
Formal Analysis of Proactive, Distributed
Routing

Mojgan Kamali1, Peter Höfner2,3, Maryam Kamali4, and Luigia Petre1

1 Åbo Akademi University, Finland
2 NICTA, Australia

3 University of New South Wales, Australia
4 University of Liverpool, UK

Abstract. As (network) software is such an omnipresent component of
contemporary mission-critical systems, formal analysis is required to pro-
vide the necessary certification or at least formal assurances for these sys-
tems. In this paper we focus on modelling and analysing the Optimised
Link State Routing (OLSR) protocol, a distributed, proactive routing
protocol. It is recognised as one of the standard ad-hoc routing protocols
for Wireless Mesh Networks (WMNs). WMNs are instrumental in crit-
ical systems, such as emergency response networks and smart electrical
grids. We use the model checker Uppaal for analysing safety properties
of OLSR as well as to point out a case of OLSR malfunctioning.

1 Introduction

Routing is at the centre of network communication, which in turn, is part of
the backbone for numerous safety-critical systems. Examples are networks for
telecommunication systems, for emergency response, or for electrical smart grids.
In these and other examples, the communication is often truly distributed, with-
out depending on any central entity (router) for coordination. Another important
characteristics of these networks is that the network topology can change: in the
case of emergency networks nodes might just fail; in case of telecommunication
systems nodes such as laptops and mobile phones can move within the network,
and even enter or leave a network. In this paper we focus on distributed routing
mechanisms in such wireless networks; due to their wide-spread usage in critical
systems, we aim at a formal model, which paves the way for a formal analysis.

A routing protocol enables node communication in a network by dissemi-
nating information enabling the selection of routes. In this way, nodes are able
to send data packets to arbitrary (previously unknown) destinations in the net-
work. Shortcomings in the routing protocol immediately decrease the perfor-
mance and reliability of the entire network. Due to the possibility of topology
changes information has to constantly be updated to maintain the latest routing
information within the network. In this paper we focus on such self-organising
wireless multi-hop networks which provide support for communication without
relying on a wired infrastructure. They bear the benefit of rapid and low-cost
network deployment. The Optimised Link State Routing (OLSR) protocol [4], a
proactive routing protocol, is identified as one of the standard routing protocol



for Wireless Mesh Networks (WMNs) by the IETF MANET working group.5

By distributing control messages throughout the network, proactive protocols
maintain a list of all destinations together with routes to them.

Traditionally, common methods used to evaluate and validate network pro-
tocols are test-bed experiments and simulation in ‘living lab’ conditions. Such
an analysis is usually limited to very few topologies [7]. In such experiments not
only the routing protocol is simulated, but also all other layers of the network
stack. When a shortcoming is found, it is therefore often unclear whether the
limitation is a consequence of the routing protocol chosen, or of another layer,
such as the underlying link layer. In this paper, we abstract from the underly-
ing link layer; hence a shortcoming found is definitely a problem of the routing
protocol.

Another problem with specifications in general and with the description of
OLSR in particular is that specifications are usually given in English prose.
Although this makes them easy to understand, it is well known that textual
descriptions contain ambiguities, contradictions and often lack specific details. As
a consequence, this might yield different interpretations of the same specification
and to different implementations [9]. In the worst case, implementations of the
same routing protocol are incompatible.

One approach to address these problems is using formal methods in general
and model checking in particular. Formal methods provide valuable tools for the
design, evaluation, and verification of WMN routing protocols; they complement
alternatives such as test-bed experiments and simulation. These methods have
a great potential on improving the correctness and precision of design and de-
velopment, as they produce reliable results. Formal methods allow the formal
specification of routing protocols and the verification of the desired behaviour
by applying mathematics and logics [3]. In this way, stronger and more general
assurances about protocol behaviour can be achieved.

In this paper we present a concise and unambiguous model for the OLSR
protocol. The model is based on extended timed automata as they are used by
the model checker Uppaal. As a consequence we report also on results of applying
model checking techniques to explore the behaviour of OLSR. Model checking
(e.g. [3]) is a powerful approach used for validating key correctness properties in
finite representations of a formal system model.

The paper is structured as follows: in Section 2, we overview the OLSR
protocol and in Section 3 we shortly discuss the Uppaal model of OLSR based
on RFC 3626 [4]. Section 4 is the core of our paper where we present the results
of our analysis. We review related work in Section 5 and propose future research
directions in Section 6.

