A Verified Type System for CakeML

Yong Kiam Tan

IHPC, A*STAR
tanyk@ihpc.a-star.edu.sg

Abstract

CakeML is a dialect of the (strongly typed) ML family of program-
ming languages, designed to play a central role in high-assurance
software systems. To date, the main artefact supporting this is a ver-
ified compiler from CakeML source code to x86-64 machine code.
The verification effort addresses each phase of compilation from
parsing through to code generation and garbage collection.

In this paper, we focus on the type system: its declarative speci-
fication, type soundness theorem, and the soundness and complete-
ness of an implementation of type inference — all formally veri-
fied in the HOL4 proof assistant. Each of these aspects of a type
system is important in any design and implementation of a typed
functional programming language. They allow the programmer to
soundly employ (informal) type-based reasoning, and the compiler
to apply optimisations that assume type-correctness. So naturally,
their verification is a critical part of a verified compiler.

1. Context

A formally verified compiler comes with a proven theorem that any
observable behaviour of the object code is a permissible behaviour
of the source code. Put more colloquially, we know that a verified
compiler introduces no bugs. When we are concerned with the
proper functioning of a safety- or security-critical software system,
using a verified compiler means that we do not have to inspect
what the compiler is doing. This can make building an assurance
case for the system easier. If we have gone to the extent of formally
verifying the system, then we know — without any lower confidence
— that the system as actually executed has the properties we verified
about it.

Since 2012, the CakeML project (https://cakeml.org) has
been building a verified compiler for an ML-like programming lan-
guage. The overall goal is to create an optimising compiler with
mechanically checked proofs of an end-to-end correctness theorem.
An important additional goal is to verify (again with mechanically
checked proofs) that the correctness theorem applies to the code of
the compiler that is actually executed, and not just to the compila-
tion algorithm in the abstract. Here ‘end-to-end’ means that the cor-
rectness theorem relates source code, represented as a string, with
machine code, represented as a list of bytes. Thus, the verification
must address a lexer, a parser, a type checker, a sequence of optimi-

[Copyright notice will appear here once ’preprint’ option is removed.]

Scott Owens

University of Kent
S.A.Owens@kent.ac.uk

Ramana Kumar

NICTA and UNSW
Ramana.Kumar@nicta.com.au

sations and translations between various intermediate languages, a
code generator, and a run-time system. A previous paper [4] out-
lined how all of these phases fit together, and detailed the inter-
active theorem proving techniques used to verify a non-optimising
version of the compiler.

In this paper, we focus on the type checking phase of the com-
piler. The external interface to the type checker is simple, given
(an AST for) a program, it returns a boolean: whether the pro-
gram obeys CakeML’s typing discipline. Its importance stems from
the type soundness theorem which guarantees that well-typed pro-
grams have well-defined semanticsﬂ This is important for any
typed programming language: most compilers assume that the in-
put program has well-defined semantics, and make optimisation de-
cisions based on that. It is doubly important in the context of ver-
ified compilers: their correctness theorem has a well-definedness
pre-condition, and so we cannot use the theorem until we first prove
that the source program is well-defined. For some languages, well-
definedness is an undecidable property (e.g., C), but for CakeML
(and type-safe languages in general), a type inference algorithm can
prove that the program obeys the typing discipline. The type sound-
ness theorem then allows us to dispense with the pre-condition and
give a compiler correctness theorem that applies to all programs,
and characterises which ones the compiler will accept/reject during
type checking.

Contributions Our previous work [4] briefly mentioned CakeML’s
type checker, which at that point had a type soundness theorem, and

an inferencer soundness theorem, but not an inferencer complete-

ness theorem. Here, we give a thorough account of these theorems,

and additionally present

e a completeness theorem for the inferencer,

e an improved type system that dispenses with the elaboration
phase,

an improved type soundness proof for an operational semantics
with more uniform handling of data constructors and modules,
and

e support for a few extra language features, especially type ab-
breviations.

On the proofs All of the theorems in this paper have been me-
chanically verified in the HOL4 theorem prover and are available
from CakeML’s code repository (https://code.cakeml.org).
The type system’s definition is in the semantics directory, along
with the operational semantics; the type soundness proof is in the
semantics/proofs directory; and everything to do with the in-
ferencer is in the compiler/inference directory. Overall the
big technical challenges were in properly formulating the theorem
statements and invariants, rather than in applying theorem proving
technology, and so the former is our focus here.

! Equivalently, well-typed programs do not crash, get stuck, go wrong, have
undefined behaviour, etc.

2015/12/8

https://cakeml.org
https://code.cakeml.org

op = div|mod|+|-|<|>|<=|>=|<>|=]i=] s
| andalso | orelse
id = z|mn.z
cid = cn|mn.cn
t = alid|tid| @, t(0)*)id | t*xt|t->t] &)
l = Const| O |11
p = allfcd|cdp|_| (L)) Ip(p)T]p::p
e = l|id]|cid|cide]| (e,e(,e)*) | [e(,e)*]
| raisee|ehandlep=>e(|lp=>¢)*
| fnp=>elee|eopel| ((e;)*e)
| if ethencelsee|caseeof p=>e (|l p=>¢e)*
| let(ld|;)*in(e;)* eend
ld = valz=c|funzpt=e(andzpt =¢)*

cn | cnof t
tyd = tyn=c(l c)*

tyn = (a,a))z|az|z
d i= valp=e|funzpt =c(andzpt =e)*
| datatype tyd (and tyd)* | type tyn =1t
| exceptionc
sl = wvalz:t|typetyn (=t)7 | datatype tyd (and tyd)*
stg = :>sig(sl |;)* end
top = structure mn sig’ =struct (d | ;)* end; | d;

where ranges over identifiers (must not start with a capital letter and
must not be an infix operator from op), o over SML-style type vari-
ables (e.g., >a), cn over constructor names (must start with a capital letter,
or be true, false, ref, ornil), mn over module names, and Const over
integer, string and character constants.

Figure 1. CakeML syntax

Contents We first describe the CakeML language itself (§2)), then
we give a declarative type system (§3) with a corresponding type
inference algorithm (§4). Then we move on to the correctness
proofs: soundness and completeness for the inferencer with respect
to the type system (§3), and type soundness with respect to an
operational semantics via preservation and progress lemmas (§6).

2. The CakeML language

CakeML is a strongly typed, strict, impure functional language that
mostly follows the design of Standard ML (SML) [7]]. It supports
a substantial subset of the core language features including (pos-
sibly mutually) recursive datatypes, higher-order functions, pat-
tern matching, references, and exceptions. Notable omissions are
records, and local (non-top-level) definitions of datatypes and ex-
ceptions. The module system supports non-nested structures and
signatures, but not functors. See Fig.[I]for the syntax.

