
Composing Patterns to Construct Secure Systems

Paul Rimba, Liming Zhu, Len Bass, Ihor Kuz
Software Systems Research Group, NICTA

School of Computer Science and Engineering, UNSW
NSW, Australia

Email: {firstName.lastName} @nicta.com.au

Steve Reeves
Department of Computer Science

The University of Waikato
Hamilton, New Zealand

Email: stever@waikato.ac.nz

Abstract—Building secure applications requires significant
expertise. Secure platforms and security patterns have been
proposed to alleviate this problem. However, correctly apply-
ing patterns to use platform features is still highly expertise-
dependent. Patterns are informal and there is a gap between them
and platform features. We propose the concept of reusable verified
design fragments, which package security patterns and platform
features and are verified to provide assurance about their security
properties. Design fragments can be composed through four
primitive tactics. The verification of the composed design against
desired security properties is presented in an assurance case. We
demonstrate our approach by securing a Continuous Deployment
pipeline and show that the tactics are sufficient to compose
design fragments into a secure system. Finally, we formally
define composition tactics, which are intended to support the
development of systems that are secure by construction.

Keywords—security; verification; patterns; composition; assur-
ance

I. INTRODUCTION

Building a secure application is difficult and requires
significant expertise and effort. A secure application requires
a secure design, a secure implementation of that design, and
a secure platform on which the implementation executes.
Furthermore, it is not sufficient that an application be secure,
it must also be seen to be secure. That is, the argument that
an application is secure is an essential portion of convincing
others of the level of security of an application. We examine
these four elements in slightly more detail now.

• Secure platform — A secure platform provides the foun-
dation for building large security-critical applications [1]–
[3]. Such a platform consists of a combination of hard-
ware and software that provide security mechanisms and
policies usable by the application. While this provides a
solid base for building secure applications, it does not
guarantee that applications constructed on top of this
platform are secure. That requires expertise.

• Secure design — The use of security patterns [4], tac-
tics [5] and best practices helps design security-critical
applications. A security pattern is an encapsulation of
expert knowledge and best practices in the area of secure
software design [6]. While security patterns significantly
reduce the required expertise, there are still several diffi-
culties in applying them. Firstly, a single security pattern
normally cannot meet all the security requirements of
an application. Therefore, a developer needs to apply
multiple security patterns to a design through design
composition. Composition of security patterns is chal-
lenging because each pattern targets specific security re-

quirements and has its own elements (e.g. actors involved
and their interactions). Secondly, security patterns are
written independently of the specifics of the underlying
platforms. This leaves a gap between security patterns and
the underlying platform.

• Secure implementation — Applications that have strong
security requirements also require assurance that their
implementation satisfies those requirements. Formal veri-
fication is one way which can provide the highest level of
assurance. However, formally verifying a large complex
application is very costly. Therefore, reducing the effort
of verification by verifying the application design at an
early stage of application development can be beneficial.

• Security assurance — Another way of providing assur-
ance is through assurance cases - a structured form of
informal argument. The safety-critical system community
uses assurance cases extensively to structure arguments
demonstrating safety claims about systems [7]. Assurance
cases have also been used to support security claims.
Weinstock et al. [8] state that a security assurance case
presents arguments, supported by evidence, of claims
that systems exhibit certain security properties. Security
assurance cases can rely on arguments or evidence derived
from the use of analytical techniques and tools. These
techniques and tools can differ from one portion of the
assurance case to another.

In this paper, we propose an approach that integrates
the above elements at the design level. Our approach first
formalises security patterns’ realisation for a particular se-
cure platform into reusable design fragments. These design
fragments are verified against the security properties they
intend to support. Then a design fragment can be selected and
composed with an existing application design to benefit from
the additional security properties embodied in the selected
design fragment. We provide assurance to the improved secure
design of the applications through both security assurance
cases and design-level verification. In this paper, we are not
concerned with the implementation of a design (so our designs
are to be thought of as formal specifications in the usual soft-
ware engineering sense), but rather with the construction and
assurance of the design. This means that the implementation
needs to be correctly implemented relative to the design (qua
specification) and this can be done by existing means like
refinement [9] (which is to be preferred, since it embodies
the idea of correct-by-construction) or post hoc verification.

This approach bridges the gap between security patterns
and the underlying platform by providing platform-specific
design fragments. A design fragment is represented by a

model that allows for design-level verification. This model
consists of component specification, which includes each com-
ponent’s behaviours, and the interactions between components
in the model. Design fragments reduce the required step
of manually translating the resulting application design to a
specific platform for implementation purposes. Each design
fragment is associated with reusable design-level verification
procedures, which are statements that are used to verify that the
design fragment satisfies the desired security properties. These
security properties are derived from the informal security-
related claim of the security pattern. When a design fragment
is selected and composed with an existing application design
or another design fragment, the key challenge is the specifying
the composition. We tackle this through the identification and
specification of four pattern-composition primitives, which we
call composition tactics. A composition can be specified by
a configuration file linking the components and the primitive
tactics used.

Our design fragments currently target platforms that adhere
to the capability-based security model [10], although our
approach should be applicable to other platforms as well.

Besides verifying individual design fragments, we also
verify the overall application design to provide assurance that
its security goals are satisfied. We perform design-level verifi-
cation as a step to reduce the cost of potential subsequent im-
plementation verification. In verifying the application design,
we reuse the verification procedures that are associated with
design fragments in order to reduce the overall effort. The use
of a verification procedure for a design fragment helps identify
localized problems, and the reuse of that procedure for the
application design helps to ensure that the overall application
achieves its security goals. We embed these steps inside a
security assurance case that allows for different verification
techniques for different aspects of the design. The result of
verification, performed using the verification procedures of the
design fragments, provides evidence for one or more security
claims in the assurance case.

We demonstrate our approach by securing a Continuous
Deployment (CD) pipeline [11] and show that our four com-
position tactics are sufficient to compose design fragments into
a large secure system.

In order to make this work practical, we work under two
real-life constraints. Firstly, formally verifying, from scratch,
all the components and systems that we use is infeasible.
Secondly, we have to work with existing components to
ensure that the changes are minimal. In our work, we trust
some specialized components, which can then be formally
verified. Securing a real-life system using formal or semi-
formal techniques is both challenging and necessary to make
these techniques usable.

The contributions of this paper are two-fold: 1) the concept
of a design fragment as a specialization of a security pattern
for capability-based platforms; 2) a pattern-based composition
approach to build and verify an application design on a
capability-based platform.

II. RELATED WORK

Capabilities, introduced by Dennis and Van Horn [10],
have several advantages for building security applications.

These include solving the Confused Deputy problem [12], and
making it easier to apply the Principle of Least Privilege [13].
The Confused Deputy problem is a case where a program’s
authority is misused to perform an action that it has permission
for but is not supposed to do. The Principle of Least Privilege
states that only we must only grant the least permissions
possible to perform a particular task. There are a number of
secure platforms that adhere to the capabilities, either for single
machines or distributed systems, including EROS [14], seL4
[1], Amoeba [15], and Password-capability [16].

Serscis Access Modeller (SAM) [17] is a modelling tool
and notation that is intended for designing and verifying a
model of an application for capability-based systems. It verifies
certain security properties of the system by exploring all
possible ways of access propagation. We use SAM’s notation
for our design. We have identified some limitations of SAM,
which will be discussed later in Section III-A.

