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Abstract—Hidden Markov Models, HMM’s, are mathematical
models of Markov processes whose state is hidden but from which
information can leak via channels. They are typically represented
as 3-way joint probability distributions.

We use HMM’s as denotations of probabilistic hidden-state
sequential programs, after recasting them as “abstract” HMM’s,
i.e. computations in the Giry monad D, and equipping them with
a partial order of increasing security. However to encode the
monadic type with hiding over state X we use DX→D2X rather
than the conventional X→DX . We illustrate this construction
with a very small Haskell prototype.

We then present uncertainty measures as a generalisation of
the extant diversity of probabilistic entropies, and we propose
characteristic analytic properties for them. Based on that, we give
a “backwards”, uncertainty-transformer semantics for HMM’s,
dual to the “forwards” abstract HMM’s.

Finally, we discuss the Dalenius desideratum for statistical
databases as an issue in semantic compositionality, and propose
a means for taking it into account.

Index Terms—Abstract Hidden Markov Models, Giry Monad,
Quantitative Information Flow.

I. INTRODUCTION

A. Setting and overview

Probabilisitic sequential programs with hidden state are
effectively Hidden Markov Models, or HMM’s, 1 formulated
as joint probability distributions over initial state, observa-
tions, and final state. We recast HMM’s as computations
over the Giry monad, suitable for program semantics. Indeed
the monadic view of Markov processes in particular is well
established [1], [2], using X→DX where type-constructor D
makes distributions on its base type X ; the Kleisli extension is
then of type DX→DX , representing action of multiplying an
initial-state-distribution vector by a Markov matrix. But that
does not account for hidden state and information flow.

We include hidden state by beginning with DX (rather than
X ): the computation type we obtain is “one level up”, of
type DX→D2X , the extension is D2X→D2X ; and we call
the double-distribution type hyper-distributions.

Although the Giry monad is formulated in terms of general
measures [2], we will need only discrete distributions for
matrix-based HMM’s. Nevertheless we give our constructions

1We use apostrophe uniformly for suffixes of acronyms.

and results in more general terms, anticipating e.g. infinite se-
quences of HMM’s, nondeterminism, and iterations for which
proper measures will be necessary [3].

In earlier work we have used D2X , equipped with a
partial order of increasing security, to establish composition-
ality results [4], to explore the effect of including demonic
non-determinism [5] and to give an abstract treatment of
probabilistic channels [6], [7]. A second common theme has
been the generalisation of entropies (such as Shannon) to a
more abstract setting where only their essential properties are
preserved [4], [5], [7], [8]. Here we use monads to bring all
those separate strands together and go further.

One further step is to show that there is a dual backwards
view for abstract HMM’s, based on “uncertainty” transformers
that transform post- uncertainty measures into pre- uncertainty
measures where, in turn, uncertainty measures generalise
probabilistic entropies.

We and others have argued that specific entropies (e.g.
Shannon) have limitations in security work generally [4],
[9]. Therefore we focus here on their essential properties:
continuity and concavity. That view is supported by powerful
theorems that such a generalisation supports, and a method-
ological criterion that uncertainty measures capture contexts
in a way that individual styles of entropy cannot.

A second further step is to extend our recent treatment
[7] of the Dalenius Desideratum, the “collateral” leakage of
information due to unknown correlations with third-party data,
from merely channels (a “read only” scenario [10], [11], such
as access to a statistical database) to programs that might
alter the database (thus “read/write” as well). The Dalenius
perspective here is the fact that care must be taken wrt.
compositionality in a context containing variables to which
a program fragment does not explicitly refer [4].

To remain accessible to a broader security community, we
do not begin from Giry: rather we first work in elementary
terms. In §VI the monadic structures will be seen to have
informed our earlier definitions and theorems.

References to the appendix can be resolved at [12].

B. Principal contributions and aims of the paper: summary
Our principal contributions are these, in which the new con-
structions and results are given in bold:
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Fig. 1.— Relationship between the semantic spaces —

— We note that (finite) classical HMM’s are a model for
straight-line sequential probabilistic programs with hidden
state (top-left Fig. 1 shows the result type once applied to
a prior of type DX , §III-A).
— We formulate abstract HMM’s, that is HX as a monadic
model for HMM’s over state X , and give their characteristic
properties (bottom left: §III-B,V,VII).
— We formulate uncertainty measures UX as a generalisation
of diverse entropies (top centre), and give their characteristic
properties (top right: §VIII-A). 2

— We note that uncertainty measures have a complete
representation as loss functions (centre right: §IX).
— We give a dual, uncertainty-transformer semantics TX
of HX , stating its characteristic properties (bottom right)
and proving that they enable the duality with HX (centre:
Thm. 29 in §VIII-B).
— We show how all of this is an instance of the general Giry
monad as computation, of which (finite) HMM’s use a discrete
portion (bottom centre: §VI).
— We explain how the “Dalenius effect” is manifested in
this framework, and how it can be treated (§XI).

In other sections we review abstract channels (§II-B), hyper-
distributions (§II-C) and the security order (§V) on hypers.

We believe that Thm. 29, in particular its assumptions
and proof, is a significant new result.

Our principal aims in this paper are these:
— (More abstract) We construct forward- and dual backward
semantic spaces for probabilistic sequential computations over
hidden state, using monadic computations and partial (refine-
ment) orders in this new context, and formulate and prove
the general properties that make them suitable for embedding
finite (for the moment) HMM’s.
— (More concrete) We want to provide the basis for a source-
level reasoning method, analogous to Hoare logic or weakest
preconditions, for quantitative non-interference in sequential
programs. For this, the dual, transformer semantics for HMM’s
seems to be a necessary first step, together with a link between
the social aspects of security and the mathematical behaviour
of a program (§X).

The conclusion §XIII discusses the benefits of doing this.

2These were studied, but less extensively, as “disorders”, in [5].

C. General notations (see also App. A in the appendix)
Application of function f to argument x is written f.x, to

reduce parentheses. It associates to the left.
Although a matrix M with rows, columns indexed by R,C

is a function R×C → R, we avoid constant reference to the
reals R by writing just R!C for that; similarly we write the
type of a vector over X as

!
X . We write Mr,c for the element

of matrix M indexed by row r and column c; the r-th row
of M is Mr,−; and the c-th column is M−,c, of types

!
Y ,

!
X

resp. For row- or column vector v:
!
I we write vi for its i-th

element. Thus e.g. we have (M−,c)r=Mr,c.
When multiplying vectors and matrices we assume without

comment that the vector has been oriented properly, i.e. as a
row or column as required. Thus v acts as a row in v·M but
as a column in M ·v. 3

We write for example x:X when we are introducing x at
that point (i.e. a binding occurrence); with x∈X we are stating
a property of some x and X already introduced.

Other specific notations are explained at first use, and a
glossary in order of their occurrence is given in App. A.

II. ABSTRACT CHANNELS AND HYPER-DISTRIBUTIONS

We review abstract channels as a conceptual stepping-stone
to hyper-distributions, or “hypers” for short.

A. Channels and distributions as matrices and vectors
A channel is a (stochastic) matrix of non-negative reals with

1-summing rows; we use upper-case Roman letters like C.
The rows are labelled with elements from some set X ; and
the columns from some set Y . Thus a channel typically has
type X!Y; here, both X ,Y will be finite.