CakeML has a small-step operational semantics based on a
CEK machine [3], and it also has a big-step semantics that is
proven equivalent. There are a few minor differences in behaviour
to SML which are not relevant to us here. The type system does
have three relevant simplifications: it does not support equality
types, operator overloading, or polymorphic generalisation of let-
bound definitions. Top-level and module-top-level definitions can
be polymorphic, and we plan to add support for polymorphic let
bindings in the future.

3. Type system

CakeML has a declarative type system defined by a syntax-
directed, inductively defined relation. Fig. [2] gives the definition
of the various environments and the shape of the main judgements.

Typing environments [are records containing four different
sub-environments M, T', C' and V in fields called m, t, ¢, and v
respectively. The definition typing judgements build environment
fragments that describe the defined things, and we refer to those
using m, 7, ¢ and v.

Let £ be a de Bruijn indexed version of t. We need the following environ-
ments, and auxillaries:
tid_exn = id | cid stamps
|4 = € empty type env.
| N,V bind de Bruijn type variables
| z:(N,#),V bindatype scheme
T=1idr— (a* Xt)

M = mn s (z x N x {)

type def. env.
module env.
C = cid —~ (a* X t* X tid_ezn) constructor env.

We will use V' to refer to the subset of V' that has no de Bruijn type variable
bindings (the second line above). Similarly, I'; are typing environments
whose variable environments are of the form V.

Typing judgements:
N, Ckpp: i, v pattern typing
Iibee:f expression typing

u, mn', 8, I't g d : &8, (r,c,v) definition typing

u, 6, I't by top : &, (m,7,c,v) top-level typing

Figure 2. Typing judgements

Type definition environments 7' support type abbreviations,
mapping a type constructor name to the type that it abbreviates,
along with a list of type parameters. Since a type definition can ap-
pear inside of a module, or at the top-level, the module name mn is
optional. Since CakeML does not have nested structures, all identi-
fiers either refer to the current module or a different top-level mod-
ule, and so use optional module names rather than a list of module
names. Constructor environments C' similarly record information
for all constructors introduced by a datatype or exception def-
inition. They record the type’s parameters, the types of the con-
structors arguments, which may refer to the parameters, and a
stamp tid_exn that records which type the constructor creates, for
datatype constructors, or which exception it is, for exception con-
structors.

Module environments M map modules to the list of value def-
initions in the module, along with their type schemes. Since these
types are represented using de Bruijn indices, a number, rather than
a list of type variables, represents how many quantified type vari-
ables they have. Finally, variable environments v, map variables to
type schemes, but retain enough structure to record where new type
variables are bound. This structural information is only needed at
the expression level so we distinguish between Iy used in expres-
sions typing and I used for everything above that. Because of this
separation, M and V are kept as distinct environments rather than
using ¢d or cid as the domain of a finite map as in 7" and C.

Definition environments & are records containing the set of
names of defined modules, the set of identifiers for defined types
and the set of identifiers for defined exceptions. The fields are
named defined_mods, defined_types and defined_exns respectively.
We will see more detail on how stamps and ¢ work in the discus-
sion of the typing rules in Their purpose is to separate the
notion of globally unique identity for each module, type, and con-
structor from the scoping mechanisms of the language. The Defi-
nition of Standard ML [7] uses a stamp generation mechanism for
this purpose. Instead CakeML restricts top-level modules to having
unique names, and the types defined inside a module to have differ-
ent names from each other. Thus, fully qualified names of types are
unique, and can be used for stamps without a gensym mechanism.

2015/12/8

check_freevars tvs [] t

(PVAR) tvs, C Fp z:t, [(z,0)]

tvs = LENGTH ts
EVERY (check_freevars (num_tvs [:.v) []) ts
lookup z I+ = SOME (tvs,t)

VAR -
() I't Fe x : deBruijn_subst 0 ¢s ¢t
check_freevars (num_tvs IA}.V) 0t
I,z 0 (0,t1) Fe € @ 1o
FuN -
() I'ibe fnz => e : 1 > t2
ﬁt Fe €1 : @1

Ii,z 2 (0,01) Fe e : to

LET) =
()Ftl—elet:v=elinegzt2

Figure 3. Selected pattern and expression typing rules

3.1 Expressions

The pattern and expression level typing judgements are mostly
typical, with the structure of v being perhaps the only surprising
thing. Fig. [3] gives the rules for pattern and expression variables,
functions, and let expressions, to show how V is used. The PVAR
rule allows a pattern variable any type whose free variables are
within the given bound tvs (recall that the type here uses a de Bruijn
representation). The VAR rule finds the type scheme bound to the
identifier in the M or V environment, depending on whether the
identifier has a module name or not. It can then make an arbitrary
instantiation of the tvs quantified type variables as long as their free
variables are all bound in V. The FUN rule binds a type scheme
with no quantified type Variablesﬂ and a type whose free variables
are also bound in V. Because the LET rule is monomorphic, it also
uses no quantified type variables in the type scheme of x.

3.2 Definitions

Fig. [] presents the rules for top-level (and module-top-level) def-
initions. It omits the rule for fun definitions, which is similar to
the DLET_POLY rule, but specialised to making recursive functions.
It also specialises the DTYPE rule to a single recursive datatype,
whereas the actual rule in CakeML handles a list of mutually recur-
sive datatypes.

There are two rules for value definitions, since CakeML, with its
imperative features, has a value restriction. Both rules ensure that
the pattern does not try to bind the same value twice, ensure that the
pattern and expression have the same type, and then return the pat-
tern’s variable bindings. Neither, defines any new modules, types,
or constructors so there are no new identifiers in their conclusions.
The DLET_MONO rule does not add any type variable bindings to
V' when checking e, so that the resulting type will not contain any
type variables. The DLET_POLY rule does bind some type variables
tvs, and then does a polymorphic generalisation, quantifying the
types in the resulting environment v with tvs. The last premise of
each rule is used to ensure determinism with the value restriction,
which we explain further in The u parameter is used to con-

2 We use ft ,x : (tvs,t) tomean ft with its variable environment field
extended with the mapping of z to the type scheme (tvs,t).

trol whether these checks should be carried out; more detail on that
in

The rule for type abbreviations (DTABBREV) checks that the
abbreviated type is well formed i.e. that the raw type variables it
mentions are bound in targs. It introduces no new modules, data
types, or constructors. It binds the name of the abbreviation in
the type definition environment, after first expanding out all of the
other abbreviations mentioned in the type. Abbreviations cannot
be recursive, because the well-formedness check uses the previous
scope that does not contain a binding for this abbreviation yet. It
could contain a reference to a previous abbreviation with the same
name, but that would be expanded to the previous definition. The
effect of all of this is that type names for abbreviations are lexically
scoped (i.e., uses of a type name refer to the most recent enclosing
type abbreviation), and that the type system internally keeps all
abbreviations maximally expanded.

The rule for defining a new exception constructor (DEXN)
checks that the exception has not already been declared (although
an exception with the same name in a different module is allowed),
and that its argument types are well-formed. It records that an ex-
ception has been declared with its full module path, and binds the
exception name in the constructor environment with no type param-
eters, fully abbreviation-expanded argument types, and the stamp
of the exception.

