
1

L4 Microkernels: The Lessons from 20 Years of Research and
Deployment

GERNOT HEISER and KEVIN ELPHINSTONE, NICTA and UNSW, Sydney, Australia

The L4 microkernel has undergone 20 years of use and evolution. It has an active user and developer com-
munity, and there are commercial versions that are deployed on a large scale and in safety-critical systems.
In this article we examine the lessons learnt in those 20 years about microkernel design and implementa-
tion. We revisit the L4 design papers, and examine the evolution of design and implementation from the
original L4 to the latest generation of L4 kernels. We specifically look at seL4, which has pushed the L4
model furthest and was the first OS kernel to undergo a complete formal verification of its implementation
as well as a sound analysis of worst-case execution times. We demonstrate that while much has changed, the
fundamental principles of minimality, generality and high inter-process communication (IPC) performance
remain the main drivers of design and implementation decisions.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design

General Terms: Design, Performance, Security, Verification

Additional Key Words and Phrases: Microkernels, L4, seL4, IPC, message passing, minimality, performance,
formal verification, real time, worst-case execution time, virtualization

1. INTRODUCTION
Twenty years ago, Liedtke [1993a] demonstrated with his L4 kernel that microkernel
IPC could be fast, a factor 10–20 faster than contemporary microkernels. This was the
start of a journey that created a whole family of microkernels and led to large-scale
commercial deployment as well as to systems of unprecedented assurance.

Microkernels minimize the functionality that is provided by the kernel: The kernel
provides a set of general mechanisms, while user-mode servers implement the actual
operating system (OS) services [Brinch Hansen 1970; Levin et al. 1975]. Application
code obtains a system service by communicating with servers via an interprocess com-
munication (IPC) mechanism, typically message passing. Hence, IPC is on the critical
path of any service invocation, and low IPC costs are essential.

By the early 1990s, IPC performance had become the achilles heel of microkernels:
The typical cost for a one-way message was around 100µs, which was too high for
building performant systems. This resulted in a trend to move core services back into
the kernel [Condict et al. 1994]. There were also arguments that high IPC costs were
an (inherent?) consequence of the structure of microkernel-based systems [Chen and
Bershad 1993].

In this context, the order-of-magnitude improvement of IPC costs Liedtke demon-
strated was quite remarkable. It was followed by work discussing the philosophy and
mechanisms of L4 [Liedtke 1995, 1996], the demonstration of a paravirtualised Linux
on L4 with only a few percent overhead [Härtig et al. 1997], the deployment of L4
kernels on billions of mobile devices and in safety-critical systems; and, finally, the
comprehensive formal verification, including a functional correctness proof of the im-

NICTA is funded by the Australian Government as represented by the Department of Broadband, Communi-
cations and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence
program.
Authors’ address: School of Computer Science & Engineering, UNSW Sydney NSW 2052, Australia; Corre-
spondence email: {gernot,k.elphinstone}@unsw.edu.au.
c© 2016 by Gernot Heiser and Kevin Elphinstone. This is the authors’ version of the work. It is
posted here for your personal use. Not for redistribution. The definitive version was published
in ACM Transactions on Computer Systems, 34, 1, Article 1 (April 2016), 29 pages.
http://dx.doi.org/10.1145/2893177.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

mailto:gernot@unsw.edu.au

1:2 Elphinstone and Heiser

plementation and a complete proof chain of high-level security properties down to the
executable binary [Klein et al. 2014]. L4 also had a strong influence on other research
systems, such as Pebble [Gabber et al. 1999], EROS [Shapiro et al. 1999], and Bar-
relfish [Baumann et al. 2009].

In this article we examine the development of L4 since the mid-1990s. Specifically,
we look at what makes modern L4 kernels tick, how this relates to Liedtke’s origi-
nal design and implementation rules, and which of his microkernel “essentials” have
passed the test of time. We specifically examine how the lessons of the past have in-
fluenced the design of the latest generation of L4 microkernels, exemplified by seL4
[Klein et al. 2009], but point out where other current L4 versions have made different
design decisions.

2. BACKGROUND
2.1. The L4 Microkernel Family
L4 evolved from an earlier system, called L3, developed at GMD by Liedtke [1993b] in
the mid-1980s on i386 platforms. L3 was a complete OS with built-in persistence, and
it already featured user-mode drivers [Liedtke et al. 1991], still a characteristic of L4
microkernels. It was commercially deployed in a few thousand installations (mainly
schools and legal practices). Like all “microkernels” at the time, L3 suffered from IPC
costs on the order of 100µs.

Liedtke initially used L3 to try out new ideas, and what he referred to as “L3” in
early publications [Liedtke 1993a] was actually an interim version of a radical re-
design. He first used the name “L4” with the “V2” ABI circulated in the community
from 1995.

In the following we refer to this version as the “original L4.” Liedtke implemented it
completely in assembler on i486-based PCs and soon ported it to the Pentium.

This initial work triggered a 20yr evolution, with multiple ABI revisions and from-
scratch implementations, as depicted in Figure 1. It started with TU Dresden and
UNSW reimplementing the ABI, with necessary adaptations, on 64-bit Alpha and
MIPS processors, the latter implemented all longer-running operations in C. Both ker-
nels achieved submicrosecond IPC performance [Liedtke et al. 1997a] and were re-
leased as open source. The UNSW Alpha kernel was the first multiprocessor version
of L4.

Liedtke, who had moved from GMD to IBM Watson, kept experimenting with the
ABI in what became known as Version X. GMD and IBM imposed an IP regime which
proved too restrictive for other researchers, prompting Dresden to implement a new
x86 version from scratch, called Fiasco, in reference to their experience in trying to
deal with IP issues. The open-source Fiasco was the first L4 version written almost
completely in a higher-level language (C++) and is the oldest L4 codebase still actively
maintained. It was the first L4 kernel with significant commercial use (estimated ship-
ments up to 100,000).

After Liedtke’s move to Karlsruhe, he and his students did their own from-scratch
implementation, Hazelnut, which was written in C and was the first L4 kernel that was
ported (rather than reimplemented) to another architecture (from Pentium to ARM).

Karlsruhe’s experience with Version X and Hazelnut resulted in a major ABI
revision, V4, aimed at improving kernel and application portability and multipro-
cessor support and addressing various other shortcomings. After Liedtke’s tragic
death in 2001, his students implemented the design in a new open-source kernel,
L4Ka::Pistachio (“Pistachio” for short). It was implemented in C++ on x86 and Pow-

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:3

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVA GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

Fig. 1. The L4 family tree (simplified). Black arrows indicate code, green arrows ABI inheritance. Box
colours indicate origin as per key at the bottom left.

erPC; at UNSW/NICTA we soon after ported it to MIPS, Alpha, 64-bit PowerPC, and
ARM.1 In most of these ports, less than 10% of the code changed.

At NICTA we then retargeted Pistachio for use in resource-constrained embedded
systems, resulting in a fork called NICTA::Pistachio-embedded (“L4-embedded”). It
saw massive-scale commercial deployment when Qualcomm adopted it as a protected-
mode real-time OS for the firmware of their wireless modem processors. It is now run-
ning on the security processor of all recent Apple iOS devices [Apple Inc 2015]. NICTA
spinout Open Kernel Labs (OK Labs) took on the support and further development of
this kernel, renaming it the OKL4 microkernel.2 Another deployed version is PikeOS,
a commercial V2 clone by German company Sysgo, certified for use in safety-critical
avionics and deployed in aircraft and trains.3

The influence of KeyKOS [Hardy 1985] and EROS [Shapiro et al. 1999] and an in-
creased focus on security resulted in the adoption of capabilities [Dennis and Van Horn
1966] for access control, first with the 2.1 release of OKL4 (2008) and soon followed by
Fiasco; Fiasco was renamed Fiasco.OC in reference to its use of object capabilities.
Aiming for formal verification, which seemed infeasible for a code base not designed
for the purpose, we instead opted for a from-scratch implementation for our capability-
based seL4 kernel.

Virtualized Linux became the de facto OS middleware, and most L4 applications
required at least one Linux VM. This then led to new designs specifically aimed at
supporting virtualisation as the primary concern, specifically NOVA [Steinberg and
Kauer 2010] from Dresden and the OKL4 Microvisor [Heiser and Leslie 2010] from
OK Labs.

A common thread throughout those two decades is the minimality principle, intro-
duced in Section 3.1, and a strong focus on the performance of the critical IPC oper-
ation: kernel implementors generally aim to stay close to the limits set by the micro-

1We also worked on Itanium [Gray et al. 2005] and SPARC versions, but they were never completed.
2Total deployment is now in the billions, see Open Kernel Labs press release http://www.ok-labs.com/
releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments, January
2012.
3See Sysgo press releases http://www.sysgo.com/.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.sysgo.com/

1:4 Elphinstone and Heiser

Table I. One-Way Cross-Address-Space IPC Cost of Various L4 Kernels

Name Year Architecture Processor MHz Cycles µs
Original 1993 486 DX50 50 250 5.00
Original 1997 x86 (32-bit) Pentium 160 121 0.75
L4/MIPS 1997 MIPS64 R4700 100 100a 1.00
L4/Alpha 1997 Alpha 21064 433 70–80a 0.17
Hazelnut 2002 x86 (32-bit) Pentium II 400 273 0.68
Hazelnut 2002 x86 (32-bit) Pentium 4 1,400 2,000 1.38
Pistachio 2005 IA-64 Itanium 2 1,500 36 0.02
OKL4 2007 ARM v5 XScale 255 400 151 0.64
NOVA 2010 x86 (32-bit) Core i7 (Bloomfield) 2,660 288b 0.11
seL4 2013 x86 (32-bit) Core i7 4770 (Haswell) 3,400 301 0.09
seL4 2013 ARMv6 ARM11 532 188 0.35
seL4 2013 ARMv7 Cortex A9 1,000 316 0.32

a These figures are somewhat higher than those of Liedtke et al. [1997a], who reported on
incomplete kernel implementations.

b NOVA does not support the standard GCC version of thread local storage (using segment
registers). Instead it supports TLS via a general-purpose register. This reduces context-
switch costs at the expense of increased register pressure.

architecture, as shown in Table I. Consequently, the L4 community tends to measure
IPC latencies in cycles rather than microseconds, as this better relates to the hardware
limits. In fact, the table provides an interesting view of the context-switch-friendliness
of the hardware: compare the cycle counts for Pentium 4 and Itanium, both from highly
optimised IPC implementations on contemporary architectures.

2.2. Modern Representatives
We base our examination of the evolution of L4 design and implementation on seL4,
which we know well and which in many ways evolved furthest from the original design.
In some cases, other recent L4 versions ended up with different designs. We try to
understand the reasons behind such diverging designs and what this tells us about
the degree of agreement about microkernel design in the L4 community.

Security, in particular the ability to provide isolation and protect critical system
assets from less trustworthy code, has always been a driver for L4’s design. It is a prime
motivation for running device drivers, network stacks, file systems, and so on, at the
user level. In the past, however, the focus was mostly on providing such isolation with
minimal performance impact while maintaining generality; actual assurance received
little attention.

In contrast, seL4 was designed from the beginning to support formal reasoning about
security and safety, while maintaining the L4 tradition of minimality, performance,
and the ability to support almost arbitrary system architectures. The decision to sup-
port formal reasoning led us to a radically new resource-management model, where all
spatial allocation is explicit and directed by user-level code, including kernel memory
[Elkaduwe et al. 2008]. It is also the first protected-mode OS kernel in the literature
with a complete and sound worst-case execution time (WCET) analysis [Blackham
et al. 2011, 2012].

