
Submitted to:
MARS 2015

c© June Andronick, Corey Lewis, Carroll Morgan
This work is licensed under the
Creative Commons Attribution License.

Controlled Owicki-Gries Concurrency: Reasoning about the
Preemptible eChronos Embedded Operating System

June Andronick
NICTA and UNSW

june.andronick@nicta.com.au

Corey Lewis
NICTA

corey.lewis@nicta.com.au

Carroll Morgan
NICTA and UNSW

carroll.morgan@unsw.edu.au

We introduce a controlled concurrency framework, derived from the Owicki-Gries method, for de-
scribing a hardware interface in detail sufficient to support the modelling and verification of small,
embedded operating systems (OS’s) whose run-time responsiveness is paramount. Such real-time
systems run with interrupts mostly enabled, including during scheduling. That differs from many
other successfully modelled and verified OS’s that typically reduce the complexity of concurrency by
running on uniprocessor platforms and by switching interrupts off as much as possible.

Our framework builds on the traditional Owicki-Gries method, for its fine-grained concurrency
is needed for high-performance system code. We adapt it to support explicit concurrency control,
by providing a simple, faithful representation of the hardware interface that allows software to con-
trol the degree of interleaving between user code, OS code, interrupt handlers and a scheduler that
controls context switching. We then apply this framework to model the interleaving behavior of the
eChronos OS, a preemptible real-time OS for embedded micro-controllers. We discuss the accuracy
and usability of our approach when instantiated to model the eChronos OS. Both our framework and
the eChronos model are formalised in the Isabelle/HOL theorem prover, taking advantage of the high
level of automation in modern reasoning tools.

1 Introduction

Formal verification is an inescapable requirement in cases where software/hardware failure would be
catastrophic. Existing modelled and verified operating systems (e.g. [11, 17, 8, 3]) typically run on
uniprocessor platforms. They are also not preemptible, i.e. they run with interrupts mostly disabled, at
least during scheduling; thus their execution is mostly sequential.

Here, in contrast, we target preemptible (still uniprocessor) real-time OS code. Our motivating ex-
ample is the eChronos OS [2], an open-source real-time OS that provides a library of OS services to
applications, including synchronisation primitives (signals, semaphores, mutexes), context switching,
and scheduling. Our approach, however, applies to any system where the OS code is preemptible, in-
cluding scheduler code, and runs on uniprocessor hardware that supports nested interrupts. While being
preemptible, the OS code is not re-entrant, which means that its execution can be interrupted at any mo-
ment by an interrupt handler servicing a hardware-device interrupt (unless that interrupt is masked off),
but its execution is resumed after the interrupt has been handled. In order to allow faster response time,
the OS is also preemptive, meaning that it can unilaterally take control from application tasks.

The eChronos OS is used in tightly constrained devices such as medical implants, running on embed-
ded micro-controllers with no memory-protection support. It is small and comes in many variants. The
variant we are targeting (which we will from now on simply refer to as the eChronos OS) runs on ARM
uniprocessor hardware. 1 It makes use of ARM’s supervisor call (SVC) mechanisms to run its scheduler,

1We specifically target an ARM Cortex-M4 platform, which, for the purposes of this paper, we will simply refer to as ARM.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS

where an SVC is a program-initiated interrupt, triggered by the execution of the SVC instruction, that
results in the execution switching to an OS-provided SVC handler.

Earlier work has produced an initial formal specification of the eChronos API, but assumed that the
execution of each API function was sequential, i.e. assumed that execution of interrupt handlers could
not affect the API’s functionality. Furthermore, it could not model the effect of context switching, which
made proving refinement between this model and the (existing) implementation impossible.

That is what motivated the work presented here, where we focus on the interleaving behavior in-
duced by unpredictable device interrupts and (predictable) context switching, but still provide a detailed,
faithful model of the precise interleaved execution of user tasks, SVC handlers, and interrupt handlers,
including nested ones. For wider usability we dissociate the general controlled-concurrency framework,
and formal model of the API of the hardware mechanisms, from its specific instantiation to the model
of the eChronos OS. We plan to then prove that this restricted but faithful model of the eChronos OS is
refined by its implementation, and enrich the model with a complete specification of the API.

We follow the foundational Owicki-Gries (OG) concurrency method [14], where Hoare-style as-
sertional reasoning is adapted to reason about a number of individually sequential processes that are
executed collectively in parallel: the execution of the overall system is a non-deterministic interleaving
of atomic statements each executed in the order determined by the process within which it occurs. Our
choice of OG over more recent, derived concurrency styles, comes from the low-level of abstraction,
needed for high-performance shared-variable system code. We model the OS system as the parallel com-
position of various user tasks (consisting of application code and calls to OS code), the interrupt handlers
and the SVC handlers. On a uniprocessor platform, this allows much more interleaving that can happen
in reality, where interleaving is controlled via hardware mechanisms such as context switching, enabling
and disabling interrupts, etc. We adapt OG by adding an explicit control of interleaving, and we provide
a formal hardware interface for operations manipulating allowed interleaving. We have formalised this
framework in the Isabelle/HOL [12] theorem prover, building on an existing formalisation of OG [15].

