Secure architectures on a
verified microkernel

Andrew Boyton

2 W

School of Computer Science and Engineering

Univeristy of New South Wales

Sydney, Australia

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

August 2014

THE UNIVERSITY OF NEW SOUTH WALES
Thesis/Dissertation Sheet

Surname or Family name: Boyton
First name: Andrew Other name/s: James

Abbreviation for degree as given in the University
calendar: PhD

School: Computer Science and Engineering Faculty: Engineering

Title: Secure architectures on a verified microkernel

Abstract 350 words maximum:

The safety and security of software systems depends on how they are initially configured. Manually writing program code
that establishes such an initial configuration is a tedious and error-prone process, and yet most systems now are initialised
with manually written, ad-hoc code.

This thesis provides a solution to this process, presenting an automatic and formally verified system initialiser for
component-based systems built on the general-purpose microkernel seL4.

The initialiser takes a declarative formal description of the desired initialised state, and uses selL4-provided services to
create all necessary components, setup their communication channels, and distribute the required capabilities.

We analyse a model for capability-based systems, namely the take-grant protection model, and extend the existing
literature to develop a formal model in Isabelle/HOL that models real-world capability-based systems such as seL4 more
accurately. We use this to demonstrate how the security of a system can be conferred by capabilities.

We provide a formal algorithm of system initialisation and prove, in the theorem prover Isabelle/HOL, that the resulting
state conforms with the desired one, giving us an unprecedented level of assurance for the correctness of system
initialisation. Our proof formally connects to the existing functional correctness proof of the seL4 microkernel.

In the process of this work, we develop a custom separation algebra, with a fine-level of granularity, for reasoning about
both the API of the seL4 microkernel and the user-level code running on selL4.

Declaration relating to disposition of project thesis/dissertation

| hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in
whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act
1968. | retain all property rights, such as patent rights. | also retain the right to use in future works (such as articles or books) all or part of
this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to
doctoral theses only).

Witness i} ate

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a
period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the
approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

Originality Statement

‘T hereby declare that this submission is my own work and to the best of
my knowledge it contains no materials previously published or written by
another person, or substantial proportions of material which have been
accepted for the award of any other degree or diploma at UNSW or any
other educational institution, except where due acknowledgement is made
in the thesis. Any contribution made to the research by others, with whom
I have worked at UNSW or elsewhere, is explicitly acknowledged in the
thesis. I also declare that the intellectual content of this thesis is the prod-
uct of my own work, except to the extent that assistance from others in
the project’s design and conception or in style, presentation, and linguistic

expression is acknowledged.’

Signed: A‘W/’Jﬂn/ Pm/f&
o 2992014

Copyright Statement

‘T hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part
in the University libraries in all forms of media, now or here after known,
subject to the provisions of the Copyright Act 1968. I retain all proprietary
rights, such as patent rights. I also retain the right to use in future works
(such as articles or books) all or part of this thesis or dissertation. I also
authorise University Microfilms to use the 350 word abstract of my thesis
in Dissertation Abstract International (this is applicable to doctoral theses
only). I have either used no substantial portions of copyright material in
my thesis or I have obtained permission to use copyright material; where
permission has not been granted I have applied/will apply for a partial

restriction of the digital copy of my thesis or dissertation.’

Signed: A—Mlﬂ'@u/ BOI/G\
Date: 29 / § (E’«""}{Lf'

Authenticity Statement

T certify that the Library deposit digital copy is a direct equivalent of the
final officially approved version of my thesis. No emendation of content
has occurred and if there are any minor variations in formatting, they are

the result of the conversion to digital format.’

Signed: A‘p\dd’eu/ BU‘,/{G/!\
Date: 2 / 7 (ol

Abstract

The safety and security of software systems depends on how they are initially
configured. Manually writing program code that establishes such an initial con-
figuration is a tedious and error-prone process, and yet most systems now are
initialised with manually written, ad-hoc code.

This thesis provides a solution to this process, presenting an automatic and for-
mally verified system initialiser for component-based systems built on the general-
purpose microkernel seL4.

The initialiser takes a declarative formal description of the desired initialised
state, and uses seL4-provided services to create all necessary components, setup
their communication channels, and distribute the required capabilities.