A second relevant system is Fiasco.OC, which is unique in that it is a code base that
has lived through most of L4 history, starting as a clone of the original ABI, and not
even designed for performance. It has, over time, supported most L4 ABI versions, of-
ten concurrently, and is now a high-performance kernel with the characteristics of the
latest generation, including capability-based access control. Fiasco served as a testbed
for many design explorations, especially with respect to real-time support [Härtig and
Roitzsch 2006].

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:5

Table II. Source Lines of Code (SLOC) of Various L4 Kernels

Name Architecture Size (kSLOC)
C/C++ asm Total

Original 486 0 6.4 6.4
L4/Alpha Alpha 0 14.2 14.2
L4/MIPS MIPS64 6.0 4.5 10.5
Hazelnut x86 10.0 0.8 10.8
Pistachio x86 22.4 1.4 23.0
L4-embedded ARMv5 7.6 1.4 9.0
OKL4 microkernel v3.0 ARMv6 15.0 0.0 15.0
Fiasco.OC x86 36.2 1.1 37.6
seL4 ARMv6 9.7 0.5 10.2

Then there are two recent from-scratch designs: NOVA [Steinberg and Kauer 2010],
designed for hardware-supported virtualisation on x86 platforms, and the OKL4 Mi-
crovisor [Heiser and Leslie 2010] (“OKL4” for short), which was designed as a commer-
cial platform for efficient paravirtualisation on ARM processors.

3. MICROKERNEL DESIGN
Liedtke [1995] outlines principles and mechanisms which drove the design of the orig-
inal L4. We examine how these evolved over time and, specifically, how they compare
with the current generation.

3.1. Minimality and Generality
The main drivers of Liedtke’s designs were minimality and IPC performance, with
a strong conviction that the former helps the latter. Specifically, he formulated the
microkernel minimality principle [Liedtke 1995]:

A concept is tolerated inside the µ-kernel only if moving it outside the ker-
nel, i.e. permitting competing implementations, would prevent the imple-
mentation of the system’s required functionality.

This principle, which is a more pointed formulation of “only minimal mechanisms
and no policy in the kernel,” has continued to be the foundation of the design of L4
microkernels. It means that the kernel is just a thin, no-frills wrapper around hard-
ware, a “CPU driver,”4 which only controls the hardware on behalf of a higher instance
that defines policy. The discussion in the following sections will demonstrate the com-
munity’s ongoing efforts to remove features or replace them with more general (and
powerful) ones.

The adherence to this principle can be seen from the comparison of source code sizes,
shown in Table II: While it is normal for systems to grow in size over time, seL4, the
latest member of the family (and, arguably, the one that diverged strongest from the
traditional model), is still essentially the same size as the early versions.5 Verification
provided a particular strong motivation for minimality, as even 9,000 SLOC pushed
the limits of what was achievable.

An aim of L4 that was rarely stated explicitly, but was always a driver for the design
of kernel mechanisms, is generality: L4 always strove to be a foundation on which
(almost arbitrary) systems can be built, essentially anything that makes sense to run
on a processor powerful enough to provide protection.

4Former L4 developer Charles Gray is credited with coining this term [Baumann et al. 2009].
5In fact, seL4’s SLOC count is somewhat bloated as a consequence of the C code being mostly a “blind”
manual translation from Haskell [Klein et al. 2009], together with generated bit-field accessor functions,
resulting in hundreds of small functions. The kernel compiles into about 9 k ARM instructions.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:6 Elphinstone and Heiser

Some versions of L4 compromised somewhat on the generality aim, especially the
OKL4 versions with their focus on resource-constrained embedded systems. But such
compromises were always understood as stop-gap measures, forced by commercial re-
alities while the search for a more general model continued.

Kept: Minimality as key design principle and generality as the overall aim.

Nevertheless, none of the designers of L4 kernels to date claim that they have devel-
oped a “pure” microkernel in the sense of strict adherence to the minimality principle.
For example, all of them have a scheduler in the kernel, which implements a particular
scheduling policy (usually hard-priority round robin). To date, no one has come up with
a truly general in-kernel scheduler or a workable mechanism which would delegate all
scheduling policy to user level without imposing high overhead.

3.2. IPC
We mentioned earlier the importance of IPC performance and that the design and im-
plementation of L4 kernels consistently aimed at maximising it. However, the details
have evolved considerably.

3.2.1. Synchronous IPC. The original L4 supported synchronous (rendezvous-style)
IPC as the only communication, synchronisation, and signalling mechanism. Syn-
chronous IPC avoids buffering in the kernel and the management and copying cost
associated with it. In fact, in its simplest version (short messages passed in registers)
it is nothing but a context switch that leaves the message registers untouched. This is
consistent with the idea of the thin CPU driver, and typical L4 implementations have
IPC costs that are only 10% to 20% above the hardware limit (defined as the cost of two
mode switches, a switch of page tables, plus saving and restoring addressing context
and user-visible processor state).

Synchronous IPC is also a prerequisite for a number of implementation tricks we
will cover later, specifically the lazy scheduling (Section 4.2), direct process switch
(Section 4.3), and temporary mapping (Section 3.2.2) optimisations.

While certainly minimal, and simple conceptually and in implementation, experi-
ence taught us significant drawbacks of this model: It forces a multithreaded design
onto otherwise simple systems, with the resulting synchronisation complexities. For
example, the lack of functionality similar to UNIX select() required separate threads
per interrupt source, and a single-threaded server could not wait for client requests
and interrupts at the same time.

Furthermore, synchronous message passing is clearly the wrong way of synchronis-
ing activities across processor cores. On a single processor, communication between
threads requires that (eventually) a context switch happens, and combining the con-
text switch with communication minimises overheads. Consequently, the classical L4
IPC model is that of a user-controlled context switch that bypasses the scheduler; some
payload is delivered through nonswitched registers, and further optional payload by
kernel copy.

On hardware that supports true parallelism, an RPC-like server invocation sequen-
tialises client and server, which should be avoided if they are running on separate cores
[Baumann et al. 2009; Soares and Stumm 2010].

We addressed this in L4-embedded by adding notifications, a simple, nonblocking
signalling mechanism. We later refined this model in seL4’s notification objects: A no-
tification contains a set of flags, the notification word, which is essentially an array
of binary semaphores. A signal operation on a notification object sets a subset of the
flags without blocking. The notification word can be checked by polling or by waiting
(blocking) for a signal—effectively select() across the notification word.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:7

Our present design provides another feature aimed at reducing the need for multi-
threaded code, unifying waiting for IPC and notifications. For example, a file server
might have an IPC interface for client requests, as well as a notification used by the
disk driver to signal I/O completion. The unification feature binds a notification ob-
ject to a thread (the server of the above example). If a notification is signalled while
the thread is waiting for a message, the notification is converted into a single-word
message and delivered to the thread (with an indication that it is really a notification).

Notifications are not an introduction of asynchronous IPC through the backdoor but
rather a (partial) decoupling of synchronisation from communication. While strictly
not minimal (in that they add no functionality that could not be emulated with other
mechanisms), they are essential for exploiting concurrency of the hardware.6

In summary, like most other L4 kernels, seL4 retains the model of synchronous IPC
but augments it with semaphore-like notifications. OKL4 has completely abandoned
synchronous IPC and replaced it with virtual IRQs (similar to notifications). NOVA has
augmented synchronous IPC with counting semaphores [Steinberg and Kauer 2010],
while Fiasco.OC has also augmented synchronous IPC with virtual IRQs.

Kept: Synchronous IPC for efficient client-server interaction without sched-
uler invokation (except in OKL4).

New: Semaphore-like notifications for synchronisation of real concurrency.

3.2.2. IPC Message Structure. Original L4 IPC had rich semantics. Besides in-register
(“short”) messages, it supported messages of almost arbitrary size in addition to in-
register arguments: a word-aligned “buffer” as well as multiple unaligned “strings.”
Coupled with the all-synchronous design, this approach avoids redundant copying.

Register arguments support zero-copy: The kernel always initiates the IPC from the
sender’s context and switches to the receiver’s context without touching the message
registers. A drawback is the architecture-dependent and (especially on x86) small size
of zero-copy messages. In fact, the number of available registers changed frequently
with ABI changes, as changes to syscall arguments used or freed up registers.

Pistachio introduced the concept of virtual message registers (originally 64 and later
a configuration option). The implementation mapped some of them to physical reg-
isters, and the rest was contained in a per-thread pinned part of the address space.
The pinning ensures register-like access without the possibility of a page fault. Inlined
access functions hide the distinction between physical and memory-backed registers
from the user. seL4 and Fiasco.OC continue to use this approach.

The motivation is two-fold: virtual message registers greatly improve portability
across architectures. Furthermore, they reduce the performance penalty for moder-
ately sized messages exceeding the number of physical registers: Copying a small num-
ber of words is cheaper than establishing the temporary mapping involved in “long”
IPC, as described below.

The benefits of in-register message transfers has diminished over time, as the archi-
tectural costs of context switching dominate IPC performance. For example, in-register
message transfer on the ARM11 improves IPC performance by 10% (for a four-word
message) compared to passing via the kernel stack; on Cortex A9 this reduces to 4%.
On latest-generation x86 processors, reserving any registers for message passing is so
detrimental to the compiler’s ability to optimise the code that it results in an overall
loss of performance.

6We had confused ourselves, and many others, on this issue, by initially talking about asynchronous IPC.
We credit Anton Burtsev with prompting us to clarify our thinking through his question at SOSP’13.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:8 Elphinstone and Heiser

Replaced: Physical by virtual message registers.

In original L4, “long” messages could specify multiple buffers in a single IPC invo-
cation to amortise the hardware mode- and context-switch costs. Long messages could
be delivered with a single copy: executing in the sender’s context, the kernel sets up a
temporarily mapped window into the receiver’s address space, covering (parts of) the
message destination, and copies directly to the receiver.

This could trigger a page fault during copying in either the source or destination
address space, which required the kernel to handle nested exceptions. Furthermore,
the handling of such an exception required invoking a user-level page-fault handler.
The handler had to be invoked while the kernel was still handling the IPC system
call, yet the invocation had to pretend that the fault happened during normal user-
mode execution. On return, the original system-call context had to be reestablished.
The result was significant kernel complexity, with many tricky corner cases that risked
bugs in the implementation.

While long IPC provides functionality that cannot be emulated without some over-
head, in practice it was rarely used: Shared buffers can avoid any explicit copying be-
tween address spaces and are generally preferred for bulk data transfer. Furthermore,
the introduction of virtual registers increased the supported size of “simple” messages
to the point where the cost of the copy exceeds that of the basic system-call overhead.
In cases where the trust relationship requires bulk copy by a trusted agent, the cost
(extra system call) of making this a user-level process has become largely irrelevant.

The main use of long IPC was for POSIX-style read-write interfaces to servers, which
require transferring the contents of arbitrary buffers to servers that do not necessarily
have access to the client’s memory. However, the rise of virtualised Linux as POSIX
middleware, where Linux effectively shares memory with its applications, replaced
this common use case with pass-by-reference. The remaining use cases either had in-
terface flexibility or could be implemented with shared memory. Long IPC also violates
the minimality principle, which talks about functionality, not performance.

As a consequence of this kernel complexity and the existence of user-level alter-
natives, we removed long IPC from L4-embedded, and NOVA and Fiasco.OC do not
provide it either.

