account the possibility that two concurrent actions

happen at exactly the same moment; split equivalences recognise the beginning and end

of actions, which here are regarded to be durational, thereby capturing some informa-

tion about their overlap in time; ST- or interval equivalences fully capture concurrency

information as far as possible by considering durational actions overlapping in time; and

partial order equivalences capture the causal links between actions, and thereby all con-

currency. By taking the product of these two axes, one obtains a two-dimensional spec-

trum of equivalence relations, with entries like interleaving bisimulation equivalence

≈ib and partial order trace equivalence ≈pt. For the right upper corner several par-

tial order bisimulation equivalences were proposed in the literature; according to [13]

4 R.J. van Glabbeek

the history preserving bisimulation equivalence ≈h, originally proposed by [32], is the

coarsest one that fully captures the interplay between causality and branching time.

The causal equivalence employed by Olderog, ≡caus , is a linear time equivalence

strictly finer than ≈pt. Since it preserves information about the number of preplaces

of a transition, it is specific to a model of concurrency based on Petri nets; i.e. there

is no obvious counterpart in terms of event structures. I found only two equivalences

in the literature that are finer than both ≡caus and ≈h, namely occurrence net equiva-

lence [16]—≡occ—and the place bisimilarity ≈pb of [1]. Two nets are occurrence net

equivalent iff they have isomorphic unfoldings. The unfolding, defined in [25], asso-

ciates with a given safe Petri net N a loop-free net—an occurrence net—that combines

all causal nets of N , together with their branching structure. This unfolding is simi-

lar to the unfolding of a labelled transition system into a tree, and thus the interleaving

counterpart of occurrence net equivalence is tree equivalence [11], identifying two tran-

sition systems iff their unfoldings are isomorphic. The place bisimilarity was inspired

by Olderog’s strong bisimilarity, but adapted to make it transitive, and thus an equiva-

lence relation. My new equivalence ↔sp will be shown to be strictly coarser than ≡occ

and ≈pb, yet finer than both ≡caus and ≈h.

The equivalences discussed above (without the diagonal line in Figure 1) are all

defined on safe Petri nets. Additionally, the definitions generalise to unsafe Petri nets.

However, there are two possible interpretations of unsafe Petri nets, called the collec-

tive token and the individual token interpretation [12], and this leads to two versions of

history preserving bisimilarity. The history preserving bisimilarity based on the indi-

vidual token interpretation was first defined for Petri nets in [2], under the name fully

concurrent bisimulation equivalence. At the level of ST-semantics the collective and in-

dividual token interpretations collapse. The unfolding of unsafe Petri nets, and thereby

occurrence net equivalence, has been defined for the individual token interpretation only

[7,23,12], and likewise causal equivalence can be easily generalised within the individ-

ual token interpretation. The new structure preserving bisimilarity falls in the individual

token camp as well.

1.2 Criteria for choosing this semantic equivalence

In selecting a new semantic equivalence for reestablishing Olderog’s agreement of op-

erational and denotational interpretations of CCSP operators, I consider the following

requirements on such a semantic equivalence (with subsequent justifications):

1. it should be a branching time equivalence,

2. it should fully capture causality relations and concurrency (and the interplay be-

tween causality and branching time),

3. it should respect inevitability [22], meaning that if two systems are equivalent, and

in one the occurrence of a certain action is inevitable, then so is it in the other,

4. it should be real-time consistent [16], meaning that for every association of execu-

tion times to actions, assuming that actions happen as soon as they can, the running

times associated with computations in equivalent systems should be the same,

5. it should be preserved under action refinement [4,13], meaning that if in two equiv-

alent Petri nets the same substitutions of nets for actions are made, the resulting

nets should again be equivalent,

Structure Preserving Bisimilarity 5

6. it should be finer than Olderog’s causal equivalence,

7. it should not distinguish systems whose behaviours are patently the same, such as

Petri nets that differ only in their unreachable parts,

8. it should be a congruence for the constructs of CCSP,

9. and it should allow to establish agreement between the operational and denotational

interpretations of CCSP operators.

Requirement 1 is the driving force behind this contribution. It is motivated by the insight

that branching time equivalences better capture phenomena like deadlock behaviour.

Since in general a stronger result on the agreement between operational and denota-

tional semantics is obtained when employing a finer semantics, I aim for a semantics

that fully captures branching time information, and thus is at least as discriminating as

interleaving bisimilarity.

Requirement 2 is an obvious choice when the goal of the project is to capture con-

currency explicitly. The combination of Requirements 1 and 2 then naturally asks for an

equivalence that is at least as fine as ≈h. One might wonder, however, for what reason

one bothers to define a semantics that captures concurrency information. In the litera-

ture, various practical reasons have been given for preferring a semantics that (partly)

respects concurrency and causality over an interleaving semantics. Three of the more

prominent of these reasons are formulated as requirements 3, 4 and 5 above.

Requirement 3 is manifestly useful when considering liveness properties of systems.

Requirement 4 obviously has some merit when timing is an issue. Requirement 5 is

useful in system design based on stepwise refinement [13].

Requirement 6 is only there so that I can truthfully state to have strengthened

Olderog’s agreement between the denotational and operational semantics, which was

stated in terms of causal equivalence. This requirement will not be needed in my justi-

fication for introducing a new semantic equivalence—and neither will Requirement 2.

Requirement 7 is hardly in need of justification. The paper [1] lists as a desirable

property of semantic equivalences—one that is not met by their own proposal ≈pb—

that they should not distinguish nets that have isomorphic unfoldings, given that un-

folding a net should not be regarded as changing it behaviour. When working within

the individual token interpretation of nets I will take this as a suitable formalisation of

Requirement 7.

The argument for Requirement 8 has been given earlier in this introduction, and

Requirement 9 underlies my main motivation for selecting a semantic equivalence in

the first place.

1.3 Applying the criteria

Table 1 tells which of these requirements are satisfied by the semantic equivalences

from Section 1.1 (not considering the one collective token equivalence there). The first

two rows, reporting which equivalences satisfy Requirements 1 and 2, are well-known;

these results follow directly from the definitions. The third row, reporting on respect for

inevitability, is a contribution of this paper, and will be discussed in Section 1.4, and

delivered in Sections 11–14.

6 R.J. van Glabbeek

Table 1. Which requirements are satisfied by the various semantic equivalences

Equivalence ≈tree ≡occ

≈ib ≈sb ≈2b ≈STb ≈h ↔sp ≈pb

Requirement ≈it ≈st ≈2t ≈STt ≈pt ≡caus

1. Branching time × X X × X × X × X × X × X X X

2. Causality × × × × × × × × × X X X X X X

3. Inevitability × × × × × × × × × × × × X X X

4. Real-time consistency × × × × × × × × X × X × X X X

5. Action refinement × × × × × × × X X X X X? X? X?

6. Finer than ≡caus × × × × × × × × × × × X X X X

7. Coarser than ≡occ X X X X X X X X X X X X X X ×
8. Congruence X X X

9. Operat. ≡ denotat. X X × X X X X X X X X X X ×

Regarding Row 4, In [16] it is established that ST-bisimilarity is real-time consis-

tent. Moreover, the formal definition is such that if a semantic equivalence ≈ is real-

time consistent, then so is any equivalence finer than ≈. Linear time equivalences are

not real-time consistent, and neither is ≈2b [17].

In [13] it is established that ≈pt and ≈h are preserved under action refinement,

but interleaving and step equivalences are not, because they do not capture enough

information about concurrency. In [10] it is shown that ≈STt and ≈STb are already

preserved under action refinement, whereas by [17] split semantics are not. I conjecture

that ≡caus and ≡occ are also preserved under action refinement, but I have not seen a

formal proof. I also conjecture that the new ↔sp is preserved under action refinement.

Rows 6 and 7 follow as soon as I have formally established the implications of

Figure 1 (in Section 10). As for Row 8, I will show in Section 7 that ↔sp is a congru-

ence for the operators of CCSP. That also ≈it and ≈ib are congruences for CCSP is

well known. The positive results in Row 9 follow from the fact that Olderog’s strong

bisimilarity implies ↔sp, which will be established in Section 6.

Requirements 1 and 6 together limit the search space for suitable equivalence re-

lations to ≡occ, ≈pb and the new ↔sp. When dropping Requirement 6, but keeping

2, also ≈h becomes in scope. When also dropping 2, but keeping 4, I gain ≈STb as a

candidate equivalence. However, both ≈h and ≈STb will fall pray to Requirement 3, so

also without Requirements 2 and 6 the search space will be limited to ≡occ, ≈pb and

the new ↔sp.

Requirement 7 rules out ≈pb, as that equivalence makes distinctions based on un-

reachable parts of nets [1]. The indispensable Requirement 9 rules out ≡occ, since that

equivalence distinguishes the operational and denotational semantics of the CCSP ex-

pression a0 + a0. According to the operational semantics this expression has only one

transition, whereas by the denotational semantics it has two, and ≡occ does not collapse

identical choices. The same issue plays in interleaving semantics, where the operational

and denotational transition system semantics of CCSP do not agree up to tree equiva-

lence. This is one of the main reasons that bisimilarity is often regarded as the top of

the linear time – branching time spectrum.

This constitutes the justification for the new equivalence ↔sp.

Structure Preserving Bisimilarity 7

1.4 Inevitability

The meaning of Requirement 3 depends on which type of progress or fairness property

one assumes to guarantee that actions that are due to occur will actually happen. Lots of

fairness assumption are mentioned in the literature, but, as far as I can tell, they can be

classified in exactly 4 groups: progress, justness, weak fairness and strong fairness [15].

These four groups form a hierarchy, in the sense that one cannot consistently assume

strong fairness while objecting to weak fairness, or justness while objecting to progress.

Strong and weak fairness deal with choices that are offered infinitely often. Suppose

you have a shop with only two customers A and B that may return to the shop to buy

something else right after they are served. Then it is unfair to only serve customer

A again and again, while B is continuously waiting to be served. In case B is not

continuously ready to be served, but sometimes goes home to sleep, yet always returns

to wait for his turn, it is weakly fair to always ignore customer B in favour of A, but

not strongly fair.

Weak and strong fairness assumptions can be made locally, pertaining to some re-

peating choices of the modelled system but not to others, or globally, pertaining to all

choices of a given type. Since the real world is largely unfair, strong and weak fairness

assumptions need to be made with great caution, and they will not appear in this paper.

Justness and progress assumptions, on the other hand, come only in the global vari-

ant, and can be safely assumed much more often. A progress assumption says that if a

system can do some action (that is not contingent on external input) it will do an action.

In the example of the shop, if there is a customer continuously ready to be served, and

the clerk stands pathetically behind the counter staring at the customer but not serving

anyone, there is a failure of progress. Without assuming progress, no action is inevitable,

because it is always possible that a system will remain in its initial state without ever

doing anything. Hence the concept of inevitability only makes sense when assuming at

least progress.

Justness [8,15] says roughly that if a parallel component can make progress (not

contingent on input from outside of this component) it will do so. Suppose the shop has

two counters, each manned by a clerk, and, whereas customer A is repeatedly served

at counter 1, customer B is ready to be served by counter 2, but is only stared at by a

pathetic clerk. This is not a failure of progress, as in any state of the system someone will

be served eventually. Yet it counts as a failure of justness. In the context of Petri nets,

a failure of justness can easily be formalised as an execution, during which, from some

point onwards, all preplaces of a given transition remain marked, yet the transition never

fires [14]. One could argue that, when taking concurrency seriously, justness should be

assumed whenever one assumes progress.