Existing security patterns can be used to guide design
but their description and security property claims are highly
informal [4], [18]. Prior work advocates the use of formal
methods to verify security properties of patterns [18], [19].
Heyman et al. [19] presented an approach to formally verify
security requirements for security patterns using Alloy. This
includes expectations, which describe the expected behaviors
of the component, and residual goals, which describe security
concerns that need to be addressed but are not in the scope of
the pattern. An example of a residual goal can be seen in the
Authentication Enforcer pattern [20], which requires that user
identifiers be unique. Ensuring the uniqueness of the identifiers
is essential but is outside the scope of the pattern. Konrad et
al. [18] allow user to define the behavior of a pattern in UML
and then transform it into Promela for verification with the
SPIN [21] model checker. In contrast to our approach, these
approaches does not consider the security models, mechanisms
and properties provided by the underlying security platform.

Some efforts [22], [23] in the model-driven community
focus on developing platform-specific security profiles, used in
application design to facilitate security property analysis and to
map models to platform-specific code. We focus on providing
reusable capability-specific design fragments for patterns that
can be composed during application design. Furthermore, we
support design-level analysis and assurance of systems to be
built on specific platforms. These, to the best of our knowledge,
are not a major concern in these previous efforts.

The link between architecture tactics and code [24] or
design patterns [25] has been explored through code mining.
One observation is that there is wide variation in how tactics
are implemented in different situations [25]. In our work we
choose one instantiation, for a capability-based platform.

Other research also advocates the importance of the un-
derlying platform to fundamentally improve security [2], [3].
These authors propose a system architecture intended to sup-
port layered assurance, from design to implementation. This
system architecture requires new hardware mechanisms to
provide a more complete assurance argument, starting from
the hardware. However, securing an application starting from
hardware, through new hardware mechanisms, to software is
very costly. We instead rely on general purpose hardware
and a secure underlying platform to build verified secure

applications.

In the design pattern community, there is a term ‘idioms’
[26], which refers to a low-level code implementing a design
pattern in a particular programming language. We refer to these
as language idioms. Our design fragments are specializations
of security patterns in a particular platform, so they are design
idioms.

Previous efforts in the design pattern community have
focused on composition of design patterns. Yacoub et al.
[27] categorize previous composition techniques as behavioral
or structural. Patterns are composed based on the object
interactions in the behavioral composition techniques while
the structural composition techniques compose patterns by
modeling their structures as class diagrams and compose them
based on the structure. These efforts focus on instantiation of
design in code. Furthermore, they point out that composition
considering both behavior and structure will be complex. Com-
posing security patterns to achieve security properties requires
considering both behavioral and structural composition.

III. APPROACH

Our pattern composition approach to building secure ap-
plications is shown in Fig. 1. It consists of several steps.
First, we collect security patterns from the literature [4], [6],
[20], [28] and assemble them into a catalogue. Then, these
patterns are analyzed and realized as concrete capability-
specific design fragments (from now on referred to simply
as design fragments). We model the design fragments using
Serscis Access Modeller (SAM) [17], a modeling tool for
capability-based systems. We verify the properties of these
design fragments, derived from the informal security claim
of the security patterns, at the design level, to check whether
security properties are preserved and what assumptions must
be made of the underlying platform. In the design of secure
systems, providing assurance that the systems have satisfied
the security requirements is essential. We justify the security
properties of our application through security assurance cases.
We utilise the verified design fragments in composition with
each other to build up an application design that satisfies the
security requirements. We propose and define four composi-
tion primitives, which we call composition tactics, to assist
in composing design fragments together. Finally, we verify
the application design to provide assurance that the system
provides the intended properties. The verification provides
evidence that helps justify our security assurance cases.

A. Serscis Access Modeller (SAM)

Serscis Access Modeller (SAM) [17] is a modelling tool
and notation for defining and verifying capability-based sys-
tems. We use SAM to model our instantiation of security
patterns as design fragments. A SAM model represents the dis-
tribution of capabilities across the components that make up a
capability-based system. SAM has a textual representation and
a graphic representation. The textual representation consists
of three specifications, namely component, initial capability
distribution, and security goal. In the component specification,
components are represented as classes defined in a Java-like
language. The behaviors of each component are represented
as functions. The key characteristic of the behavior that we

Security
Property
Analysis

Security
Property
Analysis

Security PatternsSecurity Patterns

Capability-specific
design fragments for

patterns

Security Patterns

Application Design

Security
Property
Verifica-

tion

Composition

Security
Property
Verifica-

tion

Reuse

Application Code

Platform

Implementation

Capability-specific
design fragments for

patterns

Capability-specific
design fragments for

patterns

Assurance
Case

Fig. 1: Overview of our approach

are interested in is the invocation of other components and the
capability propagation through those invocations. The initial
capability distribution specification defines the capabilities held
by each component at the start of the system’s execution.
The security goal specification consists of datalog [29] rules
and queries that are used to verify the system. We refer to
these rules and queries as verification procedures and will be
described in more detail in Section III-D.

The graphical representation of SAM shows the state of
the system/model where all the possible capabilities have been
propagated and shows whether there is a security violation. A
model is a directed graph with nodes representing components
and directed edges (arrows) representing access. An arrow
pointing to a component represents holding a capability to
it. Holding a capability to a component in SAM provides
all the permissions, i.e. read, write, invoke and grant, to that
component. In SAM notation, an arrow has different styles
(dotted and solid) and different colors (green and black). A
solid arrow signifies that the capability is obtained as part
of the initial capability distribution, while a dotted arrow
means that it is obtained at runtime. This is useful for tracing
how access has been passed from one component to another.
Consider a system with two components A and B. A green
arrow from A to B means that A has invoked functions of B,
while a black arrow indicates A does not invoke functions of B.
Furthermore, components can be trusted (black) or untrusted
(blue). Trusted components have assumptions about their be-
havior (i.e. they will only call methods as instructed) while
untrusted components may call any method of the components
that they have access to. In addition, untrusted components
may try to pass around any capabilities they possess to the
components they can access. (This notation is demonstrated
later in Fig. 5.) Note that a SAM model defines the upper
bounds on the behaviors of the trusted components and is an
over-approximation of the real system.

One of the limitations of SAM is that it cannot model
timing properties. SAM can be used to verify that an attacker
does not invoke a function in a component. However, it is not
the right tool to verify that the attacker will not learn about
the content of a file via timing attacks. This limits the type

of systems that can be modelled and verified with SAM as it
cannot verify availability properties of a system.

The second limitation is that SAM cannot model dynamic
deletion. Once the model is executed, a component cannot be
removed. Deletion of a component can be done during design
time (i.e. before the model is executed). It does, however, allow
dynamic creation of components.

B. Design Fragments for Security Patterns

Design fragments are specializations of security patterns
for capability-based platforms. We develop the design frag-
ments by extracting important information from a security
pattern and manually creating a SAM model based on this
information. The extracted information includes the goal of
the pattern, the actors involved (modeled as components),
the main functionality of each actor, the interaction between
different actors in the pattern, and the implicit assumptions of
the pattern.