For seL4 there are even stronger reasons for staying away from supporting long
messages: The formal verification approach explicitly avoided any concurrency in the
kernel [Klein et al. 2009], and nested exceptions introduce a degree of concurrency.
They also break the semantics of the C language by introducing additional control
flow. While it is theoretically possible to formally reason about nested exceptions, it
would make the already-challenging verification task even harder. Of course, the in-
kernel page faults could be avoided with extra checking, but that would introduce yet
more complexity, besides penalising best-case performance. Furthermore, it would still
require a more complex formal model to prove checking is complete and correct.

Abandoned: Long IPC.

OKL4 diverges at this point by providing a new, asynchronous, single-copy, bulk-
transfer mechanism called channel [Heiser and Leslie 2010]. However, this is really
a compromise retained for compatibility with the earlier OKL4 microkernel, which
was aimed at memory-starved embedded systems. It was used to retrofit protection
boundaries into a highly multithreaded (> 50 threads) real-time application running
on a platform with only a few MiB of RAM, where a separate communication page
per pair of communicating threads was too costly. Arguably, this design is no longer
justified.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:9

3.2.3. IPC Destinations. Original L4 had threads as the targets of IPC operations. The
motivation was to avoid the cache and TLB pollution associated with a level of indirec-
tion, although Liedtke [1993a] notes that ports could be implemented with an overhead
of 12% (mostly 2 extra TLB misses). The model required that thread IDs were unique
identifiers.

This model has a drawback of poor information hiding. A multithreaded server has to
expose its internal structure to clients, in order to spread client load, or use a gateway
thread, which could become a bottleneck and would impose additional communication
and synchronisation overhead. There were a number of proposals to mitigate this but
they all had drawbacks. Additionally, large-page support in modern CPUs has reduced
the TLB pollution of indirection by increasing the likelihood of colocation on the same
page. Last but not least, the global IDs introduced covert channels [Shapiro 2003].

Influenced by EROS [Shapiro et al. 1999], seL4 and Fiasco.OC [Lackorzynski and
Warg 2009]) adopted IPC endpoints as IPC destinations. seL4 endpoints are essentially
ports: The root of the queue of pending senders or receivers is a now a separate kernel
object, instead of being part of the recipient’s thread control block (TCB). Unlike Mach
ports [Accetta et al. 1986], IPC endpoints do not provide any buffering.

In order to help servers identify clients without requiring per-client endpoints,
seL4 provides badged capabilities, similar to the distinguished capabilities of KeyKOS
[Bromberger et al. 1992]. Capabilities with different badges but derived from the same
original capability refer to the same (endpoint) object but on invokation deliver to the
receiver the badge as an identification of the sender.

Replaced: Thread IDs by port-like IPC endpoints as message destinations.

3.2.4. IPC Timeouts. A blocking IPC mechanism creates opportunities for denial-of-
service (DOS) attacks. For example, a malicious (or buggy) client could send a request
to a server without ever attempting to collect the reply; owing to the rendezvous-style
IPC, the sender would block indefinitely unless it implements a watchdog to abort and
restart. L4’s long IPC enables a slightly more sophisticated attack: A malicious client
could send a long message to a server, ensure that it would page fault, and prevent its
pager from servicing the fault.

To protect against such attacks, IPC operations in the original L4 had timeouts.
Specifically, an IPC syscall specified four timeouts: one to limit blocking until start
of the send phase, one to limit blocking in the receive phase, and two more to limit
blocking on page faults during the send and receive phases (of long IPC).

Timeout values were encoded in a floating-point format that supported the values
of zero, infinity, and finite values ranging from one millisecond to weeks. They added
complexity for managing wakeup lists.

Practically, however, timeouts were of little use as a DOS defence. There is no theory,
or even good heuristics, for choosing timeout values in a nontrivial system, and in
practice, only the values zero and infinity were used: A client sends and receives with
infinite timeouts, while a server waits for a request with an infinite but replies with
a zero timeout.7 Traditional watchdog timers represent a better approach to detecting
unresponsive IPC interactions (e.g., resulting from deadlocks).

Having abandoned long IPC, in L4-embedded we replaced timeouts by a single flag
supporting a choice of polling (zero timeout) or blocking (infinite timeout). Only two
flags are needed, one for the send and one for the receive phase. seL4 follows this

7The client uses an RPC-style call operation, consisting of a send followed by an atomic switch to a receive
phase, guaranteeing that the client is ready to receive the server’s reply.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:10 Elphinstone and Heiser

model. A fully asynchronous model, such as that of OKL4, is incompatible with time-
outs and has no DOS issues that would require them.

Timeouts could also be used for timed sleeps by waiting on a message from a non-
existing thread, a feature useful in real-time system. Dresden experimented with ex-
tensions, including absolute timeouts, which expire at a particular wall clock time
rather than relative to the commencement of the system call. Our approach is to give
userland access to a (physical or virtual) timer.

Abandoned: IPC timeouts in seL4, OKL4.

3.2.5. Communication Control. In the original L4, the kernel delivered the sender’s un-
forgeable ID to the receiver. This allows a server to implement a form of discretionary
access control by ignoring undesirable messages. However, a server can be bombarded
with spurious large messages by malicious clients. The time consumed by receiving
such messages (even if copying is done by the kernel) prevents the server from per-
forming useful work, and checking which ones to discard also costs time. Hence such
messages can constitute a DOS attack, which can only be avoided by kernel support
that prevents undesirable messages being sent in the first place [Liedtke et al. 1997b].
Mandatory access control policies also require a mechanism for mediating and autho-
rising communication.

Original L4 provided this through a mechanism called clans and chiefs: processes
were organised in a hierarchy of “clans,” each of which had a designated “chief.” In-
side the clan, all messages are transferred freely and the kernel guarantees message
integrity. But messages crossing a clan boundary, whether outgoing or incoming, are
redirected to the clan’s chief, who can thus control the flow of messages. The mecha-
nism also supports confinement [Lipner 1975] of untrusted subsystems.

Liedtke [1995] argued that the clans-and-chiefs model only added two cycles per IPC
operation, as clan IDs were encoded in thread IDs for quick comparison. However, the
low overhead only applies where direct communication is possible. Once messages get
redirected, each such redirection adds two messages to a (logically) single round-trip
IPC, a significant overhead. Furthermore, the strict thread hierarchy was unwieldy in
practice and was probably the feature most cursed by people trying to build L4-based
systems. For mandatory access control, the model quickly deteriorated into a chief per
process. It is a prime example of a kernel-enforced policy, address-space hierarchy,
limiting the design space.

As a consequence of these drawbacks, many L4 implementations did not implement
clans and chiefs, or disabled the feature at build time, but that meant that there was no
way to control IPC. There were experiments with models based on a more general form
of IPC redirection [Jaeger et al. 1999], but these failed to gain traction. The problem
was finally resolved with flexible capability-mediated access control on endpoints.

Abandoned: Clans and chiefs.

3.3. User-Level Device Drivers
A key consequence of the minimality principle, and maybe the most controversial fea-
ture of L4 (or, rather, its predecessor, L3 [Liedtke et al. 1991]), was to make all device
drivers user-level processes.8 This is still a hallmark of all L4 kernels, and verification
is a strong motivator for sticking with the approach: Adding any unverified code, such

8This had been done before, in Brinch Hansen’s Nucleus [1970], the Michigan Terminal system [Alexander
1972], and the Monads OS [Keedy 1979], but there is no hard information about performance of those
systems, and general expectation was that such designs performed poorly. MINIX also had user-level drivers
[Tanenbaum 2016] but was not published until after Liedtke created L3 [Liedtke 1993b].

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:11

as drivers, into the kernel would obliterate any guarantees, and verifying the large
amount of driver code in real-world systems is out of reach for now.

A small number of drivers are still best kept in the kernel. In a modern L4 kernel
this typically means a timer driver, used for preempting user processes at the end of
their time slice, and a driver for the interrupt controller, which is required to safely
distribute interrupts to user-level processes.

The user-level driver model is tightly coupled with modelling interrupts as IPC
messages, which the kernel sends to the driver. Details of the model (IPC from a vir-
tual thread vs upcall), as well as the association and acknowledgment protocol, have
changed over the years (changed back and back again), but the general approach still
applies.

The most notable change was moving from IPC to notifications as the mechanism
for interrupt delivery. The main driver here was implementation simplification, as
delivery as messages required the emulation of virtual in-kernel threads as the sources
of interrupt IPC, while signalling notifications is a natural match to what the hardware
does.

User-level drivers have benefited from virtualisation-driven hardware improve-
ments. I/O memory-management units (IOMMUs) have enabled safe pass-through
device access for drivers. User-level drivers have also benefited from hardware de-
velopments that reduce interrupt overheads, specifically interrupt coalescing support
on modern network interfaces.

Kept: User-level drivers as a core feature.

Of course, user-level drivers have now become mainstream. They are supported (if
not encouraged) on Linux, Windows and MacOS. Overheads in those systems are gen-
erally higher than in L4 with its highly optimised IPC, but we have shown in the past
that low overheads are achievable even on Linux, at least on context-switch friendly
hardware [Leslie et al. 2005a]. In practice, though, only a tiny fraction of devices are
performance critical.

3.4. Resource Management
Original L4’s resource management, like its approach to communication control, was
heavily based on process hierarchies. This applied to managing processes as well as vir-
tual memory. Hierarchies are an effective way of managing and recovering resources
and provide a model of constraining subsystems: System mechanisms restrict chil-
dren’s privileges to be a subset of their parent’s. The cost is rigidity. Moreover, the hi-
erarchies are a form of policy, and as such a bad match for a microkernel, as discussed
in Section 3.2.5.

Capabilities can provide a way out of the constraints of the hierarchy, which is one
of several reasons all modern L4 kernels adopted capability-based access-control. Here
we examine the most important resource-management issues arising form the original
L4 model and how we deal with them now.

3.4.1. Process Hierarchy. L4 does not have a first-class process concept, it is a higher-
level abstraction that consists of an address space, represented by a page table, and a
number of associated threads. These consume kernel resources, and unchecked alloca-
tion of TCBs and page tables could easily lead to denial of service. Original L4 dealt
with that through a process hierarchy: “Task IDs” were essentially capabilities over
address spaces, allowing creation and deletion.

There was a finite number of them, a few thousand, which the kernel handed out
first-come-first-served. They could be delegated, but only up or down the hierarchy.
They were also closely tied to the thread hierarchy used for IPC control (see Sec-

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:12 Elphinstone and Heiser

tion 3.2.5). In a typical setup, the initial user process would grab all task IDs before
creating any further processes.

Perhaps unsurprisingly, this model, which imposes a particular policy, proved inflex-
ible and restrictive; it was eventually replaced by full-fledged capabilities.

Abandoned: Hierarchical process management.

3.4.2. Recursive Page Mappings. Original L4 tied authority over physical memory
frames to existing page mappings. Having a valid mapping of a page in its address
space, a process had the right to map the page into another address space. Instead
of mapping, a process could grant one of its pages, which removed the page, and any
authority over it, from the grantor. A mapping, but not a grant, could be revoked by an
unmap operation. Address spaces were created empty and were populated using the
mapping primitive.

The recursive mapping model was anchored in a primordial address space, σ0, which
received an identity mapping of all free frames left over after the kernel booted. σ0 was
the page-fault handler of all processes created at boot time and would map each of its
pages once to the first process that requested it by faulting on an address in the page.