A distribution in DX can be presented as a 1-summing
vector

!
X , usually lower-case Greek: especially π for prior;

sometimes ρ for posterior; or simply δ for distribution.
Definition 1: Weight Let C or π be a matrix or vector

resp. Then
∑

C or
∑

π is its weight, the sum
∑

x,y Cx,y or∑
x πx taken over all its indices. !

Thus e.g. we have
∑

Cx,− =
∑

y Cx,y and that C is stochastic
just when 1 =

∑
Cx,− for all x.

Each row Cx,− of a channel C is a conditional probability
distribution over Y given that particular x:X . That is, the y-th
element Cx,y of Cx,− is the probability that C takes input x
to output y.

B. Informal channel semantics: abstract channels
A (1-summing) prior π and (stochastic) channel C together

determine a joint distribution as follows.
Definition 2: Channel applied to prior Given a prior

π:
!
X and channel C:X!Y we write π"C for the joint-

distribution matrix of type X!Y resulting from “applying”
the channel to the prior, defined (π"C)x,y:=πxCx,y. 4 !
Note that matrix π"C is not stochastic: rather because C itself
is stochastic we have

∑
(
∑

(π"C)x,−) =
∑

πx = 1.

3Thus for v: !
X and M :X!Y the matrix product v·M is in !

Y .
4Here juxtaposition is ordinary multiplication of reals.
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A non-zero vector is normalised as follows.
Definition 3: Normalisation Let δ:

!
X be such that

0%=
∑

δ. Then the normalisation nrm.δ of δ is given by
(nrm.δ)x:= δx/

∑
δ for each x:X . !

Now for some π:
!
X and channel C:X!Y define joint

distribution J :X!Y by J=π"C. The (marginal) probability
of each output y:Y is

∑
J−,y and, associated with each, there

is a posterior distribution nrm.(J−,y) on X .
Abstracting from the y-values, but retaining the link be-

tween the marginal probabilities and the posterior distribu-
tions, gives an informal description of our intended “abstract
channel” semantics [6]. We make this precise in §II-D.

C. Hypers abstract from joint distributions
The joint-distribution matrix J=π"C contains “too much”

information if we do not need the actual value of y that led to
a particular posterior. This is appropriate in security since the
information leakage of a channel C wrt. a prior π concerns
what an adversary can discover about π, and not the actual
observations that led to that discovery. We can abstract from
the observations in π"C as follows.

If column y of J = π"C is all zero, then that y will never
occur (for any prior); thus we can omit that column.

And if two columns y1,2 of J are proportional to each other,
are similar (as for triangles), then we can add them since for
a given prior the same posterior will be inferred for y1 as for
y2 and the probability of inferring that posterior will be the
sum of the marginal probabilities for y1,2. 5

Finally, a 1-1 renaming of the y-values has no effect on the
posteriors and their respective probabilities; so we can remove
those names as long as we retain the distinction between
separate (non-zero, non-similar) columns.

Abstracting from all that arguably inessential information
(about y) leaves only a distribution of posteriors on X and,
for us, this is the semantic view. Writing in general DX for
1-summing functions of type X→R≥, a distribution over X
has type DX and so a distribution of such distributions has
type D(DX ) that is D2X . 6 Those latter are our hypers, and
they are our abstraction of joint-distributions X!Y .

D. The semantic function from joints to hypers
In this section we define precisely the denotation [[J ]] in

D2X of a joint-distribution matrix J :X!Y . The principal
tool for that is the “push forward”, here in general form:

Definition 4: Push-forward of a function
Given sets Z,Z ′ and function f :Z→Z ′, we write Df for the
push-forward of f , a “lifted” function of type DZ→DZ ′ [13].
For z′:Z ′ and δ:DZ we have 7

Df.δ.z′ :=
∑

z:Z
f.z=z′

δ.z . 8

!
5We write y1,2 rather than y1, y2 for brevity.
6Thus 1-summing vectors δ in !

X describe distributions in DX .
7Lifting, as in Df , binds tightest: the conventional notation for Df.δ.z′

would be (Df)(δ)(z′), so that (Df)(δ)∈DZ′.
8Df is the action of functor D on arrow f : see §VI.

We now define the semantic function itself:
Definition 5: Reduced joint-distribution denotes hyper

Let J :X!Y satisfy 1 =
∑

J so that it describes a discrete
joint distribution in D(X×Y). Recalling §II-C, define a re-
duced matrix J↓ by (1) removing all-zero columns from J
and (2) adding any similar columns of J together, retaining
the label of only one of them. Let the remaining labels Y↓⊆Y
be the column-indices of this reduced matrix J↓. 9 10

Now define the Y↓-marginal δy:=
∑

J↓
−,y of J↓, and note

from (1) just above that it is nowhere zero (on Y↓). Define
function j:Y↓→DX by j.y:= nrm.J↓

−,y , i.e. so that j.y∈DX is
the posterior distribution over X that J↓ induces given y. Note
from (2) that j is an injection, a fact we use later in Lem. 14.
Then [[J ]], the hyper in D2X denoted by J in X!Y , is given
by [[J ]]:= (Dj).δ . !

An example is given at §III-D below.

E. Abstract channels — review
In earlier work [6] we described an “abstract channel” as

a function from prior distributions to hypers. We restate that
here in our current denotational style:

Definition 6: Denotation of channel Let C:X!Y be
a channel matrix. Its denotation, of type DX→D2X , is
called an abstract channel and is defined for π:DX by
[[C]].π:= [[π"C]] , where the [[·]] on the left is what we are
defining, and the [[·]] on the right is given by Def. 5. 11 !

In fact the prior π can be recovered from π"C:
Definition 7: Average of a hyper For hyper ∆:D2X

define its average avg.∆ in DX by

avg.∆.x :=
∑

δ:DX
(∆.δ)(δ.x) for all x:X , 12

where we use upper-case Greek for hypers. !
We then have

(avg.([[C]].π))x = (avg.[[π"C]])x =
∑

(π"C)x,− = πx ,

so that avg.([[C]].π) = π.

III. CLASSICAL- VS. ABSTRACT HMM’S

A. Classical HMM’s: single HMM-steps as matrices
Classically a Hidden Markov Model comprises a set X of

states, a set Y of observations and two stochastic matrices
C,M that give resp. the emission probabilities Cx,y that x
will emit observation y and the transition probabilities Mx,x′

that x will change to x′ [15]. Usually, the homogenous case,
computation evolves in (probabilistic) steps each determined
by the same C,M , with each output state x′ becoming the
following input x and with the emissions y accumulating:
the steps all have the same pair C,M . In our case however,

9The reduction is analogous to reduced channels in [6]. Although J↓ is
not unique, the ambiguity does not affect [[J ]].

10We thank a referee for suggesting that this definition might be simplified
by using the converse of stochastic relations, as developed by Doberkat [14].
This is discussed further in §XII.

11We use [[·]] uniformly for denotation functions, relying on context instead
of e.g. using subscripts like [[·]]chan and [[·]]joint.