In summary, we present the following contributions in this paper: (1) an adaptation of the OG-based
concurrency model that controls interleaving; (2) a concise formal model of the API of the hardware
mechanisms that control the interleaving induced by interrupts, SVC’s and preemption; and (3) a model
of the scheduling behavior of the eChronos OS. All of our work is formalised in Isabelle/HOL.

2 Explicit concurrency control in Owicki-Gries reasoning

The formalism we choose to represent interleaved execution in the small preemptible OS we aim to
model, is based on the Owicki-Gries method, which we adapt to support explicit concurrency control.

The OG method extends Hoare logic for sequential programs [6] to concurrent programs that share
data. An OG system comprises a number of tasks built from atomic statements. The concurrency be-
tween the tasks, i.e. an interleaving of atomic executions, is essentially uncontrolled except for the await
statement with which a task can ensure its execution is suspended until a condition (of its choice) holds.
Await statements are of the form AWAIT C THEN P END for some Boolean expression C in the system
variables and some program fragment P: execution of P cannot occur unless C is (atomically) evaluated
to true, in which case P is executed (also atomically) immediately afterward.

An OG proof generates verification conditions, VC’s, of two kinds: conventional post-then-pre con-
ditions, and interference-freedom VC’s. The latter express that one task does not falsify, i.e. “interfere
with”, some conventional assertion in another task; it is essentially a non-compositional technique, how-
ever. Worse, those VC’s are quadratically numerous in the size of the program, which historically has

June Andronick, Corey Lewis, Carroll Morgan 3

limited OG’s applicability to small systems.
Variants and extensions of OG include rely-guarantee [9] which addresses both compositionality

and the number of VC’s. It also encourages a higher level of abstraction, which can sometimes impose
execution-time inefficiency that might be intolerable in a high-performance application like the real-
time preemptible OS we target here. (Compare while-loops, and invariant reasoning, with super-high
performance low-level code that uses goto’s in a less-structured way: sometimes –happily, not often–
the latter is a necesary evil.) The same abstraction/performance tradeoff contra-indicates the use of more
structured run-time mechanisms like monitors and critical regions [5, 7].

Targeting high-performance code is the reason why we chose the lower-level OG style. Since we aim
to verify the OS systems we have modelled, we will eventually have to deal with the explosion of number
of generated VC’s. We believe (and have initial evidence, discussed in §4) that for our application, and
with our extension to control interleaving, mechanical verification is likely to overcome those difficulties.

Our extension follows from the observation that a uniprocessor OS is not truly concurrent: via inter-
rupts and saved contexts it interleaves its tasks’ executions in a way that simulates concurrency. Since
our modelling includes that concurrency management, i.e. it includes the system’s scheduler code, we
must include the concurrency control in our program text. To allow an OG program to control its own
interleaved concurrency, we associate a unique value with each task and we place each OG-atomic com-
mand in a task within an AWAIT condition requiring a global variable AT (“active task”) be equal to the
value associated with that task. Suppose for example we had a Task 2 whose atomic statements were
First;Second;Third. It would become:

AWAIT AT=2 THEN First END; AWAIT AT=2 THEN Second END; AWAIT AT=2 THEN Third END;

Now if Task 2 were to give up control explicitly to, say some Task 1 similarly treated with AWAIT AT=1
decorations, it would simply include the (atomic) command AWAIT AT=2 THEN AT := 1 END; at the
appropriate point. The basic OG mechanism then ensures that Task 1 continues execution from the point
it last had control. In a more sophisticated system, Task 2 might transfer control instead to a “scheduler
task”, say Task 0, which would be a loop of the form (after pre-processing)

WHILE True DO
AWAIT AT=0 THEN t := “next runnable task” END;
AWAIT AT=0 THEN AT := t END

END
Our extended OG framework defines the pseudo-variable AT and uses it in the style above. The variable is
pseudo in the sense that it does not represent a program variable, but rather some internal state managed
by the hardware. We provide the function control that performs the automatic pre-processing step
within Isabelle of inserting all the AWAIT AT= . . . code. It takes as input a task identifier T (2 in the
example above) and the task’s program text, and it adds AWAIT -statements with the guard AT=T to each
atomic command of the program. The program above would become control 2 P , where P is Task 2’s
program (here the three instructions shown). Our controlled interleaving will ensure that the majority of
non-interference VC’s will be trivial, 2 so that mechanised verification will allow automatic discharge.

3 Formalisation of the Hardware Interface

Our aim is to model uniprocessor, preemptible and preemptive software systems comprising user tasks,
interrupt handlers, and ARM-provided SVC mechanisms. The model of §2 represents the interleaving

2A non-interference VC asserts that some assertion in task X is preserved by some statement from task Y . Since most
assertions will be guarded by AT=X , and most statements will by AT=Y , many of these VC’s will have antecedent False.