Each design fragment is associated with a verifiable SAM
model, a reusable design-level verification procedure, and
assumptions about the properties provided by the underlying
platform. The verification procedure is used during the security
property analysis stage (Section III-D), which will provide
feedback to improve the design fragment in order to achieve
the desired security properties. This feedback can be in the
form of counterexamples or security violations identified dur-
ing the analysis process. The assumptions can be discharged by
mechanisms supported by the underlying platform or carried
through as operational constraints.

C. Composition of Design Fragments

Designing a secure system may require the composition of
several security patterns, each concerned with different security
properties. The first step is selecting the appropriate security
patterns, i.e. those that support the security requirements of
the application and that help mitigate attacks. These patterns
are then specialized into design fragments, which can then be
composed with each other or applied to an existing application
design (in both cases we call this composition). The challenge
in composing design fragments is producing a design that
provides the intended security properties and does not break
any security properties already present in the application.

There are two things we reuse when composing design
fragments. First, we reuse the structure and behavior of the
design fragment. Second, we reuse the verification procedure
that we applied to the design fragment including both the
query and datalog rules defined for the design fragments (see
Section III-D).

Each system, including design fragments, is made up
of components and connections. A connection has three
attributes, namely the source component, target component
and access rights (capabilities). The access rights attribute
signifies the capabilities the source component has over the
target component. We include this attribute so that it can be
generalised to cater for more systems. As SAM follows the
pure capability model in which having an access means you
possess all the rights (e.g. read, write, grant), the access rights
attribute will always be the same for each connection. This

is in fact over-approximating the system and we consider the
worst-case scenario. A more fine-grained control on access
rights, such as following the principle of least privilege, will
result in a system that is at least as secure or even more
secure. Consider a particular component that requires only read
access to complete its tasks: if a system is secure even if this
component has all the access rights, the system will at least
be as secure or more secure if the component has only read
rights. Therefore, we ignore this attribute in this paper.

In order to define this precisely, we make the following
definitions.

Definition 1 A system is Σ = 〈C,N〉, where C is a compo-
nent set {c1, c2, ..., cn}, where each ci is a different component,
and N is a connection set, {n1, n2, ..., nm}, where each nj is
a different connection and where each nj = 〈ci, ck〉 for some
ci, ck ∈ C.

Each component set is divided into three disjoint subsets,
namely S, T and all the rest. S is a set of components which
are the secrets or attributes that need to be protected in the
system. T refers to a set of components which are trusted to
have access to a secret. Each of the trusted components needs
to be verified to ensure that it behaves as specified. The rest
of the components are neither a secret nor components trusted
to have access to a secret. We refer to systems with these two
subsets defined (and one derived), and with the property that
no untrusted component can access any secrets, as acceptable
systems.

Definition 2 An acceptable system Σacc = 〈C,N, S, T 〉 ex-
tends a system Σ = 〈C,N〉, where S is a set of components
that need to be protected (secrets) and T is a set of trusted
components and ∀n ∈ N . ∀p ∈ C \ T . ∀s ∈ S . n 6= 〈p, s〉.

We have identified four primitives to compose design
fragments, which we call composition tactics. These tactics
are connect, disconnect, create and delete. Each tactic affects
either the component and/or the connection set and thus affects
the verification procedures of the composite system. As we
mentioned in Section III-B, each system (including design
fragments) is associated with verification procedures. These
procedures are datalog rules and queries that are used to
verify that a system has certain intended security properties,
which are specified using the template that we will define in
Section III-D. Based on this template, components that are not
in the trusted set cannot have access to a secret. Therefore, we
can say that a secret is protected by its trusted components.
To be more precise, each verification procedure acts on the
component sets.

1) Connect Tactic: The aim of the connect tactic is to
combine two systems together to form a larger system. This is
analogous to creating an edge between two nodes in a graph.
Structurally, the source component is granted a capability to
the target component and invokes a particular function of
the target component. For precision, we define connect in
Definition 3.

Definition 3 Connects to
If Σa = 〈Ca, Na, Sa, Ta〉 and Σb = 〈Cb, Nb, Sb, Tb〉 then

connecting Σa and Σb means creating Σc = 〈Ca ∪ Cb, Na ∪
Nb ∪ 〈ca, cb〉, Sa ∪ Sb, Ta ∪ Tb〉, where ca ∈ Ca and cb ∈ Cb

and 〈ca, cb〉 /∈ Na ∪ Nb with the restriction that: if cb ∈ Sb

then ca ∈ Tb.

2) Disconnect Tactic: The disconnect tactic aims to remove
a connection of source component to target component. This
is analogous to removing a connection between two nodes in
a graph. Structurally, a capability to the target component is
revoked from the source component. (It may be that this gives
us two completely disconnected systems.)

Definition 4 Disconnects from
If Σ = 〈C,N, S, T 〉, then disconnecting ca ∈ C from cb ∈
C means creating Σ′ = 〈C,N ′, S, T 〉, where N ′ = N \
〈ca, cb〉 and 〈ca, cb〉 ∈ N

With regards to the verification procedure, we check
whether the target component is part of the secret set of the
system. If it is, we remove the source component from the
target component’s trusted set. If it is not an element in the
secret set, the disconnect tactic does not affect the verification
procedure.

3) Create Tactic: The create tactic is used to create a
new component in the system. This is analogous to creating
a new node in a graph. Structurally, a new component is
initialized without holding any capabilities. With respect to
the verification procedure, this tactic enlarges the component
set of the system.

Definition 5 Creates
If Σ = 〈C,N, S, T 〉, then creating a new c /∈ C means

creating Σ′ = 〈C ∪ {c}, N, S, T 〉.

4) Delete Tactic: The delete tactic removes a component
in the system. This is analogous to deleting a node in a graph.
Structurally, the target component is removed from the system
at design time. However, the component needs to be isolated
before the delete tactic is allowed. A component is isolated
when it has no capability with respect to other components
in the system and there is no capability pointing towards that
component. One way to isolate a component is to revoke all
the capabilities that the target component has and also revoke
any capabilities that points towards this component. This tactic
reduces the size of the system’s component set.

Definition 6 Deletes
If Σ = 〈C,N, S, T 〉, then deleting c ∈ C means creating Σ′ =
〈C \ {c}, NS, T 〉 only if ∀ci ∈ C . 〈c, ci〉 /∈ N ∧ 〈ci, c〉 /∈ N

A (partial) system representation consists of a set of com-
ponents and connections. Any representation can be created by
using the create and connect primitives. Two representations
can be composed by selectively disconnecting and deleting
components and then adding nodes and connections to ac-
complish the composition. Thus, once the semantics of the
four primitives are specified, higher-level composition tactics
between two representations can be specified in terms of these
primitives. Our future work includes defining several high-level
composition tactics.

D. Security Property Verification

Each design fragment has associated verification proce-
dures. These verification procedures are datalog statements
and rules that represent the security goal of the design
fragment. We use Points-To analysis using Binary Decision

Diagrams (BDD) [30] to verify the security properties of
both the design fragments and the application design re-
sulting from the composition of design fragments. Points-
To analysis establishes which components point to (i.e. have
access to) other components. This generates a mapping of
which components have access, including access gained during
execution, to other components. We assert the datalog query,
that is part of the design fragment, on the mapping generated
by the Points-To analysis to check whether there exists a
capability/access from a component to another (presumably
a secret). Asserting the datalog query ensures that the de-
sign fragment satisfies its desired security properties. For
example, asserting the datalog !hasRef(<component1>,
<component2>), checks whether component1 can access
component2. If component1 can access component2, then the
desired property is not satisfied.