12This avg is multiplication µ from the Giry monad: see §VI.
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second 
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Each step H1,2 takes an input- to an output state in X ; the
observations y1,2:Y are accumulated. In each step H1,2 the output
state is determined by a markov M1,2 on the input to that step, and
the observation is determined independently by a channel C1,2 on
the same input, i.e. before application of the markov.

Fig. 2. Two successive steps H1 and H2 of a heterogeneous HMM.

heterogeneous, we can vary the matrices from step to step,
each standing for various (different) programs statements.

We show two computations in Fig. 2. If π is the distribution
of incoming x, the distribution π′′ of intermediate x′′ is π·M1.
The distribution of observations y1 is π·C1. The second step’s
input x′′ is the output of the first step.

A classical HMM hides all of three of x, x′′, x′, but still the
observations y1,2 tell us something about each of them pro-
vided we know π,M1,2, C1,2. (This is analogous to knowing
the source code of a program, but not being able to observe
its variables as it executes.)

From now on we call the emission part of an HMM the
channel and the transition part the markov (lower case).

Definition 8: Single HMM-step
Given channel C:X!Y and markov M :X!X , define the
HMM-matrix (C:M) of type X!Y×X by

(C:M)x,y,x′ := Cx,yMx,x′ .

This (row-1-summing) matrix (C:M) becomes a joint distri-
bution of type D(X×Y×X ), as top-left in Fig. 1, once the
prior is fixed. 13 !

B. Abstract HMM’s represent classical HMM’s

For abstract channels (§II-E) we focussed on the hyper of
posteriors on the input; for HMM’s we focus on the hyper
of posteriors on the output, because HMM’s are computations
and so it is over their outputs we wish to reason. 14

Definition 9: Matrix HMM denotes abstract HMM
Let H:X!Y×X be an HMM presented as a matrix. Its
denotation, of type DX→D2X , is called an abstract HMM and
is defined [[H]].π:= [[J ]] where π:DX , and the joint-distribution
matrix J :X!Y is given by Jx′,y:=

∑
x πxHx,y,x′ . !

13Although (C:M) has the property that for each x:X the (remaining)
joint distribution (C:M)x,−,− is independent in y, x′, this property is not
preserved once steps are composed (§IV).

14The prior on the output would be our calculation from the input prior
and the markov of what the output distribution would be, but before running
the program and making observations.

// xs is initialised uniformly at random.
xs:= xs 1/2⊕ -xs
// What does an attacker guess for xs finally?

The secret two-bit bit-string xs is set initially from {00, 01, 10, 11}
with equal probability 1/4 for each; the following assignment either
leaves xs unchanged (probability 1/2) or bit-wise inverts all of it.

Fig. 3.— Pure-markov HMM program —

In §XI we discuss the (Dalenius) implications of having
abstracted from the HMM’s input (with the

∑
x just above).

C. Special cases of HMM’s: pure markovs

Markovs are the special case of HMM where the channel-
part effectively outputs nothing. If an HMM-step (C:M) has
channel C an all-one column vector nc 15 then Y is a singleton
and J becomes a column vector: i.e. Jx′ =

∑
x πxMx,x′ , so

that in fact J is the usual matrix product π·M .
Definition 10: One- and two-point distributions

For z, z′:Z we write [z] for the point distribution on z,
assigning probability 1 to z and 0 to all other elements of Z . 16

We write zp⊕z′ for the two-point distribution that assigns p
to z and 1−p to z′ and 0 to everything else in Z .

Thus z1⊕z′ = [z] and z0⊕z′ = [z′]. !
Taking nc as the default channel gives [[:M ]].π =

[[nc:M ]].π = [π·M ], the point hyper on π·M . A general H
is a markov just when

∑
x′ Hx,y,x′ is nc.

Consider the program of Fig. 3 whose single variable is a
two-bit string xs. We model it with X={00, 01, 10, 11}; prior
π:DX is uniform, and its markov M is as just below:

The output distribution is of
course π′=π·M=π, and so the
attacker’s guess is optimally
any of the four values in X :
they are equally good.

00 01 10 11

00:




1/2 0 0 1/2



01: 0 1/2 1/2 0
10: 0 1/2 1/2 0
11: 1/2 0 0 1/2 .

This system viewed as an abstract HMM would give output
hyper ∆′ = [[:M ]].π = [π], in fact the point hyper on π
indicating that the attacker is certain (point-probability 1) that
the posterior distribution π′ on the final value of xs is equal
to π in this case, i.e. still uniform.

D. Special cases of HMM’s: pure channels

Channels are the special case where the input- and the
output state are the same. If (C:M) has markov M as the
identity id, then it is a “pure channel” with output the same as
its input. In that case Def. 9 gives Jx′,y =

∑
x πxCx,y idx,x′ =

(π"C)x′,y , and so [[C:id]] from Def. 9 is just [[C]] from Def. 6.
With id as the default markov, we have [[C:]] = [[C]].
Now consider Fig. 4 where some of xs is leaked, but xs

itself is not changed. Thus our state X and prior π are as

15for “null channel”
16Function [·] is the unit η of the monad: see §VI.
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// xs is initialised uniformly at random.
print xs[0] 1/2⊕ xs[1]

The value of either bit 0 or bit 1 of xs is revealed; the attacker learns
that value, but does not know which bit it came from. What should
he guess for xs after execution in this case?

Fig. 4.— Pure-channel HMM program —

before, the observation space is Y={0, 1} and the channel C
representing this program is here at left:

C =

0 1

00:




1 0



01: 1/2 1/2
10: 1/2 1/2
11: 0 1

J↓ =

0 1

00:




1/4 0



01: 1/8 1/8
10: 1/8 1/8
11: 0 1/4

.

The (reduced) joint distribution based on J=π"C is above at
right. (In fact no reduction was necessary.) The construction
of Def. 5 gives us a hyper ∆′ as

“inner” distributions “outer” distribution
(1/2, 1/4, 1/4, 0) @ 1/2
(0, 1/4, 1/4, 1/2) @ 1/2 ,

(1)

where in general we write z1@p1, z2@p2, · · · for the discrete
distribution that assigns probability p1 to z1 etc. In (1) the val-
ues z1, z2, · · · are themselves (inner, posterior) distributions.
This hyper shows that with probability 1/2 the attacker will
guess 00 (because he saw a 0 printed, and deduces a posteriori
that 00 now has the highest probability, twice either of the
others; and with probability 1/2 the attacker will guess 11
(because he saw a 1).

We have abstracted from the printed-out Y-values, i.e. what
he saw, concentrating simply on what he deduces.

IV. HMM PROGRAMMING: SEQUENTIAL COMPOSITION

A. Classical HMM composition: matrices
Let H1, H2:X!Y×X be two HMM’s. Their sequential

composition H = H1;H2 describes the distribution on x,
y1,2 together and x′ as

(H1;H2)x,(y1,y2),x′ :=
∑

x′′

H1
x,y1,x′′H2

x′′,y2,x′ . (2)

This can be seen as rewriting H1 as type X×Y!X , then
matrix-multiplying by H2, and then re-converting the resulting
X×Y!Y×X back to X!Y2×X . 17 Note how the set of
observables is now Y2, compounding the observations Y from
each component. (This is why infinite composition of HMM’s
cannot easily be represented as a finite matrix.)