The rule for defining a new datatype (DTYPE) checks that the
datatype is not already defined (although a datatype with the same
name in a different module is allowed, as are datatypes that have
the same name as a type abbreviation in the same module). The
constructors must be distinct from each other, but could have the
same name as constructors in other datatypes. The argument types
to the constructors must be well formed. Since the datatype is
allowed to be recursive, the type definition environment is first
extended with a binding for the type being defined. This treats the
datatype’s name as an abbreviation for the stamp that represents
the true identity of the type. Lastly, the constructor environment
is extended with each constructor mapping to the type parameters,
fully abbreviation-expanded argument types, and the type that is
being constructed.

3.3 The value restriction and principal types

CakeML has an SML-style value restriction that prohibits the
polymorphic generalisation of bindings whose definitions are not
syntactic values. Although application of the value restriction is
straightforward, subtleties arise when considering the type of a
top-level definition at an intermediate program point. To illus-
trate, consider the following two identity definitions, id_poly and
id_mono.

val id_poly
val id_mono
if true then (fn x => x) else (raise Bind);

fn x => x;

The expression on the right of both definitions can have a va-
riety of types according to the typing relation, int -> int,
string -> string, etc. But only id_poly can be given a prin-
cipal typeﬂ ’a -> ’a. The key question is what type should
id_mono be given when there is no usage of the function to disam-
biguate. For example, the definition might have been entered at the
REPL, or it might be defined, but not used, in a separately compiled
module with no explicit signature. For CakeML, such definitions
do not type check, so that the CakeML type system maintains the
principal type property: every expression with a type has a unique
principal type. This is the critical property that supports a complete

3 Recall that a principal type is one that can be instantiated to obtain any
other type that the binding could have.

2015/12/8

We need auxiliary functions where
® is_value e holds iff e is a literal constant, variable, function, or constructor applied to values,
® distinct holds iff its argument list does not contain the same element twice,
® pat_bindings p [] returns the variables bound by pattern p,
® bind_tvar tws [records the position where tvs type variables are bound in the variable environment of I,
® add_tvs tvs v quantifies an additional tvs type variables in each type scheme of v,
® most_gen_env and type_pe_determ are defined in and

® expand_abbrev 7T ts expands all of the type abbreviations in ts according to the environment 7'

is_value e
distinct (pat_bindings p [])
tvs, I't. ctFp p:t, v
bind_tvar tvs [t Fe € : ¢t
% = most_gen_env I p e tvs v

DLET_POLY
() w, mn’, 8§, I't g val p = e : 8p, (0,01, add_tvs tvs v)

distinct (pat_bindings p [1)
0, I't. ckpp:t, v
Ft '_e e :t
u = —is_value e A type_pe_determ [p e

DLET_MONO
()u, mn’, 8§, Iy by val p = e : d§y, (0,[]1, add_tvs 0 v)

check_freevars 0 targs t
check_type_names [;.t ¢
distinct targs

DTABBREV
() uw, mn’, 8, I't Fq type (targs) tn =t : 8¢, (tn — (targs,expand_abbrev I;.t ¢),[1, [1)

check_exn_tenv mn’ cn ts
mk_id mn’ cn ¢ §. defined_exns
EVERY (check_type_names [:.t) ts
8’ = 8y with defined_exns := {mk_id mn’ cn}

DEXN
() uw, mn’, 8, I't Fq exception cn of ts : &', (@, [(cn,[]1,MAP (expand_abbrev I;.t) ts, TypeExn (mk_id mn’ cn))1, [1)

t' = tn — (tvs, Tapp (MAP Tvar tvs) (TC_name (mk_id mn’ tn)))
merged_t = merge_mod_env (0,t') I';. t
check_ctor_tenv mn’ merged_t [(tvs,tn, ctors)]
new_tdecls = set [mk_id mn’ tn]
new_tdecls N §. defined_types = ()

8’ = §p with defined_types := new_tdecls

DTYPE
() w, mn’, 8, I't Fq datatype tvs tn = ctors : &, (t', build_ctor_tenv mn’ merged_t [(tvs,tn,ctors)], [1)

Figure 4. Definition typing rules (fun rule omitted, datatype rule simplified)

4 2015/12/8

inference algorithm. See Appendix |[A] for a comparison with the
decisions made by other ML implementations.

The DLET_-MONO rule uses type_pe_determ to ensure that
ambiguously typed non-values are not type-able. Any bindings v
and v’ that can arise from the pattern and expression of a val
definition must be equivalent.

type_pe_determ [y p e <=

Vit v to v.

0, I'tickpp:ti, v ANt Fee:tr A
0, I'ticbpp:to, vV N[t Fee: ta =
v = v

Of course, id_mono does not really need the value restriction
for type soundness, but the same concerns apply to definitions such
as the following two:

let val f = ref [] in val f = ref [];

let val z = 5 ('f) in val z =5 :: (If);
z

end

The left expression can be typed as int 1list by assigning £ the
type int list ref. For the definitions on the right, we cannot
choose to type £ with int list ref without prior knowledge
of the subsequent definition. Note also that the value restriction
prevents us from assigning £ a polymorphic type in both cases.

A more exotic problem arises if the typing relation allowed
defined values to have types that are not principal. Consider:

val £ = fn x => ref x;
val z = f [];

If we assign f its principal type, ’a -> ’a ref, then, if not for
the value restriction, £ [] would have type *a list ref. Thus,
following the above discussion, the definition of z should signal a
type error. If we had instead chosen to type £ with the less general
type, int list -> int list ref, then z could be typed as
int list ref. However, we cannot choose a less general type
for £ without prior knowledge of the subsequent definition. The
DLET_POLY rule uses most_gen_env to ensure that the typing
relation always gives the most general environments, and that the
above definition of z is a type error, weakE v v’ holds iff we can
apply substitutions on de Bruijn variables bound in v to obtain v’.

most_gen_env I} p e tvs v <

Ytus’ vt
tvs’, I't.c Fp p:t/, v/ A bind_tvar tvs’ I} e e:t/ =
weakE (add_tvs tvs v) (add_tvs tws’ v')

4. Inference algorithm

Our type inference algorithm is based on Milner’s Algorithm
W 6], extended to top-level definitions. Internally, the inferencer
uses a state-exception monad to track its progress when it performs
type inference at the expression level. The monadic state consists
of a substitution that maps unification variables to types and a
counter that generates fresh unification variables. As in Algorithm
W, the substitution is used to backtrack and apply unification con-
straints as the inferencer walks an expression recursively; using
a monad allows us to represent this cleanly in pure higher order
logic. Our unification algorithm is based on triangular substitutions
and was verified previously [S]; we define encoding and decoding
functions to convert between the inferencer types and the generic
terms over which the verified unification algorithm operates. Like
the type system, we also keep track of a typing environment [
and the defined names d,. These environments are similar to their
type system counterparts but we can use more efficient representa-
tions in the inferencer. To emphasize this difference, we prefix both
environment’s record fields with inf_.

infer_e [; = =
do
(tvs,t) < lookup z [;.inf_v;
uvs < n_fresh_uvar tuvs;
return (infer_deBruijn_subst wuws t)

od

infer_e I; (fn = => e) =
do
u < fresh_uvar;
t < infer_e ([;,x :
return (u -> t)
od

O,uw) e;

infer_e I; (e1 e3) =

do
t1 < infer_e [; e1;
to < infer_e [; eg;
u < fresh_uvar;
add_constraint & (2 -> u);
return u

od

Figure 5. Selected expression inference cases.