2 Optimized Link State Routing—An Overview

The Optimised Link State Routing (OLSR) protocol [4] is a proactive routing
protocol particularly designed for Wireless Mesh Networks (WMNs) and Mobile

5 http://datatracker.ietf.org/wg/manet/charter/



Ad hoc Networks (MANETs). The proactive nature of OLSR implies the benefit
of having the routes available at time needed. The underlying mechanism of this
protocol consists in the periodic exchange of messages to establish routes to pre-
viously unknown destinations, and to update routing information about known
destinations. OLSR works in a completely distributed manner without depend-
ing on any central entity. The protocol minimises flooding of control messages
in the network by selecting so-called Multipoint Relays (MPRs). Informally, an
MPR takes over the communication for a set of nodes that are one-hop neigh-
bours of this node; these one-hop neighbours receive all the routing information
from the MRPs and hence do not need to send and receive routing information
from other parts of the network.

Nodes running OLSR are not restricted to any kind of start-up synchroni-
sation. Every node broadcasts a HELLO message every 2 seconds and detects
its direct neighbour nodes by receiving these messages. Since HELLO messages
contain information about all one-hop neighbours of the originator, receiving
nodes can establish routes to their two-hop neighbours, too. HELLO messages
traverse only one wireless link (a single hop), and are not forwarded by any node.

After receiving HELLO messages from direct neighbours, every node selects
a particular one-hop neighbour, its MPR, and selected MPRs are aware of those
nodes that have selected them as an MPR. MPRs broadcast Topology Control
(TC) messages every 5 seconds to build and update topological information.
These messages are retransmitted (forwarded) through the entire network by
MPRs. This means that if a node is not an MPR and receives TC messages, it
processes those messages, but will not forward them. Every TC message contains
the routing information provided by the originator. While receiving control mes-
sages from other nodes, every node updates its routing table according to the
information received. After broadcasting and forwarding control messages via
nodes, routes to all reachable destinations should be established by all nodes.
Nodes can use the established routes to send data packets through the network.

Information stemming from HELLO messages is considered valid for 6 sec-
onds (three times the interval between sending HELLO messages); information
from TC messages for 15 seconds (three times the interval between sending TC
messages). Routing table entries are marked as invalid if these times have passed.

More details about OLSR can be found in its specification [4]; a concrete
example of OLSR running on a topology of 5 nodes can be found in [13].

3 Modelling OLSR in Uppaal

Uppaal [1, 15] is a well-established model checker for modelling, simulating and
verifying real-time systems. It is designed for systems that can be modelled as
networks of (extended) timed automata. We use Uppaal for the following reasons:
i) it provides two synchronisation mechanisms: broadcast and binary synchroni-
sation; ii) it provides common data structures, such as structs and arrays, and a
C-like programming language—these features are used to model routing tables
and update-operations on such tables; last, but not least, iii) Uppaal provides



mechanisms and tools for considering timed variables—this is needed since OLSR
highly depends on on-time broadcasting of control messages. In the remainder,
we describe Uppaal to the extent needed in this paper.

3.1 Uppaal’s timed automata

The modelling language of Uppaal extends timed automata with various features,
such as types and data structures [1]. A system state is defined as the value of
all local and global variables. Every automaton can be presented as a graph with
locations (nodes) and edges between these locations together with guards, clock
constraints, updates and invariants. Clocks are variables that evaluate to real
numbers and that are used in order to measure the time progression.

Each location may have an invariant, and each edge may have a guard, a
synchronisation label, and/or an update of some variables. Guards on transitions
are used to restrict the availability (enabledness) of transitions. Synchronisation
happens via channels; for every channel a there is one label a! to identify the
sender, and a? to identify receivers. Transitions without a label are internal; all
other transitions use one of the two following types of synchronisation [1].

In binary handshake synchronisation, one automaton that has an edge with
a !-label synchronises with another automaton with the edge having a ?-label.
These two transitions synchronise only when both guards hold in the current
state. When the transition is taken, both locations will change, and the updates
on transitions will be applied to the variables; first the updates will be done on
the !-edge, then the updates occur on the ?-edge. When having more than one
possible pair, the transition is selected non-deterministically [1].

In broadcast synchronisation, one automaton with an !-edge synchronises
with several other automata that all have an edge with a relevant ?-label. The
initiating automaton is able to change its location, and apply its update if and
only if the guard on its edge is satisfied. It does not need a second automaton
to synchronise with. Matching ?-edge automata must synchronise if their guards
evaluate to true in the current state. They will change their location and update
their states. First the automaton with the !-edge updates its state, then the other
automata follow. When more than one automaton can initiate a transition on
an !-edge, the process of choosing occurs non-deterministically [1].