We analyse a model for capability-based systems, namely the take-grant pro-
tection model, and extend the existing literature to develop a formal model in
Isabelle/HOL that models real-world capability-based systems such as seL4 more
accurately. We use this to demonstrate how the security of a system can be con-
ferred by capabilities.

We provide a formal algorithm of system initialisation and prove, in the theo-
rem prover Isabelle/HOL, that the resulting state conforms with the desired one,
giving us an unprecedented level of assurance for the correctness of system ini-
tialisation. Our proof formally connects to the existing functional correctness
proof of the seL4 microkernel.

In the process of this work, we develop a custom separation algebra, with a
fine-level of granularity, for reasoning about both the API of the seL4 microkernel

and the user-level code running on seL4.

Acknowledgements

I would like to thank my supervisors, Gerwin Klein for his support and direction,
and understanding of all things verification related, June Andronick for always
helping me stay on track and work out how to explain things more clearly, and
Kevin Elphinstone for his help with all things kernel related and for keeping a
verification student a little more honest.

I would also like to thank all the people in the Trustworthy Systems group
at NICTA. Your friendship and support has made doing this research rather en-
joyable. In particular, I would like to thank David Greenaway, a dear brother
in Christ and a constant help in all things PhD related, Rafal Kolanski for both
introducing me to the wonderful world of formal verification at NICTA and for
getting me started on separation logic in the first place. If only I had listened
to you earlier my PhD might have been done sooner. I would like to thank Cal-
lum Bannister and Xin Gao for their help with formalising the seL4 API and
with all things separation logic related, Thomas Sewell for all his frequent Isabelle
help, and Matthew Fernandez for his advice with capDL and making C programs
actually run on seL4.

Finally, I'd also like to thank my church family at Unichurch, members both
past and present, for their love, friendship, and encouragement over the last
decade or so, and my wonderful wife Chloe for putting up with me through my
PhD and for her unconditional love, encouragement, and support throughout it
all.

vii

Contents

Contents
List of Figures

1 Introduction
1.1 Thesis objectives and contributions L.

1.2 Outline

2 Related work
2.1 Operating System Initialisation
2.2 SeparationLogic o L.
2.3 The take-grant protectionmodel

2.4 SUMMAIY e e

3 Background
3.1 Formal verification
3.2 Syntax and notation of Isabelle/HOL
3.3 Separationlogic L L.
3.4 TheseLgmicrokernel

3.5 SUMMAIY . . . v v v v v ot e e e e e

4 Capability-Based Access Control
4.1 Take-grant protectionmodel Lo L.
4.2 Extensions to the take-grant protection model
4.3 Formalisation of the state of the take-grant protection model . . .
4.4 Operations in the take-grantmodel
4.5 Authority confinement L Lo oL,
4.6 Isolation
4.7 Informationflow
4.8 Conclusion

4.9 SUMMAry

viii

10

12

14

15
15
17
22

22

34

CONTENTS ix

5 System initialisation 63
5.1 Initialisation of computer systems 63
5.2 seLg4initialisation. 66
5.3 Formal model of system initialisation 67
5.4 Cimplementation 79
5.5 Conclusion 83
56 SUMMAIY 83
6 Separation logic 85
6.1 Why not use standard Hoare logic? 86
6.2 A simple introduction to separation logic 88
6.3 Anabstract separationlogic Lo Lo 90
6.4 The properties of a separationlogic 93
6.5 Defining a fine-grained separation logic forcapDL 95
6.6 The arrows of our separationlogic. 98
6.7 Theframerule 102
6.8 Conclusion 104
6.9 Summary 105
7 Correctness of system initialisation 107
71 Correct object initialisation 108
72 State of the system initialiser 111
73 Top-level theorem 116
7.4 seLg4kernel semantics 116
75 Well-formed constraints and assumptions of the capDL specification 119
7.6 Decomposition of the final theorem 120
77 Conclusion 133
78 Summary 135
8 Conclusion 137
8.1 Discussion e 137
8.2 Implementation experience 138
83 Futurework. 140
8.4 Concludingremarks 143