4.1 Expressions

Type inference for expressions, infer_e, is where we make pri-
mary use of unification. Every call to infer_e either fails with a
type error or succeeds and returns a type. On successful inference,
we obtain the inferred type by applying the substitution in the fi-
nal monad state, subst, to the returned type, t. We write this as
t [subst] and refer to it as a solution of the inferencer.

The important cases, corresponding to variables, functions and
applications respectively, are shown in Fig.[5] Various helper func-
tions are used to interact with the monad: infer_deBruijn_subst
replaces bound de Bruijn variables with fresh unification variables
while add_constraint applies unification constraints to the cur-
rent substitution. In the function case, we recursively call infer_e
on the nested expression e after adding x to the variable environ-
ment with a fresh unification variable, u, for its type. This unifi-
cation variable may get constrained inside the recursive call but it
might also be left unconstraine(ﬂ Unlike in Algorithm W, uncon-
strained unification variables are handled at the top-level.

4.2 Definitions

At the top-level, our inferencer essentially applies the typing rules
directly to type check its input. We focus here on two illustrative
cases of the type inferencer for definitions, shown in Fig. [6] The
various guard expressions are used to check the preconditions
of the type system rules. The rest of the inferencer, e.g. top-level
module definitions, corresponds closely to the type system and so
we do not discuss it further.

The first case in Fig. [] corresponds to type inference for new
variable definitions of the form val p = e. Starting from an
empty substitution in the initial monadic state, we infer a type for
e and ensure the typing constraints introduced by the bindings in
pattern p are satisfied. Next, subst_list applies the internal sub-
stitution over the types in env’. We then perform a generalisation
step where all the remaining, unconstrained unification variables in
ts are replaced with bound type variables. If the value restriction
applies, we additionally check that this step did not end up gener-

4For example, if the expression being typed was the identity function,
fn z => z, then we would obtain a solution consisting of the empty
substitution and type u —=> u.

2015/12/8

infer_d mn’ 6; I; (val p = e) =
do
init_state;
n <— get_next_uvar;
t1 < infer_e [; e;
(ta,env’) < infer_p I';.inf_c p;
names < return (MAP FST env’);
guard (distinct names)
“Duplicate pattern variable”;
add_constraint {1 12}
ts < subst_list (MAP SND env’);
(tvs,s,ts’) < return (gen_list n 0 0 ts);
guard (tvs = 0 V is_value e)
“Value restriction violated”;
return (8p,0,[1,ZIP (names,MAP (A t. (tvs,t)) ts'))
od

infer_d mn’ §; I'; (type (targs) tn = t) =
do
guard (distinct targs) “Duplicate type variables”;
guard
(check_freevars 0 targs t A
check_type_names [;.inf_t t)
“Bad type definition”;
return
(0g,tn +— (targs,expand_abbrev [;.inf_t t),[1,[])
od

Figure 6. Selected definition inference cases.

alising any variables, i.e. there were no unconstrained unification
variables.

The latter case corresponds to type inference for a new type
abbreviation. Like the type system, new type abbreviations are
checked for well-formedness before they are added to the typing
environment.

On successful inference in either case, we return a 4-tuple con-
sisting of the newly defined names, type definitions, constructor
definitions and value definitions respectively. These are added to
the typing environment as we move on to subsequent definitions.

5. Inferencer verification

We divide the verification effort for our type inferencer into sound-
ness and completeness theorems. Informally, inferencer soundness
shows that any program with an inferred type has a valid typing
derivation in the type system while inferencer completeness shows
that any type that can be derived in the type system for a program is
generalised by the inferred type. In both directions, we further di-
vide the proofs into expression-level and top-level theorems. This
division is useful as it turns out that both expression-level theo-
rems are required for each of the top-level proofs. Several conver-
sion functions, e.g. conv_decl will appear in the theorems below.
These convert between representations of the type system and the
inferencer, e.g. from sets to lists, but are otherwise non-crucial to
the proofs.

5.1 Expression-level theorems

The key difference between type system judgements and inferencer
solutions at the expression level is the presence of unification vari-
ables in their respective typing judgements. Moreover, the infer-
encer is completely deterministic while the relational type system
can have several typing judgements for a single expression’} Hence,

5 For example, the identity function fn z => x can be typed as int ->
int, bool -> bool or ’a -> ’a in the type system whereas we will
always infer u -> u where u is a fresh, unconstrained unification variable.

the inferred type needs to generalise all possible types for an ex-
pression and unification variables allow it to do this deterministi-
cally: they should appear wherever there is a free choice of type.
To formalise the relation between type system judgements and
inferencer solutions with unification variables, we begin by defin-
ing a substitution completion relation. Intuitively, ss is the result of
applying additional unification constraints, constraints, to s;. To
be in the relation, the extra checks on sy shown below are used to
guarantee that the result of applying s2 on any inferred type, ¢ [s2],
has no unification variables. Our soundness and completeness the-
orems then relate this resulting type to the typing judgement.

sub_complete tvs next_uvar s1 constraints sy <=
pure_add_constraints s; constraints sz A
count next_uvar C FDOM s2 A
Yuv.
uwv € FDOM sp = check_t tvs () (Infer_Tuvar wv) [s2]

Next, we need invariants on the inferencer state. The first of these
invariants checks that the monadic state is consistent, e.g. we do
not use unification variables that have not been generated. The sec-
ond invariant similarly checks for consistency between parts of the
constructor and module environments of ﬁt and [';. These parts of
the typing environments are used but not modified at the expres-
sion level. The final piece of both theorems are invariants that link
the changing parts of both typing environments, namely, the vari-
ables and their types. These will be explained in the corresponding
theorems.

check_state st v_env <=

t_wfs st.subst A

check_env (count st.next_uvar) v_env A
FDOM st.subst C count st.next_uvar

check_env_e f‘t I, <— R
check_menv [;.inf_m A menv_alpha [;.inf_m [};.m A
tenv_ctor_ok [I;.c A [;.inf_c = [}.c

The soundness theorem shows that (under suitable consistency as-
sumptions) any completion of a solution from infer_e corre-
sponds to a typing judgement in the type system. The soundness
invarian{’} tenv_inv, carries this property up to the variable typ-
ing environment: it states that whenever we successfully lookup a
variable z in I'; with type ¢, a corresponding lookup of z in I
yields type ¢’ such that t' = conv_t t[s].