Inevitability can be easily expressed in temporal logics like LTL [31] or CTL [6],

and it is well known that strongly bisimilar transition systems satisfy the same tem-

poral formulas. This suggests that interleaving bisimilarity already respects inevitabil-

ity. However, this conclusion is warranted only when assuming progress but not just-

ness, or perhaps also when assuming some form of weak or strong fairness. The sys-

tem C := 〈X|X = aX + bX〉—using the CCSP syntax of Section 2—repeatedly

choosing between the actions a and b, is interleaving bisimilar to the system D :=
〈Y |Y = aY 〉‖〈Z|Z = bZ〉, which in parallel performs infinitely many as and infinitely

8 R.J. van Glabbeek

many bs. Yet, when assuming justness but not weak fairness, the execution of the action

b is inevitable in D, but not in C. This shows that when assuming justness but not weak

fairness, interleaving bisimilarity does not respect inevitability. The paper [22], which

doesn’t use Petri nets as system model, leaves the precise formulation of a justness as-

sumption for future work—this task is undertaken in the different context of CCS in

[15]. Also, respect of inevitability as a criterion for judging semantic equivalences does

not occur in [22], even though “the partial order approach” is shown to be beneficial.

In this paper, assuming justness but not strong or weak fairness, I show that neither

≈h nor ≡caus respects inevitability (using infinite nets in my counterexample). Hence,

respecting concurrency appears not quite enough to respect inevitability. Respect for

inevitability, like real-time consistency, is a property that holds for any equivalence

relation finer than one for which it is known to hold already. So also none of the ST- or

interleaving equivalences respects inevitability. I show that the new equivalence ↔sp

respects inevitability. This makes it the coarsest equivalence of Figure 1 that does so.

2 CCSP

CCSP is parametrised by the choice of an infinite set Act of actions, that I will assume

to be fixed for this paper. Just like the version of CSP from Hoare [20], the version of

CCSP used here is a typed language, in the sense that with every CCSP process P an

explicit alphabet α(P) ⊆ Act is associated, which is a superset of the set of all actions

the process could possibly perform. This alphabet is exploited in the definition of the

parallel composition P‖Q: actions in the intersection of the alphabets of P and Q are

required to synchronise, whereas all other actions of P and Q happen independently.

Because of this, processes with different alphabets may never be identified, even if they

can perform the same set of actions and are alike in all other aspects. It is for this reason

that I interpret CCSP in terms of typed Petri nets, with an alphabet as extra component.

I also assume an infinite set V of variable names. A variable is a pair XA with

X ∈ V and A ⊆ Act. The syntax of (my subset of) CCSP is given by

P ::= 0A | aP | P + P | P‖P | R(P) | XA | 〈XA|S〉 (with XA ∈ VS)

with A ⊆ Act, a ∈ Act, R ⊆ Act × Act, X ∈ V and S a recursive specification: a set

of equations {YB = SYB
| YB ∈ VS} with VS ⊆ V × Act (the bound variables of S)

and SYB
a CCSP expression satisfying α(SYB

) = B for all YB ∈ VS (were α(SYB
)

is defined below). The constant 0A represents a process that is unable to perform any

action. The process aP first performs the action a and then proceeds as P . The process

P + Q will behave as either P or Q, ‖ is a partially synchronous parallel composition

operator, R a renaming, and 〈XA|S〉 represents the XA-component of a solution of the

system of recursive equations S. A CCSP expression P is closed if every occurrence of

a variable XA occurs in a subexpression 〈YB|S〉 of P with XA ∈ VS .

The constant 0 and the variables are indexed with an alphabet. The alphabet of an

arbitrary CCSP expression is given by:

– α(0A) = α(XA) = α(〈XA|S〉) = A
– α(aP) = {a} ∪ α(P)

Structure Preserving Bisimilarity 9

Table 2. Structural operational interleaving semantics of CCSP

aP
a−→ P

P
a−→ P ′

P‖Q a−→ P ′‖Q
(a /∈ α(Q))

P
a−→ P ′

R(P)
b−→ R(P ′)

((a, b) ∈R)

P
a−→ P ′

P +Q
a−→ P ′

P
a−→ P ′, Q

a−→ Q′

P‖Q a−→ P ′‖Q′
(a ∈ α(P) ∩ α(Q))

Q
a−→ Q′

P +Q
a−→ Q′

Q
a−→ Q′

P‖Q a−→ P‖Q′
(a /∈ α(P))

〈SXA
|S〉 a−→ P ′

〈XA|S〉
a−→ P ′

– α(P +Q) = α(P‖Q) = α(P) ∪ α(Q)
– α(R(P)) = {b | ∃a ∈ α(P) : (a, b) ∈ R}.

Substitutions of expressions for variables are allowed only if the alphabets match. For

this reason a recursive specification S is declared syntactically incorrect if α(SYB
) 6=B

for some YB∈VS . The interleaving semantics of CCSP is given by the labelled transition

relation → ⊆ TCCSP ×Act× TCCSP on the set TCCSP of closed CCSP terms, where

the transitions P
a

−→ Q (on arbitrary CCSP expressions) are derived from the rules

of Table 2. Here 〈P |S〉 for P an expression and S a recursive specification denotes

the expression P in which 〈YB|SYB
〉 has been substituted for the variable YB for all

YB ∈ VS .

A CCSP expression is well-typed if for any subexpression of the form aP one has

a ∈ α(P) and for any subexpression of the form P + Q one has α(P) = α(Q). Thus

a0{a}+ bX∅ is not well-typed, although the equivalent expression a0{a,b}+ bX{a,b} is.

A recursive specification 〈XA|S〉 is guarded if each occurrence of a variable YB ∈ VS

in a term SZC
for some ZC∈VS lays within a subterm of SZC

of the form aP. Following

[27] I henceforth only consider well-typed CCSP expressions with guarded recursion.

In Olderog’s subset of CCSP, each recursive specification has only one equation,

and renamings must be functions instead of relations. Here I allow mutual recursion and

relational renaming, where an action may be renamed into a choice of several actions—

or possibly none. This generalisation does not affect any of the proofs in [27].

Example 1. The behaviour of the customer from Section 1.4 could be given by the

recursive specification SCUS:

CUSCu = enter buy leave CUSCu

indicating that the customer keeps coming back to the shop to buy more things. Here

enter, buy, leave∈Act and CUS∈V . The customer’s alphabet Cu is {enter, buy, leave}.

Likewise, the behaviour of the store clerk could be given by the specification SCLK:

CLKCl = serve CLKCl

where Cl={serve}. The CCSP processes representing the customer and the clerk, with

their reachable states and labelled transitions between them, are displayed in Figure 2.

10 R.J. van Glabbeek

〈CUSCu |SCUS〉

buy leave 〈CUSCu |SCUS〉

enter leave 〈CUSCu |SCUS〉
buy

leave

〈CLKCl |SCLK〉 serve

Fig. 2. Labelled transition semantics of customer and clerk

In order to ensure that the parallel composition synchronises the buy-action of the cus-

tomer with the serve-action of the clerk, I apply renaming operators RCUS and RCLK

with RCUS(buy) = serves and RCLK(serve) = serves and leaving all other actions un-

changed, where serves is a joint action of the renamed customer and the renamed clerk.

The total CCSP specification of a store with one clerk and one customer is

RCUS(〈CUSCu |SCUS〉)‖RCLK(〈CLKCl |SCLK〉)

and the relevant part of the labelled transition system of CCSP is displayed below.

RCUS(〈CUSCu |SCUS〉)‖RCLK(〈CLKCl |SCLK〉)

RCUS(buy leave 〈CUSCu |SCUS〉)‖RCLK(〈CLKCl |SCLK〉)

enter RCUS(leave 〈CUSCu |SCUS〉)‖RCLK(〈CLKCl |SCLK〉)

serves

leave

Fig. 3. Labelled transition semantics of the 1-customer 1-clerk store

One possible behaviour of this system is the sequence of actions enter serves leave

enter, followed by eternal stagnation. This behaviour is ruled out by the progress as-

sumption of Section 1.4. The only behaviour compatible with this assumption is the

infinite sequence of actions (enter serves leave)∞.

To model a store with two customers (A and B) and 2 clerks (I and II), I introduce

a relational renaming for each of them, defined by

RA(enter) =A enters RA(buy) = {I servesA, II servesA} RA(leave) =A leaves

RB(enter) =B enters RB(buy) = {I servesB, II servesB} RB(leave) =B leaves

RI(serve) = {I servesA, I servesB}
RII(serve)= {II servesA, II servesB}.

The CCSP specification of a store with two clerks and two customers is

(
RA(〈CUSCu |SCUS〉)‖RB(〈CUSCu |SCUS〉)

)
‖
(
RI(〈CLKCl |SCLK〉)‖RII(〈CLKCl |SCLK〉)

)

and the part of the labelled transition system of CCSP reachable from that process has

3× 3× 1× 1 = 9 states and 6× 4 = 24 transitions.

Structure Preserving Bisimilarity 11

3 Petri nets

A multiset over a set S is a function C : S → IN, i.e. C ∈ INS ; let |C| :=
∑

x∈X C(x);
x ∈ S is an element of C, notation x ∈ C, iff C(x) > 0.

The function ∅ :S → IN, given by ∅(x) := 0 for all x ∈ S, is the empty multiset over S.

For multisets C and D over S one writes C ≤ D iff C(x) ≤ D(x) for all x ∈ S;

C ∩D denotes the multiset over S with (C ∩D)(x) := min(C(x), D(x)),
C +D denotes the multiset over S with (C +D)(x) := C(x) +D(x); and

the multiset C −D is only defined if D ≤ C and then (C −D)(x) := C(x)−D(x).
A multiset C with C(x) ≤ 1 for all x is identified with the (plain) set {x | C(x) = 1}.

The construction C := {f(x1, ..., xn) | xi ∈Di} of a set C out of sets Di (i= 1, ..., n)

generalises naturally to multisets C and Di, taking the multiplicity C(x) of an element

x to be
∑

f(x1,...,xn)=x D1(x1) · ... ·Dn(xn).

Definition 1. A (typed) Petri net is a tuple N = (S, T, F,M0, A, ℓ) with

– S and T disjoint sets (of places and transitions),

– F : ((S × T) ∪ (T × S)) → IN (the flow relation including arc weights),

– M0 : S → IN (the initial marking),

– A a set of actions, the type of the net, and

– ℓ : T → A (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as boxes,

containing their label. Identities of places and transitions are displayed next to the net

element. For x, y ∈ S ∪ T there are F (x, y) arrows (arcs) from x to y. When a Petri

net represents a concurrent system, a global state of this system is given as a marking,

a multiset M of places, depicted by placing M(s) dots (tokens) in each place s. The

initial state is M0.

The behaviour of a Petri net is defined by the possible moves between markings

M and M ′, which take place when a transition t fires. In that case, t consumes F (s, t)
tokens from each place s. Naturally, this can happen only if M makes all these tokens

available in the first place. Moreover, t produces F (t, s) tokens in each place s. Defini-

tion 2 formalises this notion of behaviour.