Remarkably, the action of HMM-composition on pure-
markovs HMM’s is effectively their matrix multiplication, yet
its action on pure channels is effectively their “concatenation”:
a single definition of composition specialises automatically to
the two principal sub-cases. (See App. B.) Thm. 12 shows that
the same happens for abstract HMM’s.

17Lambert Meertens pointed out this nice formulation.

// xs is set uniformly at random.
print xs[0] 1/2⊕ xs[1] ;
xs:= xs 1/2⊕ -xs

The value of either bit 0 or bit 1 of xs is revealed; the attacker
learns that value, but does not know which bit it is. Then xs is
either unchanged or inverted, but the attacker does not know which.
What’s his best guess now for the final value of xs?

Fig. 5.— HMM program as sequential composition —

B. Abstract HMM’s: Kleisli composition
Now we consider h1;h2 where h1,2 are abstract HMM’s. 18

Because the components’ types DX→D2X do not match
directly, i.e. the D2X from the left is not the DX required
on the right, we use Kleisli composition for that. 19

Definition 11: Kleisli composition of abstract HMM’s
Given two abstract HMM’s h1,2:DX→D2X , their Kleisli
composition is defined (h1;h2).π:= avg.(Dh2.(h1.π)) for
π:DX , where Dh2 is the push-forward of h2 (as given in
Def. 4). Equivalently h1;h2:= avg ◦ Dh2 ◦ h1.

That is, the lifting inherent in Kleisli-composition applies
the right-hand abstract HMM h2 to each inner (i.e. posterior)
produced by the left-hand h1 from prior π, preserving the
way in which they are all combined together by the outer
distribution. Then the intermediate result, of type D3X , is
averaged to bring it back to the required type D2X . !

C. Proof that composition is faithfully denoted
It is important (though unsurprising) for our interpreta-

tion that composition of HMM’s as matrices (2) is correctly
mapped by [[·]] to their Kleisli composition as abstract HMM’s
(Def. 11). That is, we have

Theorem 12: Composition faithfully denoted
Let H1,2:X!Y×X be HMM’s as matrices. Then we have
[[H1;H2]] = [[H1]]; [[H2]] , where (2) is used on the left and
Def. 11 on the right.

Proof: Given in App. C. !

D. Channel and markov together: example of composition
As an example of sequential composition return to xs and

consider Fig. 5 where it is both leaked and (possibly) changed.
The final hyper ∆′ in this case is obtained by applying the
markov M to the inners generated by C in §III-C while
retaining their outers: that gives

( 1/2×1/2 + 1/2×0,
1/2×1/4 + 1/2×1/4,
1/2×1/4 + 1/2×1/4,

1/2×0 + 1/2×1/2 )@ 1/2

( 1/2×0 + 1/2×1/2,
1/2×1/4 + 1/2×1/4,
1/2×1/4 + 1/2×1/4,

1/2×1/2 + 1/2×0 )@ 1/2

which is simplified first to this →
and then, since the two inners are

(1/4, 1/4, 1/4, 1/4) @ 1/2
(1/4, 1/4, 1/4, 1/4) @ 1/2

the same, as a distribution collapses to just [π] again. 20

Thus the program of Fig. 5 reveals nothing about the final

18We use upper-case for matrices and lower-case for denotations.
19This is the usual composition in a Kleisli category. See §VI.
20We use an explicit (×) for multiplication of specific numbers.
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value of xs when the initial distribution was uniform. Infor-
mally we would explain this by noting that the information
about xs released by the print becomes “stale”, irrelevant
once we do not know whether xs has subsequently been
inverted or not. (See §XI however for a discussion of why
the initial value of xs might in some cases still be important.)

It would be wrong however to conclude, from π=π′ in this
case, that the program is secure for xs in general — for when
the initial distribution is not uniform, the final value of xs
can be less secure than the initial. This illustrates the danger
in assuming something is uniformly distributed simply because
we know nothing about it. (See App. D.)

In App. E a small Haskell prototype verifies these calcula-
tions.

V. THE STRUCTURE OF HYPER-SPACE

Our hyper-space D2X has been synthesised by abstraction
from the classical “matrix style” description of HMM’s. We
now recall that there is a partial order (*) of refinement, where
for two hypers ∆S,I :D2X we say that ∆S (a specification)
is “refined by” ∆I (implementation) when, in a sense we
make precise below, the implementation ∆I releases no more
information than the specification ∆S does [3]–[5], [8]. That
order lifts pointwise to DX→D2X , i.e. that hS*hI just when
hS .π * hI .π for all π:DX , thus giving a new refinement
order for (abstract) HMM’s. We write ∆S*∆I , and call it
“uncertainty refinement” if we need to distinguish it from other
kinds of refinement. Its ultimate antecedent is the lattice of
information [16], which it generalises significantly.

Definition 13: Uncertainty refinement [3], [5]
Let ∆S,I :D2X be two hypers on X . We say that ∆S is refined
by ∆I just when there is a distribution ∆:D3X , that is a
distribution of hypers, such that

∆S = avg.∆ and (Davg).∆ = ∆I .
!

Recall that Davg is the push-forward of avg (Defs. 4,7).
The advantage of the abstract formulation in Def. 13 is

that it is defined on hypers directly, and can be generalised
to proper measures, thus extending discrete distributions [5].
But in the case (as here) where we remain discrete, there is
an equivalent matrix-style characterisation:

Lemma 14: Refinement of joint-distributions [4], [8]
Let JS :X!YS and JI :X!YI be joint-distribution matrices,
both of them reduced in the sense of Def. 5, such that
[[JS,I ]]=∆S,I resp. 21 Then

∆S * ∆I iff JS ·R = JI (3)

for some stochastic refinement matrix R:YS!YI . Note that
the state-spaces of ∆S,I are the same, but their observation
spaces YS,I can differ.

Proof: Illustrated in App. F; sketch proof in App. G. !
With Lem. 14 the reflexivity and transitivity of relation (*)

is clear from elementary matrix properties. For antisymmetry

21Recall that the X here in type X!YS is the final-, not the initial state.

we refer to [6, Thm 6], whose supporting Lemma 1 there we
adapt to suit our purposes here:

Definition 15: Expected value For distribution δ:DZ and
function f :Z→V for vector space V , the expected value of
f on δ is Eδ f :=

∑
z:Z δz×f.z, where

∑
and (×) are taken

in the vector space. 22 !
We will be using E principally over hypers, i.e. the case Z =
DX in the definition.

Lemma 16: (Strict) monotonicity Given are two hypers
∆S,I :D2X and a strictly concave function f :DX→R≥.

If ∆S#∆I then E∆S f < E∆I f . And if f is (non-strictly)
concave, then ∆S*∆I implies E∆S f ≤ E∆I f .

Proof: Proved for abstract channels in [6, Lem 1]; the
proof for hypers is essentially identical. !

We now have antisymmetry, because ∆S*∆I*∆S and
∆S %=∆I implies ∆S#∆I#∆S whence we have from Lem. 16
the contradiction E∆S f < E∆I f < E∆S f for any strictly
concave f :DX→R≥ of our choice (for example Shannon
entropy).