Verifying individual design fragments gives assurance
about the security properties of the fragments. Furthermore, it
helps identify localized problems to an individual design frag-
ment before those problems propagate to the whole application
design through composition. Since these fragments are com-
posed together to form the application design, analysis needs to
be performed on the whole application as well as on individual
fragments. This is crucial because analyzing the composite
design indicates that it retains the intended security properties,
despite transformations introduced in design or composition.
The analysis performed on these designs will not only provides
feedback to improve the designs but also provides evidence
about the security property the design fragments provide.

Reusing design fragment verification procedures for the
application design might require their modification. This mod-
ification is the effect of applying the composition tactic as
defined in Section III-C. This is done to reflect the goals
of the application, which might differ from those of the
individual design fragments. Such modification is done during
composition. For instance, if the goal of a design fragment
is to prevent unauthorized access to the encryption key while
the goal of the application is to prevent unauthorized access
to the encryption key and encrypted file at the same time, the
goal of the application subsumes that of the design fragment.
The datalog rule needs to be modified to check for access
to both key and file simultaneously. Then, we analyze the
security properties of the application to ensure that its goals
are satisfied.

1) Security Goal Template: We define a template for
describing the security goal of a system to make it easier
to specify the verification procedures to check the intended
security goal. The template requires four parameters, namely
source, secret, trusted and a boolean value access. Source
represents a set of components that we would like to perform
the check on. Secret is a set of components that we would like
to protect while trusted is a set of components that are trusted
to have access to the secret. Access is a boolean that defines
whether source should have or not have access to secret. The
template is as follows:

Source has/no access to secret, except
trusted

The template is then represented as datalog rule, shown
in Listing 1. This datalog rule is used to check whether the

specified source has any access to the specified secret. Lines
2-4 exclude the trusted components from the check and lines
5-7 check whether the source has access to the secrets. Note
that ’,’ here represents the ’AND’ operator. Line 8 asserts that
the security property is not breached.

Listing 1: Datalog Rule Template
1 secBreached(?Src,?S1,..,?Sn):-
2 !MATCH(?Src,trusted1),
3
4 !MATCH(?Src,trustedN),
5 hasRef(?Src,?S1),
6
7 hasRef(?Src,?Sn).
8 assert !SecBreached(?Src,<S1>,..<Sn>).

E. Assurance Case

An assurance case is a structured argument that a system
has certain properties. It provides confidence that a system
will function as intended through evidence and reasoning
(arguments) that link the pieces of evidence to the claims. We
use the Claim-Argument-Evidence (CAE) notation [8] for our
assurance case. A claim represents a desired security property
that the system should achieve. Argument is an explanation of
how the evidence supports the claim to be true. Evidence is a
proof that the system has certain property and can be obtained
through testing, analysis or verification.

When building the assurance case, we determine the se-
curity property we are interested in and set that as the root
claim. Then, we identify potential attacks or loopholes and
make claims about how the system remains secure despite
these possible attacks. We support these claims with arguments
organised according to the structure of the architecture and
through evidence provided by analyses.

When there is a security violation in the proposed sys-
tem, we introduce verified capability-specific design fragments
(Section III-B) into the system to mitigate that attack. After
this, we re-analyze the security properties of the composite
design. The output of security property analysis feeds into the
construction of the assurance case as evidence that supports
the claims about system security.

F. Designing the Application

The design of the application is driven by the items in
the assurance case and the threats to the security property
identified by the Points-To analysis. As we will see in the
case study, we hypothesize a design and perform an analysis
based on the assurance case. When a threat to the overall
requirement is discovered, we choose a design fragment that
should mitigate that threat. We compose the design fragment
into the overall design using our primitive composition tactics
and repeat the analysis.

This process is repeated until either the threat to the overall
requirement is eliminated or we have exhausted all possible
design fragments and possible compositions.

IV. CASE STUDY - SECURING DEVOPS PIPELINE

Many companies have embraced the concept of Continuous
Deployment [11], which aims to deploy code changes to a

production environment multiple times a day. Each change
automatically goes through a set of tools that perform activities
like integration build, deployment (and testing) to various test-
ing environments, and deployment to production environments.
We call the tool chain performing these activities a Continuous
Deployment (CD) pipeline.

A key challenge in a continuous deployment pipeline is
the security of the pipeline itself. First, different roles in
the development team and the operation team should have
different access to different parts of the pipeline. For example,
a developer should not be able to deploy to production directly
without her changes going through the pipeline. Certain build
and test jobs can only be triggered by certain roles. Second, the
testing and production environment should have total isolation.
Major real world outages have happened because a compo-
nent in the testing environment is accidentally connected to
production database. Third, a compromised or misconfigured
continuous deployment pipeline may have malicious code or
unwanted debugging/experimental code that ends up being
deployed to production. A typical CD pipeline is not designed
with all the above security requirements in mind. Thus, the
aim of the case study is to use our approach to enhance
the security design of a CD pipeline satisfying the security
properties derived from the above requirements. Our target
platform is the Amazon Web Services (AWS) and security
model is capability-based. Although AWS is not a formally
verified platform, we treat its security mechanisms as trusted
because of our real-life constraints.

A. Background

Continuous Deployment pipelines vary from one company
to the other, depending on their existing practices. However,
each of these pipelines has a common sequence of stages,
which include building the code, testing the code and deploy-
ing the code to production. Each stage may require different
tools and shares some commonly used tools.

Jenkins1 is an open-source application for continuously
building and testing software applications. It is typically used
as a build server that performs and orchestrates several steps in
a CD pipeline, which include pulling the source code, building
application binary from source code, running the test suites,
creating an image and storing the image into a repository or
storage. In our case study, we model the storages as AWS
Simple Storage Service (S3) Buckets2.

In the application building stage, we build the code and
package the binary, also called as the build artifact, into an
image. This image is then stored in a storage, such as AWS
S3.

There are different types of tests required during the testing
stages. These include unit tests, integration tests and end-
to-end tests of various lengths. They are often run inside
different environments. We setup the testing environment and
run the tests on the application image to ensure that the ap-
plication demonstrates its intended functionalities. A deployer
is required to setup the various testing environments, which
includes installing the application and its dependencies inside

1Jenkins—http://jenkins-ci.org/
2S3—http://aws.amazon.com/s3/

a virtual machine, configuring and running the application, and
triggering the tests. AWS Opsworks3 is a service that helps to
set up the environment and to install the application.

If the application image passes all the tests, it will then
be deployed to the production environment. Usually, a release
manager, who is a human operator, has to approve the deploy-
ment of a particular image into the production environment.
Upon approval, a deployer will then deploy the image to the
production environment.