Definition 2. Let N = (S, T, F,M0, A, ℓ) be a Petri net and x ∈ S ∪ T . The multisets
•x, x•:S∪T → IN are given by •x(y) = F (y, x) and x•(y) = F (x, y) for all y∈S∪T ;

for t ∈ T , the elements of •t and t• are called pre- and postplaces of t, respectively.

Transition t ∈ T is enabled from the marking M ∈ INS—notation M [t〉—if •t ≤ M .

In that case firing t yields the marking M ′ := M − •t+ t•—notation M [t〉M ′.

A path π of a Petri net N is an alternating sequence M0t1M1t2M2t3 . . . of markings

and transitions, starting from the initial marking M0 and either being infinite or ending

in a marking Mn, such that Mk[tk〉Mk+1 for all k (<n). A marking is reachable if it

occurs in such a path. The Petri net N is safe if all reachable markings M are plain sets,

meaning that M(s) ≤ 1 for all places s. It has bounded parallelism [16] if there is no

reachable marking M and infinite multiset of transitions U such that
∑

t∈U
•t ≤ M . In

this paper I consider Petri nets with bounded parallelism only, and call them nets.

12 R.J. van Glabbeek

4 An operational Petri net semantics of CCSP

This section recalls the operational Petri net semantics of CCSP, given by Olderog

[26,27]. It associates a net [[P]] with each closed CCSP expression P .

The standard operational semantics of CCSP, presented in Section 2, yields one big

labelled transition system for the entire language.1 Each individual closed CCSP ex-

pression P appears as a state in this LTS. If desired, a process graph—an LTS enriched

with an initial state—for P can be extracted from this system-wide LTS by appointing

P as the initial state, and optionally deleting all states and transitions not reachable from

P . In the same vein, an operational Petri net semantics yields one big Petri net for the

entire language, but without an initial marking. I call such a Petri net unmarked. Each

process P ∈ TCCSP corresponds with a marking dex(P) of that net. If desired, a Petri

net [[P]] for P can be extracted from this system-wide net by appointing dex(P) as its

initial marking, taking the type of [[P]] to be α(P), and optionally deleting all places

and transitions not reachable from dex(P).
The set SCCSP of places in the net is the smallest set including:

0A inaction aP prefixing µ+ ν choice

µ‖A left parallel component A‖µ right component R(µ) renaming

for A ⊆ Act, P ∈ TCCSP, a ∈ Act, µ, ν ∈ SCCSP and renamings R. The mapping

dex : TCCSP → P(SCCSP) decomposing and expanding a process expression into a

set of places is inductively defined by:

dex(0A) = {0A}
dex(aP) = {aP} dex(R(P)) = R(dex(P))
dex(P +Q) = dex(P) + dex(Q) dex(〈XA|S〉) = dex(〈SXA

|S〉)
dex(P‖Q) = dex(P)‖A ∪ A‖dex(Q) where A = α(P) ∩ α(Q).

Here H‖A, A‖H , R(H) and H+K for H,K⊆SCCSP are defined element by element;

e.g. R(H) = {R(µ) | µ ∈ H}. The binding matters, so that (A‖H)‖B 6= A‖(H‖B).
Since I deal with guarded recursion only, dex is well-defined.

Following [27], I construct the unmarked Petri net (S, T, F,Act, ℓ) of CCSP with

S := SCCSP, specifying the triple (T, F, ℓ) as a ternary relation → ⊆ INS ×Act× INS .

An element H
a−→ J of this relation denotes a transition t ∈ T with ℓ(t) = a such that

•t=H and t• = J . The transitions H
α
−→ J are derived from the rules of Table 3.

Note that there is no rule for recursion. The transitions of a recursive process 〈XA|S〉
are taken care of indirectly by the decomposition dex(〈XA|S〉) = dex(〈SXA

|S〉),
which expands the decomposition of a recursive call into a decomposition of an ex-

pression in which each recursive call is guarded by an action prefix.

Example 2. The Petri net semantics of the 2-customer 2-clerk store from Section 2 is

displayed in Figure 4. It is more compact than the 9-state 24-transition labelled tran-

sition system. The name of the bottom-most place is Ser‖ ∅‖RII(serve 〈CLKCl |SCLK〉)
where Ser is the alphabet {I servesA, I servesB, II servesA, II servesB}.

1 A labelled transition system (LTS) is given by a set S of states and a transition relation

T ⊆ S × L × S for some set of labels L . The LTS generated by CCSP has S := TCCSP,

L := Act and T := →.

Structure Preserving Bisimilarity 13

Table 3. Operational Petri net semantics of CCSP

{aP} a−→ dex(P)

H
a

−→ J

R(H)
b−→ R(J)

((a, b) ∈R)
H

a
−→ J

H‖A
a−→ J‖A

(a /∈A)

H ∪· K a−→ J

H ∪ (K + dex(Q))
a−→ J

H
a−→ J K

a−→ L

H‖A ∪ A‖K
a−→ J‖A ∪ A‖L

(a ∈A)

H ∪· K a−→ J

H ∪ (dex(P) +K)
a−→ J

H
a−→ J

A‖H
a−→ A‖J

(a /∈A)

A progress assumption, as discussed in Section 1.4, disallows runs that stop after

finitely many actions. So in each run some of the actions from Ser will occur infinitely

often. When assuming strong fairness, each of those actions will occur infinitely often.

When assuming only weak fairness, it is possible that II servesA and II servesB will

never occur, as long as I servesA and I servesB each occur infinitely often, for in such

a run the actions II servesA and II servesB are not enabled in every state (from some

point onwards). However, it is not possible that I servesB and II servesB never occur,

because in such a run, from some point onwards, the action I servesB is enabled in

every state.

When assuming justness but not weak fairness, a run that bypasses any two serv-

ing actions is possible, but a run that bypasses I servesB, II servesA and II servesB
is excluded, because in such a run, from some point onwards, the action II servesB is

perpetually enabled, in the sense that both tokens in its preplaces never move away.

A leaves • A enters

I servesA

II servesA

B leaves • B enters

I servesB

II servesB

•

•

Fig. 4. Petri net semantics of the 2-customer 2-clerk store

Olderog [26,27] shows that the Petri net [[P]] associated to a closed CCSP expres-

sion P is safe, and that all its reachable markings are finite; the latter implies that it

has bounded parallelism. The following result, from [26,27], shows that the standard

interleaving semantics of CCSP is retrievable from the net semantics; it establishes a

strong bisimulation relating any CCSP expression (seen as a state in a labelled transition

system) with its interpretation as a marking in the Petri net of CCSP.

14 R.J. van Glabbeek

Theorem 1. There exists a relation B between closed CCSP expressions and markings

in the unmarked Petri net of CCSP, such that

– P B dex(P) for each closed, well-typed CCSP expression with guarded recursion,

– if PBM and P
a−→ P ′ then there is a marking M ′ and transition t with ℓ(t) = a,

M [t〉M ′ and PBM ′, and

– if PBM and M [t〉M ′ then there is CCSP process P ′ with P
ℓ(t)
−−→ P ′ and PBM ′.

To formalise the concurrency requirement for his net semantics Olderog defines for

each n-ary CCSP operator op an n-ary operation opN on safe Petri nets, inspired by

proposals from [18,35,16], and requires that

(1) [[op(P1, . . . , Pn)]] ≈ opN ([[P1]], . . . , [[Pn]])
(2) [[〈XA|S〉]] ≈ [[〈SXA

|S〉]]

for a suitable relation ≈. In fact, (2) turns out to hold taking for ≈ the identity relation.

He establishes (1) taking for ≈ a relation he calls strong bisimilarity, whose definition

will be recalled in Section 6. When a relation ≡ includes ≈, and (1) holds for ≈, then it

also holds for ≡.

The operations opN (i.e. (0A)N for A⊆Act, aN for a∈Act, RN for R⊆Act×Act,
‖N and +N) are defined only up to isomorphism, but this is no problem as isomorphic

nets are strongly bisimilar. The definition is recalled below—it generalises verbatim

to non-safe nets, except that +N is defined only for nets whose initial markings are

nonempty plain sets.

Definition 3. [27] The net 0A has type A and consists of a single place, initially marked:

(0A)N := ({0A}, ∅, ∅, {0A}, A, ∅).

Given a net N = (S, T, F,M,A, ℓ) and a ∈Act, take s0, ta 6∈ S ∪ T . Then the net

aNN is obtained from N by the addition of the fresh place s0 and the fresh transition

ta, labelled a, such that •ta = {s0} and ta
• = M . The type of aNN will be A ∪ {a}

and the initial marking {s0}.

Given a net N = (S, T, F,M,A, ℓ) and a renaming operator R(), the net RN (N)
has type R(A) := {b ∈ Act | ∃a ∈A, (a, b) ∈ R}, the same places and initial marking

as N , and transitions tb for each t∈T and b∈Act with (ℓ(t), b)∈R. One has •tb :=
•t,

tb
• := t•, and the label of tb will be b.

Given two nets Ni = (Si, Ti, Fi,Mi, Ai, ℓi) (i = 1, 2), their parallel composition

N1‖NN2 = (S, T, F,M,A, ℓ) is obtained from the disjoint union of N1 and N2 by the

omission of all transitions t of T1 ∪· T2 with ℓ(t) ∈ A1 ∩ A2, and the addition of fresh

transitions (t1, t2) for all pairs ti ∈ Ti (i= 1, 2) with ℓ1(t1) = ℓ2(t2) ∈ A1 ∩A2. Take
•
(t1, t2) =

•t1 +
•t2, (t1, t2)

•
= t1

• + t2
•, ℓ(t1, t2) = ℓ(t1), and A := A1 ∪A2.

Given nets Ni = (Si, Ti, Fi,Mi, Ai, ℓi) with Mi 6= ∅ a plain set (i = 1, 2), the net

N1 +N N2 with type A1 ∪ A2 is obtained from the disjoint union of N1 and N2 by

the addition of the set of fresh places M1 ×M2—this set will be the initial marking of

N1+NN2—and the addition of fresh transitions tKi for any ti∈Ti and ∅6=K≤•ti∩Mi.

ℓ(tKi)= ℓi(t),
•
tK1 = •t1−K+(K×M2),

•
tK2 = •t2−K+(M1×K) and (tKi)

•
= ti

•.

Structure Preserving Bisimilarity 15

5 Structure preserving bisimulation equivalence

This section presents structure preserving bisimulation equivalence on nets.

Definition 4. Given two nets Ni=(Si,Ti,Fi,Mi,Ai,ℓi), a link is a pair (s1, s2)∈S1×S2

of places. A linking l∈INS1×S1 is a multiset of links; it can be seen as a pair of markings

with a bijection between them. Let πi(l)∈IN
Si be these markings, given by π1(l)(s1) =∑

s2∈S2
l(s1, s2) for all s1 ∈ S1 and π2(l)(s2) =

∑
s1∈S1

l(s1, s2) for all s2 ∈ S2.

A structure preserving bisimulation (sp-bisimulation) is a set B of linkings, such that

– if c ≤ l ∈ B and π1(c) =
•t1 for t1 ∈ T1 then there are a transition t2 ∈ T2 with

ℓ(t2) = ℓ(t1) and π2(c) =
•t2, and a linking c̄ such that π1(c̄) = t1

•, π2(c̄) = t2
•

and l̄ := l − c+ c̄ ∈ B.
– if c ≤ l ∈ B and π2(c) =

•t2 then there are a t1 and a c̄ with the same properties.