Uppaal’s verifier uses Computation Tree Logic (CTL) (e.g. [6]) to model
system properties. CTL offers two types of formulas: state formulas and path
formulas. State formulas describe individual states of the model, while path for-
mulas quantify over paths in the model. A path contains an (infinite) sequence
of states. In this paper we employ the path quantifier A and the temporal op-
erator G. Aφ means that the formula φ holds for all paths starting from the
current state. Gφ means all future states (including the current one) satisfy φ.
Formulas combine the path quantifies and the temporal operators, e.g. AGφ
holds if φ holds on all states in all paths originating from the current state. This
is also denoted as A[]φ in Uppaal [1].



isconnected(sip,ip)

(nextmsg()!=NONE)&&
idle[ip]

isconnected(sip,ip)

imsg[ip]!

sip:IP

dip:IP

sip:IP

addmsg(msgglobal)addmsg(msgglobal)

create_add_packet(ip,dip)

htc[sip]?

packet[ip][dip]?
msgglobal=msglocal[0],
deletemsg()

pkt[sip][ip]?

Fig. 1: The Queue automaton.

3.2 A Uppaal model of OLSR

We now present an overview of our OLSR model. The model is described in
detail in [13] and can be downloaded at hoefner-online.de/sefm15/. We model
OLSR in Uppaal as a parallel composition of identical processes describing the
behaviour of single nodes of the network. Each of these processes is itself a
parallel composition of two timed automata, Queue and OLSR.

The Queue automaton (depicted in Fig. 1) has been chosen to store incoming
messages from other (directly connected) nodes. In other words, it denotes the
input buffer of a node. The received messages are buffered and then, in turn, send
to the OLSR automaton for processing. Both actions on the top of Fig. 1 receive
messages from other nodes in the network while the action on the lower right of
Fig. 1 receives data messages from the same node. Messages can only be received
if a node ip is connected to the sender sip. The channel htc[sip] receives a
broadcasted message (HELLO or TC) from sip and stores the message to a local
data queue, using the function addmsg. Both pkt and packet are handshake
synchronisations and handle data messages travelling through the network and
new messages injected by a client, respectively. Whenever the message-handling
routine OLSR is ready to handle a message (idle[ip]), a message is moved from
the message queue to OLSR, using the channel imsg.

OLSR models the complete behaviour of the routing protocol as described
in [4]. It consists of 14 locations and 36 transitions precisely modelling the
broadcasting and handling of the different types of messages. OLSR is busy while
sending messages, and can accept a new message from Queue only once it has
completely finished handling a message. Whenever it is not processing a mes-
sage and there are messages stored in Queue, Queue and OLSR synchronise on
the channel imsg[ip], transferring the relevant data from Queue to OLSR. The
automaton uses a local data structure to model the routing table of a node.
Routing tables provide all information required for delivering packets. A routing
table rt is an array of entries, one entry for each possible destination. An entry
is modelled by the data type rtentry:

typedef struct {
IP dip; //destination address
int hops; //distance (number of hops) to the destination dip
IP nhopip; //next hop address along the path to the destination dip
SQN dsn; //destination dip sequence number

} rtentry;



IP denotes a data type for all addresses and SQN a data type for sequence num-
bers. OLSR uses sequence numbers to check whether received messages are new
or have already been processed. In our model, integers are used for these types.

The predicate isconnected[i][j] denotes a node-to-node communication,
i.e., the nodes are in transmission range of each other. Communication between
nodes happens via channels. The broadcast channel htc[ip] models the prop-
agation of HELLO and TC messages where a message can be received by all
one-hop neighbours. Each node has a broadcast channel, and every node in
the range may synchronise on this channel. We also use the binary channel
packet[i][j] to model the unicast sending of a data packet from i to j; this
packet is generated by the user layer.

To model rigorous timing behaviour, we define 3 different clocks for every
OLSR automaton: t hello and t tc are used to model on-time broadcasting
HELLO and TC messages, and t send models the time consumption for sending
messages. According to the specification of OLSR, Hello messages are sent every
2000 milliseconds. Considering a sending time of 500 milliseconds (in our model
time sending = 500), nodes have to broadcast a new message 1500 milliseconds
after the last message was successfully distributed. For each OLSR automaton,
we use two clock arrays t reset rt and t reset rt topo of size N (the number
of nodes in the network) to indicate the expiry time of one-hop and two-hop
neighbours, and the expiry time of nodes which are more than two hops away,
respectively.