Note that, while the L4 memory model creates a hierarchy of mappings originating
from each frame, it does not force a hierarchical view of address spaces: Mappings were
established through IPC, similar to transferring a capability through an IPC message.
A process could map one of its pages to any other process it was allowed to send IPC
to, provided the recipient agreed to receive mappings. Compared to Mach, L4 has no
memory object semantics, only low-level address space management mechanisms that
are closer to Mach’s in-kernel pmap interface than its user-visible memory object ab-
straction [Rashid et al. 1988]. Memory objects, copy-on-write, and shadow-chains are
all user-level created abstractions or implementation approaches.

The recursive mapping model was conceptually simple and elegant, and Liedtke was
clearly proud of it: It figured prominently in many articles, including the first [Liedtke
1993a], and in all his presentations. Yet experience showed that there were significant
drawbacks.

In order to support revocation at page granularity, the recursive address-space
model requires substantial bookkeeping in the form of a mapping database. Moreover,
the generality of the L4 memory model allows two colluding processes to force the
kernel to consume large amounts of memory by recursively mapping the same frame
to different pages in each other’s address space, a potential DOS attack especially on
64-bit hardware, which can only prevented by controlling IPC (via the dreaded clans-
and-chiefs, see Section 3.2.5).

In L4-embedded we removed the recursive mapping model, after observing that for
our real-world use cases, 25% to 50% of kernel memory was consumed by the mapping
database even without malicious processes. We replaced it by a model that more closely
mirrors hardware, where mappings always originate from ranges of physical memory
frames.

This approach comes at the expense of losing fine-grained delegation and revocation
of memory, other than by brute-force scans of page tables. We therefore only considered
it interim pain relief. OKL4 somewhat extends this minimal model, without achieving
the generality and fine-grained control of the original model.

Mapping control is, of course, easily achieved in a capability-based system, using
a variant of the standard grant-take model [Lipton and Snyder 1977]. This is what
seL4 provides: The right to map is conveyed by a capability to a physical frame, not
by having access to a virtual page backed by that frame, and thus seL4’s model is

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:13

not recursive. Even with a frame capability, mapping is strictly limited by the explicit
kernel memory model used to bookkeep the mappings, as described in Section 3.4.3.

Xen provides an interesting point of comparison [Fraser et al. 2004]. Grant tables
allow the creation (based on possession of a valid mapping) of what is effectively a
frame capability, which can be passed to another domain to establish shared mappings.
A more recent proposal extends grant tables to allow for revocation of frames [Ram
et al. 2010]. The semantics of the memory mapping primitives is loosely similar to
that of seL4, minus the propagation of page faults. In Xen’s case, the overhead for
supporting fine-grained delegation and revocation is only paid in instances of sharing.

NOVA and Fiasco.OC both retain the recursive address space model, with author-
ity to map determined by possession of a valid mapping. The consequent inability to
restrict mapping and thus book-keeping allocation is addressed by per-task kernel
memory pools in Fiasco.OC.

The existing L4 address space models of fine-grained delegation and revocation rep-
resent different tradeoffs between generality and minimality of mechanism and poten-
tially more space-efficient domain-specific approaches.

Multiple approaches: Some L4 kernels retain the model of recursive
address-space construction, while seL4 and OKL4 originate mappings from
frames. Only seL4 provides fine-grained delegation of page access.

3.4.3. Kernel Memory. While capabilities provide a clean and elegant model for delega-
tion, by themselves they do not solve the problem of resource management. A single
malicious thread with grant right on a mapping can still use this to create a large num-
ber of mappings, forcing the kernel to consume large amounts of memory for metadata,
and potentially DOS-ing the system.

L4 kernels traditionally had a fixed-size heap from which the kernel allocated mem-
ory for its data structures. Original L4 had a kernel pager, called σ1, through which
the kernel could request additional memory from userland. This does not solve the
problem of malicious (or buggy) user code forcing unreasonable memory consumption;
it only shifts the problem. Consequently, most L4 kernels did not support σ1.

The fundamental problem, shared by most other OSes, is the insufficient isolation of
user processes through the shared kernel heap. A satisfactory approach must be able
to provide complete isolation. The underlying issue is that, even in a system where
authority is represented by capabilities, it is not possible to reason about the security
state if there are resources, such as kernel memory, outside the capability system.

Kernels that manage memory as a cache of user-level content only partially address
this problem. While caching-based approaches remove the opportunity for DOS attacks
based on memory exhaustion, they do not enable the strict isolation of kernel memory
that is a prerequisite for performance isolation or real-time systems and likely intro-
duce side channels.

Liedtke et al. [1997b] examined this issue and proposed per-process kernel heaps to-
gether with a mechanism to donate extra memory to the kernel on exhaustion. NOVA,
Fiasco, and OKL4 all adopted variations of this approach. Per-process kernel heaps
simplify user level, by removing control of allocation, at the expense of foregoing the
ability to revoke allocations without destroying the process, and the ability to reason
directly about allocated memory, as opposed to just bounding it. The tradeoff is still
being explored in the community.

We take a substantially different approach with seL4; its model for managing kernel
memory is seL4’s main contribution to OS design. Motivated by the desire to reason
about resource usage and isolation, we subject all kernel memory to authority con-
veyed by capabilities. The only exception is the fixed amount of memory used by the

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:14 Elphinstone and Heiser

kernel to boot up, including its strictly bounded stack. Specifically, we completely re-
move the kernel heap and provide userland with a mechanism to identify authorised
kernel memory whenever the kernel allocates data structures. A side effect is that this
reduces the size and complexity of the kernel, a major bonus to verification.

The key is making all kernel objects explicit and subject to capability-based access
control. This approach is inspired by hardware-based capability systems, specifically
CAP [Needham and Walker 1977], where hardware-interpreted capabilities directly
refer to memory. HiStar [Zeldovich et al. 2011] also makes all kernel objects explicit,
though it takes a caching approach to memory management.

Of course, user-visible kernel objects do not mean that someone with authority over
a kernel object can directly read or write it. The capability provides the right to invoke
(a subset of) object-specific methods, which includes destruction of the object. (Objects,
once created, never change their size.) Crucially, the kernel object types include unused
memory, called Untyped in seL4, which can be used to create other objects.

Specifically, the only operation possible on Untyped is to retype part of it into some
object type. The relationship of the new object to the original Untyped is recorded in a
capability derivation tree, which also records other kinds of capability derivation, such
as the creation of capability copies with reduced privileges. Once some Untyped has
been retyped, the only operation possible on the (corresponding part of) the original
Untyped is to revoke the derived object (see below).

Retyping is the only way to create objects in seL4. Hence, by limiting access to Un-
typed memory, a system can control resource allocation. Retyping can also produce
smaller Untyped objects, which can then be independently managed—this is key to
delegating resource management. The derivation from Untyped also ensures the ker-
nel integrity property that no two typed objects overlap.

Table III gives the complete set of seL4 object types and their use for 32-bit ARM pro-
cessors, x86 is very similar. Userland can only directly access (load/store/fetch) memory
corresponding to a Frame that is mapped in its address space by inserting the Frame
capability into a Page Table.

The resulting model has the following properties:

(1) All authority is explicitly conferred (via capabilities).
(2) Data access and authority can be confined.
(3) The kernel adheres to the authority distributed to applications for its own data

structures, including the consumption of physical memory.
(4) Each kernel object can be reclaimed independently of any other kernel object.
(5) All operations execute, or are preemptible, in “short” time (constant or linear in

the size of an object no bigger than a page).

Properties 1–3 ensure that it is possible to reason about system resources as well as
security. Especially Property 3 was crucial to formally proving the kernel’s ability to
ensure integrity, authority confinement, and confidentiality [Sewell et al. 2011; Murray
et al. 2013]. Property 5 ensures that all kernel operations have low, bounded latencies
and thus supports its use for hard real-time systems [Blackham et al. 2011]. There is
one long-running operation, capability revocation, which requires preemption points.
These ensure that the kernel is in a consistent state, that it has made progress, and to
check for pending interrupts. If there are pending interrupts, then the kernel returns
to usermode to restart the system call, which ensures that the interrupt gets handled
first. The restarted system call continues the tear-down operation where the previous
attempt was discontinued.

Property 4 ensures kernel integrity. Any holder of an appropriate capability can
reclaim an object at any time, which makes the original Untyped again available for
object creation. For example, page-table memory can be reclaimed without having to

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:15

Table III. seL4 Kernel Objects for 32-bit ARM Processors

Object Description
TCB Thread control block
Cnode Capability storage
Endpoint Port-like rendezvous object for IPC
Notification Array of flags resembling binary semaphores
Page Directory Top-level page table for ARM virtual memory
Page Table Leaf page table for ARM virtual memory
Frame 4 KiB, 64 KiB, 1 MiB and 16 MiB objects that can be mapped by page tables

to form virtual memory
Untyped Memory Power-of-2 region of physical memory from which other kernel objects can

be allocated
IRQ Handler The right to associate with or acknowledge a specific interrupt source.
IRQ Control The right to manage the delegation of interrupts, i.e. create IRQ Handler

capabilities.

destroy the corresponding address space. This requires that the kernel is able to detect
and invalidate any references to an object that is being reclaimed.

The capability derivation tree helps satisfying this requirement. Objects are revoked
by invoking the revoke() method on an Untyped object further up the tree; this will
remove all capabilities to all objects derived from that Untyped. When the last capa-
bility to an object is removed, the object itself is deleted. This removes any in-kernel
dependencies it may have with other objects, thus making it available for reuse. Re-
moval of the last capability is easy to detect, as it cleans up the last leaf node in the
capability tree referring to a particular memory location.

Revocation requires user-level book-keeping to associate Untyped capabilities with
objects, often at the granularity of higher-level abstractions, such as processes, defined
at user level. The precise semantics of Untyped and its relationship to user-level book-
keeping is still being explored.

New: User-level control over kernel memory in seL4, kernel memory quota
in Fiasco.OC.

3.4.4. Time. Apart from memory, the other key resource that must be shared in a
system is the CPU. Unlike memory, which can be subdivided and effectively shared
between multiple processes concurrently, the CPU can only be used by a single thread
at a time and must therefore be time multiplexed.

All versions of L4 have achieved this multiplexing through a fixed-policy scheduler
(pluggable in Fiasco.OC). The scheduling model of the original L4, hard-priority round-
robin, is still alive, despite being a gross heresy against the core microkernel princi-
ple of policy-freedom. All past attempts to export scheduling policy to user level have
failed, generally due to intolerable overheads or were incomplete or domain specific.

Especially the Dresden group, which has a focus on real-time issues, experimented
extensively with time issues, including absolute timeouts (see Section 3.2.4). They also
explored several approaches to scheduling, as well as system structures suitable for
real-time and analysed L4-based real-time systems [Härtig and Roitzsch 2006].

While able to address some specific problems, Dresden did not develop a policy-free
and universal mechanism, and Fiasco.OC reverted to essentially the traditional L4
model. A more recent proposal for scheduling contexts allows mapping of hierarchical
priority-based schedules onto a single priority scheduler [Lackorzynski et al. 2012] but
was only implemented in the legacy Fiasco kernel (the one predating the introduction
of capabilities) as it does not work with the indirection provided by IPC endpoints.