N1 and N2 are structure preserving bisimilar, notation N1↔spN2, if A1=A2 and there

is a linking l in a structure preserving bisimulation with M1 = π1(l) and M2 = π2(l).

Note that if B is an sp-bisimulation, then so is its downward closure {k | ∃l∈B. k ≤ l}.

Moreover, if B is an sp-bisimulation between two nets, then the set of those linkings

l ∈ B for which π1(l) and π2(l) are reachable markings is also an sp-bisimulation.

If B is a set of a links, let B be the set of all linkings that are multisets over B.

Proposition 1. Structure preserving bisimilarity is an equivalence relation.

Proof. The relation Id , with Id the identity relation on places, is an sp-bisimulation,

showing that N ↔sp N for any net N .

Given an sp-bisimulation B, also {l−1 | l ∈ B} is an sp-bisimulation, showing

symmetry of ↔sp.

Given linkings h∈ INS1×S3 , k ∈ INS1×S2 and l ∈ INS2×S3 , write h ∈ k; l if there is

a multiset m∈ INS1×S2×S3 of triples of places, with k(s1, s2) =
∑

s3∈S m(s1, s2, s3),
l(s2, s3) =

∑
s1∈S m(s1, s2, s3) and h(s1, s3) =

∑
s2∈S m(s1, s2, s3). Now, for sp-

bisimulations B and B
′, also B;B′ := {h∈k; l | k∈B∧l∈B

′} is an sp-bisimulation,

showing transitivity of ↔sp. ⊓⊔

6 Strong bisimilarity

As discussed in the introduction and at the end of Section 4, Olderog defined a relation

of strong bisimilarity on safe Petri nets.

Definition 5. For B ⊆ S1 × S2 a binary relation between the places of two safe nets

Ni = (Si, Ti, Fi,Mi, Ai, ℓi), write B̂ for the set of all linkings l ⊆ B such that πi(l)
is a reachable marking of Ni for i = 1, 2 and B ∩

(
π1(l) × π2(l)

)
= l. Now a strong

bisimulation as defined in [27] can be seen as a structure preserving bisimulation of the

form B̂. The nets N1 and N2 are strongly bisimilar if A1 = A2 and there is a linking l
in a strong bisimulation with M1 = π1(l) and M2 = π2(l).

This reformulation of the definition from [27] makes immediately clear that strong

bisimilarity of two safe Petri nets implies their structure preserving bisimilarity. Conse-

quently, the concurrency requirement for the net semantics from Olderog, as formalised

by Requirements (1) and (2) in Section 4, holds for structure preserving bisimilarity.

16 R.J. van Glabbeek

7 Compositionality

In this section I show that structure preserving bisimilarity is a congruence for the op-

erators of CCSP, or, in other words, that these operators are compositional up to ↔sp.

Theorem 2. If N1 ↔sp N2, a∈Act and R ⊆ Act×Act, then aNN1 ↔sp aNN2 and

RN (N2)↔spRN (N2). If N l
1
↔spN

l
2 and N r

1
↔spN

r
2 then N l

1‖NN r
1
↔spN

l
2‖NN r

2

and, if the initial markings of N l
i and N r

i are nonempty sets, N l
1+NN r

1
↔spN

l
2+NN r

2 .

Proof. Let Ni = (Si, Ti, Fi,Mi, Ai, ℓi) for i=1, 2, and let si and ui be the fresh place

and transition introduced in the definition of aNNi. From N1 ↔sp N2 it follows that

A1 = A2 and hence A1 ∪ {a} = A2 ∪ {a}.

Let B be an sp-bisimulation containing a linking k with Mi = πi(k) for i = 1, 2.

Let Ba := B ∪ {h}, with h = {(s1, s2)}. Then h links the initial markings of aNN1

and aNN2. Hence it suffices to show that Ba is an sp-bisimulation. So suppose c ≤ h
and π1(c)=

•t1 for some t1∈T1. Then c=h and t1=u1. Take t2 := u2 and h̄ := c̄ := k.

To show that RN (N2) ↔sp RN (N2) it suffices to show that B also is an sp-

bisimulation between RN (N2) and RN (N2), which is straightforward.

Now let N l
i=(Sl

i, T
l
i , F

l
i ,M

l
i , A

l
i, ℓ

l
i) and N r

i =(Sr
i , T

r
i , F

r
i ,M

r
i , A

r
i , ℓ

r
i) for i=1, 2.

Let A := Al
1 ∩Ar

1 = Al
2 ∩Ar

2. Create the disjoint union of N l
i and N r

i in the definition

of N l
i‖NN r

i by renaming all places s and transitions t of N l
i into s‖A and t‖A, and all

places s and transitions t of N r
i into A‖s and A‖t. Let Bl and Br be sp-bisimulations

containing linkings kl and kr, respectively, with M l
i
=πi(k

l) and M r
i
=πi(k

r), for

i=1, 2. Take B := {(hl‖A)+(A‖hr) | hl∈Bl∧hr∈Br}, where hl‖A:={(s1‖A, s2‖A)
| (s1, s2)∈hl}, and A‖h

r is defined likewise. Then πi((k
l‖A)+(A‖k

r)) = πi(k
l)‖A+

A‖πi(k
r) = M l

i‖A+A‖M r
i is the initial marking of N l

i‖NN r
i for i=1, 2, so it suffices

to show that B is an sp-bisimulation.

So suppose c≤ (hl‖A) + (A‖hr)∈B with hl ∈Bl ∧ hr ∈Br and π1(c) =
•t1 for

t1 a transition of N l
1‖NN r

1 . Then c has the form (cl‖A) + (A‖c
r) for cl ≤ hl ∈ B

l and

cr≤hr∈Br, and t1 has the form (i) tl1‖A for tl1 ∈ T l
1 with ℓl1(t

l
1)/∈A, or (ii) (tl1‖A,A‖t

r
1)

for tl1 ∈ T l
1 and tr1 ∈ T r

1 with ℓl1(t
l
1) = ℓr1(t

r
1) ∈ A, or (iii) A‖t

r
1 for tr1 ∈ T r

1 with

ℓr1(t
r
1) /∈A. In case (i) one has cr = ∅ and π1(c

l)=
•
tl1, whereas in case (ii) π1(c

l)=
•
tl1

and π1(c
r) = •tr1. I only elaborate case (ii); the other two proceed likewise. Since B

l

is an sp-bisimulation, there are a transition tl2 with ℓl2(t
l
2) = ℓl1(t

l
1) and π2(c

l) =
•
tl2,

and a linking c̄l such that π1(c̄
l) = tl1

•
, π2(c̄

l) = tl2
•

and h̄l := hl − cl + c̄l ∈ B
l.

Likewise, since Br is an sp-bisimulation, there are a transition tr2 with ℓr2(t
r
2) = ℓr1(t

r
1)

and π2(c
r) = •tr2, and a linking c̄r such that π1(c̄

r) = tr1
•, π2(c̄

r) = tr2
• and h̄r :=

hr − cr + c̄r ∈ Br. Take t2 := (tl2‖A,A‖t
r
2). This transition has the same label as

tl2, tr2, tl1, tr1 and (tl1‖A,A‖t
r
1) = t1. Moreover, π2(c) = π2(c

l)‖A + A‖π2(c
r) =

•
tl2‖A + A‖

•tr2 = •t2. Take c̄ := (c̄l‖A) + (A‖c̄r). Then π1(c̄) = t1
•, π2(c̄) = t2

• and

h̄ := (hl‖A) + (A‖hr)− c+ c̄ = (h̄l‖A) + (A‖h̄r) ∈ B.

LetN l
i=(Sl

i, T
l
i , F

l
i ,M

l
i , A

l
i, ℓ

l
i) andN r

i =(Sr
i , T

r
i , F

r
i ,M

r
i , A

r
i , ℓ

r
i) for i=1, 2, with

M l
i and M r

i nonempty plain sets, but this time I assume the nets to already be disjoint,

and such that all the places and transitions added in the construction of N l
i +N N r

i

are fresh. Let Bl and Br be as above. Without loss of generality I may assume that

the linkings h in Bl and Br have the property that πi(h) is a reachable marking for

Structure Preserving Bisimilarity 17

i= 1, 2, so that the restriction of πi(h) to M l
i or M r

i is a plain set. Define

B
+ := {hl

• + (hl
+ ⊗ kr) | hl

• + hl
+ ∈ Bl ∧ hl

+ � kl}
{hr

• + (kl ⊗ hr
+) | h

r
• + hr

+ ∈ Br ∧ hr
+ � kr} ∪ {kl ⊗ kr}

where hl⊗hr := {((sl1, s
r
1), (s

l
2, s

r
2)) | (s

l
1, s

l
2)∈h

l∧(sr1, s
r
2)∈h

r}. Now πi(k
l⊗kr) =

πi(k
l) × πi(k

r) = M l
i ×M r

i is the initial marking of N l
i +N N r

i , so again it suffices

to show that B
+ is an sp-bisimulation.

So suppose c ≤ hl
•+(hl

+⊗kr)∈B+ with hl
•+hl

+∈Bl, hl
+ � kl and π1(c)=

•t1
for t1 a transition of N l

1 +N N r
1 .

First consider the case that c ≤ hl
•. Then c ≤ hl

• ≤ hl
• + hl

+ ∈ Bl. Since Bl is an

sp-bisimulation, there are a transition t2 ∈ T l
2 with ℓl2(t2) = ℓl1(t1) and π2(c) = •t2,

and a linking c̄ such that π1(c̄) = t1
•, π2(c̄) = t2

• and hl
• + hr

+ − c + c̄ ∈ Bl. Now

hl
•+(hl

+⊗kr)−c+ c̄ = (hl
•−c+ c̄)+(hr

+⊗k2)∈B
+ because (hl

•−c+ c̄)+hr
+∈B

l.

In the remaining case π1(c) contains a place (sl1, s
r
1) ∈M l

1 ×M r
1 , so t1 must have

either the form tK1l with ∅ 6= K ≤
•
tl1 ∩ M l

1 for some tl1 ∈ T l
1, or tK1r with ∅ 6= K ≤

•tr1 ∩M r
1 for some tr1 ∈ T r

1 . First assume, towards a contradiction, that t1 = tK1r. Then

M l
1×K≤

•
tK1r=π1(c)≤π1(h

l
•)+π1(h

l
+⊗kr). Since the places in M l

1×K⊆M l
1×M r

1

are fresh, it follows that M l
1×K ≤ π1(h

l
+⊗kr) ≤ π1(h

l
+)×π1(k

r) ≤ π1(h
l
+)×M r

1 ,

implying that M l
1 ≤ π1(h

l
+) and K ≤ M r

1 —here I use that M l
1 6=∅6=K and π1(h

l
+) and

M r
1 are plain sets. However, the condition hl

+ � kl implies that π1(h
l
+)�π1(k

l)=M l
1,

yielding a contradiction. Hence t1 is of the form tK1l .
Since π1(c) =

•
tK1l =

•
tl1−K + (K ×M r

1), the linking c must have the form c•+c′

with π1(c•) =
•
tl1 −K and π1(c

′) = K × M r
1 . As no place in

•
tl1 − K can be in

M l
1 ×M r

1 ⊇ π1(h
l
+ ⊗ kr), it follows that c• ≤ hl

•. Likewise, as none of the places in

K × M r
1 can be in π1(h

l
•), it follows that c′ ≤ hl

+ ⊗ kr . Thus K × M r
1 = π1(c

′) ≤
π1(h

l
+ ⊗ kr) ≤ π1(h

l
+) × π1(k

r) ≤ π1(h
l
+) × M r

1 , implying K ≤ π1(h
l
+)—again

using that π1(h
l
+) and M r

1 6= ∅ are plain sets. The linking hl
+ ⊗ kr has the property

that its projection π1(h
l
+ ⊗ kr) is a plain set. Since a subset c′′ of a such linking is

completely determined by its first projection π1(c
′′), it follows that c′ = c+ ⊗ kr for

the unique linking c+ ≤ hl
+ with π1(c+) = K .