Bibliography 145

List of Figures

1.1

1.2

1.3

3.1

3.2
33
3.4
35
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9
4.10

4.11
4.12

An example MILS-based system. 2
A very simple seL4-based system with two threads communicating

viaasharedendpoint. Lo L. 3
An overview of the system initialiser. 4

A seL4-based system with two threads that can communicate via an
endpoint. e 23
An example capabilityspace. L oo L 26

The refinement layers in the verification of seL4 functional correctness. 29

The labelling of access control of a seL4-based system. 30
Some of the suite of tools for producing a capDL specification 31
CapDL textual description of the state of Figure3.1. 32
CapDL model in the seL4 refinement chain (where arrows denote

formal proof). 33
An example take-grant system. L. 36
The take operation 37
The grantoperation, 37
The create operation e 37
The remove operation 37
A sequence of operations that transfer a capability frome, toe,. . .. 39
A example illustrating the dangers of identifier reuse. Entity e, is able

to gain fullaccesstoe,. oo 40
A sel4 system with two processes that store their capabilities in a

common storage object. L L L L L. 41
Figure 4.8 modelled using Storerights. 42
An entity e,, taking a capability from another entity e,, where both e,

and ey, are storing their capabilities in other entities. 43
Notation for capabilities stored in other entities. 43

An example state. The entity e, has capabilities ¢;, ¢,, and ¢;. The

capability c, is from the store-connected entitye;. 44

List of Figures Xi

413
4.14
4.15
4.16
4.17
418
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
53
5-4
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15

6.1
6.2

7.1
7.2
73
7-4

Alternate representation of the example in Figure 4.12. 46
Legal definition L 47
Take Operation 48
Grant Operation 48
Create Operation 49
Remove Operation 49
Revoke Operation 50
Destroy Operation 51
CopyOperation 51
In this example, entity e; can gain read access to entitye,. 52
Generalised capability creation operation. 55

In this example, information can flow from the island with entity e,

to the island with entity e, and from the island with entity e, to the

island withentityes. L. .. 60
An example seL4 system, reshown from Figure3.1. 64
Overview of initialiser correctness proof. 65
Initial state, after kernel booting. 66
capDL specification of Figures.t. 67
The top-level definition of the system initialiser model. 69
The different object types the initialiser supports.. 70
Kernel state, after create_objects. 71
Kernel state, after create_irq_caps. 74
Kernel state, after duplicate_caps. 75
Kernel state, after init_cspace. 78
The C implementation of init_system. 79
The global variables used by the C implementation. 80
The C implementation of init_cspace. 81
The C implementation of init_cnode. 81
The C implementation of init_cnode_slot. 82
Lifting the capDL object heap to the component heap. 96
Frame rules for the leaf functionsof capDL. 104
Overview of initialiser correctness proof. 107
Bijection between capDL textual specification and the kernel state. . . 109
API specification of seL4_CNode_Move 118

Individual rules for init_tcbs and init_cspace. 128

Chapter 1

Introduction

Complex computer systems are given increasing control in our lives. In many of
these systems, a malfunction in a single part can take down the entire system.

One commonly used technique for mitigating the impact of malfunctioning
software is to split larger systems into several smaller components, each with a lim-
ited level of control over the system. For example, Apple sandboxes applications,
and allows the user to restrict games from accessing their phone’s location (iOS 7:
Understanding Location Services 2014). Google restricts the rendering agent in the
Chrome browser from having access to the hard drive of your computer (Barth
et al.,, 2008). File and web servers are often not run on a single operating system,
but are separated into virtualised servers running on a single computer system to
restrict their access to each other. We can achieve this sandboxing of applications
by breaking systems into components, and putting these components in virtual
“boxes” with reduced access and well-defined communication channels between
them.

This idea is an old one. The principle of least privilege—giving components
only the access that they require—was first coined by Saltzer (1974) to describe the
design philosophy of the Multics operating system. The idea of only handing over
the required access or information is of course much older—the military concept
of “need-to-know” embodies this principle.

Rushby, examining the state of operating system security, proposed the con-
cept of a separation kernel (Rushby, 1981), where software is split into several
independent components. Individual components running on the separation ker-
nel should run equivalently to as if they were running as a distributed system on
discrete hardware, where the only mechanism for components to communicate or
interact with each other is through explicit channels placed by the system designer.
For example Figure 1.1 shows a simple system where an application is able to send

information to a network only through a trusted encryption service.