B. Existing Security Mechanisms

There are several sources of security mechanisms that we
can utilise in our pipeline, namely from the platform, operating
system and the build server - Jenkins. The AWS security model
is not explicitly a capability-based model, however, it has
the characteristics of such a model, and so our approach and
design fragments map well to it. The AWS Identity and Access
Management (IAM)4 security mechanism binds authority to
users and roles. An EC2 instance5 running as a particular
user or assuming a particular role will have the correspond-
ing authority to access resources or invoke AWS operations.
IAM also provides the ability to change or assume roles at
runtime. Assuming a role creates a security credential tuple,
consisting of an AWS access key id, AWS secret access key
and temporary security token, which is similar to a capability
since it can be passed to other instances granting them new
access right. In our SAM models of Continuous Deployment
pipeline, the components are either EC2 instances or AWS
resources (such as S3 buckets), and the capabilities are AWS
role-based security tokens.

The operating systems that are running on the EC2 in-
stances also provide certain security mechanisms to govern
what operations, such as installing an application, can be
performed inside the instance. As mentioned in Section IV-A,
we use AWS Opsworks to setup the environment inside the
instances. Opsworks requires root access in order to perform
these operations. For this reason, we disregard the security
mechanisms offered by the operating system as they are
overridden by Opsworks’ root access.

Jenkins provides authentication and authorization mech-
anisms. Authentication can be achieved by creating a user
database for Jenkins. Matrix-based security is commonly used
as Jenkins’ authorization strategy. It allows administration of
specific pre-defined access rights to users or groups.

C. Securing the Continuous Deployment Pipeline

The high-level security requirements that we want to satisfy
are that malicious code is not deployed through the pipeline
and that there is no direct communication between components
in the testing and production environments. The first high-level
security requirement can be broken down into four require-
ments, one for each of the three stages (see Section IV-A)
of the pipeline and one requirement about credentials. These
requirements are the malicious user cannot have access to
code, the correct version of build image is deployed for testing

3Opsworks—http://aws.amazon.com/opsworks/
4IAM—http://aws.amazon.com/iam/
5EC2—http://aws.amazon.com/ec2/

and is untampered with, the tested image to be deployed to
production is untampered with and credentials are not leaked.
These requirements can be further broken down to be more
specific. The second high-level security requirement can be
broken down into two requirements, namely that there is no
component that has access to both production and testing
environments and the production environment is isolated from
the testing environment. After identifying these, we build an
assurance case (Fig. 2) in order to capture and demonstrate
that the pipeline satisfies its intended requirements. We claim
that malicious code is not deployed through the pipeline as
the root claim in our assurance case. In order for that claim
to be true, we need to make sure that all the sub-claims (i.e.
the broken down requirements) are true as well. We present a
subset of the assurance case in Fig. 2; we cannot present the
full case due to space limitations.

Malicious code is not

deployed through the

pipeline

Malicious

user

cannot

have

access to

code

Correct

version of

built image

is deployed

for testing

and

untampered

Creden

tials

are not

leaked

Access

to code

is

authent

icated

Only

trusted

compon

ent has

direct

access

to code

Built

image

is not

tampe

red

with

Exact

path to

images

remain

s

confide

ntial

Direct

access

to

creds

is

limited

to

trusted

compo

nent

Request

for

creds

have to

be

authenti

cated

No direct

communication

between testing and

production

environments

Integrity

check

on

image

is

perform

ed by

trusted

compon

ent

Tested

image to be

deployed to

production

is not

tampered

with

Production

isolated

from

testing

Access

to

checks

um

limited

to

trusted

compon

ent

No

Component

has access

to both

testing and

production

environment

Access

to

image

bucket

is

limited

Fig. 2: Continuous Deployment Assurance Case (subset)

We start off by modelling our existing pipeline model
without any security consideration and then harden the security
of the pipeline. The flow of our pipeline starts off with a
developer making a change in the form of a code commit.
Jenkins then pulls that code commit and builds the code.
Building the code results in a build artifact, which is an
application binary. Jenkins then packages the build artifact into
an image and stores it in an AWS S3. After that, Jenkins
triggers a deployer to deploy the built image to a testing
environment for testing. The deployer is a simple application
that uses AWS OpsWorks to set up the testing environment,
deploy and start the image inside the testing environment. The
tests are then triggered. The logs from the test are then stored
in an S3 bucket.

In this model, Jenkins is the main orchestrator that has
access to codeBucket, credsBucket, imageBucket, configBucket
and deployer. codeBucket, credsBucket, imageBucket and con-
figBucket which are all AWS S3 buckets, which we model to
have put and get functions. Fig. 3 shows the initial model of
the pipeline. We identify codeBucket, credsBucket and config-
Bucket as the secrets that we want to protect and only Jenkins
(trusted) can have access to them. Furthermore, we identify
imageBucket as a secret and we trust Jenkins and deployer

Fig. 3: Initial Design of the CD pipeline

Verification Procedure 2: Initial design
1 bktBreached(?Src,?Target):-
2 !MATCH(?Src,?Target),
3 !MATCH(?Src,<Jenkins>),
4 hasRef(?Src,?Target).
5 imgBreached(?Src,?Target):-
6 !MATCH(?Src,?Target),
7 !MATCH(?Src,<Jenkins>),
8 !MATCH(?Src,<deployer>),
9 hasRef(?Src,?Target).

10 assert !bktBreached(?Src,<codeBucket>).
11 assert !bktBreached(?Src,<credsBucket>).
12 assert !bktBreached(?Src,<configBucket>).
13 assert !imgBreached(?Src,<imageBucket>).

to have access to it. In order to check that these properties
are satisfied, we write two datalog rules, bktBreached and
imgBreached, as shown in Verification Procedure 2. From
here on, we refer to a Verification Procedure as a VP.

The initial model satisfies these rules, with the assumption
that Jenkins is a trusted component. Satisfying these rules
provides evidence to support a subset of the sub-claims in
the assurance case, in particular “only trusted component has
direct access to code”,“only a trusted component has access
to an image” and “direct access to credentials is limited to
a trusted component”. One major weakness of this model is
that we rely on the fact that Jenkins is trusted. If Jenkins
is infiltrated and thus considered as untrusted, the security
properties of the pipeline will not hold, given that Jenkins
is the main orchestrator in the model. Therefore, we have to
model Jenkins as an untrusted component to ensure that the
pipeline is secure even if Jenkins is infiltrated.

We model Jenkins as an untrusted component in SAM,
whereby an untrusted component may invoke any methods on
the components they have access to and try to pass around any
capabilities they possess to the components they can access.
We aim to harden the model with Jenkins being unknown. The
first step is to add authentication to authenticate the component
that is retrieving the code, config file and credential file. We
compose the current model with the authentication enforcer
[20] design fragments. The authentication enforcer (Fig. 4)
aims to create a single point of access to receive interactions
of a subject and verify the identity of the subject. The security
property of the authentication enforcer design fragment is that
the user store should remain confidential. We write a datalog
rule, shown in VP 3 to check that only authenticationEnforcer

can have access to userStore.
user

secureBaseAction

request
Context

authenticator

userStoresubject

Fig. 4: Authentication Enforcer Design Fragment

Verification Procedure 3: Authentication enforcer
1 uStoreBreached(?Src,?T):-
2 !MATCH(?Src,?T),
3 !MATCH(?Src,<authenticationEnforcer>,
4 hasRef(?Src,?T).
5 assert !uStoreBreached(?Src,<userStore>).