Theorem 5.1. Expression-level soundness.

F infer_e I'; e st = (Success t,st’) A
check_env_e [} I’; A check_state st I'.inf_v A
sub_complete (num_tvs [}.v) st’.next_uvar

st .subst constmmtg s N
tenv_inv s I;.inf_v I't.v =
I't Fe e : conv_t t[s]

Proof. By induction using the induction theorem of infer_e and
case analysis. Our tenv_inv invariant is motivated by the cases
where we add variables into the typing environment i.e. Fun, Let
and variable lookups Var. The proof is otherwise routine with the
correct choice of invariant. O

The completeness theorem shows that (under suitable consis-
tency assumptions) for any typing judgement, the inferencer suc-
ceeds and we can find some completion of its solution to match
that typing judgement. Like Theorem we need a complete-
ness invariant, tenv_invC, that carries this property up to the vari-
able typing environment. Namely, we assume that the inferencer is

6 Our actual invariants also deal with alpha equivalence between the envi-
ronments that can be introduced at the definitions level.

2015/12/8

started in some state from which we already know a completion
such that lookups in I'; corresponds to lookups in I7; under the
completion.

Theorem 5.2. Expression-level completeness.

[ﬁt e e : t A check_env_e ﬁt I, A

check_state st [.inf_v A

sub_complete (num_tvs [;.v) st.next_uvar st.subst
constraints s A FDOM s = count si.next_uvar A

tenv_invC s [;.inf_v [}.v =

3t st’ s’ constraints’.
infer_e I e st = (Success t',st’) A
sub_complete (num_tvs [}.v) st’.next_uvar

st’.subst constraints’ s’ A

FDOM s’ = count st’.next_uvar A t_compat s s’ A
t = conv_t t'[s']

Proof. By rule induction on typing derivations. Interesting cases
occur when we add variables to the typing environment and when
we need to apply unification constraints in the inferencer.

To illustrate, let us consider - . fn x => x + 5: int ->
int. The type system types this by adding some (valid) type, say,
x:int to its environment. The inferencer on the other hand, adds a
fresh unification variable w to its environment. Since we generated
anew unification variable, we need to constrain it in the substitution
completion in a way that satisfies tenv_invC for our inductive hy-
pothesis. To do this, we precisely apply the constraint correspond-
ing to the type picked by the type system i.e. we constrain u to
int.

More interestingly, when we type the body x + 5, we induc-
tively know a list of the unification constraints, constraints (in-
cluding the one for u) that completes the inferencer’s initial internal
substitution, st, to match the type system. However, the inferencer
now attempts to apply its own unification constraint constraints’
between u and int on st. Our general strategy for these cases is
to first show that applying constraints’ after applying constraints
succeeds but has no effect since it must be implied by constraints.
Then, we show that the order of unification constraints can be re-
ordered without changing the resulting substitution. This implies
that (1) applying constraints’ on st succeeds and (2) further ap-
plying constraints on the result gives us a completed substitution.
These can then be used as suitable witnesses for the conclusion of
this theorem. O

5.2 Top-level theorems

Our top-level soundness and completeness theorems apply to the
type checking phase of an entire CakeML program. As before, we
focus here on the handling of new definitions as the type system
and inferencer behave similarly above the definitions level. In both
directions, the main difficulty is in reconciling the value restric-
tion rules of the type system with the relatively simpler implemen-
tation in the inferencer. The form of our value restrictions leads
to an interesting interplay between the expression-level sound-
ness/completeness theorems and both top-level theorems. Note that
the first argument to the type system is set to true i.e. the addi-
tional principal type restrictions are turned on. Since the type sys-
tem picks principal types and the inferencer also infers a principal
type, our completeness theorem additionally shows that their re-
sults must be alpha equivalent.

To begin, we define a full invariant between I and [I'; that
checks consistency of the typing environments. For example, it
encompasses check_env_e used above and the tenv_bvl check
forces the variable environments to be of the form V' as described
above. Crucially, tenv_alpha forces the two variable environ-
ments to be alpha equivalent.

env_rel [I; <—

tenv_bvl [;.v A tenv_val_ok [}:.v A
tenv_mod_ok [+.m A check_menv [;.inf_m A
menv_alpha [;.inf_m I;.m A check_cenv [;.c A
I';.inf_c = I'y.c A tenv_tabbrev_ok [:;.t A
T;.inf_t = I't.t A check_env @ I;.inf_v A
tenv_alpha [;.inf_v [};.v

Theorem 5.3. Definition-level soundness.

b infer_d mn’ &; I; d st =
(Success (&;',7,c,v),st’) A env_rel Iy I; =
T, mn’, conv_decl §;, I}
kg d : conv_decl &;', (7,c,conv_v v)

Proof. By case analysis on the input definition. The important cases
arise in variable definitions of the form val p = e.

Case: e is not a value. By Theorem we have that the inferred
solution for e is a valid typing in the type system. The inferencer
additionally checks that no unconstrained unification variables are
in the inferred type, ¢. To use the DLET_MONO rule, we need
to show additionally that ¢ is the unique choice of type for e.
Suppose for contradiction that we had some other type for e in
the type system, ¢’ such that ¢ # t'; by Theorem there is
a completion of our inferred solution to yield ¢'. However, since
there are no unconstrained unification variables in the solution,
the additional unification constraints from this completion cannot
change the inferred type. Hence, ¢ = t’ and the inferred type is
unique.

Case: e is a value. We need to show that the inferred type for e
is (1) a valid typing judgement in the type system and (2) a most
general type. For (1), we first note that the generalisation process
replaces unconstrained unification variables with bound type vari-
ables. We can equivalently apply a set of unification constraints
between unification variables and type variables. Since every un-
constrained unification variable is now constrained, this is a sub-
stitution completion. Hence, by Theorem this is valid typing
judgement for e. For (2), any other type for e in the type sys-
tem, t’, has, by Theorem a corresponding completion of the
inferencer’s solution that yields it. The inferencer generalizes uni-
fication variables that are unconstrained but these are precisely the
variables that get constrained by the completion. Hence, we use
this completion to construct the required type variable substitution
by matching each type variable to the substituted type of the uni-
fication variable it generalises. To illustrate further, consider the
identity function val f = fn x => x. The right-hand expression
is typed as u —-> u by the inferencer which then generalizes it to
’a -> ’a. For any other valid type, e.g. int -> int, we know
by Theorem a completion which, in this case maps u to int.
We can use this to produce a corresponding de Bruijn substitution,
namely, mapping ’a to int. O

Theorem 5.4. Definition-level completeness.

FT, mn?, 6, I't Fq d : &, (r,¢,v) A env_rel It I A
conv_decl §; = § =
Jst! &;" 0.
conv_decl &;' = &' A
infer_.d mn’ &8; I; d st =
(Success (§;',7,c,v'),st’) A
tenv_alpha v’ (bind_var_list2 v Empty) A
MAP FST v’ = MAP FST v A check_env () v’

Proof. By case analysis on the input definition. The important cases
arise in variable definitions of the form val p = e.