One might argue that the notion of a single, general-purpose kernel suitable for all
purposes may not be as relevant as it once was; these days we are used to environment-

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:16 Elphinstone and Heiser

specific plugins. However, the formal verification of seL4 creates a powerful disincen-
tive to changing the kernel, as it strongly reinforces the desire to have a single platform
for all usage scenarios, that is, generality. Hence, a policy-free approach to dealing with
time is as desirable as it has ever been.

Unresolved: Principled, policy-free control of CPU time.

4. MICROKERNEL IMPLEMENTATION
Liedtke [1993a] lists a set of design decisions and implementation tricks that helped
to make IPC fast in the original i486 version, although a number of them smell of
premature optimisation.

Some have already been mentioned, such as the temporary mapping window used
in the now-obsolete long IPC. Others are uncontroversial, such as the send-receive
combinations in a single system call: the client-style call for an RPC-like invocation
and the server-style reply-and-wait. We will discuss the remaining in more detail,
including some traditional L4 implementation approaches that were less-publicised
but long taken for granted in the community.

4.1. Strict Process Orientation and Virtual TCB Array
The original L4 had a separate kernel stack for each thread, allocated above its TCB
on the same page. The TCB’s base address was therefore at a fixed offset from the
stack base and could be obtained by masking the least significant bits off the kernel
stack pointer. Only a single TLB entry was required to cover both a thread’s TCB and
stack.

Furthermore, all TCBs were allocated in a sparse, virtually addressed array, indexed
by thread ID. During IPC, this enables a very fast lookup of the destination TCB,
without first checking the validity of the ID: If the caller supplies an invalid ID, the
lookup may access an unmapped TCB, triggering a page fault; the kernel handles
this by aborting the IPC. If no fault happened, the validity of the thread ID can be
established by comparing the caller-supplied value with the one found in the TCB.9

Both features come at a cost: The many kernel stacks dominate the per-thread mem-
ory overhead, and they also increase the kernel’s cache footprint. The virtual TCB ar-
ray increases the kernel’s virtual memory use and thus the TLB footprint but avoids
the additional cache footprint for the lookup table that would otherwise be required.
Processors with a single page size and untagged TLBs left little opportunity to op-
timise beyond grouping data structures to minimise the number of pages touched.
However, RISC processors had large page sizes, or physical memory addressing, and
tagged TLBs, which changed the tradeoffs. Furthermore, like page faults in long IPC
(see Section 3.2.2), the virtual TCB array required handling nested exceptions, that is,
page faults triggered while in the kernel. It thus adds significant kernel complexity
and massive challenges to formal verification.

The kernel’s memory use became a significant issue when L4 was gaining traction
in the embedded space, so the design needed revisiting.

Initial experiments with a single-stack kernel on a Pentium showed a reduction in
kernel memory consumption and improvements in IPC performance on microbench-
marks [Haeberlen 2003]. Warton [2005] performed a thorough performance evaluation
of the Pistachio process kernel vs an event-based (single-stack) kernel with continu-
ations on an ARMv5 processor. He demonstrated comparable performance, generally

9Original L4’s thread IDs had version numbers, which changed when the thread was destroyed and re-
created. This was done to make thread IDs unique in time. Recording the current ID in the TCB allowed the
kernel to detect stale thread IDs.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:17

within 1% on micro-benchmarks but a 20% performance advantage of the event kernel
on a multitasking workload (AIM7). He also found that the event kernel’s per-thread
memory use was a quarter of that of the process kernel, despite the event kernel requir-
ing more than twice the TCB size of the process kernel for storing the continuations.

Concurrently, Nourai [2005] analysed the tradeoffs of virtual vs physical addressing
of TCBs. He implemented physical addressing, also in Pistachio, although on a MIPS64
processor. He found few, if any, differences in IPC performance in micro-benchmarks
but significantly better performance of the physically addressed kernel on workloads
that stressed the TLB. MIPS is somewhat anomalous in that it supports physical ad-
dressing even with the MMU enabled, while on most other architectures “physical” ad-
dressing is simulated by idempotent large-page mappings, potentially in conjunction
with “global” mappings. Still, Nourai’s results convincingly indicate that, at least on
MIPS processors, there is no performance benefit from the virtually addressed TCBs,
and other modern processors are unlikely to show significantly different tradeoffs.

An event-based kernel that avoids in-kernel page-fault exceptions preserves the se-
mantics of the C language. As discussed in Section 3.2.2, remaining within the seman-
tics of C reduces the complexity of verification.

Together, these results motivated the move to an event-based design with physically-
addressed kernel data for L4-embedded, and seL4 followed suit. While this decision
was driven initially by the realities of resource-starved embedded systems and later
the needs of verification, the approach’s benefits are not restricted to those contexts,
and we believe it is generally the best approach on modern hardware.

Replaced: Process kernel by event kernel in seL4, OKL4 and NOVA.

Abandoned: Virtual TCB addressing.

4.2. Lazy Scheduling
In the rendezvous model of IPC, a thread’s state frequently alternates between
runnable and blocked. This implies frequent queue manipulations, moving a thread
into and out of the ready queue, often many times within a time slice.

Liedtke’s lazy scheduling trick minimises these queue manipulations: When a
thread blocks on an IPC operation, the kernel updates its state in the TCB but leaves
the thread in the ready queue, with the expectation it will unblock soon. When the
scheduler is invoked upon a time-slice preemption, it traverses the ready queue un-
til it finds a thread that is really runnable and removes the ones that are not. The
approach was complemented by lazy updates of wakeup queues.

Lazy scheduling moves work from the high-frequency IPC operation to the less fre-
quently invoked scheduler. We observed the drawback when analysing seL4’s worst-
case execution time (WCET) for enabling its use in hard real-time systems [Blackham
et al. 2012]: The execution time of the scheduler is only bounded by the number of
threads in the system.

To address the issue, we adopted an alternative optimisation, referred to as Benno
scheduling, which does not suffer from pathological timing behaviour: Instead of leav-
ing blocked threads in the ready queue, we defer entering unblocked threads into the
ready queue until preemption time. This changes the main scheduler invariant from
“all runnable threads are in the ready queue” to “the set of runnable threads consists
of the currently executing thread plus the content of the ready queue.”

Benno scheduling retains the desirable property that the ready queue usually does
not get modified when threads block or unblock during IPC. At preemption time, the
kernel inserts the (still runnable but no longer executing) preempted thread into the
ready queue. This constant-time operation is the only fix-up needed. In addition, the

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:18 Elphinstone and Heiser

removal of timeouts means that there are no more wakeup queues to manipulate.
Endpoint wait queues must be strictly maintained, but in the common case of a server
responding to client requests received via a single endpoint, they are hot in the cache,
so the cost of those queue manipulations is low. This approach has similar average-case
performance as lazy scheduling, while also having a bounded and small WCET.

Replaced: Lazy scheduling by Benno scheduling.

4.3. Direct Process Switch
L4 traditionally tries to avoid running the scheduler during IPC. If a thread gets
blocked during an IPC call, then the kernel switches to a readily-identifiable runnable
thread, which then executes on the original thread’s time slice, generally ignoring pri-
orities. This approach is called direct process switch.

It makes more sense than one might think at first, especially when assuming that
servers have at least the same priority as clients. On the one hand, if a client thread
performs a call operation to a server, then the caller will obviously block until the
callee replies. Having been able to execute the syscall, the thread must be the highest-
priority runnable thread and the best way to observe its priority is to ensure that
the callee completes as quickly as possible, and the callee is likely of higher priority
anyway.

On the other hand, if a server replies to a waiting client using reply-and-wait, and
the server has a request waiting from another client, it makes sense to continue the
server to take advantage of the primed cache by executing the receive phase of its IPC.

Modern L4 versions, concerned about correct real-time behaviour, retain direct-
process switch where it conforms with priorities, and else invoke the scheduler. In
fact, direct-process switch is a form of time-slice donation, and Steinberg et al. [2005]
showed that it can be used to implement priority-inheritance and priority-ceiling pro-
tocols. Fiasco.OC and NOVA support this by allowing the user to specify donation on a
per-call basis.

Replaced: Direct process switch subject to priorities in seL4 and optional
in Fiasco.OC and NOVA.

4.4. Preemption
Traditionally L4 implementations had interrupts disabled while executing within the
kernel, although some (like L4/MIPS) contained preemption points in long-running op-
erations, where interrupts were briefly enabled. Such an approach significantly sim-
plifies kernel implementation, as most of the kernel requires no concurrency control
and generally leads to better average-case performance.

However, the original L4 ABI had a number of long-running system calls, and early
Fiasco work made the kernel fully preemptive in order to improve real-time perfor-
mance [Hohmuth and Härtig 2001]. Later ABI versions removed most of the long-
running operations, and Fiasco.OC reverted to the original, mostly nonpreemptible
approach.

In the case of seL4, there is an additional reason for a nonpreemptible kernel: avoid-
ing concurrency to make formal verification tractable [Klein et al. 2009]. Given seL4’s
focus on safety-critical systems, many of which are of a hard real-time nature, we
need hard bounds on the latency of interrupt delivery. It is therefore essential to avoid
long-running kernel operations and to use preemption points where this is not pos-
sible, specifically the practically unbounded object deletion. We put significant effort
into placement of preemption points, as well as on data structures and algorithms that
minimises the need for them [Blackham et al. 2012]. We note that a continuation-based

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:19

event kernel, such as seL4, provides natural support for preemption points by making
them continuation points.

Kept: Mostly nonpreemptible design with strategic preemption points.

4.5. Nonportability
Liedtke [1995] makes the point that a microkernel implementation should not strive
for portability, as a hardware abstraction introduces overheads and hides hardware-
specific optimisation opportunities. He cites subtle architectural changes between the
“compatible” i486 and Pentium processors resulting in shifting tradeoffs and implying
significant changes in the optimal implementation.

This argument was debunked by Liedtke himself, with the high-performance yet
portable Hazelnut kernel and especially Pistachio. Careful design and implementation
made it possible to develop an implementation that was 80% to 90% architecture ag-
nostic. Importantly, this was achieved without an explicit hardware-abstraction layer
(HAL). Given the minimalist nature of L4 mechanisms, and the fact that most are thin
layers around hardware mechanisms, a HAL would not be substantially smaller than
seL4 itself. In fact, L4 can be viewed as little more than an (imperfect) HAL.

In seL4, the architecture-agnostic code (between x86 and ARM) only accounts for
about 50%. About half the code deals with virtual memory management, which is
necessarily architecture-specific. The lower fraction of portable code is a result of
seL4’s overall smaller size, with most (architecture-agnostic) resource-management
code moved to userland. There is little architecture-specific optimisation except for the
IPC fastpath. Steinberg [2013] similarly estimates a 50% rewrite for porting NOVA to
ARM.

Replaced: Nonportable implementation by mostly architecture-agnostic
code without an explicit hardware-abstraction layer.

4.6. Nonstandard Calling Convention
The original L4 kernel was completely implemented in assembler, and therefore the
calling convention for functions was irrelevant inside the kernel. At the ABI, all regis-
ters that were not needed as syscall parameters were designated as message registers.
The library interface provided inlined assembler stubs to convert the compiler’s call-
ing convention to the kernel ABI, in the hope the compiler would optimise away any
conversion overhead.

The next generation of L4 kernels, starting with L4/MIPS, were all written at least
partially in C. At the point of entering C code, these kernels had to reestablish the
C compiler’s calling convention and revert to the kernel’s convention on return. This
made calling C functions relatively expensive and therefore discouraged the use of C
except for inherently expensive operations.