We need to insert the authentication enforcer design frag-
ment in between Jenkins, codeBucket, credsBucket and config-
Bucket, in order to moderate their interactions. First, we use
the connect tactic, connecting Jenkins to secureBaseAction.
Then we use the disconnect tactic to detach codeBucket,
credsBucket and configBucket from Jenkins. As each of code-
Bucket, credslBucket and configBucket is a secret, we remove
Jenkins from each of their trusted component sets. Finally,
we connect secureBaseAction to codeBucket, credsBucket, and
configBucket. The resulting model is shown in Fig. 5. As
we trust the secureBaseAction component, we add it into the
trusted component set of each of the connected components.
We modify the affected datalog rule (bktBreached in this
case) every time the tactic is applied. The resulting rule is
shown in VP 4. We verify that the composite design sat-
isfies the uStoreBreached, imgBucketBreached and
bktBreached rules.

jenkinsInstance

secureBaseAction

rc

authenticator

userStore subjectcon�g
File

con�g
Bucket

code

code
Bucket

credential
File

creds
Bucket

Fig. 5: Jenkins with the Authenticator Enforcer Pattern

Verification Procedure 4: Bucket (modified)
1 bktBreached(?Src,?T):-
2 !MATCH(?Src, ?T),
3 !MATCH(?Src,<Jenkins>),
4 !MATCH(?Src,<secureBaseAction>),
5 hasRef(?Src,?T).

In order to ensure that the build artifact is packaged
into an image correctly, we alleviate Jenkins from this duty

and have a trusted image builder. Furthermore, we want to
be able to detect whether or not the image is tampered
with during the testing stage. We need an imageBuilder that
will build the image, request an integrity check calculation
(checksum) from integrityChecker and store the checksum in
a database, checksumStore, which we want to protect and
which is thus classified as a secret. In order to achieve this,
we create imageBuilder and connect Jenkins to it. Then, we
connect imageBuilder to integritychecker and checksumStore.
As checksumStore is a secret and we trust imageBuilder to
have access to it, we add the image builder to the trusted
component set of checksumStore. Thus, we write a new datalog
rule (shown in VP 5) to verify that no other component, except
those in its trusted component set (i.e. imageBuilder), can have
access to checksumStore.

imageBuilder

imageBucketchecksumStore integrityChecker

image

jenkinsInstance

Fig. 6: Jenkins with Image Builder and Integrity Checker

Verification Procedure 5: Checksum store
1 cSumBreached(?Src,?T):-
2 !MATCH(?Src, ?T),
3 !MATCH(?Src,<imageBuilder>),
4 hasRef(?Src,?T).
5 assert!cSumBreached(?Src,<checksumStore>).

In order to satisfy the claim that the correct version of the
built image is deployed for testing and is untampered with, we
need to satisfy the claim that the exact path to images remains
confidential. This is to ensure that the correct version of the
image is deployed. There are two ways of protecting confi-
dentiality of data: encryption and obfuscation. The encrypted
storage pattern [31] aims to harden the confidentiality of a
system. It encrypts data before storing it, and the encryption
key must be stored securely. This mitigates the impact of
the loss of a file to an attacker, because the content of the
file remains confidential, as it has been encrypted. Fig. 7
shows the capability-specific design fragment of the encrypted
storage pattern. The encryptedStorage component has access to
the storage, encryptedDecrypt and key components. The user
(invoker) sends an encrypt command, together with the data,
to encryptedStorage. encryptedStorage loads the value of the
key into encryptDecrypt and sends an encryptData command,
together with the data, to it. The encrypted data is then returned
to the encryptedStorage, which sends it back to the invoker,
and it is stored in storage. The security property that is of
interest is the confidentiality of the data. Since the data is
encrypted, access to the encryption key needs to be minimized.
Thus, only encryptedStorage is given access to the key. The
security property is reflected in VP 6. It checks whether any
component in the design fragment, with the exception of
encryptedStorage, has access to the key.

storage encryptDecrypt key

encryptedStorage

user

Fig. 7: Encrypted Storage Design Fragment

Verification Procedure 6: Encrypted storage
1 keyBreached(?Src,?T) :-
2 !MATCH(?Src, ?T),
3 !MATCH(?Src,<encryptedStorage>),
4 hasRef(?Src,?T).
5 assert !keyBreached(?Src,<key>).

We compose our existing model of the pipeline with the
encrypted storage design fragment by connecting deployer to
encryptedStorage with the connect tactic. The deployer will
generate a time-bound temporary url of the image location in
a bucket, a mechanism provided by AWS S3, and then invoke
the encryptData function of encryptedStorage to encrypt the
temporary url. The temporary url not only obfuscates the real
location of the image, but also put a time-bound to limit access
to the image. However, we can only model the invocations
and cannot check this property in SAM. The deployer then
invokes AWS OpsWorks, which instructs the ec2instance to
pull the image from the encrypted url and then run that image
on the instance. As we are not using the storage component,
we disconnect storage from encryptedStorage and delete the
storage. Once the test is completed, the release manager will
be notified and has to make a decision whether or not the latest
build should be deployed to production. The release manager
will perform an integrity check on the latest build image to
ensure that the image is untampered with. The integrity check
can be done by calculating the checksum for the build image
and comparing it with the entry in the checksumStore. If it
matches, he can approve the latest build image to be deployed
to the production environment through a different deployer.
Having different deployers for the testing and production envi-
ronments help ensure that there is no invocation between these
two environments. We assume that the EC2 instances have
been already been launched by AWS OpsWorks. Fig. 8 shows
the final model of the testing environment of the pipeline.

Finally, we want to ensure that there is no direct communi-
cation between the testing and production. The execution do-
main pattern [20] aims to restrict a process to specific resources
by defining logical execution environments (domains). We
define three different domains, which are testing, production
and shared. The shared domain consists of utility components
that are used by components in both production and testing
domains. To ensure that no component in the testing domain
has access to the production domain, we write a datalog rule
to check this property.

In order to demonstrate this property, we connect
ec2Instance from the testing environment to ProductionDB in
the production environment. Fig. 9 shows that there is a red
arrow, which signifies a security violation, from ec2Instance
to ProductionDB. This connection is considered a bad access

imageBuilder

image
Bucket

dynamoDB integrity
Checker

image

jenkinsInstance

deployer

encryptDecrypt

secureBaseAction

request
Context

ec2Instance

logBucket
trustedProxy

testDB

logFile

awsOpsworks authenticator

userStore subject
con�g
File

con�g
Bucket

code

code
Bucket

credential
File

creds
Bucket

Fig. 8: The testing environment of the Continuous Deployment (CD) pipeline.

Verification Procedure 7: No cross domain access
1 haveBadAcess(?Src,?T):-
2 hasRef(?Src,?T),
3 hasIdentity(?Src, "Testing"),
4 hasIdentity(?T, "Production").

and is caught by the datalog rule specified above (VP 7).
Production Environment

Testing Environment
(Partial)

Shared Environment

dockerInstance
Production

logBucket
Production

trustedProxy
Production

ProductionDB

logFile
Production

dockerInstance2
Production

dockerInstance3
Production

deployerProduction

awsOpsworksProduction

encryptDecrypt dockerImage
Bucket

releaseManager

checksummer dynamoDB

jenkinsInstance

deployerdockerImageBuilder

logBucket

logFile

awsOpsworks

dockerInstance

testDB

trustedProxy

dockerImage

Fig. 9: Testing to Production disallowed

The final pipeline design satisfies its security properties
even though Jenkins and all the buckets and ec2instances are
untrusted. Each verification procedure of the pipeline provides
evidence to support the subclaims in the assurance case that
we present in Fig. 2. Due to space limitations, we show only
a subset of the assurance case.