2 CHAPTER 1. INTRODUCTION

Application er-:cr;lrjsutai(cj)n Network [~
P e service
service

\ FA 7‘
N N

Separation kernel

Figure 1.1: An example MILS-based system.

Systems with such a design are often said to implement the MILS philoso-
phy—Multiple Independent Levels of Security (Alves-Foss et al., 2006). There
are numerous MILS-style systems, such as Greenhills Integrity kernel (Greenhills
Software, Inc., 2008), EROS (Shapiro, 1999), and seL4 (Klein et al., 2014). The one
we concentrate on in this thesis is seL4, an open-source microkernel with a full
functional correctness proof showing its C code correctly implements its abstract
specification (Klein et al., 2009) and its compiled binary correctly implements the
C source semantics (Sewell et al., 2013). On top of the abstract specification Sewell
et al. (2011) showed that seL4 maintains authority confinement and integrity, and
Murray et al. (2013) showed noninterference for the seL4 kernel. These results
place an upper bound on how authority and information may flow in a seL4 sys-
tem, based on the authority present in the capabilities held by the components of
the system.

seL4 is a capability-based microkernel, meaning that authority is conferred by
capabilities. Capabilities, first introduced by Dennis and Van Horn (1966), are an
unforgeable, explicit set of access rights to an entity, such as a page in memory or a
communication channel between components. seL4, being a take-grant based sys-
tem (a concept we examine in detail in Chapter 4), uses capabilities to both confer
the authority to communicate and confer the authority to transfer capabilities.

In this work, we are not interested in how to design or verify a MILS-based
system, but instead examine the question “how do we correctly initialise such
systems?”. This question is especially important in MILS-based systems as the
security of such a system generally requires the access control primitives to be
correctly provisioned. For example, the authority confinement, integrity, and
non-interference proofs for the seL4 microkernel all rely on the capabilities of the
system being configured in conformance with the access control policy (Sewell
et al., 2011; Murray et al,, 2013). Without this, these security results are null and

void.

The initialisation and configuration of computer systems is a hard problem.
The abstractions commonly used to configure systems are generally in the pro-
cess of being initialised themselves and thus cannot be used. Additionally, the
initial processes that configure a system are often given elevated authority and
special care must be taken to ensure that these processes appropriately manage
and diminish this authority (Shapiro and Hardy, 2002).

Previous work in the correct initialisation of MILS-style systems has either
been informal, or at best, modelled by high-level specifications which are dis-
connected from the operating system code. In this thesis, we move beyond the
existing work of simply initialising MILS-style systems, and examine how we can

do so both automatically and provably correctly.

Thread A Thread B

TCB, TCBg
CNODE,, CNODE,

Shared
CNODE .
- A2 Write Endpoint Read
= EP

[FRAME J«——
FRAME
: * (SECTION)

Figure 1.2: A very simple seL4-based system with two threads commu-
nicating via a shared endpoint.

PD

>
A
CONTEXT

CONTEXT
V<
O
vy}

A simple example of a system that we could initialise is illustrated in Figure 1.2.
For seL4, we can specify the state of such a system using the capability distribution
language (capDL), a declarative specification of the objects and capabilities within
a system. CapDL is designed to have the right level of granularity for describing
systems for initialisation, and is suitable for reasoning about the security of our
system as it has been formalised and linked to the above authority confinement,
integrity, and noninterference proofs of seL4 (Boyton et al., 2013).

In this thesis we propose starting our systems using a system initialiser—a
fixed formal algorithm for the first task that runs on a seL4 system. Our system
initialiser takes a declarative capDL specification and takes us from an initial seL4
boot state to a final initialised state in conformance with our given specification, as
shown in Figure 1.3. We also prove the correctness of our algorithm with respect
to a verified API for the seL.4 microkernel.

We reason that each step of formalised algorithm brings us one step closer to
an initialised system, and that after our system initialiser has run, the final state of

the system will be in conformance with our given specification.

4 CHAPTER 1. INTRODUCTION

capDL
spec
5 Conformance
g x Proof
£
|
; -v- Final
Initial Boot it/ Initialised
State specification State

Figure 1.3: An overview of the system initialiser.