4 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS

SCHEME [0≤ j <m]
WHILE True DO
control U j U j

END

SCHEME [0≤ k < n]
WHILE True DO
ITake(Ik) ;
control Ik Ik;
control Ik IRet ;

END

WHILE True DO
control SVCs S ;
control SVCs IRet ;

END

WHILE True DO
control SVCa A ;
control SVCa IRet ;

END

WHILE True DO
ITakeSVCa ;

END

(a) (b) (c) (d) (e)

Figure 1: Model of OS-system with m user tasks and n interrupt handlers.

between tasks. We now formalise the hardware interface that allows the OS to control interleaving. The
formalisation of the whole system is then presented in Fig. 1 and explained below.

3.1 Controlling interrupts

User tasks run application code that may call OS services; and with user code we refer to both.3 Assum-
ing we have user tasks U1, ..., Um, the code of task U j will be noted U j. The user-task part of the system
is represented by (a) in Fig. 1, where the notation SCHEME [0 ≤ j < m] c j, borrowed from [15], is the
parametric representation of m parallel processes, i.e. c0 || c2 || ... || cm−1.

When an unmasked interrupt occurs, the running code is stopped, context saved, and interrupt-
handler code starts instead. At the end of the execution of the interrupt handler, the hardware performs a
return-from-interrupt instruction, restoring the saved context and switching back to the appropriate task.
The code Ik for the interrupt task Ik might include potential OS-wrapper code. This interrupt part of
the system is modelled by (b) in Fig. 1. Non-deterministic occurrence of interrupts is analogous to OG’s
spontaneous (uncontrolled) task-switching, so the hardware mechanism that traps to the interrupt code
(ITake) should not be guarded (and this is where interleaving happens). It should model the saving of
context and updating of the AT variable to be Ik. In terms of context that needs to be saved, we only
model here what is relevant to the task interleaving. The identity of the task being interrupted (i.e. the
value of AT) needs to be saved (before being updated to Ik), to be able to return to it. On platforms like
ARM, nested interrupts are allowed (i.e. interrupt handlers can be interrupted), so we save the whole
stack of interrupted tasks. For this, we use a second pseudo-variable ATstack. In reality, interrupts can
be masked using specific hardware functions, and may also obey some platform-dependent interrupt pol-
icy. Masked interrupts remain pending until they are unmasked. We use a third pseudo-variable EIT to
represent the set of “enabled interrupt tasks”, i.e. the hardware mask bits. This set can be manipulated
using the following two functions, representing the hardware API to manipulate the interrupt mask.

Int Disable(X) ≡ EIT := EIT−X (1) and Int Enable(X) ≡ EIT := EIT∪X (2)
These functions can be called inside OS code or interrupt code. Note that when an interrupt is re-enabled,
the hardware checks whether that interrupt occurred while masked and is still pending, in which case it
traps to the corresponding interrupt handler. The interesting point is that our modelling of interrupts, i.e.
allowing interrupt code to non-deterministically run at any time, already represents this case, so adding
the interrupt identifier to EIT is enough.

The interrupt policy defines the allowed nesting of interrupts. For instance, on ARM, interrupts can
only be interrupted by a higher priority interrupt. In our model, we leave this platform-dependent policy
generic, using a predicate interrupt policy X Y which is true only if Y is allowed to interrupt X .

3A real-time OS typically runs as an OS library with no mode-switch, modelled here by OS code being inlined in the
application code.

June Andronick, Corey Lewis, Carroll Morgan 5

The full sequence of what happens when an interrupt occurs is that the hardware checks whether
(i) the interrupt is unmasked (i.e. is in EIT in our model), (ii) the interrupt is not the same interrupt
that is being processed (i.e. is not AT in our model), because if this happens the interrupt will remain
pending as with any masked interrupt, (iii) the interrupt is allowed to interrupt the currently running task,
according to the interrupt policy. If all these conditions are met, then the context is saved (now including
the variable EIT , also saved on a stack EITstack for similar reasons as for AT) and control is switched to
the interrupt handler. So in total the ITake function is defined as follows (where the operator + pushes
an element onto the stack):

ITake(X) ≡ AWAIT X ∈ EIT−AT−ATstack ∧ (interrupt policy AT X) T HEN
ATstack := AT +ATstack;
EITstack := EIT +EITstack;
AT := X ;

END
Note that all statements inside an AWAIT are executed atomically, where the atomicity here is ensured
by the hardware (i.e. these multiple instructions represent a single atomic hardware-defined mechanism).

By virtue of our extended OG with AWAIT-guarded atomic statements, this enforces that the handler
runs until further update of the AT variable, which only happens at the return from interrupt (or if another,
unmasked, higher-priority interrupt occurs).

When returning from an interrupt I, the hardware will check whether there are any pending interrupts
that would have happened during the handling of I but could not run because they were masked or
because of the interrupt policy. Similarly to re-enabling interrupts, this case is already modelled by
allowing non-deterministic interrupts at any time. So the return-from-interrupt function IRet only needs
to model the context restore (updating AT and EIT with the top of ATstack and EITstack respectively, and
popping ATstack and EITstack). As opposed to ITake , IRet needs to be guarded (using our control
mechanism) as is the rest of interrupt code, because it should only run at the end of the interrupt code.