D. Path to implementation from model

One of the steps we perform in securing the CD pipeline
is to split off the image builder from Jenkins and perform an
integrity check on the image built. We will host the image
builder on an independent EC2 instance. The image builder
will offer image building as a service and gets the required files
as parameters of the service invocation. As it will be hosted in
an AWS EC2 instance, there are three security mechanisms
that we can utilize, namely the operating system security,
firewall (security group6) and IAM related permissions. AWS

6Security group—http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
network-security.html

also provides a mechanism to administer inter-AWS services’
permission. As the image builder will need to write to an S3
bucket and DynamoDB7, we create a role for the image builder
in IAM. This role is associated with a security policy that gives
it permission to perform put object (write) on a particular
S3 Bucket, identified by a unique Amazon Resource Name
(ARN)8 and permission to perform actions on DynamoDB,
identified by an ARN as well. After this is set up, we launch a
new EC2 instance and grant it this IAM role. This is currently
the only way to trigger this functionality. After the instance
is launched, we setup the security group. The security group
can be used to restrict incoming and outgoing traffic to and
from the instance. We open one port to allow invocation of
the service and limit the request only to those that originate
from the Jenkins instance private IP Address. Furthermore, we
should allow outgoing traffic to the integrity checker private IP
to enable image builder to invoke the integrity checker service.
Finally, there is the security provided by the operating system
that is running on the EC2 instance. However, we ignore the
operating system security mechanisms of the instances in this
paper. AWS recommends that password-only authentication
should be disabled and to use SSH authentication. Other AWS
services that we intend to use are AWS storage service (S3) and
NoSQL database service (DynamoDB). Both of these can be
secured by specifying appropriate IAM policies to allow/deny
certain actions to be performed on these services.

V. DISCUSSION

The four primitive tactics, which are defined in Sec-
tion III-C, have been exercised and utilized multiple times in
the case study. Complex security-critical systems can be built
using combinations of these primitive tactics. However, due to
the tactics being very primitive, it might be tedious to perform
commonly used combinations, such as the proxy tactic. The
proxy tactic is a higher-level tactic that helps to insert a
new component in between two connected components. This
can be achieved through multiple application of connect and
disconnect tactics. Building a catalog of these higher-level
tactics is crucial as it may ease the composition approach.
We will pursue this in our future work.

We rely on the assurance case being correct for the
composite design properties. The assurance case helps in

7DynamoDB—http://aws.amazon.com/dynamodb/
8ARN—http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-

namespaces.html

determining which security properties contribute to the final
properties and thus affects the verification procedure to be run
on the composite design. However, the assurance case might
be modified to provide more coverage or strengthen a property.
The consequence of the modification will affect the properties
of the system.

One of the common pitfalls for model-checking verification
is lack of scalability, due to state explosion. However, we
perform design-level verification which is on smaller models
compared to code-level verification. Berndl et al. [30] have
demonstrated that Points-To analysis using BDD can scale to
verify code of large systems.

The trusted components need to be rigorously tested
(ideally formally verified) to minimize (or remove) issues
due to programming errors. This is essential as the security
of the system will most likely fail if a trusted component
is compromised. Our aim is to identify security issues as
early in the software development lifecycle as possible. We
acknowledge that there are some properties that are important
but not meaningful to reason about at the design level, such
as denial of service. Access propagation is a property that it is
meaningful to analyse and reasoned about at the design level.

A potential weakness of design-level verification is that the
security property might break at the code level or physical
level. This can be due to misunderstanding of the design,
coding errors, or to implementations exposing information that
had been abstracted in the design. One way of mitigating this
is to generate code for the architectural framework connecting
different components. Using such a framework can provide
high-level assurance, assuming that the generated code comes
with assurance that the refinement to code does not break
the design-level security property. The component code must
also be correct. Attacks at the physical level can also vio-
late assumptions made by design abstractions. For example,
covert channel attacks can break confidentiality properties.
Alternative mitigations and arguments are required to provide
assurance that a system can resist such attacks, but we have
not directly addressed this issue in this paper.

Security patterns are our source for the definition of
capability-specific design fragments. However, as patterns are
informal and ambiguous, it can be difficult to know exactly
what properties are being claimed and what should be verified.
Moreover, it is difficult to compare a formal representation of
the pattern as a design fragment, to an informal one (textual).
A design fragment for a security pattern is one version of the
pattern specialized for a specific platform. We do not claim
that a design fragment of a pattern for a platform is the only
possible representation of the pattern for that platform.

VI. FUTURE WORK

Our future goal is to prove that our tactics are composi-
tional. This means that we have to prove that if two subsystems
are known to be secure and they are combined using the
connect tactic, then the resulting system will, by construction
and necessarily, be secure too. And the same needs to be
proved of the other tactics. Once this is done we no longer
need the (perhaps expensive) verification process any more.

Furthermore, we can drop the requirement that our design
fragments are verified using the same verification method

(since there will be no need for such things). This will make
specifying (or designing) secure systems much more flexible.

Our definitions of the tactics in section III-C makes a start
in this direction. At this stage, (and we provide all this for
a strong indication of our future direction) if we take the
previous definitions, then we believe that we can make claim
to the correctness of the accompanying conjectures.

Definition 7 Protected by (version one)
For any Σacc = 〈C,N, S, T 〉, any s ∈ S is protected by T iff
∀p ∈ C \ T . 〈p, s〉 /∈ N

Definition 8 Protected by (version two)
For any Σacc = 〈C,N, S, T 〉, any s ∈ S is protected by T iff
∀c ∈ C . 〈c, s〉 ∈ N =⇒ c ∈ T

Conjecture 9 Definitions 7 and 8 are equivalent.

Conjecture 10 In acceptable systems, all secrets are pro-
tected by trusted components, i.e. in Σacc = 〈C,N, S, T 〉,
every element of S is protected by T , and we say S is protected
by T .

Conjecture 11 In acceptable systems, connect is composi-
tional. This means that if two systems being connected have
their respective secrets protected by their respective trusted
sets, then performing connect will preserve the property
whereby for the composed system the components in its secret
set are protected by components in its trusted set.

We call the tactic defined in Definition 3 a strong connect,
because this tactic preserves the security property of both
systems being connected under the restrictions that: (1) a
component in the trusted set cannot make a new connection
to a secret of the other; and (2) a component that is not a
secret and not trusted cannot make a new connection to a
secret. It does not make much sense to have an atomic trusted
component, i.e. a component that is trusted for nothing. The
second restriction helps preserve the protected property that is
defined in Definitions 7 and 8. So, we can guarantee that the
security properties of composed systems are preserved when
strongly connected.