Hyper-space D2X also admits a metric, the Kantorovich
metric [17] based on the Manhattan metric on DX (§VI). It is
used for continuity properties (as we will see §VII-A).

VI. MONADS: GIRY, KLEISLI AND KANTOROVICH

With DX→D2X we have given a discrete model of abstract
HMM’s, suitable for interpreting probabilistic sequential pro-
grams with hidden state, together with concrete programming
examples (Figs. 3–5). We now show how that embeds into
structures based on a Giry monad.

The Giry/Lawvere monad based on the category Mes of
measurable spaces comprises an endofunctor Π and two nat-
ural transformations η (unit) and µ (multiply) [2]; following
[1] we take that as a basis for the denotation of computations.
We have been using D as a specialisation of Π to the discrete
case, to construct sets of discrete probability distributions, with
unit-function [·] specialising η that makes a point distribution,
and multiply-function avg specialising µ that takes the av-
erage of a distribution (of distributions); typically we have
[·]∈DX→D2X and avg∈D2X→DX .

The functions DX→D2X are arrows in the related Kleisli
category (Π, η,−†), and our Kleisli composition for them
(§IV-B) is from there.

Van Breugel compares the Giry Mes-monad to a “metric
monad” in which a functor B maps 1-bounded compact metric
spaces (S, d) to sets BS with Borel probability measures
generated from the topology of the Kantorovich metric —
which itself is derived from the underlying metric d on S
[17]. He shows that the Giry- and metric monads are related:
if from a metric space (S, d) you generate the Borel algebra S
and thence via Giry the measurable space (S,S) = Π(S,S),
then the Giry-generated σ-algebra S on S is the same as the
one generated by the Kantorovich metric on S derived from
the original d on S.

Our use of those metrics is that we begin with a finite space
X and we give it the discrete metric d1. Our space DX of

22More generally it is
∫
f dδ and requires measurability of f .
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discrete distributions on X inherits the Kantorovich metric
based on d1, which is in fact (exactly 1/2 times) the Manhattan
metric dM on DX , that is where dM (δ1, δ2) =

∑
x |δ1x−δ2x|.

And our hyper-space D2X has the Borel algebra generated
by Π from DX , which is determined by the Kantorovich
metric derived from dM . This means for us that Kantorovich
continuity implies Giry measurability.

We cannot however use van Breugel’s monad B directly
because the denotations [[H]] of HMM’s in DX→D2X are
not 1-Lipschitz in general, and 1-Lipschitz is a condition he
imposes. They are however continuous (Lem. 17 to come);
and so we use Giry instead, which imposes only measurability
(implied by continuity).

Because we continue to use finite X below, all functions
in DX→D2X are trivially measurable, thus arrows in the
monad. In spite of that, we will occasionally indicate where
measurability would apply in a more general treatment. On the
other hand, Kantorovich-continuity of functions in DX→D2X
is not automatic, since DX is nondenumerable; and so we
cannot assume that the Kleisli composition f1; f2 of two
continuous functions f1,2:DX→D2X is itself continuous: that
must be proved (Lem. 21).

Giry proposes a second probability monad based on the
category Pol of Polish spaces (rather than measurable spaces,
as for Mes above). It is possible that this second monad
simplifies our development, if the Kantorovich metric metrises
the weak topology. In that case, Lem. 21 would follow directly
from Giry’s construction. 23

VII. CHARACTERISTICS OF HX , THE ABSTRACT HMM’S

A. Continuity and super-linearity
The semantic function [[·]] (Def. 9) takes HMM matrices in

X!Y×X to functions in DX→D2X ; but not all of those are
denotations [[H]] for some H . We now describe two important
characteristics satisfied by [[H]] as H ranges over HMM’s:
they are continuity and super-linearity. We will define abstract
HMM’s HX to be the functions satisfying those conditions.

Our first condition concerns continuity wrt. the Kantorovich
metrics on DX and D2X .

Lemma 17: Denotations of HMM’s are continuous For
all H:X!Y×X we have that [[H]] is a continuous function
in DX→D2X wrt. the Kantorovich metrics.

Proof: Given in App. H. !
Our second condition concerns linear combinations.
Definition 18: Weighted sum For δ1,2:DX we write

δ1p+δ2 for the weighted sum of the two distributions, so that
(δp+δ′)x = pδx + (1−p)δ′x. 24 !

Lemma 19: Denotations of HMM’s are super-linear
For all H:X!Y×X we have

[[H]].π1 p+ [[H]].π2 * [[H]].(π1 p+ π2) , (4)

where (*) is refinement as defined in Def. 13. 25

23We thank a referee for this observation.
24Note that δp+δ′ and δp⊕δ′ differ: the former is a single distribution

made from merging δ, δ′; the latter is a hyper with support δ, δ′.
25Super-linearity can also be seen as a form of monotonicity. See App. I1.

Proof: Given in App. H. !
Motivated by those two lemmas, we now define
Definition 20: The space HX of abstract HMM’s

We write HX for those h in DX→D2X satisfying Lem-
mas 17,19, i.e. that are Kantorovich-continuous and that satisfy
h.π1p+h.π2 * h.(π1p+π2). !
Thus our two lemmas above establish that [[H]]∈HX for any
classical HMM H .

Since we will therefore be restricting our denotations to
HX , a subset of the arrows in the Giry monad, we expect
HX to be closed under composition.

Lemma 21: Abstract HMM’s closed under composition
For any two h1,2:HX we have h1;h2 ∈ HX as well, where
(;) is as in Def. 11.

Proof: Although a direct proof is possible, the result is
much easier once we have introduced “uncertainty” transform-
ers (§VIII), then becoming a consequence of Thm. 29 and in
particular its Cor. 30, which depends crucially on the dual
view we develop in §VIII. !
It is shown in App. I2 that composition in HX is monotonic
with respect to the refinement order (*).

This completes our construction of our forward, abstract
semantics for HMM’s. We now propose a dual view.

VIII. A DUAL VIEW: UNCERTAINTY MEASURES,
AND THEIR TRANSFORMERS

A. Uncertainty measures, and their relation to refinement
“Uncertainty measures” generalise the diversity of entropy

measures (e.g. Shannon), the functions from distributions to
reals that measure increasing disorder.

Definition 22: Uncertainty measure An uncertainty
measure over X is a Kantorovich-continuous- and concave
function in DX→R≥, i.e. one taking distributions (on X in this
case) to non-negative reals. It is intended that a distribution’s
greater uncertainty indicates more resilience (less vulnerabil-
ity) to the distributions’s being exploited by an adversary. 26

We write UX for the uncertainty measures over X , and call
them “UM’s” in the text for brevity. !

A typical example of a UM applied to a hyper is as follows.
Given prior π:DX and channel C:X!Y , the resulting hyper
is ∆:= [[π"C]] and the “conditional u uncertainty” of that
(compare conditional Shannon entropy) would be E∆ u. This
could be compared to the uncertainty u.π of the prior, to give
a “u-leakage” of the channel on that prior.

There is a compelling connection between UM’s (Def. 22)
and refinement (Def. 13, Lem. 14): we have

Lemma 23: Soundness and completeness of uncertainty
measures [6] For any hypers ∆1,2:D2X we have

∆1 * ∆2 iff E∆1u ≤ E∆2u for all u:UX .
!