Case: e is not a value. By DLET_-MONO, we have a unique type,
t, for e and by Theorem [5.2] the inferencer succeeds and there is a
completion of its solution to yield ¢. Suppose for contradiction that
the inferencer’s solution has at least one unconstrained unification
variable. We now construct two distinct completions by unifying

2015/12/8

all such unconstrained unification variables with int and bool
respectively. By Theorem[5.1] the resulting (distinct) types are both
valid typing judgements in the type system. This contradicts the
uniqueness of ¢ so we have no unification variables in the solution
and the value restriction check in the inferencer succeeds.

Case: e is a value. We need to show that (1) the inferencer succeeds
and (2) any most general type for e is alpha equivalent to the in-
ferred solution. For (1), we note directly that by Theorem[5.2} there
exists a completion of the inferencer’s solution for that type. We
prove (2) by constructing type variable substitutions from (2.1) the
type system’s type to the inferred type and (2.2) the inferred type to
the type system’s type. The proof of (2.1) is similar to soundness:
we construct a substitution completion from the generalisation step
and by Theorem [5.1] this is a valid typing of e in the type system
which must be generalised by a most general type. The proof of
(2.2) uses Theorem [5.2] to construct type variable substitutions for
the generalised unification variables. O

6. Type soundness

While the soundness and completeness theorems for the inferencer
give us a practical algorithm for type checking CakeML programs,
the type soundess theorem tells us that those programs that do have
a type will not get stuck. This is important for the usual software en-
gineering reasons, but also because the rest of the verified compiler
uses the knowledge that the source program does not get stuck. For
example, for a function application, the compiler can generate code
that directly pulls a pointer from a closure record and jumps to it.
It does not have to also generate a check that the value being called
is actually a closure, because the operational semantics would get
stuck if a non-closure value ends up being applied as a function.

We prove type soundness in two stages. The first, for expres-
sions, is proved via preservation and progress lemmas with respect
to a small-step operational semantics [11]. The second uses a big-
step semantics for definitions, and is proved directly by induction
over the list of definitions. This is relatively straightforward, since a
definition cannot diverge, unless one of its constituent expressions
does. Most of the interesting details occur at the expression level,
and so we focus on it here.

A typical type soundness proof uses a structural operational se-
mantics or a reduction semantics, where function application is
modelled with substitution. In contrast, our semantics is based on
the CEK-machine [3] Thus, we have environments that give val-
ues to free variables, continuation stacks that explicitly model con-
trol flow, and closures to represent function values; we also have
a store. We chose this style of semantics because it fit well with
our big-step semantics for expressions, which is what the compiler
verification uses — we have proved the two semantics equivalent,
so we can use either according to convenience. If we had chosen
a different form of small-step semantics our proofs (especially our
big-step/small-step equivalence proofs) would be structured differ-
ently, but the more intricate details would be essentially similar.

6.1 Values and environments

Figure [7] gives the definition of environments and values, as well
as the shape of additional typing judgements to give them types.
Constructor values contain the unique stamp of their constructor
(or none in the case of a tuple). Closures contain an expression, the
name of the function’s argument, and all three kinds of environ-
ments, since the expression can refer to free variables, constructor
names, and module names. Recursive closures contain a bundle of
named recursive functions, in addition to the environments.

7We are not aware of any type soundness proof in the literature that uses
such a semantics.

Mv =idw— v

Cv = cid — (N X tid_ezn)

module environments

constructor environments

A = (en X tid-exn) — (a® X t*) constructor stamp environments
S=... store typing (definition omitted)
v = Lit! literals

| Con (cid tid_exn)” v* constructors

| Closure Mv Cv Vv z e closure values

| RecClosure Mv Cv Vv ({(z,z,e))* z recursive closures

| Loc loc heap locations

| Vector v* immutable vectors
Vv = € empty environment

z:v, Vo bind a value

where [oc ranges over numbers.

tvs, A, Sty v: i
A, S Fepy Vo : V
S, A tFmoda Mv : M
A bFeon Cv @ C

value typing
environment typing
module env. typing

constructor env. typing

Figure 7. Values and typing judgements

The Mv and Vv environments are the counterparts to the M
and V type environments, mapping identifiers to values rather than
types. Although Mv is straightforward, Vv has a small subtlety.

Type environments V' can both bind variables to types and bind
new type variables, but Vv can only bind variables to values and
cannot bind type variables. This is sufficient because of the value
restriction. To type a let-expression (or top-level definition), the
type environment is extended with the type variables (implicitly)
bound by the let, before typing the bound expression. However,
the value restriction requires that that expression is a syntactic
value, and so the environment does not need to be extended be-
cause the syntactic value can immediately be converted to a value
(element of v) without consulting the environment. This supports a
simplification for looking up a value in Vw: it can directly have the
same type as it had when it was added to Vwv. If instead, it could
pass over a type variable binding, its type would have to have its
de Bruijn indices shifted when doing so, and the preservation theo-
rem would have to take this possibility into account.

Constructors need two additional environments, Cv which
models the lexical scoping of constructors, and maps identifiers
to the constructor’s number of arguments and its unique identity
(i.e., its stamp). By including the number of arguments, the small-
step semantics can get stuck if the constructor is given the wrong
number, and hence the compiler can assume that constructors are
never applied to the wrong number of arguments. The A environ-
ment is not used by the small-step semantics, or the type system,
but it is needed in the value typing judgements. It maps constructor
stamps to the type information for that constructor. This separa-
tion supports our type soundness proof. Consider the following
program:

datatype t = D of int

val x =D 4
datatype u = D of bool
val y = x

val z = D true

2015/12/8

After executing the first 2 definitions, we have a state with the
following environments:

Cv={Dw (1,t))}
A = {(D,t) — ([],int)}
Vo ={x+ ConDt 4}

Thus, looking ahead, y has type t, as does x, and z has type u. If
we evaluate the next definition, the environments change:

Cv={Dr (1,u))}
A = {(D,u) — ([],bool); (D, t) — ([], int)}
Vv ={x+> ConDt 4}

Because the binding of constructor names in Cv follow lexical
scoping, the new binding for constructor D shadows the previous
one. This allows z to retain type u. Because A uses the stamp,
it keeps both bindings, and since the value for x already in the
environment also uses the stamp, the type of x remains t. It is
essential that neither type changes.

The value typing judgement uses three pieces of data: a set of
bound type variables tvs for closures that were created with those
variables; a constructor stamp environment A for constructor val-
ues (N.B., it does not take a lexical Cv because once something is
a value, it should have no free variables of any sort); and a store for
location values. The environment and module environment judge-
ments do not need the type variable input, because their rules ex-
istentially quantify one when needed. The constructor environment
judgement additionally does not need the store typing.