IRet(X) ≡ (AT +ATstack) := ATstack; (EIT +ATstack) := EITstack;

3.2 Program control of preemption, and supervisor calls

So far we have modelled the hardware mechanisms that interleave user code and interrupt code. The
ARM platform additionally provides mechanisms to do supervisor calls (SVC), both synchronous and
asynchronous. SVC’s are treated as program-initiated interrupts that are triggered by software calls to
specific platform functions. Their effect is to switch the execution to specific OS-provided SVC-handler
code. Asynchronous SVC is typically used to control OS code preemption to avoid re-entrance (because
interrupt handlers would delay a call to the scheduler if the interrupted task is in OS code). Synchronous
SVC is typically used for kernel calls on platforms supporting dual-mode. In the eChronos OS, where
OS calls are just function calls, synchronous SVC is used for direct yielding from application. Here we
present our model of the effect of these additional platform functions within the framework we introduced
above. We assume code S (resp. A) for the synchronous (resp. asynchronous) SVC handler. A
synchronous SVC is triggered by a call (in user code) to a hardware API function SVC now(). The effect
of this function is to switch to the execution of S . As with interrupts, the hardware will (atomically) save
context onto the necessary stacks, and set AT to the identifier of the synchronous SVC task, noted SVCs.

SVC now() ≡ 〈 ATstack := AT +ATstack; EIT stack := EIT +EITstack; AT := SVCs 〉 (3)
The 〈·〉 notation models the atomic execution of the instructions, where the atomicity is here ensured by
a hardware-enforced atomic mechanism. The SVCs task is then modelled as running in parallel to user

6 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS

code and interrupt code, represented by (c) in Fig. 1, with its code wrapped in AWAIT -statements using
our control mechanism, and followed by a return from interrupt (restoring the stacks).

The code for the asynchronous SVC task is modelled the same way, (d) in Fig. 1, but the trigger is
delayed. The hardware provides a function to request an asynchronous supervisor call, SVCa Request(),
whose effect is simply to set a bit SVCaReq to True:

SVCa Request() ≡ SVCaReq := True (4)
Then at some point in the future where this bit is set, and the SVCa task is allowed to run (i.e. it is
not masked, and it is allowed to interrupt the running task according to the interrupt policy), execution
will switch to running A . We model this by having a separate task, (e) in Fig. 1, running completely
unguarded, constantly checking if an asynchronous supervisor call has been requested, and is allowed to
run. If it is the case, it resets the SVCaReq bit, saves the stacks, and switches to the SVCa task:

ITakeSVCa ≡
AWAIT SVCaReq∧SVCa ∈ EIT−AT−ATstack ∧ (interrupt policy AT SVCa) T HEN

SVCaReq := False;
ATstack := AT +ATstack;
EITstack := EIT +EITstack;
AT := SVCa;

END
The introduction of these software-triggered interrupts requires modifying our modelling of return from
interrupt. Recall that in reality the hardware checks for pending interrupts, but in our model we don’t need
to model this, since we allow interrupt handlers to run at any time. However, in the case of the software-
triggered SVCa interrupt, we need explicitly to model that, on return from interrupt I, the hardware checks
whether SVCaReq is set, and whether SVCa is allowed to run (it may have been manually removed from
the EIT set). To know if SVCa is allowed to run, we need to inspect the heads of ATstack and EITstack
as these are the context of the task that was interrupted by I. The IRet function therefore becomes:

IRet(X) ≡
IF SVCaReq∧SVCa ∈ (hd EITstack)−AT−ATstack∧ (interrupt policy (hd ATstack) SVCa)
T HEN EIT := hd EITstack;

AT := SVCa;
ELSE (AT +ATstack) := ATstack;

(EIT +ATstack) := EITstack;
Our formalisation of the hardware interface is given by the functions (1)-(4), available to the OS

to control interleaving. Additionally, the functions ITake , IRet and ITakeSVCa , together with
our control pre-processing, as presented in Fig. 1, form our formal concurrency framework, to be
instantiated to a specific OS by defining U , I , A , and S .

4 Discussing an Instantiation to a Model of the eChronos OS

For wider usability, we have so far presented a general controlled concurrency framework and formal
model of an API of hardware mechanisms. We have instantiated this general framework to define a
model of the eChronos OS scheduling behavior, where tasks are allocated priorities by the user, and
the scheduler is in charge of enforcing that tasks are scheduled according to their priorities, i.e. its
main functional property is that whenever application code is executing, then it is the highest priority
task. One of our longer-term goals is to allow formal verification of such correctness properties. Our
other aim is to validate our model against the real implementation by formal means (formal proof of

June Andronick, Corey Lewis, Carroll Morgan 7

refinement). Validating the hardware abstractions still requires informal arguments, though. Here we
discuss the modelling, its accuracy and its usability.

Given the framework described in the previous section, we need to instantiate U , I , S , and A .
The instantiation is given in Appendix A, and the whole Isabelle/HOL model in Appendix B.