Now c•+c+ ≤ hl
•+hl

+∈Bl and π1(c•+c+)=(
•
tl1−K)+K=

•
tl1. Since Bl is an

sp-bisimulation, there are a transition tl2∈T l
2 with ℓl2(t

l
2)=ℓl1(t

l
1) and π2(c•+c+)=

•
tl2,

and a linking c̄ such that π1(c̄) = tl1
•
, π2(c̄) = tl2

•
and hl

• + hl
+ − (c• + c+) + c̄ ∈ Bl.

Let L :=π2(c+). Then L 6= ∅ since K 6=∅, L = π2(c+) ≤ π2(h
l
+) ≤ π2(k

l) = M l
2 and

L = π2(c+) ≤ π2(c• + c+) =
•
tl2. By Definition 3 N l

2+N N r
2 has a transition tL2l with

ℓ(tL2l)= ℓl2(t
l
2)= ℓl1(t

l
1)= ℓ(tL1l),

•
tL2l =

•
tl2−L+(L×M l

2) = π2(c•+ c+)−π2(c+)+

(π2(c+)× π1(k
r)) = π2(c• + (c+ ⊗ kr)) = π2(c) and tL2l

•
= tl2

•
= π2(c̄). Moreover,

π1(c̄)=tl1
•
=tK1

•
. Finally, hl

•+(hl
+⊗kr)−c+c̄ = (hl

•−c•+c̄)+((hl
+−c+)⊗kr) ∈ B

+

since (hl
• − c• + c′) + (hl

+−c+) ∈ Bl and hl
+−c+ ≤ hl

+ � kl.
The case supposing c ≤ hr

• + (kr ⊗ hr
+) ∈ B+ follows by symmetry, whereas the

case c ≤ kl ⊗ kr proceeds by simplification of the other two cases. ⊓⊔

18 R.J. van Glabbeek

8 Processes of nets and causal equivalence

A process of a net N [29,9,19] is essentially a conflict-free, acyclic net together with

a mapping function to N . It can be obtained by unwinding N , choosing one of the

alternatives in case of conflict. It models a run, or concurrent computation, of N . The

acyclic nature of the process gives rise to a notion of causality for transition firings in

the original net via the mapping function. A conflict present in the original net is rep-

resented by the existence of multiple processes, each representing one possible way to

decide the conflict. This notion of process differs from the one used in process algebra;

there a “process” refers to the entire behaviour of a system, including all its choices.

Definition 6. A causal net2 is a net N = (S,T,F,M0,A, ℓN) satisfying

– ∀s ∈ S.|•s| ≤1≥ |s•| ∧ M0(s) =

{
1 if •s = ∅
0 otherwise,

– F is acyclic, i.e., ∀x ∈ S ∪ T.(x, x) 6∈ F
+

, where F
+

is the transitive closure of

{(x, y) | F(x, y) > 0},

– and {t ∈ T | (t, u) ∈ F
+
} is finite for all u ∈ T.

A folding from a net N = (S,T,F,M0,A, ℓN) into a net N = (S, T, F,M0, A, ℓ) is a

function ρ : S ∪ T → S ∪ T with ρ(S) ⊆ S and ρ(T) ⊆ T , satisfying

– A = A and ℓN(t) = ℓ(ρ(t)) for all t ∈ T,

– ρ(M0) = M0, i.e. M0(s) = |ρ−1(s) ∩M0| for all s ∈ S, and

– ∀t ∈ T, s ∈ S. F (s, ρ(t)) = |ρ−1(s) ∩ •t| ∧ F (ρ(t), s) = |ρ−1(s) ∩ t•|. 3

A pair P = (N, ρ) of a causal net N and a folding of N into a net N is a process of N .

P is called finite if T is finite.

Note that if N has bounded parallelism, than so do all of its processes.

Definition 7. [27] A net N is called a causal net of a net N if it is the first component

of a process (N, ρ) of N . Two nets N1 and N2 are causal equivalent, notation ≡caus , if

they have the same causal nets.

Olderog shows that his relation of strong bisimilarity is included in ≡caus [27], and

thereby establishes the concurrency requirement (1) from Section 4 for ≡caus .

For N = (S,T,F,M0,A, ℓN) a causal net, let N
◦
:= {s ∈ S | s• = ∅}. The

following result supports the claim that finite processes model finite runs.

Proposition 2. [19, Theorems 3.5 and 3.6] M is a reachable marking of a net N iff N
has a finite process (N, ρ) with ρ(N

◦
) = M . Here ρ(N

◦
)(s) = |ρ−1(s) ∩N

◦
|.

2 A causal net [29,34] is traditionally called an occurrence net [9,19,33]. Here, following [27], I

will not use the terminology “occurrence net” in order to avoid confusion with the occurrence

nets of [25,36]; the latter extend causal nets with forward branching places, thereby capturing

all runs of the represented system, together with the branching structure between them.
3 For H ⊆ S, the multiset ρ(H)∈ INS is defined by ρ(H)(s) = |ρ−1(s)∩H |. Using this, these

conditions can be reformulated as ρ(•t) = •ρ(t) and ρ(t•) = ρ(t)•.

Structure Preserving Bisimilarity 19

A process is not required to represent a completed run of the original net. It might just

as well stop early. In those cases, some set of transitions can be added to the process

such that another (larger) process is obtained. This corresponds to the system taking

some more steps and gives rise to a natural order between processes.

Definition 8. Let P = ((S,T,F,M0,A, ℓ), ρ) and P
′
= ((S

′
,T ′,F ′,M

′
0,A

′
, ℓ′), ρ′)

be two processes of the same net. P
′

is a prefix of P, notation P
′
≤ P, and P an

extension of P
′
, iff S

′
⊆ S, T ′ ⊆ T, M

′
0 = M0, F ′ = F ↾(S

′
×T ′ ∪ T ′×S

′
) and

ρ′ = ρ ↾(S
′
∪ T ′). (This implies that A

′
= A and ℓ′ = ℓ ↾T.)

The requirements above imply that if P
′
≤ P, (x, y) ∈ F

+
and y ∈ S

′
∪ T ′ then x ∈

S
′
∪ T ′. Conversely, any subset T ′ ⊆ T satisfying (t, u) ∈ F

+
∧ u ∈ T ′ ⇒ t ∈ T ′

uniquely determines a prefix of P. A process (N, ρ) of a net N is initial if N contains

no transitions; then ρ(N
◦
) is the initial marking of N . Any process has an initial prefix.

Proposition 3. [19, Theorem 3.17] If Pi = ((Si,Ti,Fi,M0i,Ai, ℓi), ρi) (i ∈ IN) is a

chain of processes of a net N , satisfying Pi ≤ Pj for i ≤ j, then there exists a unique

process P = ((S,T,F,M0,A, ℓ), ρ) of N with S =
⋃

i∈IN Si and T =
⋃

i∈IN Ti—the

limit of this chain—such that Pi ≤ P for all i ∈ IN. ⊓⊔

In [29,9,19] processes were defined without the third requirement of Definition 6. Goltz

and Reisig [19] observed that certain processes did not correspond with runs of systems,

and proposed to restrict the notion of a process to those that can be obtained as the limit

of a chain of finite processes [19, end of Section 3]. By [19, Theorems 3.18 and 2.14],

for processes of finite nets this limitation is equivalent with imposing the third bullet

point of Definition 6. My restriction to nets with bounded parallelism serves to recreate

this result for processes of infinite nets.

Proposition 4. Any process of a net can be obtained as the limit of a chain of finite

approximations.

Proof. Define the depth of a transition u in a causal net as one more than the maximum

of the depth of all transitions t with tF+u. Since the set of such transitions t is finite,

the depth of a transition u is a finite integer. Now, given a process P, the approximation

Pi is obtained by restricting to those transitions in P of depth ≤ i, together with all their

pre- and postplaces, and keeping the initial marking. Clearly, these approximations form

a chain, with limit P. By induction on i one shows that Pi is finite. For P0 this is trivial,

as it has no transitions. Now assume Pi is finite but Pi+1 is not. Executing, in Pi+1,

all transitions of Pi one by one leads to a marking of Pi+1 in which all remaining

transitions of Pi+1 are enabled. As these transitions cannot have common preplaces,

this violates the assumption that Pi+1 has bounded parallelism. ⊓⊔

9 A process-based characterisation of sp-bisimilarity

This section presents an alternative characterisation of sp-bisimilarity that will be instru-

mental in obtaining Theorems 4 and 5, saying that ↔sp is a finer semantic equivalence

than ≡caus and ≈h. This characterisation could have been presented as the original def-

inition; however, the latter is instrumental in showing that ↔sp is coarser than ≈pb and

≡occ, and implied by Olderog’s strong bisimilarity.

20 R.J. van Glabbeek

Definition 9. A process-based sp-bisimulation between two nets N1 and N2 is a set R

of triples (ρ1,N, ρ2) with (N, ρi) a finite process of Ni, for i= 1, 2, such that

– R contains a triple (ρ1,N, ρ2) with N a causal net containing no transitions,

– if (ρ1,N, ρ2)∈R and (N
′
, ρ′i) with i∈{1, 2} is a fin. proc. of Ni extending (N, ρi)

then Nj with j :=3−i has a process (N
′
, ρ′j) ≥ (N, ρj) such that (ρ′1,N

′
, ρ′2) ∈ R.

Theorem 3. Two nets are sp-bisimilar iff there exists a process-based sp-bisimulation

between them.

Proof. Let R be a process-based sp-bisimulation between nets N1 and N2. Define

B := {{(ρ1(s), ρ2(s)) | s ∈ N
◦
} | (ρ1,N, ρ2) ∈ R}. Then B is an sp-bisimulation:

– Let c ≤ l ∈ B and π1(c) = •t1 for t1 ∈ T1. Then l = {(ρ1(s), ρ2(s) | s ∈ N
◦
}

for some (ρ1,N, ρ2) ∈ R. Extend N to N
′

by adding a fresh transition t and fresh

places si for s ∈ S1 and i ∈ IN with F1(t1, s) > i; let •
t = {s ∈ N

◦
| ρ1(s) ∈ •t1}

and t
• = {si | s ∈ S1 ∧ i ∈ IN∧F1(t1, s) > i}. Furthermore, extend ρ1 to ρ′1 by

ρ′1(t) := t1 and ρ′1(si) := s. Then •ρ′1(t) =
•t1 = ρ′1(

•
t) and ρ′1(t)

•
= t1

• = ρ′1(t
•),

so (N
′
, ρ′1) is a process of N1, extending (N, ρ1). Since R is a process-based sp-

bisimulation, N2 has a process (N
′
, ρ′2) ≥ (N, ρ2) such that (ρ′1,N

′
, ρ′2) ∈ R.