Figure [8| gives selected rules for typing values. The VTUPLE
rule simply types all of the argument values (-, does -, for all
of its arguments) and returns the tuple constructor applied to those
types.

The VCON rule finds the type parameters and argument types
of the constructor in A. It makes an arbitrary (well-formed) instan-
tiation of those parameters in the argument types, and checks that
those are the actual types of the argument values. The returned type
is the type constructor that corresponds to tid _exn, applied to the
instantiating types.

The VCLOSURE rule types all of the environments in the clo-
sure, and uses the resulting type environments to type the expres-
sion.

The ENVBIND rule types an environment, one binding at a time.
It uses an arbitrary tvs to ensure that closures originating from
polymorphic bindings maintain enough polymorphism. Consider
the following example:

fun f x = x
val a =f 1
val b = f true

After evaluating the first definition, the environment is
Vv = {f — Closure {} {} {} xx}

If we are not allowed to use a polymorphic type for £, then we have
to make a choice, say int, and we get the following, which cannot
type both subsequent definitions.

V =£:(0,int — int),e
Allowing type variables lets us instead get the following, which can
type both definitions (recall that types use de Bruijn indices).
V=£:(1,0—-0),¢
Lastly, the CONENV rule checks for various consistency condi-
tions on the three forms of constructor environments. For example,

check_con_env is used to check that the same constructor names
appear in all three environments and have corresponding types.

6.2 Definitions

The definition level type soundness does not introduce any new en-
vironments or intermediate types. The only challenge is in carefully
managing the various invariants about which names are defined J,
to ensure that the stamp uniqueness guarantees that we rely on are
maintained. Most of these are straightforward, but tedious, so we
omit them here, and only explain the u parameter to the definition-
level judgements in Figure [

Recall that we use u to control whether we check if a value-
restricted definition has a principal type or not. In order for our
inferencer completeness result to hold, we have to do this check
since the inferencer has to reject (at least some) programs that lack
principal types. However, the type soundness induction does not
go through with the check present. Therefore we strengthen the
theorem by proving type soundness assuming that v is false, and
therefore the check is not performed. We also prove the (obvious)
fact that this is a strictly more permissive type system: that any
program with a type when u is true, also has the same type when it
is false. This lets us move the type soundness theorem itself from
the more permissive type system, to the less permissive one that
corresponds to the inference algorithm.

The following program illustrates how type preservation fails
when the check is left on.

val £ x = x

val x = ref [1]
val _ =x := []
val y = f x

Here x and y have type int 1list, and the type checker accepts the
program. However, after evaluating the first three statements, we
are left with the following environment (omitting the indirection
through the store to simplify):

Vv={xr—ref [1;f— ...}

From this, we can generate many different type environments, and
all of them will give y a different type, and thus, the type_pe_determ
check of DLET_MONO will fail.

V={xw (0,int ref);f — ...}
V' = {x+ (0,bool ref);f ...}

Without the check, the type system can give y the now non-
principal type of int list ref to satisfy the preservation the-
orem.

Modules and signatures, instead of the store, can also provide
an example.

structure M :> sig val f int -> int end =
struct

fun f x = x
end;

val v = (fn y => y) M.f;

Here, once evaluation has put f into the module environment and
the signature is lost, v no longer has a principal type.

7. Related Work
7.1 Type inference

Damas and Milner proved Algorithm W to be a sound, principal
type inferencer for ML expressions [1]. Our work formalizes this
result for a real ML implementation, namely CakeML, and further
extends it to modules, constructors, references, and exceptions.
This required us to develop a declarative type system with principal
types for value restricted definitions.

Type system design is delicate, and adding features beyond
the basic Hindley-Milner system can easily ruin principal types —

2015/12/8

tvs, A, S Fys vs : ts

(VTUPLE)

tvs, A, S F, Conv NONE ws :

Tapp ts TC_tup

EVERY (check_freevars tvs []) ts’
LENGTH tvs’ = LENGTH ts’

tvs, A, S Fys vs

: MAP (type_subst (@ |++ REVERSE (ZIP (tws’, ts')))) ts

FLOOKUP A (cn,tn) = SOME (tvs’,ts)

VCoN
() tvs, A, Sty Conv (SOME (cn,tn)) ws : Tapp ts’ (tid_exn_to_tc in)
A Feon env. ¢ Iy, ¢
tenv_mod_ok [:. m
S, Abpmoqg env. m: I't. m
A, S teny env. v : Iy, v
check_freevars tvs [] t
Ve bind_tvar tws I'y,n : (0, t1)Fe e : to
LOSURE
() tvs, A, S F, Closure env n e : t1 -> to
tenv_ctor_ok C
tvs, A, Sty v it ctMap_ok A
A, S Fenv env : Iy check_con_env A Cv C
(ENVBIND) (CONENV)

A, S Fenv(n,v):: env : I't,n : (tvs,t)

A Feon Cv @ C

Figure 8. Selected value typing rules

hence the hope for a complete inferencer — and possibly render the
system undecidable. Despite these complications, the mainstream
of typed functional programming language design seems to be
for increasing the features, and living without principal types, or
requiring some type annotations. Sometimes the trouble comes
from a subtle interaction of seemingly innocuous features (as in
the “avoidance problem” from the SML module system [2]). That
is the case here, with the value restriction, although we were able
to restrict the type system enough to regain principal types, but the
value restriction is a very minor tweak to the type system. For other
popular features, including GADTSs, there is no solution for now,
and one must be resigned to using the type inference algorithm as
the most precise specification of the type system [10].

Naraschewski and Nipkow have mechanised a soundness and
completeness proof for Algorithm W [8]. Their underlying lan-
guage is a MiniML, with similar features to Damas and Milner’s
language, lacking imperative features, or any value restriction.
They also axiomatized the specification of the unification algo-
rithm, whereas we tie into an existing verified implementation. In
contrast, they verify completeness for a system that generalises
nested lets, whereas we have not yet done that.

7.2 Type soundness

Our type system and type soundness proof broadly follow our pre-
vious work in OCamly;gp: [9], with the main extension being sup-
port for modules and signatures. Similar to OCaml;;gn:, wWe use
de Bruijn indices for type variables, and concrete names for other
variables. We also explicitly bind type variables in the environment.
However, our operational semantics is different (CEK-style, rather
than SOS-style), and we have a more flexible treatment of construc-
tor names that follow lexical scoping, whereas OCaml;;4¢ required
them to be unique.

8. Conclusion

We have formally specified a type system and type inferencer for
CakeML. We provide a type soundness theorem for the type system
as well as soundness and completeness theorems linking the type
inferencer’s behaviour to the type system’s. CakeML aims to be a
practical programming language that is both easy to program in and
easy to reason about. The theorems in this paper are steps toward
the latter goal: any input CakeML program that is accepted by the
inferencer is guaranteed to have well-defined semantics.