In creating this model there were several issues that we had to consider to convince ourselves, and
more importantly the eChronos OS developers, that our model represents reality. The first was that the
way in which we constrain the OG interleaving is accurate. In particular, we had to investigate when
interrupts can occur and what the hardware does during an interrupt entry and return. We also had
to ensure that anything we modelled as being atomic actually is atomic in reality. For the most part
this involves the functionality provided by the hardware that we model, such as the ITake and IRet
functions seen in §3.1. We believe that we have correctly captured the hardware interrupt behavior and
atomicity, according to the ARM manual [1]. Additionally, we have been careful not to use OG’s 〈·〉
atomic statement outside of the hardware interface. This way, the only remaining assumed atomicity is
the one of single OG statements, which we will need to validate by refinement proofs when moving on
to verification of our model.

Another important issue was the distinction between variables that are part of the eChronos OS and
the pseudo-variables for hardware mechanisms. Care was needed to ensure that these hardware variables
are only read and/or modified where allowed to, namely in the hardware API. Since we target devices
with no memory protection, this requirement will have to be validated for the eChronos OS code and will
remain an assumption for any user-provided applications (and could be checked using static analysis).

To justify our use of OG reasoning and to demonstrate that the mechanisation provided by Isabelle
is sufficient to deal with scalability for system like the eChronos OS, we have begun initial verification
of our model. As expected, at first there are a very large number of verification conditions: on the order
of 10,000. However, by just defining a method that automatically removes any redundant conditions we
can easily reduce this to under 500. The majority of these are then trivial enough to be automatically
solved by standard Isabelle/HOL methods, with the final 10 conditions requiring human guidance. We
believe that this number could be reduced even further by small improvements to the automation.

5 Related work and Conclusions

Frameworks for reasoning about shared variable programs have been around for more than 30 years.
OG was the first one to be proposed [14]; much derived work has been done since, addressing specific
requirements (compositionality [9], resource separation [13], etc). These frameworks have mainly been
used to prove the correctness of concurrency algorithms or protocols. Here we target low-level high-
performance OS code. Similarily, higher-level conceptual tools such as monitors [7] and conditional
critical regions [5] decrease the proof burden, but impose a performance penalty, a trade-off usually worth
making for clarity, except for minimal high-speed OS-kernel application where efficiency is crucial.

Formal verification of operating systems, kernels, and hypervisors has been the focus of important
recent research (for which see [10] for an overview). Successfully verified systems generally either
run on uniprocessor platforms with interrupts mostly disabled (e.g. [11, 17, 16]), or their verification
does not take interrupts into account (e.g. [8]). In [3], a Hoare-logic-based framework is proposed to
certify low-level system code involving interrupts and preemptive tasks, but the scheduler and context
switching tasks are still executed with interrupts disabled, and interrupt handlers cannot be interrupted.
In contrast, our work supports nested interrupts and a preemptible scheduler. A proof of correctness
of the FreeRTOS scheduler is proposed in [4]; the proof does not include the context switch itself and

8 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS

focuses on the scheduler policy (picking the next task). This is complementary to our work, where we
leave the policy generic and assume it will pick the highest priority task.

To our knowledge, our extended OG framework with controlled concurrency is the first to support
reasoning about low-level system code that is fully preemptible, including scheduler code, with support
for nested interrupts. We have successfully instantiated it to formalise the scheduling behavior of the
eChronos OS, a real-world, deployed, embedded OS. Our promising initial verification work indicates
that we will be able to formally prove important functional properties involving complex concurrency
reasoning about highly shared low-level variables.

References
[1] ARM Infocenter. Available at http://infocenter.arm.com/.
[2] The eChronos OS. Available at http://echronos.systems.
[3] Xinyu Feng, Zhong Shao, Yu Guo & Yuan Dong (2009): Certifying low-level programs with hardware inter-

rupts and preemptive threads. Journal of Automated Reasoning 42(2-4), pp. 301–347, doi:10.1007/s10817-
009-9118-9.

[4] Joao F Ferreira, Cristian Gherghina, Guanhua He, Shengchao Qin & Wei-Ngan Chin (2014): Automated ver-
ification of the FreeRTOS scheduler in HIP/SLEEK. International Journal on Software Tools for Technology
Transfer 16(4), pp. 381–397, doi:10.1109/TASE.2012.45.

[5] Per Brinch Hansen (1972): Structured Multiprogramming. Communications of the ACM 15, pp. 574–578,
doi:10.1145/361454.361473.

[6] C. A. R. Hoare (1969): An Axiomatic Basis for Computer Programming. Communications of the ACM 12,
pp. 576–580, doi:10.1145/363235.363259.

[7] C. A. R. Hoare (1974): Monitors: An Operating System Structuring Concept. Communications of the ACM
17, pp. 549–557, doi:10.1145/355620.361161.

[8] Yanhong Huang, Yongxin Zhao, Longfei Zhu, Qin Li, Huibiao Zhu & Jianqi Shi (2011): Modeling and veri-
fying the code-level OSEK/VDX operating system with CSP. In: Theoretical Aspects of Software Engineering
(TASE), 2011 Fifth International Symposium on, IEEE, pp. 142–149, doi:10.1109/TASE.2011.11.

[9] C. B. Jones (1983): Tentative steps towards a development method for interfering programs. ACM Transac-
tions on Programming Languages and Systems 5(4), pp. 596–619, doi:10.1145/69575.69577.