However, having a strong connect means that there are
many other possible compositions that in fact we would like
to have but which the strong connect does not allow due to
its restrictions. To account for that, we might need a weaker
connect and that will be formalised in our future work. For
the weaker connect, we drop the restrictions that is a feature
of strong connect to allow for more connections. The price we
pay, of course, is that we lose compositionality, i.e. we cannot
guarantee that security properties will be preserved.

There are some subtleties of the connect tactic. These bring
up questions such as: 1) Should secrets be allowed to connect
to secrets? 2) Are cycles allowed between secrets and trusted
components? 3) Should a trusted component of one system
automatically become trusted by another system when they
are connected together? By Definition 3, we allow secrets to
be connected to secrets and trusted components. For the third
question, we have taken a simplified approach in the above
definition by disallowing a trusted component to connect to a
secret. This is a reason why our strong connect guarantees
that the secrets will always be protected by their trusted
components. However, this is also a reason why the strong

connect is restrictive. Performing a weaker connect might then
allow the alteration of the trusted set of a secret, based on user
input (i.e. user wants to connect a component to a secret, and
trust the component to have access to the secret).

Other future work includes: building a catalogue of higher-
level tactics, which are combinations of the primitive compo-
sition tactics defined in Section III-C is crucial; we intend to
provide more automation to compose two systems together,
utilizing the composition tactics; finally, we would like to
measure the performance overhead incurred by the security
mechanisms and would therefore require the implementation
of the secure Continuous Deployment pipeline.

VII. CONCLUSION

Building secure applications requires significant expertise
and effort. To alleviate this problem, we introduced the concept
of reusable verified design fragments and the compositional
use of them in secure application design. These design frag-
ments package security patterns and platform features and are
verified to provide assurance about their security properties.
Our approach enables the composition of the design fragments
through four primitive tactics and verifies the composed design
against desired security properties, which are presented in
an assurance case. We demonstrated our work by securing a
real-life example of a Continuous Deployment (CD) pipeline.
Through the example, we have demonstrated how we can
harden aspects of the initial system design by iteratively
improving security in response to increasingly severe attacks,
using the four composition tactics.

ACKNOWLEDGEMENTS

NICTA is funded by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Program.

REFERENCES

[1] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: Formal verification of an os kernel,”
in the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP). New York, NY, USA: ACM, 2009.

[2] P. G. Neumann and R. N. M. Watson, “Capability revisited: A holistic
approach to bottom-to-top assurance of trustworthy systems,” in the
Fourth Annual Layered Assurance Workshop, Texas, USA, 2010.

[3] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
cheri capability model: Revisiting risc in an age of risk,” in the 41st
International Symposium on Computer Architecture (ISCA), 2014.

[4] J. Yoder and J. Barcalow, “Architectural patterns for enabling ap-
plication security,” in the 4th Conference on Patterns Language of
Programming (PLoP), Washington, DC, USA, 1997.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Boston, MA, USA: Addison-Wesley Professional, 2012.

[6] E. Fernandez-Buglioni, Security Patterns in Practice: Designing Secure
Architectures Using Software Patterns, 1st ed. Hoboken, NJ, USA:
Wiley Publishing, 2013.

[7] R. Bloomfield and P. Bishop, “Safety and assurance cases: Past, present
and possible future an adelard perspective,” in Making Systems Safer,
C. Dale and T. Anderson, Eds. Springer London, 2010, pp. 51–67.

[8] C. Weinstock, H. F. Lipson, and J. Goodenough. (2013) Arguing
security - creating security assurance cases.

[9] J. Derrick and E. Boiten, Refinement in Z and Object-Z: Foundations
and Advanced Applications, ser. Formal Approaches to Computing and
Information Technology. Springer, May 2001. [Online]. Available:
http://www.cs.ukc.ac.uk/pubs/2001/1200

[10] J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” Communications of the ACM, vol. 9, no. 3,
March 1966.

[11] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Per-
spective. Boston, MA, USA: Addison-Wesley Professional, 2014.

[12] N. Hardy, “The confused deputy: (or why capabilities might have been
invented),” SIGOPS Oper. Syst. Rev., vol. 22, no. 4, 1988.

[13] J. Saltzer and M. Schroeder, “The protection of information in computer
systems,” the IEEE, vol. 63, no. 9, 1975.

[14] J. S. Shapiro, J. M. Smith, and D. J. Farber, “Eros: A fast capability
system,” in the Seventeenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’99. New York, NY, USA: ACM, 1999, pp.
170–185.

[15] S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse,
and H. van Staveren, “Amoeba: A distributed operating system for the
1990s,” Computer, vol. 23, no. 5, pp. 44–53, May 1990.

[16] M. D. Castro, R. D. Pose, and C. Kopp, “Password-capabilities and the
walnut kernel,” The Computer Journal, vol. 51, no. 5, 2008.

[17] T. Leonard, M. Hall-May, and M. Surridge, “Modelling access prop-
agation in dynamic systems,” ACM Transactions on Information and
System Security (TISSEC), vol. 16, no. 2, September 2013.

[18] S. Konrad, B. H. C. Cheng, L. A. Campbell, and R. Wassermann, “Using
security patterns to model and analyze security requirements,” in the
Requirements Engineering for High Assurance Systems (RHAS), 2003.

[19] T. Heyman, R. Scandariato, and W. Joosen, “Reusable formal models
for secure software architectures,” in the 2012 Joint Working IEEE/IFIP
Conference on Software Architecture (WICSA) and European Confer-
ence on Software Architecture (ECSA), Helsinki, Finland, 2012.

[20] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns: Integrating Security and Systems
Engineering. Hoboken, NJ, USA: Wiley Publishing, 2006.

[21] G. Holzmann, “The model checker spin,” Software Engineering, IEEE
Transactions on, vol. 23, no. 5, 1997.

[22] J. Jürjens, “UMLsec: extending UML for secure systems development,”
in the 5th International Conference on The Unified Modeling Language.
London, UK: Springer-Verlag, 2002.

[23] T. Lodderstedt, D. A. Basin, and J. Doser, “Secureuml: A uml-based
modeling language for model-driven security,” in the 5th International
Conference on The Unified Modeling Language, London, UK, 2002.

[24] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar, “A tactic-
centric approach for automating traceability of quality concerns,” in the
34 International Conference on Software Engineering (ICSE), 2012.

[25] M. Mirakhorli, P. Mäder, and J. Cleland-Huang, “Variability points and
design pattern usage in architectural tactics,” in the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012.

[26] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
Hoboken, NJ, USA: Wiley Publishing, 1996.

[27] S. Yacoub and H. Ammar, Pattern-Oriented Analysis and Design:
Composing Patterns to Design Software Systems. Boston, MA, USA:
Addison-Wesley Professional, 2003.

[28] C. Steel, R. Nagappan, and R. Lai, Core security patterns: best practices
and strategies for J2EE, Web services, and identity management. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[29] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to
know about datalog (and never dared to ask),” Knowledge and Data
Engineering, IEEE Transactions on, vol. 1, no. 1, 1989.

[30] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee, “Points-
to analysis using BDDs,” in the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI), New York,
NY, USA, 2003.

[31] D. M. Kienzle, M. C. Elder, D. Tyree, and J. Edwards-Hewitt, “Security
patterns repository, version 1.0,” 2002.

http://www.cs.ukc.ac.uk/pubs/2001/1200