To provide a realistic network set up, we model each node to send its first
HELLO message non-deterministically between [0, time between hello). After-
wards, whenever t hello reaches time between hello, OLSR resets t hello and
t send to 0 before the HELLO message is broadcast.

Nodes receiving a HELLO message, update their routing tables for the orig-
inator of the message, learn about their two-hop neighbours and select their
MPRs and MPR selectors using the functions updatehello, updatetwohop and
setmpr, respectively. Furthermore, t reset rt is reset for originator of the mes-
sage and its one-hop neighbours, which shows that new information has been
received and this information is valid for 6000 milliseconds.

After MPR nodes have been selected, each of them prepares for broadcasting
TC messages to the connected nodes. TC messages are sent every 5000 mil-
liseconds. When t tc reaches time between tc, t tc and t send are reset to
0. Then, a TC message is generated by createtc function and is broadcast to
other nodes.

While transferring a TC message from Queue, t reset rt topo is reset to
0 for the originator of the message and its MPR selectors, and if the message
is considered for processing, the routing table is updated for the TC genera-
tor and its MPR selectors, using updatetc and updatemprselector functions,
respectively.

If the receiver is an MPR then the TC messages can be forwarded. Forward-
ing messages also takes time in our model, namely time sending. We note that
OLSR might have to broadcast different messages at the same time. As an ex-



ample, at some point a HELLO, a TC and maybe a TC to be forwarded are
supposed to be broadcast; the sending time time sending is counted only once
and these messages are broadcast simultaneously. We consider this behaviour
in our model as well. The full model, showing all details, is available online at
hoefner-online.de/sefm15/.

4 Analysis

We analyse properties of the OLSR protocol in two different settings. First, we
assume static network topologies, and then we allow changes in the network.
The first series of experiments focuses on three properties:

(1) route establishment for all topologies up to 5 nodes;
(2) packet delivery in all topologies up to 5 nodes;
(3) route optimality in topologies of up to 7 nodes.

We will show that OLSR does not always find optimal routes and propose a
modification of OLSR that addresses this problem.

For the second series of experiments we assume dynamic network topologies
where an arbitrary link fails. We focus on another property:

(4) the route discovery time, i.e., we investigate the time during which there is
no guaranteed packet delivery.

After analysing the route discovery time, we propose a modification that shortens
this time; this modification will be analysed as well (Property (5)).

Due to the proactive nature of OLSR, our Uppaal model is pretty complex
and contains several clocks, next to a complex data structure. As a consequence,
state space explosion is a problem for our experiments. To address this problem,
we apply different techniques supported by Uppaal to minimise the state space of
our system model [5,16,17]. In particular, our model makes use of priority chan-
nels. By this we can order ‘internal actions’, i.e., actions that are running on a
single node, and that are independent of other nodes and hence the order of the
actions does not matter. For Properties (1), (2), (4) and (5), we give the highest
priority to channels of node a1 and the lowest priority to channels of node a5.

We also take into account symmetries of topologies, i.e., in case two topologies
are isomorphic (up to renaming of nodes), we only analyse one. As a consequence
we can reduce the number of experiments, by assuming, for Properties (1)–(5),
that the originator is always the same node, denoted by OIP1, and the destination
is always DIP1.

For the experiments we use the following set up: 3.2 GHz Intel Core i5, with 8
GB memory, running the Mac OS X 10.9.5 operating system. For all experiments
we use Uppaal 4.0.13.

4.1 Static Topologies

Set Up. In this first series of experiments, we define another automaton, called
Tester1, which injects a data packet to OIP1 to be delivered at destination



DIP1. It is depicted in Fig. 2. It provides a local clock clk, which is used for
invariants and guards. The location-invariant clk <= 3*time_between_tc in
combination with the transition-guard clk >= 3*time_between_tc guarantees
that the packet is injected at time point 3*time_between_tc; hence a couple
of control messages (HELLO and TC) have already been sent and most of the
routes should have been established. The packet is injected to node OIP1 via the
channel packet[OIP1][DIP1].

clk<=3*time_between_tc

clk>=3*(time_between_tc)

final

packet[OIP1][DIP1]!

drop_link

Fig. 2: The Tester1 automaton.