We regard “only if” as soundness in the sense that if we have
a witness to the refinement relation ∆1*∆2, i.e. either ∆
(Def. 13) or R (Lem. 14), then no UM can show ∆2 to be

26Smith’s “vulnerability measure” based on Bayes Risk [9] is an uncertainty
measure except that it goes in the opposite direction.
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less uncertain than ∆1. It is related to the Data-Processing
Inequality, as explained in [6].

We regard “if” as completeness in the sense that if refine-
ment fails, that is ∆1 %*∆2, then there is a UM demonstrating
the failure [4]–[6], [8].

In App. J is background on the proof of Lem. 23, whose
completeness part was originally called “Coriaceous” [8].

B. Abstract HMM’s to UM-transformers

In §III we introduced a “forward” denotational view of
HMM’s that takes initial distributions to final hypers. Here we
take the dual view, where an HMM takes a “post-uncertainty”
to a “pre-uncertainty”.

Definition 24: Uncertainty-measure transformers
Take h:HX and u:UX . Define the uncertainty transformer
wp.h of type UX→UX so that for any u:UX and π:DX we
have

wp.h.u.π := Eh.π u ,

where on the right we are taking the expected value of u on
the hyper h.π. (Because u is continuous, it is measurable.) By
analogy with weakest preconditions for ordinary sequential
programming [18], the UM-transformer wp.h takes a UM
to be applied after h and produces a UM that equivalently
can be applied before h. (Compare also [19], [20], [21] for
probabilistic/demonic sequential programs.) !
In Lem. 25 we show well definedness of Def. 24, that is that
wp.h.u is indeed in UX .

Lemma 25: Well-definedness of Def. 24
If h:HX is an abstract HMM and u:UX is a UM, then wp.h.u
is in UX .

Proof: See App. K. !

C. Characteristic properties of wp.h

For h:HX the UM-transformer wp.h has a number of
characteristic properties.

Lemma 26: wp.h is linear and total For every h:HX
and t = wp.h we have that t is:

1) linear so that for a1,2:R≥ and u1,2:UX we have

t.(a1u1 + a2u2) = a1t.u1 + a2t.u2 ;

2) monotonic, so that t.u1.δ ≥ t.u2.δ for every u1≥u2 with
u1,2:UX and δ:DX ; 27 and

3) total, so that t.1=1 where 1.δ:= 1 for all δ:DX .
Proof: These properties are immediate from Def. 24. !

A further property of UM-transformers is that they are 1-
Lipshitz in a certain sense:

Lemma 27: wp.h is 1-Lipschitz Take h:HX and define
t:=wp.h. Let |·| be absolute value. Then t is 1-Lipschitz in
the sense that

sup
δ:DX

|t.u1.δ − t.u2.δ| ≤ sup
δ:DX

|u1.δ − u2.δ| .

Proof: See App. M. !
27We lift ≥ pointwise.

Motivated by those lemmas, we define uncertainty trans-
formers to be exactly the functions in UX→UX that satisfy
the properties listed.

Definition 28: The uncertainty transformers TX
The uncertainty transformers TX are the functions in
UX→UX that satisfy Lems. 26,27. !
We note that transformers TX are closed under composition.
In App. I3 we show that refinement for TX is pointwise (≤).

D. UM-transformers back to abstract HMM’s
The function wp.(·) has been shown to be of type

HX→TX . Here we show that this correspondence is exact,
i.e. that for every t:TX there is an h:HX such that t=wp.h
and, moreover, that h is unique.

The following theorem thus establishes the exact correspon-
dence between HX and TX , giving an analog for hidden-
state probabilistic programs to the well known correspondence
between demonic relations and conjunctive predicate trans-
formers [18], or between demonic/probabilistic programs and
super-linear expectation transformers [20], [22].

Theorem 29: Characterisation of transformers For any
t:TX there is a unique h:HX such that t=wp.h.

Proof: Details are given in App. N. !
With these characterisations, we can prove two technical

facts. In the discrete case (as earlier) they seem self-evident.
In the more general setting, however, the work is mainly in
ensuring well definedness (e.g. that only measurable functions
are integrated, etc.) The first establishes the usual connec-
tion between composition, this time between the forwards-
and backwards semantics; the second confirms that HX is
closed under composition (i.e. preserves continuity and super-
linearity, Lem. 21).

Corollary 30: Transformer composition
For any h1,2:HX we have that also h1;h2∈HX , and further-
more that wp.(h1;h2) = wp.h1 ◦ wp.h2.

Proof: Direct calculation shows that wp.(h1;h2) =
wp.h1◦wp.h2, although the working is intricate in the general
(Giry) case. Well definedness of h1;h2 itself uses the simpler
properties of (functional) composition on the transformer side.
See App. O. !

Also, transformer composition respects refinement
(App. I4).

IX. GAIN- AND LOSS FUNCTIONS
DEFINE UNCERTAINTY MEASURES

A. Gain- and loss functions
Although Def. 22 of uncertainty measures is abstract, they

can be made concrete via gain functions [8] or equivalently
“loss functions” [4, Eqn. (5)] that encode an attacker’s (e.g.)
economic interest in the secrets and the cost of obtaining them.
We use loss functions here.

Definition 31: Loss function determines uncertainty mea-
sure A loss function & is of type I→X→R≥ for some index
set I , with the intuitive meaning that &.i.x is the cost to the
attacker of using “attack strategy” i when the hidden value
turns out actually to be x. His expected cost for an attack
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planned but not yet carried out is then Eδ (&.i) if δ is the
distribution in DX he believes to be governing x currently.

From such an & we define an uncertainty measure

U#.ρ := inf
i: I

Eρ (&.i) . (5)

When I is finite, the inf can be replaced by min. !
The inf represents a rational strategy of minimising cost or
risk, and a typical attacker will act as follows: he chooses the
attack strategy (i.e. he chooses i) whose expected cost Eρ (&.i)
to him, where ρ is the posterior in DX he infers from his
observations in Y , will be the least.

Lemma 32: Well-definedness for Def. 31 For any loss
function &: I→X→R≥ the function U# in Def. 31 is continu-
ous and concave.

Proof: We give here the proof for the finite-I case. (The
infinite case is considered in [23]; it might require further
assumptions on I .) Let & be a loss function and U# be the
associated uncertainty measure.
U# is concave: Take ρ1,2:DX and p: [0, 1]. We have
U#.(ρ1p+ρ2)

= mini: I (Eρ1p+ρ2 &.i) “definition U!”
= mini: I (Eρ1 &.ip+Eρ2 &.i) “λδ · Eδ u is linear”
≥ (mini: I Eρ1 &.i)

p+ (mini: I Eρ2 &.i)
“(min f)p+(min g)

≤ min(fp+g)”
= U#.ρ1p+U#.ρ2 . “definition U!”