Later kernels where written almost exclusively in C (Hazelnut) or C++ (Fiasco, Pis-
tachio). The cost of the calling-convention mismatch, and the lack of Liedtke-style
masochism required for micro-optimising every bit of code, meant that the C code did
not exhibit performance that was competitive to the old assembler kernel. The imple-
mentors of those kernels therefore started to introduce hand-crafted assembler fast
paths. These led to IPC performance comparable to the original L4 (see Table I).

The traditional approach was unsuitable for seL4, as the verification framework
could only deal with C code [Klein et al. 2009], and we wanted to verify the kernel’s
functionality as completely as feasible. This requires restricting assembler code to the
bare minimum and rules out calling-convention conversions, forcing us to adopt the
tool chain’s standard calling conventions.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:20 Elphinstone and Heiser

Abandoned: Non-standard calling conventions.

4.7. Implementation Language
seL4 is also highly dependent on fast-path code to obtain competitive IPC performance,
but the fast paths must now be implemented in C. The commercial OKL4 kernel had
already been abandoned the assembler fast path because of the high maintenance cost
of assembler code, which in the commercial environment outweighed any performance
degradation.

For seL4 we were willing to tolerate no more than a 10% degradation in IPC perfor-
mance, compared to the fastest kernels on the same architecture. Fortunately, it turned
out that by carefully hand-crafting the fast path, we can achieve highly-competitive
IPC latencies [Blackham and Heiser 2012]. Specifically, this means manually reorder-
ing statements, making use of verified invariants that the compiler is unable to deter-
mine by static analysis.

In fact, the finally achieved latency of 188 cycles for a one-way IPC on an ARM11
processor is about 10% better than the fastest IPC we had measured on any other
kernel on the same hardware. This is partially a result of the simplified seL4 ABI and
IPC semantics, and the fact that the event-based kernel no longer requires saving and
restoring the C calling convention on a stack switch. We also benefit from improved
compilers, especially their support for annotating condition branches for the common
case, which helps code locality.

In any case, this result demonstrates that assembler implementations are no longer
justified by performance arguments.

Abandoned: Assembler code for performance.

The first L4 kernel written completely in a high-level language was Fiasco. The
developers chose C++ rather than C, which had been used for parts of the MIPS kernel
a few years earlier. Given the state of C++ compilers at the time, this may seem a
courageous decision but is at least partially explained by the fact that Fiasco was
not initially designed with performance in mind. Meanwhile, the performance penalty
from C++ code has decreased significantly.

The Karlsruhe team also chose C++ for Pistachio, mostly to support portability. De-
spite a high degree of enthusiasm about C++ in Dresden and Karlsruhe, we never saw
any convincing advantages offered by C++ for microkernel implementation. Further-
more, OK Labs found that the availability of good C++ compilers was a real problem
in the embedded space, and they converted their version of the microkernel back to
straight C.

For seL4, the requirements of verification forced the choice of C. While Dresden’s
VFiasco project attempted to verify the C++ kernel [Hohmuth and Tews 2005], it never
completed formalising the semantics of the C++ subset used by Fiasco. In contrast, by
using C to implement seL4, we could build on an existing formalisation of C [Norrish
1998], a key enabler for the verification.

Abandoned: C++ for seL4 and OKL4.

5. OTHER LESSONS
5.1. Virtualisation
The probably most significant use case that arose since Liedtke’s original work is vir-
tualisation. Early work on paravirtualised Linux [Härtig et al. 1997] led the way, al-
though at this stage, virtualisation was simply a way to demonstrate achievable perfor-
mance for full-functional systems. Linux soon became the OS middleware of choice for

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:21

guest OS

seL4

Guest apps VMM

Syscall

Hypercall

Exception
IPC

VM

 guest OS seL4

Guest apps VMM

Syscall

Hypercall

VM

Exception
IPC user

kernel

kernel
hyp

root non-root

Fig. 2. Virtualisation architecture for x86 (left) and ARM (right): the microkernel forwards virtualisation
exceptions to a user-level virtual-machine monitor.

the Dresden group, used for supporting legacy software in real-time systems [Härtig
et al. 1998].

At UNSW/NICTA, work on an architecture-independent paravirtualised Linux
[Leslie et al. 2005b] led to adoption by Qualcomm and deployment on billions of mobile
devices, including the use of virtualisation to share a single processor core between a
Linux guest supporting apps and the real-time modem software [Heiser 2009].

Hardware support for virtualisation eliminated most of the engineering pain and
made it easy to provide virtual machines with near-native performance. Contrary to
most mainstream hypervisors, L4 kernels used as hypervisors minimise the trusted
computing base, at least as far as isolation between virtual machines is concerned.
Specifically, when serving as a hypervisor, the microkernel retains its role as a context-
switching engine, doing little more than forwarding virtualisation exceptions to a user-
mode virtual-machine monitor (VMM), just as it forwards interrupts to device drivers.

This architecture is indicated in Figure 2, which shows the various components and
their privilege levels. The VMM is deprivileged, and there is one VMM instance per
virtual machine [Steinberg and Kauer 2010]. As a consequence, while the VMM is
part of a virtual machine’s trusted computing base, it is not trusted by any other parts
of the system; in particular, it cannot break isolation between virtual machines.

The seL4 VMM is approximately 20,000 SLOC. When combined with 9,000 SLOC for
seL4 itself, these result are similar to results reported by Steinberg and Kauer [2010]
for a deprivileged VMM and their virtualisation-specific kernel variant (NOVA). As
they observed, the shared trusted computing base is orders of magnitude smaller in
size than competing monolithic hypervisors.

Virtualisation has led to some kernel variants specifically designed as hypervi-
sors and either compromising on generality (OKL4) or on minimality (NOVA). How-
ever, seL4 has very little functionality that is virtualisation specific, mostly context-
switching extra virtual-machine state and delivering virtual-machine-related excep-
tions. The need to support virtualisation has required rethinking some design deci-
sions, which has generally lead to cleaner and more general mechanisms.

Virtualisation was a driver for a cleaner, more general model.

5.2. Multicore
Multiprocessor issues were explored early in the L4 community. Most of the work,
L4/Alpha and L4/MIPS notwithstanding, was done on x86 platforms, which were the

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:22 Elphinstone and Heiser

Core
HW
context

HW
context

 L1 cache

Core
HW
context

HW
context

 L1 cache

 L2/L3 cache

 Main memory

Core
HW
context

HW
context

 L1 cache

 L2/L3 cache

Core
HW
context

HW
context

 L1 cache

 Kernel

User
thread

User
thread

User
thread

User
thread

 Kernel

User
thread

User
thread

User
thread

User
thread

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

 SMP Linux

Fig. 3. Clustered multikernel: each closely-coupled cluster shares a kernel image, protected by a big lock,
while data is shared between kernel images running on different clusters. A Linux guest sees the whole
cluster as a NUMA system.

earliest affordable multiprocessors. Early x86 multiprocessors and multicores had high
intercore communication cost and no shared caches. Consequently, the standard ap-
proach was to use per-processor scheduling queues and generally minimise sharing of
kernel data across cores; threads migrate only upon explicit request from userland.
Uhlig [2005] explored locking, synchronisation, and consistency issues on platforms
with many cores and developed approaches for scalable concurrency control of kernel
data structures based on RCU [McKenney et al. 2002]. NOVA and Fiasco.OC make
extensive use of RCU.

With the shift of emphasis from high-end servers to embedded and real-time plat-
forms, multiprocessor issues took a back stage and were only revived recently with the
advent of multicore versions of embedded processors. These are characterised by low
intercore communication cost and usually shared L2 caches, implying tradeoffs that
differ from those on x86 as locality is less of an issue.

Verification also introduces new constraints. As discussed in Section 3.2.2, concur-
rency presents huge challenges for verification, and we kept it out of the seL4 kernel
as much as possible. For multicores, this means adopting either a big kernel lock or
a multikernel approach [Baumann et al. 2009]. For a microkernel, where system calls
are short, the former is not as silly as it may seem at first, as lock contention will be
low, at least for a small number of cores sharing a last-level cache [Peters et al. 2015].
Furthermore, sharing any kernel data makes little sense on a loosely coupled many-
core without a shared on-chip cache. On such an architecture, the latency of migrating
a few cache lines is in the thousands or tens of thousands of cycles [Baumann et al.
2009] and thus orders of magnitude larger than a typical L4 system call.

We are presently exploring a clustered multikernel (Figure 3): a hybrid of a big-lock
kernel, across cores which share a cache, and a restricted variant of a multikernel
where no memory migration is permitted between kernels [von Tessin 2012]. The clus-
tered multikernel avoids concurrency in the majority of kernel code, which enables
some of the formal guarantees to continue hold under some assumptions. The most
significant assumptions are that (1) the lock itself, and any code outside of it, is correct

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:23

and race free and that (2) the kernel is robust to any concurrent changes to memory
shared between the kernel and user-level. For seL4, the only such memory is a block
of virtual IPC message registers.

Note that, while the clustering approach statically partitions memory between ker-
nel images, which maps naturally to NUMA platforms, this does not prevent userland
from viewing all memory as shared. In fact, each kernel instance presents itself as
a virtual CPU to an unmodified SMP Linux guest that is able to efficiently support
high-throughput workloads [Heiser et al. 2013].

The attraction of this approach is that it retains the existing uniprocessor proof
with only small modifications. von Tessin [2013] lifted a parallel composition of the
uniprocessor automata and showed that refinement still holds. However, the formal
guarantees no longer cover the entire system, only the individual kernel clusters. The
large-step semantics used by the lifting framework assumes that kernel code is atomic
between preemption opportunities. This does not allow extension of the formal frame-
work to cover reasoning about the correctness of the lock, user-kernel concurrency, and
any relaxation of resource migration restrictions. Such reasoning requires a small-step
semantics, that is, modelling at the level of instructions.

A variation of a clustered multikernel may eventually be the best approach to ob-
taining full formal verification of a multiprocessor kernel, though we make no strong
claims here. Much more work is required on the formal side to reason about fine-
grained interleaving at the scale of a microkernel.

Unresolved: Handling of multicore processors in the age of verification.

5.3. The Influence of Architecture
Table I shows the enormous influence of (micro-)architecture on context-switching and
thus IPC costs. In terms of cycles, these kept increasing on x86, culminating in the
2,000-cycle IPC on the Pentium 4 (NetBurst) architecture around the turn of the cen-
tury. This created real challenges for microkernels: Our experience is that context
switches that cost a few hundred cycles rarely ever matter, while thousands of cy-
cles become a system performance issue, for example, with user-level drivers for high-
bandwidth network interfaces.

Fortunately, with the increased focus on power consumption, the architectural trend
reversed: the latest-generation x86 processors, beginning with the Haswell microar-
chitecture, enable context-switch times at par with RISC processors.10 Interestingly,
the trend for ARM processors is towards more expensive context switches. However,
with tagged TLBs now the standard, agressive speculation apparently dead, and an
increased number of architected registers no longer forcing long trap latencies due to
the need to serialise much hidden state, things will hopefully never again get as bad
as NetBurst.

One really significant architectural advance was the introduction of I/O MMUs as
part of hardware-assist for virtualisation. This enabled low-overhead user-level drivers
even for devices using DMA. Prior to that, user-level drivers for such devices had to be
trusted, negating most of the benefit of removing them from the kernel, or DMA had
to be controlled by expensive (in terms of engineering effort, as well as run-time cost)
paravirtualisation of drivers. Here microkernels benefit from the fact that they face
the same problem as hypervisors, namely the need to deprivilege device drivers.