The first property we are going to analyse (Property 1) is route establishment.
It states that if the packet has been injected (Tester1 is in location final), and
all messages have been handled by all nodes (emptybuffers()) then OLSR
has established a route between OIP1 and DIP1. This safety property using the
Uppaal syntax is expressed as

A[] ((Tester1.final && emptybuffers()) imply

node(OIP1).rt[DIP1].nhopip != 0)
(1)

Remember that the CTL formula A[]φ is satisfied iff φ holds on all states along
all paths. The variable node(OIP1).rt represents the routing table of the orig-
inator node OIP1 and node(OIP1).rt[DIP1].nhopip expresses the next hop for
the destination DIP1; if the next hop is not 0 a route is established.

The second property, packet delivery, is that if a packet is injected to the
system, it is eventually delivered to the destination DIP1. In Uppaal this can be
expressed as

A[] ((Tester1.final && emptybuffers()) imply

node(DIP1).delivered != 0)
(2)

Here, node(DIP1).delivered indicates whether the injected data packet is re-
ceived by the destination DIP1. Property 2 is stronger than Property 1 in the
sense that the route is not only established, but it must be correct and used.
Moreover this property implies loop freedom of OLSR, meaning that no packet
is sent in cycles forever, without ever reaching the final destination.

The first two experiments are performed for all topologies up to five nodes,
up to isomorphism and renaming. There are 444 of such topologies.

The third property, route optimality, checks if OLSR establishes optimal
routes, after broadcasting, forwarding and processing TC messages. In our ex-
periments we measure optimality with regards to shortest routes. Since we have
full control over the topologies we are running the experiments with, we can
determine the shortest possible route. We investigate this property for a ring



topology of 7 nodes, as shown in Table 1.6 Property 3 is expressed as

A[] ((Tester1.final && node(OIP1).a != 0) imply

node(OIP1).rt[DIP1].hops == 3)
(3)

Here, node(OIP1).a! = 0 indicates whether OIP1 has sent its packet to the next
node along the path to DIP1; node(OIP1).rt[DIP1].hops shows the number of
hops from the originator OIP1 to the destination DIP1 which must be equal to 3.
We also checked Property 3 on all topologies up to 5 nodes. The results, however,
are not of real interest, since not much can go wrong w.r.t. shortest routes. As
a consequence we picked topologies of size 7 to analyse route optimality.

Results. To analyse and verify OLSR, we evaluate Properties (1) and (2) in all
network topologies up to 5 nodes. Property (1) is satisfied for all these networks:
when the Tester1 is in location final, node OIP1 has established a route to
node DIP1. This property confirms the propagation of HELLO and TC messages
and also the correctness of the MPR selection mechanism. Hence, node OIP1 is
ready to send data packets to node DIP1.

As mentioned before, Property (2) is stronger than Property (1). It models
that all nodes have the information about all other nodes in the network, to
deliver their data packets. In theory, the originator node OIP1 could have a
routing table entry for the destination node DIP1, stating that it should send a
packet to its immediate next neighbour along the path to the destination DIP1;
the next node itself might have no information about the destination DIP1, so
all packets for the destination DIP1 stemming from the originator OIP1 would
be lost. However, Property (2) is also satisfied for all topology up to size 5: all
nodes have updated their routing tables in the network; therefore, they are able
to deliver data packets to the arbitrary destination node DIP1.

While performing the analysis of Properties (1) and (2), we also performed
some statistics: the Uppaal verifier analysed in average 1868996 states for each
experiment; the largest one has 5314328 states, and the median is 1688368.
Exploring these state spaces took on average 56 minutes.

Property (3), which analysis route optimality in topologies of size 7, is not
satisfied. This proves that OLSR is not always able to find optimal routes.

Table 1 illustrates this phenomenon with an example found by Uppaal. In
this example, Tester1 synchronises with the Queue of node a1, which is the
originator OIP1 of the packet. The packet is intended for node a5. At some
point, a5 broadcasts a TC message (here indicated by TC5) to its neighbours
a4 and a6. While a4 forwards the message to a3, a6 is busy working on other
stuff and the message is kept in the message queue of a6. The TC message is
forwarded subsequently via nodes a3 and a2 (Table 1: Step 2). As a consequence,
node a1, updates its routing table entry for node a5 (Table 1: Step 3). When
a1 receives TC5 via node a7, it has already updated its table for this node, and
drops this message, since it has seen TC5 before. (Table 1: Step 4). By dropping

6 There are too many topologies of that size, so we cannot analyse all topologies.



Step 1: Broadcast TC Step 2: Forward TC

a1

a2
a3

a4

a5
a6a7

TC5

TC5

a1

a2
a3

a4

a5
a6a7

TC5

TC5

TC5TC5

Step 3: Update a1.rt[5] Step 4: Drop TC5

a1

a2
a3

a4

a5
a6a7

TC5

TC5

TC5TC5

TC5

a1

a2
a3

a4

a5
a6a7

TC5TC5TC5

Table 1: Establishment of non-optimal routes in a 7 node topology

this message a1 misses out the chance TC5 to establish a shorter route. Similar
examples are found for other routing protocols for WMNs [18].