When showing that a given step gets us closed to an initialised system, we also
need to ensure that this step is not destroying the work of preceding steps. In a
running system, this is usually expressed as preserving a global invariant. The
challenge when reasoning about an initialiser is that no invariant holds yet—the
initialiser is in the process of creating a state that would satisty the invariant of the
running system. So for each step, we need to explicitly state (and prove) not only
what each step of initialisation does but also what it does not modify. Standard
Hoare logic makes such reasoning very hard-going. One approach that has been
used to simplify such reasoning in the past is separation logic, first proposed by
Reynolds (2002), which allows specifications to be written that both how memory
changes and how memory remains unchanged. Because of this, we developed a
separation logic for reasoning about the transformation of objects, and used this
separation logic to prove the correctness of our system initialiser.

All of the definitions, theorems and proofs shown in this thesis have been
verified using the theorem prover Isabelle/HOL, are presented in this document
using Isabelle/HOL, and are available under an open-source licence (Trustworthy

Systems Team, 2014).

1.1 Thesis objectives and contributions

The aim of this work is to be able to initialise a system in conformance with a given
declarative specification of the desired system state, along with proving a formal
proof that our final system state is correct. To achieve this, this thesis makes the

following contributions:

o We develop a formal algorithm for system initialisation that takes a declara-
tive specification of what we want our system to look like, using the capDL
language, and transforms the state of seL4 from its initial boot state to a final
state conforming to the given capDL specification. This process is illustrated

in Figure 1.3.

1.1. THESIS OBJECTIVES AND CONTRIBUTIONS 5

e We develop a formal proof of the correctness of this system initialisation
algorithm, proving that each step of our algorithm correctly creates and
configures the objects described, while not undoing the work done by the
previous steps. This proof is built on top of a verified specification of the
kernel API for a real operating system kernel, seL4, with all of the intricacies

that a real API specification entails.

¢ We prove the correctness of our algorithm using a separation logic that we
develop. We build our separation logic on an abstract separation logic (Klein
et al,, 2012), which we have extended to allow reasoning about monadic
maps and folding separation logic predicates over lists and sets. The sep-
aration logic we develop for this work is useful for reasoning about the
transformation of objects at a sub-object level of granularity. Additionally,
we show that separation logic, a logical framework commonly used to rea-
son about pointer programs and concurrency is good fit for our problem

domain.

e We develop a formalised take-grant protection model that extends the ex-
isting literature with the addition of shared capability storage as a first class
citizen, and an explicit create right to be able to create an entity using a
particular identifier (the latter of which allows entity destruction without
the problematic entity identifier reuse issues of earlier work (Boyton, 2009;
Shapiro, 1999)). This model is designed as a conceptual, high-level model
for the seL4 microkernel, showing authority confinement and simple in-
formation flow results. This work predates that of Sewell et al. (2011) and
Murray et al. (2013), and is not formally connected to the seL4 code itself,
but is used to explore the implications of capability-based systems more

broadly.

While the authority confinement, integrity, and non-interference proofs of
Sewell et al. (2011) and Murray et al. (2013) rely on the state of a seL4 system to be
in conformance with an access control policy, they do not provide any mechanism
to ensure that this is the case.

Our work fills in this gap by providing a formal algorithm for a seL4 program
that transforms the state of a seL4 system from its initial boot state into a final
initialised state that is in conformance with a given capDL specification. As Boy-
ton et al. (2013) has linked capDL to the above access control policies, our work
allows us to have confidence that we can start a system correctly and that seL4 will

enforce the security of our system as specified.

6 CHAPTER 1. INTRODUCTION

1.2 Outline

In this thesis we present our formalisation and proof of system initialisation, and
show why this is important for establishing the security of an overall system. The

chapters in this thesis are as follows:

Related work In Chapter 2 we examine the related work, examining how MILS-
style systems are traditionally initialised, examining the related work that has
been done using separation logic, and different formalisations of operating system

security using the take-grant protection model.