Take t2 := ρ′2(t). Then ℓ2(t2) = ℓN(t) = ℓ1(t1) and c = {(ρ1(s), ρ2(s) | s ∈
•
t},

so π2(c) = {ρ2(s) | s ∈ •
t} = ρ2(

•
t) = ρ′2(

•
t) =

•
ρ′2(t) = •t2. Take c′ :=

{(ρ′1(s), ρ
′
2(s)) | s ∈ t

•}. Then π1(c
′) = t1

•, π2(c
′) = t2

• and l′ := l − c + c′ =

{(ρ′1(s), ρ
′
2(s)) | s ∈ N

◦
−•

t+t
•} = {(ρ′1(s), ρ

′
2(s)) | s ∈ N

′◦
} ∈ B.

– The other clause follows by symmetry.

Since R contains a triple (ρ1,N, ρ2) with N a causal net containing no transitions, B

contains a linking l := {(ρ1(s), ρ2(s)) | s ∈ N
◦

such that πi(l) = ρi(N
◦
) = Mi for

i = 1, 2, where Mi is the initial marking of Ni. Since (N, ρi) is a process of Ni, Ni

must have the the same type as N, for i= 1, 2. It follows that N1 ↔sp N2.

Now let B be an sp-bisimulation between nets N1 and N2. Let R := {(ρ1,N, ρ2) |
(N, ρi) is a finite process of Ni (i = 1, 2) and {(ρ1(s), ρ2(s)) | s ∈ N

◦
} ∈ B}. Then

R is a process-based sp-bisimulation.

– B must contain a linking l with πi(l) = Mi for i = 1, 2, where Mi is the initial

marking of Ni; let l = {(sk1 , s
k
2) | k ∈ K}. Let N be a causal net with places sk

for k ∈K and no transitions, and define ρi for i= 1, 2 by ρi(s
k) = ski for k ∈K .

Then (N, ρi) is an initial process of Ni (i= 1, 2) and (ρ1,N, ρ2) ∈ R.

– Suppose (ρ1,N, ρ2) ∈ R and (N
′
, ρ′1) is a finite process of N1 extending (N, ρ1).

(The case of a finite process of N2 extending (N, ρ1) will follow by symmetry.)

Then l := {(ρ1(s), ρ2(s)) | s∈N
◦
}∈B. Without loss of generality, I may assume

thatN
′
extendsN by just one transition, t. The definition of a causal net ensures that

•
t ⊆ N

◦
, and the definition of a process gives ρ′1(

•
t) = •t1, where t1 := ρ′1(t). Let

c := {(ρ1(s), ρ2(s)) | s ∈
•
t}. Then c ≤ l and π1(c)=ρ1(

•
t)=ρ′1(

•
t)= •t1. Since

B is an sp-bisimulation, there are a transition t2 with ℓ(t2)= ℓ(t1) and π2(c)=
•t2,

and a linking c′ such that π1(c
′) = t1

•, π2(c
′) = t2

• and l′ := l − c + c′ ∈ B.

The definition of a process gives ρ′1(t
•) = t1

•. This makes it possible to extend

ρ2 to ρ′2 so that ρ′2(t) := t2, ρ′2(t
•) = t2

• and c′ = {(ρ′1(s), ρ
′
2(s)) | s ∈ t

•}.

Moreover, ρ′2(
•
t) = ρ2(

•
t) = π2(c) =

•t2. Thus (N
′
, ρ′2) is a finite process of N2

extending (N, ρ2). Furthermore, {(ρ′1(s), ρ
′
2(s)) | s ∈ N

′◦
} = {(ρ′1(s), ρ

′
2(s)) |

s ∈ N
◦
− •

t+ t
•} = l − c+ c′ ∈ B. Hence (ρ′1,N

′
, ρ′2) ∈ R. ⊓⊔

Structure Preserving Bisimilarity 21

10 Relating sp-bisimilarity to other semantic equivalences

In this section I place sp-bisimilarity in the spectrum of existing semantic equivalences

for nets, as indicated in Figure 1.

10.1 Place bisimilarity

The notion of a place bisimulation, defined in [1], can be reformulated as follows.

Definition 10. A place bisimulation is a structure preserving bisimulation of the form

B (where B is defined in Section 5). Two nets Ni = (Si, Ti, Fi,Mi, Ai, ℓi) (i=1, 2) are

strongly bisimilar, notation N1 ≈pb N2, if A1 = A2 and there is a linking l in a place

bisimulation with M1 = π1(l) and M2 = π2(l).

It follows that ≈pb is finer than ↔sp, in the sense that place bisimilarity of two nets

implies their structure preserving bisimilarity.

10.2 Occurrence net equivalence

Definitions of the unfolding for various classes of Petri nets into an occurrence net

appear in [25,35,36,16,7,23,12]—I will not repeat them here. In all these cases, the

definition directly implies that if an occurrence net N results from unfolding a net N
then N is safe and there exists a folding of N into N (recall Definition 6) satisfying

– if M is a reachable marking of N, and t ∈ T is a transition of N with •t ≤ ρ(M)
then there is a t ∈ T with ρ(t) = t.

Proposition 5. If such a folding from N to N exists, then N ↔sp N .

Proof. The set of linkings B := {{(s, ρ(s)) | s ∈M} | M a reachable marking of N}
is an sp-bisimulation between N and N . Checking this is trivial. ⊓⊔

Two nets N1 and N2 are occurrence net equivalent [16] if they have isomorphic unfold-

ings. Since isomorphic nets are strongly bisimilar [27] and hence structure preserving

bisimilar, it follows that occurrence net equivalence between nets is finer than structure

preserving bisimilarity.

In [1] it is pointed out that the strong bisimilarity of Olderog “is not compatible with

unfoldings”: they show two nets that have isomorphic unfoldings, yet are not strongly

bisimilar. However, when the net N is safe, the sp-bisimulation displayed in the proof of

Proposition 5 is in fact a strong bisimulation, showing that each net is strongly bisimilar

with its unfolding. This is compatible with the observation of [1] because of the non-

transitivity of strong bisimilarity.

22 R.J. van Glabbeek

10.3 Causal equivalence

Causal equivalence is coarser than structure preserving bisimilarity.

Theorem 4. If N1 ↔sp N2 for nets N1 and N2, then N1 ≡caus N2.

Proof. By Theorem 3 there exists a process-based sp-bisimulation R between N1 and

N2. R must contain a triple (ρ01,N
0
, ρ02) with N

0
a causal net containing no transitions.

So (N
0
, ρ01) and (N

0
, ρ02) are initial processes of N1 and N2, respectively. The net N

0

contains isolated places only, as many as the size of the initial markings of N1 and N2.

Let N be a causal net of N1. I have to prove that N is also a causal net of N2.

Without loss of generality I may assume that N
0

is a prefix of N, as being a causal net

of a given Petri net is invariant under renaming of its places and transitions.

So N1 has a process P1 = (N, ρ1). By Proposition 4, P1 is the limit of a chain

P
0
1 ≤P

1
1 ≤P

2
1 ≤ . . . of finite processes of N1. Moreover, for P

0
1 one can take (N

0
, ρ01).

Let P
i
1 = (N

i
, ρi1) for i∈ IN. By induction on i∈ IN, it now follows from the properties

of a process-based sp-bisimulation that N2 has processes P
i+1
2 = (N

i+1
, ρi+1

2), such

that (N
i
, ρi2)≤ (N

i+1
, ρi+1

2) and (ρi+1
1 ,N

i+1
, ρi+1

2)∈R. Using Proposition 3, the limit

P2 = (N, ρ2) of this chain is a process of N2, contributing the causal net N. ⊓⊔

10.4 History preserving bisimilarity

The notion of history preserving bisimilarity was originally proposed in [32] under

the name behavior structure bisimilarity, studied on event structures in [13], and first

defined on Petri nets, under to the individual token interpretation, in [2], under the name

fully concurrent bisimulation equivalence.

Definition 11. [2] Let Ni = (Si,Ti,Fi,M0i,Ai, ℓi) (i= 1, 2) be two causal nets. An

order-isomorphism between them is a bijection β : T1 → T2 such that A1 = A2,

ℓ2(β(t)) = ℓ1(t) for all t ∈ T1, and t F
+
1 u iff β(t) F

+
2 β(u) for all t, u ∈ T1.

Definition 12. [2] A fully concurrent bisimulation between two nets N1 and N2 is a

set R of triples ((ρ1,N1), β, (N2, ρ2)) with (Ni, ρi) a finite process of Ni, for i=1, 2,

and β an order-isomorphism between N1 and N2, such that

– R contains a triple ((ρ1,N1), β, (N2, ρ2)) with N1 containing no transitions,

– if (P1, β,P2)∈R and P
′
i with i∈{1, 2} is a fin. proc. of Ni extending Pi, then Nj

with j := 3−i has a process P
′
j ≥ Pj such that (P

′
1, β

′,P
′
2) ∈ R for some β′ ⊇ β.

Write N1 ≈h N2 or N1 ≈fcb N2 iff such a bisimulation exists.

It follows immediately from the process-based characterisation of sp-bisimilarity in

Section 9 that fully concurrent bisimilarity (or history preserving bisimilarity based on

the individual token interpretation of nets) is coarser than sp-bisimilarity.

Theorem 5. If N1 ↔sp N2 for nets N1 and N2, then N1 ≈fcb N2.

Proof. A process-based sp-bisimulation is simply a fully concurrent bisimulation with

the extra requirement that β must be the identity relation. ⊓⊔

Structure Preserving Bisimilarity 23

11 Inevitability for non-reactive systems

A run or execution of a system modelled as Petri net N can be formalised as a path of

N (defined in Section 3) or a process of N (defined in Section 8). A path or process

representing a complete run of the represented system—one that is not just the first

part of a larger run—is sometimes called a complete path or process. Once a formal

definition of a complete path or process is agreed upon, an action b is inevitable in a net

N iff each complete path (or each complete process) of N contains a transition labelled

b. In case completeness is defined both for paths and processes, the definitions ought to

be such that they give rise to the same concept of inevitability.

The definition of which paths or processes count as being complete depends on

two factors: (1) whether actions that a net can perform by firing a transition are fully

under control of the represented system itself or (also) of the environment in which it

will be running, and (2) what type of progress or fairness assumption one postulates to

guarantee that actions that are due to occur will actually happen. In order to address (2)

first, in this section I deal only with nets in which all activity is fully under control of the

represented system. In Section 14 I will generalise the conclusions to reactive systems.

When making no progress or fairness assumptions, a system always has the option

not to progress further, and all paths and all processes are complete—in particular initial

paths and processes, containing no transitions. Consequently, no action is inevitable in

any net, so each semantic equivalence respects inevitability.