Ul is continuous: Since I is finite and each function
(λρ · Eρ &.i) is continuous (Lem. 37 in App. K), applied to
DX instead of D2X ), the function U# is also continuous. !
Remarkably, loss functions are complete for uncertainty mea-
sures: any uncertainty measure in UX can be expressed as
U# for some loss function & in I→X→R≥, but possibly
requiring I to be infinite [23]. Roughly speaking, this is
because of the way concave functions can be expressed as
the minimum of their tangential hyperplanes: the coefficients
of the hyperplanes’ normals are the loss functions. 28

It is compellingly shown elsewhere how versatile loss
(equiv. gain) functions are [8]. Of particular interest is that
Lem. 23 applies, both in the discrete [4] and the continuous
cases [5], even when uncertainties are restricted to those
generated by loss functions: the “distinguishing witness” con-
structed for completeness is in fact a loss function [4].

X. A UM-TRANSFORMER EXAMPLE FOR §IV-D

A. Profiling an attacker with a loss function

In the context of Fig. 5 we imagine an attacker whose liveli-
hood depends on his guessing whether xs[0]=xs[1] or
not, finally. If he guesses incorrectly he loses $1; if correctly,
he breaks even (loses $0). This is as much a mathematical-
as a social issue: attacks will be discouraged if they are not
worthwhile for the attacker in terms of his own criteria. (See
also App. D for this social aspect.)

28For example Shannon entropy requires infinite I , and the encoding is
then related to minimising the Kullback-Leibler divergence.

In this example, following §IX, we express the attacker’s
criteria as two strategies “guess same” and “guess different”
(thus I = {same, diff}) and a loss function & defined

&.same.(00) = 0
† &.same.(01) = 1

&.same.(10) = 1
&.same.(11) = 0

&.diff.(00) = 1
&.diff.(01) = 0 ‡
&.diff.(10) = 0
&.diff.(11) = 1 ,

based on the informal description just above: for example if
xs=01 but he guesses same, the case indicated by †, then he
loses $1; but if he guesses diff, he breaks even ‡. Using (5)
we define our UM as u.δ = U#.δ =

&.same.δ min &.diff.δ
= Eδ (&.same) min Eδ (&.diff)
= (δ00+δ11) min (δ01+δ10) .

B. Using UM’s and transformers to plan an attack

We can use our transformer semantics to answer u-
dependent questions about Fig. 5 over all priors: we use the
two we chose earlier in §IV-D as examples.

Writing [[P ]] for the abstract HMM denoted by the two lines
of code in Fig. 5, we have for any π that

wp.[[P ]].u.π = π00 min (π01+π10)/2
+ π11 min (π01+π10)/2 .

(6)

(See App. P below for how this wp.(·) is calculated.)
Now let π5 be the prior described by the initial comment

in Fig. 5. The attacker’s (expected) uncertainty wrt. the final
hyper [[P ]].π5 is wp.[[P ]].u applied to that initial (uniform)
prior π5, that is wp.[[P ]].u.π5 = 1/2 directly from (6). Since
u.π5 is also 1/2, he is indifferent wrt. whether he should attack
before or after P has been allowed to run.

Now suppose that xs[0]=1 is known initially, thus with
prior π being (0, 0, 1/2, 1/2) so that u applied initially gives
u.π=1/2. But u applied finally would give wp.[[P ]].u.π =
(0min 1/4) + (1/2min 1/4) = 1/4 < 1/2, so that it is better
to attack later even though xs might have been altered by
P . This scenario confirms that in fact for some priors, the
program in Fig. 5 cannot be regarded as secure.

XI. HMM’S AND THE DALENIUS DESIDERATUM

Our abstracting from initial-state correlations allows a se-
mantics for programs’ final states alone. Sometimes however
leakage from the initial state is important, even if that state
is overwritten by the markov part of the HMM: what the
initial state was might reveal information about what some
other correlated state still is, even if that other state is not
mentioned in the program at all. This general concern was
raised wrt. statistical databases by Dalenius [10] who argued
that it is inescapable; Dwork later gave a proof of this [11].

With our constructions here, we are able to see the Dalenius
effect in programming terms. A “classical” sequential program
does not affect variables to which it does not refer; for example
x:= E does not affect some other variable y in any way. But
the program print x (recalling the notation of Fig. 4)
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can affect what we know about variable y even though it does
not refer to y at all.

Consider for example an input distribution
(0, 0)@1/2, (1, 1)@1/2 on two variables (x,y). Its y-
marginal distribution is uniform on {0, 1}. But the output
hyper of that program, projected onto y, is [0]@1/2, [1]@1/2,
showing that the distribution on y is now a point, no longer
uniform: 29 with probability 1/2 that point will be [0], and with
probability 1/2 that point will be [1]. Reading the printout of
x tells us which point distribution on y we have got, and we
have essentially the Dalenius effect between “database” x,
“query” print x and “third-party data” y.

This effect is exacerbated when we include state updates, as
we have done with our abstract HMM’s here. (Updates were
not considered originally by Dalenius or by Dwork.) For then
the program print x; x:= 0 and x:= 0 have the
same abstract-HMM semantics on state-space (just) x, but dif-
ferent semantics on state-space x,y. 30 The Dalenius effect has
become, in programming terms, a failure of compositionality
wrt. unreferenced global variables.

We show in this section how to deal with that: in brief, we
include both the initial- and the final values of the state in
our semantics. The crucial point is that we do not have to do
more than that, in particular that we do not have to consider
“all possible third-party data y of any type”.

We now address the details. Consider a “constant” markov
M x

x,x′ = 1 if x′=x else 0 for some fixed x:X . Then
[[C:M x]] = [[:M x]] for any channel C — any leaking by C
of the initial state is ignored, because that state is overwritten
by x. We now adapt our framework so that it is not ignored.

Let C:X!Y be a channel and M :X!X a markov, with
Z fresh. Write C×Z in (X×Z)!Y for the expanded channel

(C×Z)(x,z),y := Cx,y .

Similarly M×Z : (X×Z)!(X×Z) is given by

(M×Z)(x,z),(x′,z′) := Mx,x′ if z=z′ else 0 .

These definitions ensure that for π:D(X×Z) neither
π"(C×Z) nor π"(M×Z) depends on the Z component. Take
for example Z:= {z0, z1} consider C,M as below:

C =

y0 y1

x0:
(
1 0

)

x1: 1/4 3/4

M =

x0 x1

x0:
(

1/2 1/2
)

x1: 1/2 1/2

C×Z =

y0 y1

(x0, z0):




1 0



(x0, z1): 1 0
(x1, z0): 1/4 3/4
(x1, z1): 1/4 3/4

29Since the output is a hyper, if knowledge of y were unaffected we would
have the point hyper on the uniform distribution, that is [0@1/2, 1@1/2].

30On state-space x, both programs produce the output hyper [[0]] that
denotes “x is certainly 0.” On x,y however, the first might reveal something
about y while the second cannot.

M×Z =

x0z0 x0z1 x1z0 x1z1

x0z0:




1/2 0 1/2 0



x0z1: 0 1/2 0 1/2
x1z0: 1/2 0 1/2 0
x1z1: 0 1/2 0 1/2

.

The definitions above show that in C×Z the rows of the
original C are each repeated 2 = #Z times; and the
subsequent update by M×Z leaves Z unchanged. Observe
that these definitions now account for information flows with
respect to initial distributions D(X×Z) where, crucially, the
Z component is merely “carried along”. But it captures the
Dalenius effect mentioned, as in the following scenario.