Without completeness, our specification [4] of the top-level
CakeML read-eval-print loop (REPL) was unsatisfactory. When
a type-incorrect definition is entered, the REPL should print
<type error>, and await a new definition, and not execute any
part of the type-incorrect one. Ideally, whether a definition is type
correct is specified with respect to the type system, whereas the
implementation of the REPL uses the inferencer. However, with-
out a inferencer completeness theorem, we could not prove that
the implementation of the REPL did not signal a type error even
when the specification said it should not. Thus, we had to use the
inferencer to specify which definitions had type errors, even as the
inferencer soundness theorem allowed us to use the type system
to specify what type good definitions had. By verifying complete-
ness, we have significantly improved the semantics of the CakeML
REPL.

Acknowledgements

NICTA is funded by the Australian Government through the De-
partment of Communications and the Australian Research Council
through the ICT Centre of Excellence Program.

References

[1] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’82, pages 207-212,

2015/12/8

New York, NY, USA, 1982. ACM. URL: http://doi.acm.org/
10.1145/582153.582176, doi:10.1145/582153.582176.

[2] D. Dreyer. Understanding and Evolving the ML Module System. PhD
thesis, Carnegie Mellon University, 2005.

[3] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. MIT Press, 2009.

[4] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: A
verified implementation of ML. In POPL ’14: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 179-191. ACM Press, Jan. 2014. |doi:10.1145/
2535838.2535841.

[51 R. Kumar and M. Norrish. (Nominal) Unification by recursive descent
with triangular substitutions. In Interactive Theorem Proving, First
International Conference, ITP 2010, volume 6172 of LNCS, 2010.

[6] R. Milner. A theory of type polymorphism in programming. J.
Comput. Syst. Sci., 17(3), 1978.

[7]1 R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[8] W. Naraschewski and T. Nipkow. Type inference verified: Algorithm
W in Isabelle/HOL. Journal of Automated Reasoning, 23:299-318,
1999.

[9] S. Owens. A sound semantics for OCaml light. In Programming
Languages and Systems: 17th European Symposium on Programming,
ESOP 2008, volume 4960 of LNCS, pages 1-15. Springer, Mar. 2008.
doi:10.1007/978-3-540-78739-6_1.

[10] D. Vytiniotis, S. L. Peyton Jones, T. Schrijvers, and M. Sulzmann.
OutsideIn(X) Modular type inference with local assumptions. J.
Funct. Program., 21(4-5), 2011.

[11] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Inf. Comput., 115(1):38-94, 1994.

2015/12/8

http://doi.acm.org/10.1145/582153.582176
http://doi.acm.org/10.1145/582153.582176
http://dx.doi.org/10.1145/582153.582176
http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1007/978-3-540-78739-6_1

A. The value restriction in ML implementations

There are three options of what to do when an unconstrained type cannot be generalised due to the value restriction. CakeML signals a type
error, as do Moscow ML and OCaml when compiling. PolyML and SML/NJ create a new abstract type variable, _a or 7.X1, which then
ensures the function cannot be called, since there are no values of that type. At the REPL, Moscow ML and OCaml both create special,
mutable type variables that are set on the first use and actually change the type of id_mono. MLton is included for completeness, but since it
is a whole program compiler, this particular issue cannot arise.

A.1 CakeML

-- CakeML starting up --
val id_mono = if true then (fn x => x) else (raise Bind);
<type error>
id_mono 1;
<type error>

A2 PolyML

Poly/ML 5.5.2 Release

> val id_mono = if true then (fn x => x) else (raise Bind);

Warning-The type of (id_mono) contains a free type variable. Setting it to a unique
monotype.

val id_mono = fn: _a -> _a

> id_mono 1;

Error-Type error in function application.

Function: id_mono : _a -> _a
Argument: 1 : int
Reason:

Can’t unify int (*In Basis*) with
_a (*Constructed from a free type variable.*)
(Different type constructors)

Found near id_mono 1

Static Errors

A3 SML/NJ

Standard ML of New Jersey v110.78 [built: Thu Aug 20 19:23:18 2015]
- val id_mono = if true then (fn x => x) else (raise Bind);
stdIn:1.6-1.58 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)
val id_mono = fn : 7.X1 -> 7.X1
- id_mono 1;
stdIn:2.1-2.10 Error: operator and operand don’t agree [overload conflict]

operator domain: ?7.X1

operand: [int ty]

in expression:

id_mono 1

A4 Moscow ML repl

Moscow ML version 2.10

Enter ‘quit();’ to quit.

- val id_mono = if true then (fn x => x) else (raise Bind);

! Warning: Value polymorphism:

! Free type variable(s) at top level in value identifier id_mono
> val id_mono = fn : ’a -> ’a

id_mono 1;

Warning: the free type variable ’a has been instantiated to int

AR |

val it = 1 : int
- id_mono;
> val it = fn : int -> int

id_mono true;

Toplevel input:

id_mono true;

Type clash: expression of type
bool

cannot have type
int

12 2015/12/8

A.5 Moscow ML compiled

dhcp297B:tmp sao$ cat test.sml
structure test = struct
val id_mono = if true then (fn x => x) else (raise Bind)
end;
dhcp297B:tmp sao$ mosmlc test.sml
! Value polymorphism: Free type variable at top level in value identifier id_mono

A.6 OCaml repl
OCaml version 4.02.3

let id_mono = if true then (fun x -> x) else assert false;;

val id_mono : ’_a -> ’_a = <fun>

id_mono 1;;

- int = 1

id_mono;;

- int -> int = <fun>

id_mono true;;

Error: This expression has type bool but an expression was expected of type
int

A.7 OCaml compiled

dhcp297B:tmp sao$ cat test.ml
let id_mono = if true then (fun x -> x) else assert false
dhcp297B:tmp sao$ ocamlc test.ml
File "test.ml", line 1, characters 14-57:
Error: The type of this expression, ’_a -> ’_a,
contains type variables that cannot be generalized

A.8 MLton

dhcp297B:tmp sao$ cat test.sml
structure S = struct
val id_mono = if true then (fn x => x) else (raise Bind)
end;
val _ S.id_mono 1;
val _ = S.id_mono true;
dhcp297B:tmp sao$ mlton test.sml
Warning: test.sml 2.3.
Unable to locally determine type of variable: id_mono.
type: 777 -> 777
in: val id_mono = if true then fn x => x else raise Bind
Error: test.sml 5.9.
Function applied to incorrect argument.
expects: [int]
but got: [booll
in: S.id_mono true
compilation aborted: parseAndElaborate reported errors

13 2015/12/8

	Context
	The CakeML language
	Type system
	Expressions
	Definitions
	The value restriction and principal types

	Inference algorithm
	Expressions
	Definitions

	Inferencer verification
	Expression-level theorems
	Top-level theorems

	Type soundness
	Values and environments
	Definitions

	Related Work
	Type inference
	Type soundness

	Conclusion
	The value restriction in ML implementations
	CakeML
	PolyML
	SML/NJ
	Moscow ML repl
	Moscow ML compiled
	OCaml repl
	OCaml compiled
	MLton