[10] Gerwin Klein (2009): Operating System Verification — An Overview. Sādhanā 34(1), pp. 27–69,
doi:10.1007/s12046-009-0002-4.

[11] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski & Gernot
Heiser (2014): Comprehensive Formal Verification of an OS Microkernel. ACM Transactions on Computer
Systems 32(1), pp. 2:1–2:70, doi:10.1145/2560537.

[12] Tobias Nipkow, Lawrence Paulson & Markus Wenzel (2002): Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. 2283, doi:10.1007/3-540-45949-9.

[13] Peter W. OHearn (2007): Resources, Concurrency, and Local Reasoning. Theor. Comput. Sci. 375(1-3), pp.
271–307, doi:10.1016/j.tcs.2006.12.035.

[14] Susan Owicki & David Gries (1976): An axiomatic proof technique for parallel programs. Acta Informatica
6, pp. 319–340, doi:10.1007/BF00268134.

[15] Leonor Prensa Nieto (2002): Verification of parallel programs with the Owicki-Gries and rely-guarantee
methods in Isabelle/HOL. Ph.D. thesis, Technische Universität München.

[16] Raymond J. Richards (2010): Modeling and Security Analysis of a Commercial Real-Time Operating System
Kernel, pp. 301–322. Springer US, doi:10.1007/978-1-4419-1539-9 10.

[17] Jean Yang & Chris Hawblitzel (2010): Safe to the last instruction: automated verification of a type-safe
operating system. Toronto, Ontario, Canada, pp. 99–110, doi:10.1145/1806596.1806610.

http://infocenter.arm.com/
http://echronos.systems
http://dx.doi.org/10.1007/s10817-009-9118-9
http://dx.doi.org/10.1007/s10817-009-9118-9
http://dx.doi.org/10.1109/TASE.2012.45
http://dx.doi.org/10.1145/361454.361473
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/355620.361161
http://dx.doi.org/10.1109/TASE.2011.11
http://dx.doi.org/10.1145/69575.69577
http://dx.doi.org/10.1007/s12046-009-0002-4
http://dx.doi.org/10.1145/2560537
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.1007/BF00268134
http://dx.doi.org/10.1007/978-1-4419-1539-9_10
http://dx.doi.org/10.1145/1806596.1806610

June Andronick, Corey Lewis, Carroll Morgan 9

A Instantiation of our Controlled OG Framework to the eChronos OS

Instantiating the framework described in §3 to the eChronos OS requires to instantiate U , I , S , and
A . The instantiation is as follows.

I ≡ E := change events;
SVCa Request();

U j ≡ syscall block ≡ SVCaDisable();
R := R(j := False);
SVC now();
SVCaEnable();
WHILE¬SVCaReq DO SKIP END;

S ≡ schedule;
context switch True;

A ≡ schedule;
context switch False;

Since we are focusing on the scheduling behavior, we only model the parts that may influence the
scheduling decisions, i.e. deciding which task should be the next to run. These decisions depend on (i)
which are the runnable tasks, and (ii) the set of events signaled by interrupt handlers, which may influence
which tasks are runnable. We use the variable R for the mapping from task identifier to a Boolean value
indicating whether the task is runnable, and the variable E for the set of events.

The interrupt code I is mainly a user-provided interrupt handler, which is only allowed to call one
specific OS function to change the set of events. Since this might change which tasks are runnable the
scheduler needs to run to update the set of runnable tasks and potentially switch to a higher priority
task. To avoid re-entrant OS code, the interrupt handler only flags the need for the scheduler to run
(by requesting an asynchronous system call). This request must be handled before application code is
run again. The function change events represents a non-deterministic update. The rest of the interrupt
handler’s functionality is not represented, as it should not be relevant to the scheduling behavior.

S and A are almost identical and represent the scheduler code. The main job of the scheduler
is to pick a new task to run, by first updating the runnable mapping R taking into account the set of
unprocessed events E, and then picking the task to run according to the scheduling policy in place. Once
the task is chosen, a context switch is performed, storing the old task and placing the new task on the
stack. The full details of how schedule and context switch are modelled can be found in §B.5.

Finally, the majority of the eChronos OS code is in U , which represents application code (kept
generic here) and calls to any of the OS API functions. We model application code only as potentially
making an OS call, and we only model a single call that is representative of how the variables that we
are interested in can be modified. The block syscall modifies R so that task U j is not runnable and then
yields by invoking SVCs via SVC now. To ensure that it is not re-entrant, the OS call is wrapped between
disable and enable functions for the SVCa interrupt and is followed by a loop waiting for SVCaReq to
be set to False. As SVCa is the only routine that sets SVCaReq to False, this ensures that, if required,
SVCa executes before control is returned to the user application. The functions SVCaDisable() and
SVCaEnable() are defined as follows.