When assuming progress, but not justness or fairness, any infinite path or process is

complete, and a finite path or process is complete iff it is maximal, in the sense that it has

no proper extension. In this setting, interleaving bisimilarity, and hence also each finer

equivalence, respects inevitability. The argument is that an interleaving bisimulation

induces a relation between the paths of two related nets N1 and N2, such that

– each path of N1 is related to a path of N2 and vice versa,

– if two paths are related, either both or neither contain a transition labelled b,
– if two paths are related, either both or neither of them are complete.

In the rest of this paper I will assume justness, and hence also progress, but not

(weak or strong) fairness, as explained in Section 1.4. In this setting a process is just or

complete4 iff it is maximal, in the sense that it has no proper extension.

•• a

ta
b

tb
•

Example 3. The net depicted on the right has a

complete process performing the action a infinitely

often, but never the action b. It consumes each to-

ken that is initially present or stems from any firing of the transition ta. Hence b is not

inevitable. This fits with the intuition that if a transition occurrence is perpetually en-

abled it will eventually happen—but only when strictly adhering to the individual token

interpretation of nets. Under this interpretation, each firing of tb using a particular token

is a different transition occurrence. It is possible to schedule an infinite sequence of as

in such a way that none such transition occurrence is perpetually enabled from some

point onwards.

4 The term “complete” is meant to vary with the choice of a progress or fairness assumption;

when assuming only justness, it is set to the value “just”.

24 R.J. van Glabbeek

When adhering to the collective token interpretation of nets, the action b could be

considered inevitable, as in any execution scheduling as only, transition tb is perpetually

enabled. Since my structure preserving bisimulation fits within the individual token

interpretation, here one either should adhere to that interpretation, or restrict attention

to safe nets, where there is no difference between both interpretations.

12 History preserving bisimilarity does not respect inevitability

•
s0

•
s4

•
s20

atr1 •
s30

a tl1•
s10

b

tb1

s21

atr2 •
s31

a tl2•
s11

b

tb2

s22

.

.

.

.

.

.

Fig. 5. A net in which the action b is not inevitable

Consider the safe net N1 depicted in Figure 5, and the net N2 obtained from N1 by

exchanging for any transition tbi (i>0) the preplace s1i−1 for s4. The net N2 performs in

parallel an infinite sequence of a-transitions (where at each step i>0 there is a choice

between tli and tri) and a single b-transition (where there is a choice between tbi for i>0).

In N2 the action b is inevitable. In N1, on the other hand, b is not inevitable, for the run

of N1 in which tli is chosen over tri for all i>0 is complete, and cannot be extended

which a b-transition. Thus, each semantic equivalence that equates N1 and N2 fails to

respect inevitability.

Theorem 6. Causal equivalence does not respect inevitability.

Proof. N1 ≡caus N2, because both nets have the same causal nets. One of these nets is

depicted in Figure 6; the others are obtained by omitting the b-transition, and/or omitting

all but a finite prefix of the a-transitions. ⊓⊔

Structure Preserving Bisimilarity 25

• •

b

•

a

•

•

a

•

•

. . .

Fig. 6. A causal net of N1 and N2

Theorem 7. History preserving bisimilarity does not respect inevitability.

Proof. Recall that N1 and N2 differ only in their flow relations, and have the same set

of transitions. I need to describe a fully concurrent bisimulation R between N1 and N2.

R consists of a set of triples, each consisting of a process of N1, a related process of

N2, and an order isomorphism between them. First of all I include all triples (P1, β,P2)
where P1 is an arbitrary process of N1, P2 is the unique process of N2 that induces the

same set of transitions as P1, and β relates transition of P1 and P2 when they map

to the same transition of Ni (i=1, 2). Secondly, I include all triples (P1, β,P2) where

P2 is an arbitrary process of N2 inducing both tbk and tlk for some k>0, and P1 is

any process of N1 that induces the same transitions as P2 except that, for some h≥k
the induced transition tlh, if present, is replaced by trh, and tbk is replaced by tbh. (β
should be obvious.) It is trivial to check that the resulting relation is a fully concurrent

bisimulation indeed. ⊓⊔

13 Structure preserving bisimilarity respects inevitability

Definition 13. A net N is called a complete causal net of a net N if it is the first com-

ponent of a maximal process (N, ρ) of N . Two nets N1 and N2 are complete causal net

equivalent, notation ≡cc , if they have the same complete causal nets.

Since the causal nets of a net N are completely determined by the complete causal

nets of N , namely as their prefixes, N1 ≡cc N2 implies N1 ≡caus. N2. It follows

immediately from the definition of inevitability that ≡cc respects inevitability. Thus, to

prove that ↔sp respects inevitability it suffices to show that ↔sp is finer than ≡cc .

Theorem 8. If N1 ↔sp N2 for nets N1 and N2, then N1 ≡cc N2.

Proof. Suppose N1↔spN2. By Theorem 3 there exists a process-based sp-bisimulation

R between N1 and N2. R must contain a triple (ρ01,N
0
, ρ02) with N

0
a causal net

containing no transitions. So (N
0
, ρ01) and (N

0
, ρ02) are initial processes of N1 and N2,

respectively. The net N
0

contains isolated places only.

Let N be a complete causal net of N1. I have to prove that N is also a complete

causal net of N2. Without loss of generality I may assume that N
0

is a prefix of N, as

being a complete causal net of a given Petri net is invariant under renaming of its places.

So N1 has a complete process P1 = (N, ρ1). By Proposition 4, P1 is the limit

of a chain P
0
1 ≤ P

1
1 ≤ P

2
1 ≤ . . . of finite processes of N1. Moreover, for P

0
1 one

26 R.J. van Glabbeek

can take (N
0
, ρ01). Let P

i
1 = (N

i
, ρi1) for i ∈ IN. By induction on i ∈ IN, it now fol-

lows from the properties of a process-based sp-bisimulation that N2 has processes

P
i+1
2 = (N

i+1
, ρi+1

2), such that (N
i
, ρi2) ≤ (N

i+1
, ρi+1

2) and (ρi+1
1 ,N

i+1
, ρi+1

2) ∈ R.

Using Proposition 3, the limit P2 = (N, ρ2) of this chain is a process of N2. It remains

to show that P2 is complete.

Towards a contradiction, let P2u = (Nu, ρ2u) be a proper extension of P2, say with

just one transition, u. Then •u ⊆ N
◦
. By the third requirement on occurrence nets of

Definition 6, their are only finitely many transitions t with (t, u) ∈ F
+
2u. Hence one

of the finite approximations N
k

of N contains all these transitions. So •u ⊆ (N
k
)◦.

Let, for all i ≥ k, P
i
2u = (N

i
u, ρ

i
2u) be the finite prefix of P2u that extends P

i
2 with

the single transition u. Then P
i
2u ≤ P

i+1
2u for all i ≥ k, and the limit of the chain

P
k
2u ≤P

k+1
2u ≤ . . . is P2u. By induction on i∈ IN, it now follows from the properties of

a process-based sp-bisimulation that N1 has processes P
i
1u = (N

i
u, ρ

i
1u) for all i ≥ k,

such that (ρi1u,N
i
u, ρ

i
2u) ∈ R, (N

k
, ρk1) ≤ (N

k
u, ρ

k
1u) and (N

i
u, ρ

i
1u) ≤ (N

i+1
u , ρi+1

1u).
Using Proposition 3, the limit P1u = (Nu, ρ1u) of this chain is a process of N1. It

extends P1 with the single transition u, contradicting the maximality of P1. ⊓⊔

14 Inevitability for reactive systems

In the modelling of reactive systems, an action performed by a net is typically a syn-

chronisation between the net itself and its environment. Such an action can take place

only when the net is ready to perform it, as well as its environment. In this setting, an ad-

equate formalisation of the concepts of justness and inevitability requires keeping track

of the set of actions that from some point onwards are blocked by the environment—e.g.

because the environment is not ready to partake in the synchronisation. Such actions are

not required to occur eventually, even when they are perpetually enabled by the net it-

self. Let’s speak of a Y -environment if Y is this set of actions. In Section 11 I restricted

attention to ∅-environments, in which an action can happen as soon as it is enabled

by the net in question. In [15] a path is called Y -just iff, when assuming justness, it

models a complete run of the represented system in a Y -environment. The below is a

formalisation for this concept for Petri nets under the individual token interpretation.

Definition 14. A process of a net is Y -just or Y -complete it each of its proper exten-

sions adds a transition with a label in Y .

Note that a just or complete process as defined in Section 11 is a ∅-just or ∅-complete

process. In applications there often is a subset of actions that are known to be fully

controlled by the system under consideration, and not by its environment. Such actions

are often called non-blocking. A typical example from process algebra [24] is the inter-

nal action τ . In such a setting, Y -environments exists only for sets of actions Y ⊆ C ,

where C is the set of all non-non-blocking actions.

A process of a net is complete if it models a complete run of the represented system

in some environment. This is the case iff it is Y -complete for some set Y ⊆ C , which

is the case iff it is C -complete.

In [34], non-blocking is a property of transitions rather than actions, and non-

blocking transitions are called hot. Transitions that are not hot are cold, which inspired

Structure Preserving Bisimilarity 27

my choice of the latter C above. In this setting, a process P = (N, ρ) is complete iff

the marking ρ(N
◦
) enables cold transitions only [34].

Definition 15. A action b is Y -inevitable in a net if each Y -complete process contains

a transition labelled b. A semantic equivalence ≈ respects Y -inevitability if whenever

N1 ≈ N2 and b is Y -inevitable in N1, then b is Y -inevitable in N2. It respects in-

evitability iff it respects Y -inevitability for each Y ⊆ C .

In Section 12 it is shown that ≡caus and ≈h do not respect ∅-inevitability. From this

it follows that they do not respect inevitability. In Section 13 it is shown that ↔sp

does respect ∅-inevitability. By means of a trivial adaptation the same proof shows that
↔sp respects Y -inevitability, for arbitrary Y . All that is needed is to assume that the

transition u in that proof has a label /∈ Y . Thus ↔sp respects inevitability.

15 Conclusion

This paper proposes a novel semantic equivalence for current systems represented as

Petri nets: structure preserving bisimilarity. As a major application—the one that in-

spired this work—it is used to establish the agreement between the operational Petri net

semantics of the process algebra CCSP as proposed by Olderog, and its denotational

counterpart. An earlier semantic relation used for this purpose was Olderog’s strong

bisimilarity on safe Petri nets, but that relation failed to be transitive. I hereby conjec-

ture that on the subclass of occurrence nets, strong bisimilarity and structure preserving

bisimilarity coincide. If this it true, it follows, together with the observations of Sec-

tion 6 that strong bisimilarity is included in structure preserving bisimilarity, and of

Section 10.2 that each safe net is strongly bisimilar with its unfolding into an occur-

rence net, that on safe nets structure preserving bisimilarity is the transitive closure of

strong bisimilarity.

Section 1.2 proposes nine requirements on a semantic equivalence that is used for

purposes like the one above. I have shown that structure preserving bisimilarity meets

eight of these requirements and conjecture that it meets the remaining one as well.