Background In Chapter 3 we give a brief introduction to formal verification,
Isabelle/HOL, separation logic, and seL4. We explore how it is we can have con-
fidence in the correctness of our programs, and introduce the theorem prover
Isabelle/HOL. We explain the notation of the theorem prover Isabelle/HOL, which
mirrors that of mathematics, lambda calculus, and functional programming. We
give a brief introduction to the style of reasoning that we employ in this thesis—
separation logic, an extension of Hoare Logic. Finally, we conclude this chapter
with an introduction to the seL4 microkernel (on which this work is based), the
capDL language developed to describe protection states, and some of the exist-
ing body of proof that has developed for seL4. We concentrate on the authority
confinement and integrity proofs (Sewell et al., 2011), and the non-interference
proofs (Murray et al., 2013) developed for seL4, which show how we can use seL4

to build secure systems, assuming they are correctly configured.

Capability-based access control In Chapter 4 we examine the take-grant protec-
tion model, the security model on which seL4 kernel has been based. We present a
formalisation of the take-grant protection model in Isabelle/HOL that extends the
existing literature by adding shared capability storage as a first class citizen and an

explicit create right to be able to create an entity using a particular identifier.

System initialisation In Chapter 5 we describe how component-based computer
systems are often initialised, focusing on the capability-based seL4 microkernel.
In this chapter we develop a formal algorithm for initialising seL4-based systems,
taking a capDL specification and starting the system in conformance with this
specification. We explain both the algorithm we developed for this thesis, which
we formalise in Isabelle/HOL, as well as a C implementation. The C implementa-

tion was implemented in conjunction with others.

Separation logic In Chapter 6 we give an overview of separation logic, the al-
gebraic structure behind separation logics, and the specific separation logic de-

veloped for this thesis. In this thesis, we build on an abstract separation logic

1.2. OUTLINE 7

developed in conjunction with this thesis, as published in Klein et al. (2012). We
show some extensions to this abstract separation logic that we developed for this

thesis.

Correctness of system initialisation In Chapter 7 we describe the formal cor-
rectness result of the system initialisation algorithm we developed, how we proved
it, and how we joined it to the existing seL4 proofs. In Section 7.4 we discuss the
seL4 API specifications developed by others alongside this thesis and how it builds

on the separation logic we developed in Chapter 6.

Conclusion We conclude in Chapter 8 with a discussion of our experience, limi-

tations, and future work.

We begin in the next chapter by looking at existing work our own work builds

upon, and work that is related to our own.

Chapter 2

Related work

2.1 Operating System Initialisation

Initialising systems according to a given configuration and guaranteeing that the
initialisation is correct are both hard and critical tasks. We examine here how
various security-focused operating systems are initialised, and what assurances

they provide to ensure the correctness of their initialisation.

Separation kernels Security requirements for high-assurance certification of
separation kernels, for instance, include providing evidence that the initialisa-
tion function establishes the system in a secure state consistent with the con-
figuration data (National Security Agency, 2007). Configuration data describes
high-level partitions and authorised information flows between partitions. In
existing systems, this the correctness of initialisation is at best modelled by high-
level specifications—the formal models of the MASK microkernel (Martin et al.,
2002) and the formal specification of PikeOS (Verbeek et al., 2014) both assume an
initial state conforming to the specified configuration exists. Our work assumes
the kernel has correctly initialised a single root task, and we then reason about the

correctness of this root task that initialises the rest of the system.

SELinux Rather than building a secure operating system from scratch, SELinux
instead grafts security into Linux by adding a reference monitor to authorise all se-
curity sensitive operations according to an security policy. These SELinux policies
allow fine grained MLS security, but the richness of these policies makes it difficult
to understand them. Hicks et al. (2007) developed formal semantics for SELinux
policies in Prolog and demonstrated that it was possible to show information flow
properties of SELinux policies, but this model has not been formally connected
to the SELinux code. For seL4, we can not only analyse the information flow

properties of our policy, but also know that seL4 enforces these policies (Murray

10 CHAPTER 2. RELATED WORK

et al., 2013). The question with seL4 remains on how to initialise our system in

conformance with this policy.

L4 based systems In L4 based systems, such as seL4, the first task that runs is
generally responsible for the initialisation of components at startup time. This task
is usually large, for example, in Nizza-based systems, the size of the loader that
starts applications is 37,000 lines of code, which is substantially larger than the L4
kernel itself (Singaravelu et al., 2006). Similarly, a simple case study on seL4 for a
secure access controller (Andronick et al., 2010) had a trusted router manager that
started up and tore down Linux virtual machines that was approximately 1,500
lines of code, which, whilst substantially smaller than the loader of Nizza, was
custom built to only start Linux. A high-level security model of the trusted router
manager was built based on an early version of the take-grant protection model
we developed for this thesis and present in Chapter 4. This model was shown to
have the desired security properties, although verification of the implementation
was never attempted. Our work not only models the code for initialising systems
at a much lower level of abstraction, but we prove the correctness of this formal

algorithm of system initialisation by formally joining it to the seL4 kernel model.