SVCaDisable() ≡ EIT := EIT−SVCa

SVCaEnable() ≡ EIT := EIT ∪SVCa

10 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS

B Formal model of the eChronos OS scheduling behaviour in Isabelle

We present here a model of the ARM Cortex-M4 version of the eChronos OS scheduling behaviour, for-
malised in Isabelle/HOL. It is based on Leonor Prensa’s formalisation of Owicki-Gries in Isabelle/HOL.

B.1 State

A routine is just a natural number; we add routines for both the SVCs handler and the SVCa handler,
user routines have numbers from 2 to nbUsers+2(excluded) and interrupt routines have numbers from
nbUsers+2 to nbUsers+nbInts+2 (excluded). The first user to run is arbitrarily chosen to be the first
one.

type-synonym routine = nat

consts nbUsers :: nat
consts nbInts :: nat

abbreviation nbRoutines ≡ nbUsers+nbInts

abbreviation SVCs ≡ 0
abbreviation SVCa ≡ 1

definition user0 ≡ 2
definition U ≡ {user0..<user0 + nbUsers}
definition I ≡ {user0 + nbUsers..<user0 + nbUsers + nbInts}
definition I ′≡ I ∪ {SVCa}

A state is composed of all the hardware variables plus the program variables that the targeted invariant
or property relies on.

record ′a state =
EIT :: routine set — the set of enabled interrupt tasks
SVCaReq :: bool — the SVCa requested bit
AT :: routine — the active routine
ATStack :: routine list — the stack of suspended routines

curUser :: routine — current user task
contexts :: routine⇒ (bool × routine list) option — stored contexts
R :: routine⇒ bool option — Runnable threads
E :: nat set — Events set (current)
E-tmp :: nat set — Temporary events set
nextT :: routine option — the next Task

B.2 Controlled Owicki-Gries reasoning

The model of parallel composition allows more interleaving than the real execution, where only enabled
routines can run. To model this we extend the OG formalisation with our controlled concurrency mech-
anism; we use the AT variable and wrap every instruction of routine r in an AWAIT {|AT = r|} statement.
The function add-await-bare-com performs this process. It recursively traverses the command tree, using
the given property to construct the AWAIT statement which is added as required. The full definition of
add-await-bare-com is not shown here.

June Andronick, Corey Lewis, Carroll Morgan 11

definition control
where

control r c ≡ add-await-bare-com {|AT = r|} c

B.3 Generic scheduling policy, handling of events and interrupt policy

The scheduling policy (picking the next thread, given the list of runnable threads) is left unspecified here;
as well as the updating of this runnable list, given a list of events. The interrupt policy (which interrupts
are allowed to run, given the currently running routine) is also left unspecified.

consts sched-policy :: (routine⇒ bool option)⇒ routine option
consts handle-events :: nat set⇒ (routine⇒ bool option)⇒ routine⇒ bool option
consts interrupt-policy :: routine⇒ routine set

B.4 A model of hardware interface

The following two functions are used to enable and disable the SVCa interrupt. They do this by either
adding or removing SVCa from the EIT set.

definition
SVCaEnable

where
SVCaEnable ≡ EIT := EIT ∪ {SVCa}

definition
SVCaDisable

where
SVCaDisable ≡ EIT := EIT − {SVCa}

ITake i models the hardware mechanism that traps to the handler for interrupt i. First it checks
whether the interrupt is enabled, is not already being handled and is a higher priority than the current
routine. When these conditions are satisfied then the context4 of the previous task is saved on a stack and
AT is set to i.

definition
ITake

where
ITake i ≡
AWAIT i ∈ EIT − {AT} − set ATStack ∧ i ∈ interrupt-policy AT
THEN
〈ATStack := AT # ATStack,, AT := i〉

END

Similarly to above, SVCaTake models the hardware mechanism that traps to the SVCa handler. It is
almost exactly the same as ITake i, but because we can observe when SVCa is requested we now also
require that SVCaReq is True before it can begin executing. It also sets SVCaReq to False while setting
AT to SVCa.

definition
4We only model the part of the context relevant to controlling the interleaving. Here that is just the previous value of AT ,

which can be thought of as corresponding to the program counter. Note that this is in contrast to the model from §3.1, which
also stores the value of EIT . This is because ARM does not save the mask status when an interrupt occurs, and it is up to the
interrupt handlers to ensure that the interrupt mask is preserved.

12 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS

SVCaTake
where

SVCaTake ≡
AWAIT SVCaReq ∧ SVCa ∈ EIT − {AT} − set ATStack ∧ SVCa ∈ interrupt-policy AT
THEN
〈ATStack := AT # ATStack,,
AT := SVCa,, SVCaReq := False〉

END

IRet models the hardware mechanism used to return from an interrupt. The main action it performs is
to restore the context of the interrupted routine. It does this by setting AT to the head AT Stack, which
is then removed from the stack. However, if there is a pending interrupt that is now allowed to run then
IRet will transfer control directly to this interrupt instead of restoring the stored context. Due to the
construction of our model we only need to ensure that this happens for SVCa, as it is the only interrupt
that we can observe has occured.

definition
IRet

where
IRet ≡
〈IF SVCaReq ∧ SVCa ∈ EIT − set ATStack ∧ SVCa ∈ interrupt-policy (hd ATStack)