10In fact, context-switch costs on Intel processors in 64-bit mode will be even lower, thanks to the tagged
TLB and the removal of segment registers that are expensive to access. However, we do not yet have a
sufficiently optimised x64 implementation to be more specific.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:24 Elphinstone and Heiser

Architecture matters.

5.4. The Influence of Verification
We have throughout commented on the influence verification had on seL4’s design and
implementation. Specifically, verification prohibited or discouraged

— a weak and unprincipled resource management model (Section 3.4.3)
— configurable variants, such as pluggable schedulers (Section 3.4.4)
— nested exceptions (Section 4.1)
— nonstandard calling conventions (Section 4.6)
— assembly code (Section 4.7)
— concurrency and locking (Section 5.2).

While dealing with these restrictions at times required more (mental) effort, in hind-
sight these challenges consistently led to more principled, cleaner designs. The result-
ing solutions were inevitably closer to minimal and more general. In other words, verifi-
cation strongly reinforces the core principles of minimality and generality, which really
constitute the heart of the L4 philosophy.

On top of that, verification imposed some coding discipline on the implementors. Al-
most all of this is in line with good software-engineering practice and thus is not really
restrictive. The main exception is the prohibition on passing references to automatic
variables to functions [Klein et al. 2009]. This is not an inherent requirement of ver-
ification, but a tradeoff between verification and implementation effort. It is the sole
drawback of verification we observed to date and could be removed by more investment
into the verification infrastructure.

The biggest concerns we had about verification, that it might force us into com-
promising performance or stop us from evolving the kernel, both turned out to be un-
founded: seL4 is the best-performing L4 kernel where direct comparisons are available
(see Section 4.7) and we found that the cost of keeping the proofs of an evolving kernel
up to date scaled with the cost of evolving the implementation [Klein et al. 2014].

Verification forces clean and principled design and implementation, en-
courages minimality and generality and has no significant drawbacks.

6. CONCLUSIONS
It is rare that a research operating system has both a significant developer community,
significant commercial deployment, as well as a long period of evolution. L4 is such a
system, with 20 years of evolution of the API, of design and implementation principles,
and about a dozen from-scratch implementations. We see this as a great opportunity to
reflect on the underlying principles, and examine what design and implementation ap-
proaches have stood the test of time, and what has failed to survive increased insights,
changed deployment scenarios and the evolution of CPU architectures.

As summarised in Table IV, design choices and implementation tricks came and
went, including some that were close to the original designer’s heart. However, the
most general principles behind L4, minimality, including running device drivers at
user level, generality, and a strong focus on performance, still remain relevant and
foremost in the minds of developers. Specifically we find that the key microkernel per-
formance metric, IPC latency, has remained essentially unchanged, in terms of clock
cycles, as far as comparisons across vastly different ISAs and micro architectures have
any validity. This is in stark contrast to the trend identified by Ousterhout [1990] just a
few years before L4 was created. Furthermore, and maybe most surprisingly, the code

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:25

Table IV. Summary of What Did and Did Not Last the Distance

Feature Fate Comment Agree?
Design Principles
Minimality K remains core driver of design yes
Generality K remains overall aim yes
Abstractions/Mechanisms
Synchronous
IPC

K mechanism for avoiding scheduling and redundant copying dur-
ing client-server interaction

OKL4
differs

Notifications N semaphore-like communication mechanism for real concurrency yes
Register
messages

R virtual registers replace physical for ABI stability and portability yes

Long IPC A not minimal, reduced need due to longer (virtual) register mes-
sages, implementation complexity

yes

IPC targets R endpoint objects instead of global thread IDs for security, infor-
mation hiding, supported by capability-based access control

yes

Clans & chiefs A inflexible and obsoleted by capability-based access control yes
User-level
drivers

K core feature of L4 microkernels yes

Hierarchical
process
management

A inflexible and obsoleted by capability-based access control yes

Recursive
address spaces

R mappings originate from frames with page-level delegation Dresden
retains

Kernel memory
management

R complete user-level control in seL4 and quota elsewhere no

IPC timeouts A unnecessary complexity and practically unusable Dresden
differs

Time
management

U no satisfactory model yet yes

Implementation Strategies
Process kernel R moved to event-based kernel in all new implementations yes
Virtual TCB
addressing

R no performance benefit on contemporary hardware, complexity of
nested exceptions

yes

Lazy
scheduling

R Benno scheduling or strict scheduling yes

Direct process
switch

R need to observe priorities yes

Non-
preemptible

K preemption points support low interrupt latency yes

Non-portable A mostly architecture-agnostic implementation without HAL yes
Non-standard
calling
conventions

A not worth it yes

Assembler code A no longer needed for performance, incompatible with verification yes
C++ A dubious benefits, incompatible with verification no

In the Fate column: A=Abandoned, K=Kept, R=Replaced, N=New; the Agree column indicates whether there
is agreement in the community.

size has essentially remained constant, a rather unusual development in software sys-
tems.

Formal verification increased the importance of minimality as well as generality, and
also increased pressure for simplification of the implementation. Several design deci-
sions, such as the simplified message structure, user-level control of kernel memory,
and the approach to multicores are strongly influenced by verification. It also impacted
a number of implementation approaches, such as the use of an event-oriented kernel,
adoption of standard calling conventions, and the choice of C as the implementation
language. However, we do not think that this has led to tradeoffs we would consider in-

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

1:26 Elphinstone and Heiser

ferior when ignoring verification; it certainly has not led to compromising the original
goals of generality, performance, and minimality.

With formal verification, L4 has convincingly delivered on one of the core promises
microkernels made many years ago: robustness. We think it is a great testament to the
brilliance of Liedtke’s original L4 design that this was achieved while, or maybe due
to, staying true to the original L4 philosophy. It may have taken an awfully long time,
but time has finally proved right the once-radical ideas of Brinch Hansen [1970].

There are a few issues that remain to be resolved. For example, the right approach
to multicore, in the context of formal verification, is an open question, although there
is recent progress.

There is one concept that has, so far, resisted any satisfactory abstraction: time.
L4 kernels still implement a specific scheduling policy—in most cases priority-based
round-robin—the last major holdout of policy in the kernel. This probably represents
the largest limitation of generality of contemporary L4 kernels. There is work in
progress that indicates that a single, parameterised kernel scheduler may actually
be able to support all standard scheduling policies [Lyons and Heiser 2014], and we
expect it will not take another 20 years to get there.

ACKNOWLEDGEMENTS
L4 would not exist without its inventor, Jochen Liedtke, and we pay tribute to his brilliance. We are also
greatly indebted to the many people who contributed to L4 over two decades, generations of staff and stu-
dents at IBM Watson, TU Dresden, University of Karlsruhe, UNSW, and NICTA; there are too many to
name them all.

We are specifically grateful to members of the L4 community who provided feedback on drafts of this
article: Andrew Baumann, Ben Leslie, Chuck Gray, and Hermann Härtig. We thank Adam Lackorzynski for
digging out the original L4 sources and extracting SLOC-counts and Adrian Danis for many seL4 optimisa-
tions and measurements.

REFERENCES

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, and Michael Young. Mach: A new kernel foundation for UNIX develop-
ment. In Proceedings of the 1986 Summer USENIX Technical Conference, pages
93–112, Atlanta, GA, US, 1986.

Michael T. Alexander. Organization and features of the Michigan terminal system.
In AFIPS Conference Proceedings, 1972 Spring Joint Computer Conference, pages
585–591, 1972.

Apple Inc. iOS security—iOS 9.0 or later. https://www.apple.com/business/docs/iOS
Security Guide.pdf, September 2015.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The multikernel: A new OS architecture for scalable multicore systems. In Proceed-
ings of the 22nd ACM Symposium on Operating Systems Principles, Big Sky, MT,
US, October 2009.

Bernard Blackham and Gernot Heiser. Correct, fast, maintainable choose any three!
In Asia-Pacific Workshop on Systems (APSys), page 7, Seoul, Korea, July 2012.

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury, and Ger-
not Heiser. Timing analysis of a protected operating system kernel. In IEEE Real-
Time Systems Symposium, pages 339–348, Vienna, Austria, November 2011.

Bernard Blackham, Yao Shi, and Gernot Heiser. Improving interrupt response time
in a verifiable protected microkernel. In EuroSys Conference, pages 323–336, Bern,
Switzerland, April 2012.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:27

Per Brinch Hansen. The nucleus of a multiprogramming operating system. Commu-
nications of the ACM, 13:238–250, 1970.

Alan C. Bromberger, A. Peri Frantz, William S. Frantz, Ann C. Hardy, Norman Hardy,
Charles R. Landau, and Jonathan S. Shapiro. The KeyKOS nanokernel architec-
ture. In Proceedings of the USENIX Workshop on Microkernels and other Kernel
Architectures, pages 95–112, Seattle, WA, US, April 1992.

J. Bradley Chen and Brian N. Bershad. The impact of operating system structure
on memory system performance. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, pages 120–133, Asheville, NC, US, December 1993.

Michael Condict, Don Bolinger, Dave Mitchell, and Eamonn McManus. Microkernel
modularity with integrated kernel performance. Technical report, OSF Research
Institute, June 1994.

Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 9:143–155, 1966.

Dhammika Elkaduwe, Philip Derrin, and Kevin Elphinstone. Kernel design for isola-
tion and assurance of physical memory. In 1st Workshop on Isolation and Integration
in Embedded Systems, Glasgow, UK, April 2008.

Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield, and Mark
Williamson. Safe hardware access with the Xen virtual machine monitor. In Pro-
ceedings of the 1st Workshop on Operating System and Architectural Support for the
On-Demand IT Infrastructure (OASIS), 2004.

Eran Gabber, Christopher Small, John Bruno, José Brustoloni, and Avi Silberschatz.
The Pebble component-based operating system. In Proceedings of the 1999 USENIX
Annual Technical Conference, pages 267–282, Monterey, CA, US, June 1999.

Charles Gray, Matthew Chapman, Peter Chubb, David Mosberger-Tang, and Gernot
Heiser. Itanium — a system implementor’s tale. In Proceedings of the 2005 USENIX
Annual Technical Conference, pages 264–278, Anaheim, CA, USA, April 2005.

Andreas Haeberlen. Managing kernel memory resources from user level. Diploma
thesis, Dept of Computer Science, University of Karlsruhe, April 2003. URL http:
//os.ibds.kit.edu/english/97 639.php.

Norman Hardy. KeyKOS architecture. ACM Operating Systems Review, 19(4):8–25,
October 1985. URL http://www.cis.upenn.edu/∼KeyKOS/OSRpaper.ps.gz.

Hermann Härtig and Michael Roitzsch. Ten years of research on L4-based real-time
systems. In Proceedings of the 8th Real-Time Linux Workshop, Lanzhou, CN, 2006.

Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and Jean
Wolter. The performance of µ-kernel-based systems. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pages 66–77, St. Malo, FR, October
1997.

Hermann Härtig, Robert Baumgartl, Martin Borriss, Claude-Joachim Hamann,
Michael Hohmuth, Frank Mehnert, Lars Reuther, Sebastian Schönberg, and Jean
Wolter. DROPS—OS support for distributed multimedia applications. In Proceed-
ings of the 8th SIGOPS European Workshop, Sintra, PT, September 1998.