Consider an initial distribution π:D(X×Z) such that
πxi,zj = 1 if and only if i=j. We see that, even though Z is
not accessed by the program at all, if ever y1 is observed then
the Z component must certainly be z1, and if y0 is observed
then it is 4 times more likely to be z0 than z1.

Although Z is arbitrary, it can be shown that this Dalenius
effect on any Z can be determined by the HMM semantics
specifically in the case where X=Z . That is, we do not have to
consider “all Z’s”, which would be impractical. By projecting
onto the Z component, [[C×Z :M×Z ]] as a whole acts as a pure
channel, and if #Z≥#X then the component matrices C and
M can be completely recovered from observations made only
on the composition [[C×Z :M×Z ]].

XII. RELATED WORK

There is great diversity in approaches to information flow
in (probabilistic) programs, which we have surveyed in our
own earlier work [4]–[7]. Here we concentrate on general
techniques for semantic constructions, in particular those based
on monads, duality and refinement.

Refinement of probabilistic programs appeared in [24]
where evaluations were used to construct a powerdomain for
probabilistic but possibly non-terminating computations; this
was extended to include demonic choice in the discrete case
in [20], [22], and was significantly generalised in [25]. Our
“uncertainty refinement” that combines information flow with
functional properties first appeared for information flow in
straight-line programs in [4], was extended to general measure
spaces [5] and appeared independently for the specific case
of channels [8]. Whereas Jones and Plotkin began with an
underlying partial order over which to construct a probability
space, our uncertainty-refinement order begins “one level up”,
using hyper-distributions D2X to encode an “attack model”
that accounts for information flow.

Doberkat defines stochastic relations that correspond to
forward-semantic functions of type X→DX for Markov pro-
cesses: these are what we generalise by going “one level up”.
The converse of those stochastic relations [14] might improve
the presentation of our Def. 5, where a hyper is extracted from
a channel and a prior, i.e. from a joint distribution.

Dual models for program semantics include [18], then for
probabilistic programs [19], [21] in the purely probabilistic
case. Subsequently [20] added demonic choice. And [25], [26]
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study dual models for probability and nondeterminism using
a version of Riesz’s representation theorem.

In particular, Goubault-Larrecq’s approach [26] to combin-
ing probability and nondeterminism differs from our earlier
work [20]. It uses general denotations for probabilistic pro-
grams in which nondeterminism is introduced at the level of
measures (by weakening the modularity law) rather than as
healthy sets of measures [20], [22], [25]. That leads naturally
to a backward semantics of probabilistic demonic programs
because nondeterminism is captured within integration. There
is thus a strong analogy between our UM-transformers and
Goubault-Larrecq’s “previsions” because both are continuous
functionals that act on some set of tests (bounded continuous
functions). The main difference is that our UM-transformers
are specifically tailored to capture security semantics, which
is what leads to concavity on our set of uncertainty measures.
Notice moreover that Goubault-Larrecq encounters a difficulty
similar to our composition of HMM’s, that the decomposition
[[C:M ]] (resp. collinearity) is not preserved by Giry compo-
sition. Indeed, both difficulties are resolved by working in a
larger space, namely, the space of abstract HMM’s (resp. not-
necessarily-collinear continuous previsions).

In [27] a dual model for Markov processes is used to prove
properties about approximations of finite behaviours, and in
[28] it is shown how expectation transformers relate to explicit
program models described by Markov processes.

Recently Jacobs and Hasuo have explored a general cate-
gorical construction of a backward transformer semantics from
a forward monadic model of probabilistic computations (dis-
crete, continuous and quantum) [29], [30]. Their construction
uses measurability as the underlying feature of “predicates”,
while the stronger condition of continuity is crucial for our
uncertainty measures. It would be interesting to see whether
an instantiation of that categorical derivation can provide more
structure for what we have done.

The concave functions advocated here for analysing
information-flow properties have appeared in [5], [8] and have
been identified in [31] as an ingredient in privacy analysis.

XIII. CONCLUSIONS AND PROSPECTS

Our principal objective was to provide an abstract setting
for HMM’s based on well understood principles of semantic
spaces. We did that using Giry’s general monadic framework
applied at the level of DX (rather than X ); the resulting
structures include a refinement order which is sensitive to both
functional and information-flow properties, and they lead to a
dual, transformer space supported by theorems demonstrating
the duality.

More abstractly (recall §I-B), we aimed to profit by joining
two ideas: the established use of HMM’s as descriptions
of probabilistic mechanisms having hidden state, and the
established use of monads for modelling computations. Our
novel use of DX in the monad, rather than the state X itself, is
the principal innovation that allowed this; and the synthesised
hyper-distribution space that results leads to other advantages
(†’s below).

An immediate benefit accrues because, in monad-enabled
programming languages, probabilistic-programming packages
can be built very quickly and e.g. [32] is just one of many
examples. Indeed the translation into real programs is almost
elementary because of the powerful and general structures
available: a prototype has very recently been constructed
by Schrijvers [33], independently verifying the examples in
Figs. 3–6. (See App. E for an overview.)

More importantly, any monad brings with it both general
equational properties and specific properties applying to the
monad in question (such as those in [2]). These conceptual
tools allow reasoning about the structures modelled (HMM’s
in this case) in ways that would be obscured by their more
direct operational representation (e.g. as matrices).
† The other advantages of hypers are several: one is that
they abstract from differences between entropies in a way
that allows all of the entropies to be used uniformly. For
example, a hyper contains all the information necessary to
calculate the information leakage of a particular program
fragment (typically, in the security literature, a pure channel
§III-D), as shown in [6], and furthermore the Kantorovich-
metric structure of DX we used earlier for channels [7] now
carries over to HMM’s.
† Another advantage of hypers is that their partial-order
enables semantics for “looping HMM’s” in the standard way
(least fixed-point) for computer science, rather than a direct
ad-hoc definition based on matrices. Indeed a typical use
of HMM’s is to run a single HMM-step (§III-A) repeatedly
and then to make statistical deductions about its hidden
features: sophisticated mathematical tools are available for
this special case [15]. Via abstract HMM’s we can however,
in principle, handle complex, heterogeneous systems beyond
(what amounts to, in the special case just above) a single loop
containing just a single statement.

Our more concrete aim (again §I-B) was to allow source-
level reasoning about probabilistic programs with hidden state.
Historically at the source level this works best with back-
wards reasoning based on predicates (or similar) that can be
embedded between program statements rather than forwards
reasoning which, here, would be calculations using DX→D2X
directly.

Here our “predicates” are UM’s, which in this paper
however are mathematical objects unsuitable for embedding
directly in program texts (see App. P, last paragraph) As
remarked in §IX-A, however, any UM can be expressed as Ul

for some loss-function l which function –crucially– is indeed
an expression based on program variables [23]. The added
complexity introduced by the hidden state is that the program-
logic based on that observation must represent the index-set (I)
of the loss function; that would most likely be done by adding
a special-purpose quantifier (since the loss-function index must
be a bound variable within the assertion, not appearing in the
program proper).

Exploiting this opportunity for a source-level quantitative
logic of probabilistic hidden state is planned for future work.
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