Dropping a message with the same sequence number follows the specification:

“if there exists a tuple in the duplicate set, where:
D addr == Originator Address,
AND
D seq num == Message Sequence Number
then the message has already been completely processed and MUST not be
processed again.” [RFC3626, page 17]

This text snippet, copied from the RFC, shows that our model reflects the
intention of OLSR; any message which is received and has already been handled
(same sequence number) should be dropped. The idea is that the first message
received must have travelled via the optimal path, which is not the case. A
simple solution to this problem is to compare the potentially new route versus
the routing table, in case the sequence numbers are the same. To reduce message
flooding the message is only forwarded if the routing table is updated, i.e., if the
hop count is strictly smaller.

4.2 Dynamic Topologies

Set Up. In the second series of experiments, we investigate the behaviour of
OLSR after an arbitrary link is removed. Removing a link reflects a change in
the topology. We define an automaton, called Tester2 and depicted in Fig. 3,
which drops the link between the two nodes id_1 and id_2. We assume that
the link breaks after 3*(time between tc + time sending) (in our model at



15000 milliseconds), a time when all nodes have received information about all
other nodes in the network (all routing tables have been updated for all nodes).
Upon link breakage there is no connectivity between these two nodes; yet, each
of them has the information about the other one. The packet, which should be
sent from OIP1 to DIP1 is injected later on. By this we can analyse how quickly
OLSR recovers from topology changes.

clk<=3*(time_between_tc + time_sending) clk<=7*(time_between_tc + time_sending)

clk>=3*(time_between_tc + time_sending)

deliverytest

drop(id_1, id_2)
clk>=7*(time_between_tc + time_sending)
packet[OIP1][DIP1]!

drop_link

Fig. 3: The Tester2 automaton.

Based on RFC 3626 (see box below), the information about one-hop and
two-hop neighbours of a node is valid for 3*REFRESH INTERVAL, which equals
6000 milliseconds; information about nodes which are more than two hops away
from that node is valid for 3*TC INTERVAL, that equals 15000 miliseconds.

“NEIGHB HOLD TIME = 3*REFRESH INTERVAL
TOP HOLD TIME = 3*TC INTERVAL” [RFC3626, page 64]

This means information about one-hop and two-hop neighbours of a node is not
available any longer if their corresponding clocks in the routing table have not
been refreshed during 6000 milliseconds; this indicates the breakage of a link.
Also, if a node has not received TC messages from other MPR nodes for more
than 15 seconds, information about those nodes is removed from the table.

We consider one desirable property of this protocol which indicates whether
or not the injected packet is delivered at the destination if one link has been
removed. In Uppaal syntax this safety property can be expressed as

A[] ((Tester2.delivery && emptybuffers()) imply

node(DIP1).delivered != 0)
(4)

After the topology has been changed and the packet has been injected, the
automaton Tester2 is in location delivery. If then the message buffers are
empty (similar to the experiments described before) then we check if the packet
has been delivered. (node(DIP1).delivered! = 0).

Results. Property (4) is only satisfied for those topologies up to 5 nodes where
the dropped link is not critical. In our model, a link is said to be critical if after
link breakage there is no other link from that node to the other nodes along the
path to the destination to be substituted with the broken one.

This experiment shows that the recovery in these topologies takes around 20
seconds (between 15000–35000 milliseconds), which is a long period; in particular



since we only consider networks of small size. As a consequence, this means that
only after 35 seconds, the packet can certainly be delivered. The reasons for this
long period are as following:

– After a link break occurred, some nodes might broadcast control messages
(HELLO or TC) with incorrect (old) information, since nodes have not reset
their tables for those nodes affected by link breakage. Based on RFC 3626,
nodes reset their tables for the nodes from whom no control message is
received after 6 and 15 seconds, respectively.

– At the time a link breaks, there are usually messages in the queue which
need to be processed. These messages contain again out-dated information.
So, the routing table is updated for the originator and one-hop neighbours
of the message when receiving a HELLO, and for the originator and MPR
selectors of the messages originator upon receiving a TC, even if the link
does not exist anymore.

– Even when some nodes learn about the link breakage and reset the corre-
sponding information in the routing table, it needs time to distribute this
new knowledge.