– It meets Requirement 1, that it respects branching time, as a consequence of Theo-

rem 5, saying that it is finer than history preserving bisimilarity, which is known to

be finer than interleaving bisimilarity.
– It meets Requirement 2, that it fully captures causality and concurrency (and their

interplay with branching time),5 also as a consequence of Theorem 5.
– It meets Requirement 3, that it respects inevitability (under the standard interpreta-

tion of Petri nets that assumes justness but not fairness),5 as shown in Section 13.
– It meets Requirement 4, that it is real-time consistent, as a result of Theorem 5.
– I conjecture that it meets Requirement 5, that it is preserved under action refinement.
– It meets Requirement 6, that it is finer than causal equivalence, by Theorem 4.
– It meets Requirement 7, that it is coarser than ≡occ, as shown in Section 10.2.
– It meets Requirement 8, that it is a congruence for the CCSP operators, by Thm. 2.
– It meets Requirement 9, that it allows to establish agreement between the opera-

tional and denotational interpretations of CCSP operators, since it is coarser than

Olderog’s strong bisimilarity, as shown in Section 6.

5 when taking the individual token interpretation of nets, or restricting attention to safe ones

28 R.J. van Glabbeek

Moreover, structure preserving bisimilarity is the first known equivalence that meets

these requirements. In fact, it is the first that meets the key Requirements 3, 4, 7 and 9.

Acknowledgement My thanks to Ursula Goltz for proofreading and valuable feedback.

References

1. C. Autant, Z. Belmesk & P. Schnoebelen (1991): Strong Bisimilarity on Nets Revisited. In

E.H.L. Aarts, J. van Leeuwen & M. Rem, editors: Proc. PARLE ’91, Eindhoven, The Nether-

lands, 1991, LNCS 506, Springer, pp. 295–312, doi:10.1007/3-540-54152-7_71.

2. E. Best, R. Devillers, A. Kiehn & L. Pomello (1991): Concurrent Bisimulations in Petri nets.

Acta Informatica 28, pp. 231–264, doi:10.1007/BF01178506.

3. S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential

processes. Journal of the ACM 31(3), pp. 560–599, doi:10.1145/828.833.

4. L. Castellano, G. De Michelis & L. Pomello (1987): Concurrency vs interleaving: an in-

structive example. Bulletin of the EATCS 31, pp. 12–15.

5. P. Degano, R. De Nicola & U. Montanari (1987): CCS is an (Augmented) Contact Free C/E

System. In M.V. Zilli, editor: Mathematical Models for the Semantics of Parallelism, LNCS

280, Springer, pp. 144–165, doi:10.1007/3-540-18419-8_13.

6. E.A. Emerson & E.M. Clarke (1982): Using Branching Time Temporal Logic to Synthesize

Synchronization Skeletons. Science of Computer Programming 2(3), pp. 241–266, doi:10.

1016/0167-6423(83)90017-5.

7. J. Engelfriet (1991): Branching Processes of Petri Nets. Acta Informatica 28(6), pp. 575–

591, doi:10.1007/BF01463946.

8. A. Fehnker, R.J. van Glabbeek, P. Höfner, A.K. McIver, M. Portmann & W.L. Tan (2013):

A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing

AODV. Technical Report 5513, NICTA, Sydney, Australia. Available at http://arxiv.

org/abs/1312.7645.

9. H. Genrich & E. Stankiewicz-Wiechno (1980): A Dictionary of Some Basic Notions of Net

Theory. In W. Brauer, editor: Advanced Course: Net Theory and Applications, LNCS 84,

Springer, pp. 519–531, doi:10.1007/3-540-10001-6_39.

10. R.J. van Glabbeek (1990): The refinement theorem for ST-bisimulation semantics. In M. Broy

& C.B. Jones, editors: Proceedings IFIP TC2 Working Conference on Programming Con-

cepts and Methods, Sea of Gallilee, Israel, April 1990, North-Holland, pp. 27–52.

11. R.J. van Glabbeek (2001): The Linear Time – Branching Time Spectrum I; The Seman-

tics of Concrete, Sequential Processes. In J.A. Bergstra, A. Ponse & S.A. Smolka,

editors: Handbook of Process Algebra, chapter 1, Elsevier, pp. 3–99, doi:10.1016/

B978-044482830-9/50019-9.

12. R.J. van Glabbeek (2005): The Individual and Collective Token Interpretations of Petri Nets.

In M. Abadi & L. de Alfaro, editors: Proc. CONCUR 2005, San Francisco, USA, August

2005, LNCS 3653, Springer, pp. 323–337, doi:10.1007/11539452_26.

13. R.J. van Glabbeek & U. Goltz (2001): Refinement of Actions and Equivalence Notions for

Concurrent Systems. Acta Informatica 37, pp. 229–327, doi:10.1007/s002360000041.

14. R.J. van Glabbeek & P. Höfner (2015): CCS: It’s not fair! Acta Informatica 52(2-3), pp.

175–205, doi:10.1007/s00236-015-0221-6.

15. R.J. van Glabbeek & P. Höfner (2015): Progress, Fairness and Justness in Process Algebra.

Available at http://arxiv.org/abs/1501.03268.

16. R.J. van Glabbeek & F.W. Vaandrager (1987): Petri net models for algebraic theories of

concurrency (extended abstract). In J.W. de Bakker, A.J. Nijman & P.C. Treleaven, editors:

Proc. PARLE, LNCS 259, Springer, pp. 224–242, doi:10.1007/3-540-17945-3_13.

http://dx.doi.org/10.1007/3-540-54152-7_71
http://dx.doi.org/10.1007/BF01178506
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1007/3-540-18419-8_13
http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1007/BF01463946
http://arxiv.org/abs/1312.7645
http://arxiv.org/abs/1312.7645
http://dx.doi.org/10.1007/3-540-10001-6_39
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1007/11539452_26
http://dx.doi.org/10.1007/s002360000041
http://dx.doi.org/10.1007/s00236-015-0221-6
http://arxiv.org/abs/1501.03268
http://dx.doi.org/10.1007/3-540-17945-3_13

Structure Preserving Bisimilarity 29

17. R.J. van Glabbeek & F.W. Vaandrager (1997): The Difference Between Splitting in n and

n+1. Information and Comput. 136(2), pp. 109–142, doi:10.1006/inco.1997.2634.
18. U. Goltz & A. Mycroft (1984): On the relationship of CCS and Petri nets. In J. Paredaens,

editor: Proceedings 11
th ICALP, Antwerpen, LNCS 172, Springer, pp. 196–208, doi:10.

1007/3-540-13345-3_18.
19. U. Goltz & W. Reisig (1983): The Non-Sequential Behaviour of Petri Nets. Information and

Control 57(2-3), pp. 125–147, doi:10.1016/S0019-9958(83)80040-0.
20. C.A.R. Hoare (1985): Communicating Sequential Processes.Prentice Hall,Englewood Cliffs.
21. R. Loogen & U. Goltz (1991): Modelling nondeterministic concurrent processes with event

structures. Fundamenta Informaticae 14(1), pp. 39–74.
22. A.W. Mazurkiewicz, E. Ochmanski & W. Penczek (1989): Concurrent Systems and In-

evitability. TCS 64(3), pp. 281–304, doi:10.1016/0304-3975(89)90052-2.
23. J. Meseguer, U. Montanari & V. Sassone (1997): On the semantics of place/transition Petri

nets. Mathematical Structures in Computer Science 7(4), pp. 359–397, doi:10.1017/

S0960129597002314.
24. R. Milner (1990): Operational and algebraic semantics of concurrent processes. In J. van

Leeuwen, editor: Handbook of Theoretical Computer Science, chapter 19, Elsevier Sci-

ence Publishers B.V. (North-Holland), pp. 1201–1242. Alternatively see Communication

and Concurrency, Prentice-Hall, Englewood Cliffs, 1989, of which an earlier version ap-

peared as A Calculus of Communicating Systems, LNCS 92, Springer, 1980, doi:10.1007/

3-540-10235-3.
25. M. Nielsen, G.D. Plotkin & G. Winskel (1981): Petri nets, event structures and domains,

part I. TCS 13(1), pp. 85–108, doi:10.1016/0304-3975(81)90112-2.
26. E.-R. Olderog (1987): Operational Petri net semantics for CCSP. In G. Rozenberg, editor:

Advances in Petri Nets 1987, covers the 7th European Workshop on Applications and Theory

of Petri Nets, Oxford, UK, June 1986, LNCS 266, Springer, pp. 196–223, doi:10.1007/

3-540-18086-9_27.
27. E.-R. Olderog (1991): Nets, Terms and Formulas: Three Views of Concurrent Processes and

their Relationship. Cambridge Tracts in Theor. Comp. Sc. 23, Cambridge University Press.
28. E.-R. Olderog & C.A.R. Hoare (1986): Specification-oriented semantics for communicating

processes. Acta Informatica 23, pp. 9–66, doi:10.1007/BF00268075.
29. C.A. Petri (1977): Non-sequential processes. Internal Report GMD-ISF-77.05, GMD, St.

Augustin.
30. G.D. Plotkin (2004): A Structural Approach to Operational Semantics. The Journal of Logic

and Algebraic Programming 60–61, pp. 17–139, doi:10.1016/j.jlap.2004.05.001.

Originally appeared in 1981.
31. A. Pnueli (1977): The Temporal Logic of Programs. In: Foundations of Computer Science

(FOCS ’77), IEEE, pp. 46–57, doi:10.1109/SFCS.1977.32.
32. A. Rabinovich & B.A. Trakhtenbrot (1988): Behavior Structures and Nets. Fundamenta

Informaticae 11(4), pp. 357–404.
33. W. Reisig (1985): Petri nets – an introduction. EATCS Monographs on Theoretical Com-

puter Science, Volume 4, Springer, doi:10.1007/978-3-642-69968-9.
34. W. Reisig (2013): Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case

Studies. Springer, doi:10.1007/978-3-642-33278-4.
35. G. Winskel (1984): A new definition of morphism on Petri nets. In M. Fontet &

K. Mehlhorn, editors: Proceedings STACS 84, LNCS 166, Springer, pp. 140–150, doi:10.

1007/3-540-12920-0_13.
36. G. Winskel (1987): Event structures. In W. Brauer, W. Reisig & G. Rozenberg, editors: Petri

Nets: Applications and Relationships to Other Models of Concurrency, Advances in Petri

Nets 1986, Part II; Proceedings of an Advanced Course, Good Honnef, September 1986,

LNCS 255, Springer, pp. 325–392, doi:10.1007/3-540-17906-2_31.

http://dx.doi.org/10.1006/inco.1997.2634
http://dx.doi.org/10.1007/3-540-13345-3_18
http://dx.doi.org/10.1007/3-540-13345-3_18
http://dx.doi.org/10.1016/S0019-9958(83)80040-0
http://dx.doi.org/10.1016/0304-3975(89)90052-2
http://dx.doi.org/10.1017/S0960129597002314
http://dx.doi.org/10.1017/S0960129597002314
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1016/0304-3975(81)90112-2
http://dx.doi.org/10.1007/3-540-18086-9_27
http://dx.doi.org/10.1007/3-540-18086-9_27
http://dx.doi.org/10.1007/BF00268075
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/978-3-642-69968-9
http://dx.doi.org/10.1007/978-3-642-33278-4
http://dx.doi.org/10.1007/3-540-12920-0_13
http://dx.doi.org/10.1007/3-540-12920-0_13
http://dx.doi.org/10.1007/3-540-17906-2_31

	Structure Preserving Bisimilarity, Supporting an Operational Petri Net Semantics of CCSP