Gernot Heiser. The Motorola Evoke QA4: A case study in mobile virtualization.
White paper, Open Kernel Labs, July 2009. https://www.researchgate.net/profile/
Gernot Heiser/publication/242743911 The Motorola Evoke QA4 A Case Study in
Mobile Virtualization/links/00b7d53acc2c9d970d000000.pdf.

Gernot Heiser and Ben Leslie. The OKL4 microvisor: Convergence point of microker-
nels and hypervisors. In Asia-Pacific Workshop on Systems (APSys), pages 19–24,
New Delhi, India, August 2010.

Gernot Heiser, Etienne Le Sueur, Adrian Danis, Aleksander Budzynowski, Tudor-Ioan
Salomie, and Gustavo Alonso. RapiLog: Reducing system complexity through verifi-
cation. In EuroSys Conference, pages 323–336, Prague, Czech Republic, April 2013.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

http://os.ibds.kit.edu/english/97_639.php
http://os.ibds.kit.edu/english/97_639.php
http://www.cis.upenn.edu/~KeyKOS/OSRpaper.ps.gz
https://www.researchgate.net/profile/Gernot_Heiser/publication/242743911_The_Motorola_Evoke_QA4_A_Case_Study_in_Mobile_Virtualization/links/00b7d53acc2c9d970d000000.pdf
https://www.researchgate.net/profile/Gernot_Heiser/publication/242743911_The_Motorola_Evoke_QA4_A_Case_Study_in_Mobile_Virtualization/links/00b7d53acc2c9d970d000000.pdf
https://www.researchgate.net/profile/Gernot_Heiser/publication/242743911_The_Motorola_Evoke_QA4_A_Case_Study_in_Mobile_Virtualization/links/00b7d53acc2c9d970d000000.pdf

1:28 Elphinstone and Heiser

Michael Hohmuth and Hermann Härtig. Pragmatic nonblocking synchronization for
real-time systems. In Proceedings of the 2001 USENIX Annual Technical Conference,
Boston, MA, US, 2001.

Michael Hohmuth and Hendrik Tews. The VFiasco approach for a verified operat-
ing system. In Proceedings of the 2nd Workshop on Programming Languages and
Operating Systems (PLOS), Glasgow, UK, July 2005.

Trent Jaeger, Kevin Elphinstone, Jochen Liedtke, Vsevolod Panteleenko, and Yoonho
Park. Flexible access control using IPC redirection. In Proceedings of the 7th Work-
shop on Hot Topics in Operating Systems, Rio Rico, AZ, USA, March 1999.

J. Leslie Keedy. On the programming of device drivers for in-process systems. Monads
Report 5, Dept. of Computer Science, Monash University, Clayton VIC, AU, 1979.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an
OS kernel. In ACM Symposium on Operating Systems Principles, pages 207–220,
Big Sky, MT, USA, October 2009.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS mi-
crokernel. ACM Transactions on Computer Systems, 32(1):2:1–2:70, February 2014.

Adam Lackorzynski and Alexander Warg. Taming subsystems: capabilities as univer-
sal resource access control in L4. In 2nd Workshop on Isolation and Integration in
Embedded Systems, pages 25–30, Nuremburg, DE, March 2009.

Adam Lackorzynski, Alexander Warg, Marcus Völp, and Hermann Härtig. Flattening
hierarchical scheduling. In International Conference on Embedded Software, pages
93–102, Tampere, SF, October 2012.

Ben Leslie, Peter Chubb, Nicholas FitzRoy-Dale, Stefan Götz, Charles Gray, Luke
Macpherson, Daniel Potts, Yueting (Rita) Shen, Kevin Elphinstone, and Gernot
Heiser. User-level device drivers: Achieved performance. Journal of Computer Sci-
ence and Technology, 20(5):654–664, September 2005a.

Ben Leslie, Carl van Schaik, and Gernot Heiser. Wombat: A portable user-mode Linux
for embedded systems. In 6th Linux.conf.au, Canberra, April 2005b.

Roy Levin, Ellis S. Cohen, William M. Corwin, Fred J. Pollack, and William A. Wulf.
Policy/mechanism separation in HYDRA. In Proceedings of the 5th ACM Symposium
on Operating Systems Principles, pages 132–140, 1975.

Jochen Liedtke. Improving IPC by kernel design. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles, pages 175–188, Asheville, NC, US,
December 1993a.

Jochen Liedtke. A persistent system in real use: Experience of the first 13 years. In
Proceedings of the 3rd IEEE International Workshop on Object Orientation in Oper-
ating Systems (IWOOOS), pages 2–11, Asheville, NC, US, December 1993b. IEEE.

Jochen Liedtke. On µ-kernel construction. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles, pages 237–250, Copper Mountain, CO, US,
December 1995.

Jochen Liedtke. Towards real microkernels. Communications of the ACM, 39(9):70–77,
September 1996.

Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar Heinrichs, Rudolf Ruland, and
Gyula Szalay. Two years of experience with a µ-kernel based OS. ACM Operating
Systems Review, 25(2):51–62, April 1991.

Jochen Liedtke, Kevin Elphinstone, Sebastian Schönberg, Herrman Härtig, Gernot
Heiser, Nayeem Islam, and Trent Jaeger. Achieved IPC performance (still the foun-
dation for extensibility). In Proceedings of the 6th Workshop on Hot Topics in Oper-
ating Systems, pages 28–31, Cape Cod, MA, USA, May 1997a.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

L4 Microkernels: The Lessons from 20 Years of Research and Deployment 1:29

Jochen Liedtke, Nayeem Islam, and Trent Jaeger. Preventing denial-of-service attacks
on a µ-kernel for WebOSes. In Proceedings of the 6th Workshop on Hot Topics in
Operating Systems, pages 73–79, Cape Cod, MA, US, May 1997b. IEEE.

Steven. B. Lipner. A comment on the confinement problem. In Proceedings of the 5th
ACM Symposium on Operating Systems Principles, pages 192–196. ACM, 1975.

Richard J. Lipton and Lawrence Snyder. A linear time algorithm for deciding subject
security. Journal of the ACM, 24(3):455–464, 1977.

Anna Lyons and Gernot Heiser. Mixed-criticality support in a high-assurance, general-
purpose microkernel. In Workshop on Mixed Criticality Systems, pages 9–14, Rome,
Italy, December 2014.

Paul E. McKenney, Dipankar Sarma, Andrea Arcangelli, Andi Kleen, Orran Krieger,
and Rusty Russell. Read copy update. In Proceedings of the Ottawa Linux Sympo-
sium, 2002. URL http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,
Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4: from general purpose
to a proof of information flow enforcement. In IEEE Symposium on Security and
Privacy, pages 415–429, San Francisco, CA, May 2013.

Roger M. Needham and R.D.H. Walker. The Cambridge CAP computer and its pro-
tection system. In Proceedings of the 6th ACM Symposium on Operating Systems
Principles, pages 1–10. ACM, November 1977.

Michael Norrish. C formalised in HOL. PhD thesis, University of Cambridge Com-
puter Laboratory, 1998.

Abi Nourai. A physically-addressed L4 kernel. BE thesis, School of Computer Science
and Engineering, Sydney, Australia, March 2005. Available from publications page
at http://ssrg.nicta.com.au/.

John K. Ousterhout. Why aren’t operating systems getting faster as fast as hardware?
In Proceedings of the 1990 Summer USENIX Technical Conference, pages 247–56,
June 1990.

Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. For a microkernel,
a big lock is fine. In Asia-Pacific Workshop on Systems (APSys), Tokyo, JP, July 2015.

Kaushik Kumar Ram, Jose Renato Santos, and Yoshio Turner. Redesigning Xen’s
memory sharing mechanism for safe and efficient I/O virtualization. In Proceedings
of the 2nd Workshop on I/O Virtualization, Pittsburgh, PA, US, 2010.

Richard Rashid, Avadis Tevanian, Jr., Michael Young, David Golub, Robert Baron,
David Black, William J. Bolosky, and Jonathan Chew. Machine-independent vir-
tual memory management for paged uniprocessor and multiprocessor architectures.
IEEE Transactions on Computers, C-37:896–908, 1988.

Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June Andronick, and
Gerwin Klein. seL4 enforces integrity. In International Conference on Interactive
Theorem Proving, pages 325–340, Nijmegen, The Netherlands, August 2011.

Jonathan S. Shapiro. Vulnerabilities in synchronous IPC designs. In Proceedings of
the IEEE Symposium on Security and Privacy, Oakland, CA, US, May 2003. URL
citeseer.ist.psu.edu/shapiro03vulnerabilities.html.

Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast ca-
pability system. In Proceedings of the 17th ACM Symposium on Operating Sys-
tems Principles, pages 170–185, Charleston, SC, US, December 1999. URL http:
//www.eros-os.org/papers/sosp99-eros-preprint.ps.

Livio Soares and Michael Stumm. FlexSC: Flexible system call scheduling with
exception-less system calls. In USENIX Symposium on Operating Systems Design
and Implementation, 2010.

Udo Steinberg. Personal communication, 2013.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

http://www.rdrop.com/users/paulmck/rclock/ rcu.2002.07.08.pdf
http://ssrg.nicta.com.au/
citeseer.ist.psu.edu/shapiro03vulnerabilities.html
http://www.eros-os.org/papers/sosp99-eros-preprint.ps
http://www.eros-os.org/papers/sosp99-eros-preprint.ps

1:30 Elphinstone and Heiser

Udo Steinberg and Bernhard Kauer. NOVA: A microhypervisor-based secure virtual-
ization architecture. In Proceedings of the 5th EuroSys Conference, pages 209–222,
Paris, FR, April 2010.

Udo Steinberg, Jean Wolter, and Hermann Härtig. Fast component interaction for real-
time systems. In Euromicro Conference on Real-Time Systems, pages 89–97, Palma
de Mallorca, ES, July 2005.

Andrew S. Tanenbaum. Lessons learned from 30 years of MINIX. Communications of
the ACM, 59(3):70–78, 2016.

Volkmar Uhlig. Scalability of Microkernel-Based Systems. PhD thesis, University of
Karlsruhe, Karlsruhe, Germany, June 2005.

Michael von Tessin. The clustered multikernel: An approach to formal verification
of multiprocessor OS kernels. In 2nd Workshop on Systems for Future Multi-core
Architectures, pages 1–6, Bern, Switzerland, April 2012.

Michael von Tessin. The Clustered Multikernel: An Approach to Formal Verification of
Multiprocessor Operating-System Kernels. PhD thesis, School of Computer Science
and Engineering, UNSW, Sydney, Australia, Sydney, Australia, December 2013.

Matthew Warton. Single kernel stack L4. BE thesis, School of Computer Science and
Engineering, Sydney, Australia, November 2005.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information flow explicit in HiStar. Communications of the ACM, 54(11):93–101,
November 2011.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 1, Publication date: April 2016.

	Introduction
	Background
	The L4 Microkernel Family
	Modern Representatives

	Microkernel Design
	Minimality and Generality
	IPC
	Synchronous IPC
	IPC Message Structure
	IPC Destinations
	IPC Timeouts
	Communication Control

	User-Level Device Drivers
	Resource Management
	Process Hierarchy
	Recursive Page Mappings
	Kernel Memory
	Time

	Microkernel Implementation
	Strict Process Orientation and Virtual TCB Array
	Lazy Scheduling
	Direct Process Switch
	Preemption
	Nonportability
	Nonstandard Calling Convention
	Implementation Language

	Other Lessons
	Virtualisation
	Multicore
	The Influence of Architecture
	The Influence of Verification

	Conclusions