Modifications. A solution to decrease the long recovery time of OLSR is
to reduce NEIGHB HOLD TIME and TOP HOLD TIME to 2*REFRESH INTERVAL and
2*TC INTERVAL, respectively. To verify our proposal, we consider Property (5).
This property states that refreshing routing tables in our proposed timing helps
to reduce the recovery time.

A[] ((Tester3.delivery && emptybuffers()) imply

node(DIP1).delivered != 0)
(5)

Similarly as for Property (4), Property (5) is satisfied for all topologies up to
5 nodes where the dropped link is not a critical link. After 25000 milliseconds, the
packet is definitely delivered at the destination. Therefore, it is feasible to reduce
the recovery time of OLSR about 10000 milliseconds (the difference between
35000 and 25000) using our proposed timing.

An alternative solution would be the introduction of error messages. As soon
as a link break is identified, an error message should be sent to MPRs to inform
the nodes and to correct the information in the routing tables as soon as possible.
This modification would be in the same spirit as error messages used for other
routing protocols, such as the AODV routing protocol. However, the analysis of
this improvement is left for future work.

5 Related Work

While modelling and verifying protocols is not a new research topic, attempts to
analyse routing protocols for dynamic networks are still rather new and remain
a challenging task. Model checking techniques have been applied to analyse pro-
tocols for decades, but there are only a few papers that use these techniques in



the context of mobile ad-hoc networks, e.g. [2]. In the area of WMNs, Uppaal
has been used to model and analyse the routing protocols AODV and DYMO,
see [7,8,10]. However, to the best of our knowledge, our study is the first aiming
at a formal model of OLSR core functionality considering time variables.

Clausen et al. [4] specify the OLSR protocol in English prose. This paper is
the official description currently standardised by the IETF. Jacquet et al. [12]
also provide a high-level description of OLSR describing the advantages of this
protocol, when compared to the others. However, none of these papers provide
a formal model or a formal analysis of the protocol.

Steele and Andel [20] provide a study of OLSR using the model checker
Spin [11]. They design a model of OLSR in which Linear Temporal Logic (LTL) is
used to analyse the correct functionality of this protocol. They verify their system
for correct route discovery, correct relay selection, and loop freedom. Due to state
space explosion their analysis is limited to four node topologies only. When
taking symmetries into account they analyse 17 topologies. Moreover, a timing
analysis is not possible by Spin. Hence the model given by Steele and Andel
abstracts from timing; as we have shown analysing OLSR with time variables
reveales more shortcomings.

Fehnker et al. [8] describe a formal and rigorous model of the Ad hoc On-
Demand Distance Vector (AODV) routing protocol in Uppaal; the model is
derived from a precise process-algebraic specification that reflects a common
and unambiguous interpretation of the RFC [19]. Their model is also a network
of timed automata and they analyse network topologies up to 5 nodes. However,
in their original analysis they abstract from time, which was added later on [10].
Although the two protocols AODV and OLSR behave differently, we use the same
modelling techniques and experiments as for AODV, to make the comparison
study of these two protocols feasible for our future work.

Kamali et al. [14] use refinement techniques for modelling and analysing
wireless sensor-actor networks. They prove that failed actor links can be tem-
porarily replaced by communication via the sensor infrastructure, given some
assumptions. They use an Event-B formalisation based on theorem proving and
their proofs are carried out in the RODIN tool platform. There is a strong sim-
ilarity between the nature of the distributed OLSR protocol and the nature of
distributed sensor-based recovery. However, the tools employed for analysis in
the two frameworks are different in nature (model checking vs. theorem prov-
ing). Our decision to use Uppaal is based on the fact that it provides modelling
means for time constraints and fully automatic reasoning. The treatment of time
in Event-B is still incipient, involving a rather different perspective of treating
variables as continuous functions of time.

6 Conclusions and Outlook

In this paper we have provided a formal analysis for the distributed and proactive
routing protocol OLSR. Our analysis is performed using the model checker Up-
paal. We have provided a Uppaal model which is in accordance with the OLSR



standard. It models all core functionalities, including sophisticated timers. To
validate our model we compared our model with examples found in the literature.

Using Uppaal we were able to find shortcomings of the protocol: in some cases,
an optimal route for message delivery cannot be established and the recovery
time in case of link breakage is huge. For both shortcomings we have sketched
improvements that can easily be implemented. A more careful analysis for link
breaks on critical paths is left for future work.