THEN AT := SVCa,, SVCaReq := False
ELSE AT := hd ATStack,, ATStack := tl ATStack
FI〉

When SVC now is called it triggers an SVCs interrupt to occur, which is then immediately handled. The
effect of this function is similar to that of ITake , the active task is saved on the stack and then AT is set
to SVCs. We implicitly assume that SVCs is enabled when SVC now is called, as if this was not true in
reality then the hardware would trigger an abort exception.

definition
SVC-now

where
SVC-now ≡ 〈ATStack := AT # ATStack,, AT := SVCs〉

SVCaRequest is used to request that SVCs occurs as soon as it is next possible.

definition
SVCaRequest

where
SVCaRequest ≡ SVCaReq := True

B.5 Model of the eChronos OS

The eChronos OS uses SVCs and SVCa interrupt handlers to implement scheduling. The scheduler func-
tion chooses a new task to run by first updating the runnable mapping R before using whichever scheduler
policy is in place to pick a task from among the runnable ones. To update the runnable mapping, the func-
tion handle events is used, with this function being left non-deterministic. After the execution of this
function, the variable E needs to be cleared to indicate that the events have been processed. However, the
scheduler may itself be interrupted. If an interrupt occurs between the execution of handle events and
the reset of E, the interrupt handler might have modified E with new events to be processed (and flagged
a request for the scheduler to run). On return from interrupt, because the scheduler is itself an interrupt

June Andronick, Corey Lewis, Carroll Morgan 13

and is not re-entrant, its execution resumes, and so E should not be cleared. Instead we save its value be-
fore running handle events, and only remove those saved events that have indeed been processed. When
the scheduler will return, the hardware will check if there are still any pending requests for the scheduler
to run, and re-run it if required.

definition
schedule

where
schedule ≡
nextT := None;;
WHILE nextT = None
DO

E-tmp := E;;
R := handle-events E-tmp R;;
E := E − E-tmp;;
nextT := sched-policy(R)

OD

Once the schedule functions has executed, the context switch function is called. This function, as the
name suggests, saves the context of the old user task that was previously on the hardware stack, and
then replaces it with the context of the task chosen by the scheduler. To do this the function first stores
whether the previous user task had SVCa enabled,5 along with the current value of AT Stack. It then
loads the stack that existed when the new task was last executing. Lastly, SVCa is enabled or disabled as
required by the new task.

definition
context-switch

where
context-switch preempt-enabled ≡

contexts := contexts (curUser 7→ (preempt-enabled, ATStack));;
curUser := the nextT;;
ATStack := snd (the (contexts (curUser)));;
IF fst (the (contexts (curUser)))
THEN SVCaEnable
ELSE SVCaDisable

FI

Finally, we combine everything to construct the full eChronos OS model. First, the state is initialised
with the correct starting values. Following this, the various routines are run in parallel, with concurrency
controlled as required through the use of control.

definition
eChronos-OS-model

where
eChronos-OS-model change-runnables change-events ≡
(EIT := I ′,,
SVCaReq := False,,
AT := user0,,
ATStack := [],,
curUser := user0,,

5This is identified by the boolean passed to context switch. If context switch is being called by SVCa then clearly SVCa
was previously enabled, while by design we know that SVCs is only called when SVCa is disabled.

14 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS

contexts := (λn. if n∈U then Some (True, [n]) else None),,
R := (λn. if n∈U then Some True else None),,
E := {},,
E-tmp := {},,
nextT := None,,
(COBEGIN
(∗ SVCa-take ∗)
WHILE True
DO

SVCaTake
OD

‖

(∗ SVCa ∗)
WHILE True
DO
(control SVCa (
schedule;;
context-switch True;;
IRet))

OD

‖

(∗ SVCs ∗)
WHILE True
DO
(control SVCs (
schedule;;
context-switch False;;
IRet))

OD

‖

SCHEME [0 ≤ i < nbRoutines]
IF (i∈I) THEN

(∗ Interrupts ∗)
WHILE True
DO

ITake i;;

(control i (
E := change-events;;
SVCaRequest;;

IRet))
OD

ELSE

June Andronick, Corey Lewis, Carroll Morgan 15

(∗ Users ∗)
WHILE True
DO
(control i (
SVCaDisable;;
R := R (i 7→ False);;
SVC-now;;
SVCaEnable;;
WHILE ¬SVCaReq
DO

SKIP
OD))

OD
FI

COEND))

Acknowledgements NICTA is funded by the Australian Government through the Department of Com-
munications and the Australian Research Council through the ICT Centre-of-Excellence Program.

	Introduction
	Explicit concurrency control in Owicki-Gries reasoning
	Formalisation of the Hardware Interface
	Controlling interrupts
	Program control of preemption, and supervisor calls

	Discussing an Instantiation to a Model of the eChronos OS
	Related work and Conclusions
	Instantiation of our Controlled OG Framework to the eChronos OS
	Formal model of the eChronos OS scheduling behaviour in Isabelle
	State
	Controlled Owicki-Gries reasoning
	Generic scheduling policy, handling of events and interrupt policy
	A model of hardware interface
	Model of the eChronos OS