We see these results as the starting point for further research. First, our
analysis is restricted to small networks (of 5 and 7 nodes), due to the nature
of model checking. Wireless Mesh Networks draw their strength from employing
potentially dozens (maybe hundreds) of nodes. Hence, we need to extend our
analysis to larger networks. This can be achieved by working with statistical
model checking, where simulation concepts are combined with model checking
to establish the statistical evidence of satisfying hypotheses. While this does not
guarantee a correct result w.r.t. the hypothesis, the probability of error can be
made vanishingly small. Another approach suitable to deal with larger networks
is that of theorem-proving, where, e.g. we can prove the required system prop-
erties as invariants for all systems (of all sizes) that verify certain assumptions.

Second, our model for the proactive, distributed OLSR can be generalised
to distributed control. The latter is a concept with high relevance for systems
where, e.g. self-repairing is important, as it can enable the independence of
the system from central coordinators. Even maintaining proactively the optimal
communication routes, as OLSR does, is instrumental in this. The applicability
of distributed control to critical systems such as emergency response networks
or smart electrical grids is very relevant, as these are complex systems, for which
global solutions cannot be provided.

Acknowledgements This research belongs to the Academy of Finland FResCo
project (grant number 263925, FResCo: High-quality Measurement Infrastruc-
ture for Future Resilient Control Systems). NICTA is funded by the Australian
Government through the Department of Communications and the Australian
Research Council through the ICT Centre of Excellence Program.

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: International
School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM-RT 2004. Revised Lectures. pp. 200–236. Springer Ver-
lag (2004)

2. Chiyangwa, S., Kwiatkowska, M.Z.: A timing analysis of AODV. In: FMOODS.
Lecture Notes in Computer Science, vol. 3535, pp. 306–321. Springer (2005)

3. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: Algorithmic verification
and debugging. Commun. ACM 52(11), 74–84 (2009)

4. Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). RFC 3626
(Experimental) (2003), http://www.ietf.org/rfc/rfc3626

5. David, A., H̊akansson, J., Larsen, K.G., Pettersson, P.: Model checking timed au-
tomata with priorities using DBM subtraction. In: 4th International Conference on



Formal Modelling and Analysis of Timed Systems (FORMATS06). Lecture Notes
in Computer Science, vol. 4202, pp. 128–142. Springer Berlin Heidelberg (2006)

6. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science (vol. B): Formal Models and Semantics, pp. 995–1072. MIT (1995)

7. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Modelling and analysis of AODV in UPPAAL. In: 1st International Workshop on
Rigorous Protocol Engineering. pp. 1–6. Vancouver (2011)

8. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: 18th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2012). pp. 173–187. Springer, Tallinn, Estonia (2012)

9. van Glabbeek, R., Höfner, P., Portmann, M., Tan, W.L.: Sequence numbers do not
guarantee loop freedom —AODV can yield routing loops—. In: Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM’13). pp. 91–100. ACM
(2013)

10. Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing pro-
tocols. In: 5th NASA Formal Methods Symposium (NFM 2013). vol. 7871, pp.
322–336. Springer, Moffett Field, CA, USA (2013)

11. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

12. Jacquet, P., Mühlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.:
Optimized Link State Routing Protocol for Ad Hoc Networks. In: Multi Topic
Conference, 2001. IEEE INMIC 2001. pp. 62 – 68. IEEE (2001)

13. Kamali, M., Kamali, M., Petre, L.: Formally analyzing proactive, distributed rout-
ing. Tech. Rep. 1125, TUCS – Turku Centre for Computer Science (2014)

14. Kamali, M., Laibinis, L., Petre, L., Sere, K.: Formal development of wireless sensor-
actor networks. Science of Computer Programming 80, Part A(0), 25 – 49 (2014)

15. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

16. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Compact data structures and
state-space reduction for model-checking real-time systems. Real-Time Systems
25(2-3), 255–275 (2003)

17. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
FCT. pp. 62–88 (1995)

18. Miskovic, S., Knightly, E.W.: Routing primitives for wireless mesh networks: De-
sign, analysis and experiments. In: Conference on Information Communications
(INFOCOM ’10). pp. 2793–2801. IEEE (2010)

19. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Dis-
tance Vector (AODV) Routing. RFC 3561 (Experimental) (2003),
http://www.ietf.org/rfc/rfc3561

20. Steele, M.F., Andel, T.R.: Modeling the optimized link-state routing protocol for
verification. In: SpringSim (TMS-DEVS). pp. 35:1–35:8. Society for Computer Sim-
ulation International (2012)