EROS Microkernel The EROS microkernel (Shapiro, 1999) partially side-steps
the initialisation problem by persistence; it simply restarts at the last saved check-
point. The initial system image is constructed by hand (Shapiro and Hardy, 2002)
and the creation and instantiation of confined subsystems uses constructors that
are part of the trusted computing base (Shapiro and Weber, 2000). The proof of
the correctness of these constructors is with respect to a high-level model of EROS,
not formally linked to the EROS code. What sets our work apart is the proof of

correctness of our model is shown by joining to the seL4 code itself.

OKL4 microkernel 'The OKL4 microkernel (Open Kernel Labs, 2008b) moves
the initialisation problem almost entirely to offline processing and runs the ini-
tialisation phase once, before the system image is built using a process called
Elfweaving (Open Kernel Labs, 2008a). The Elfweaving is done using a program
written in Python. Similarly to EROS, when the machine starts, it loads a fully
pre-initialised state. While this makes it possible to inspect the initialised state
offline, a full assurance case must be made for each system, which is something we

avoid by proving the correctness of our initialisation algorithm.

2.2 Separation Logic

In this work we construct a custom separation logic for reasoning about both a

formalised seL4 API and the correctness of the system initialiser algorithm. In this

2.2. SEPARATION LOGIC 11

section we give an overview of the existing literature for separation logic, and how

our work fits in to their body of work.

Separation algebras The foundations and algebraic structure of separation logic
have been analysed by Calcagno et al. (2007), Dang et al. (2011), and Dockins et al.
(2009). Many formalisations of separation logics base their definitions on the ax-
ioms of one of these, however the logics they construct are generally not reusable
by other projects. To address this, Klein et al. (2012) developed an abstract separa-
tion logic, based on the abstract separation algebra of Calcagno et al. (2007), and
instantiated a number of separation logics on top of this abstract separation logic,
including the separation logic presented in this work.! This abstract separation
logic of Klein et al. (2012) was developed in conjunction with this work. Our work
uses the abstract separation logic developed by Klein et al. (2012) to construct the

separation logic that we present in this work.

Permissional models Separation logic is commonly used for reasoning about
concurrent programs where multiple threads can read and/or write shared data
structures. To cope with this, Bornat et al. (2005), Parkinson (2005), and Dockins
et al. (2009) have introduced different permission models for separation logic.
Since our system initialiser is single threaded and is the only thread running in
the system, we have avoided the complexities that these permission models bring.
In this work we specify the state that an operation reads (but does not modify)
by specifying it in the pre and postconditions of a Hoare triple. This gives us a

simpler model to reason about.

Heap models The Burstall-Bornat model (developed by Burstall (1972) and for-
malised by Bornat (2000)) is commonly used to reason about memory heaps with
different types of objects (Tuch, 2008; Filliatre and Marché, 2007). In this model,
the object heap is modelled as a collection of heaps. In our approach we use a
variation of this model, mapping the multiple heaps of the Burstall-Bornat model
to a single component heap from object identifiers, combined with component
identifiers, to components of an object, where each object contains the same types
of components.> This construction is described in detail in Section 6.5. This mod-
ification allows both a more convenient definition of a separation logic for our

purposes, as well as more convenient reasoning using the logic.

! Klein et al. (2012) presented an abstract separation logic, and a number of instan-
tiations of this logic, including one that we developed for this work. The version we
presented in Klein et al. (2012) has a different heap model to the heap model we present
here, as we explain in Section 6.5.

*In our model the similarity between different types of objects is much greater than
their differences, making treating their components (namely the capabilities and the fields
of an object) as the same type more convenient.

12 CHAPTER 2. RELATED WORK

By working on a simple component heap using a monadic specification, we
are able to avoid many issues associated with the more complicated separation
models of programming languages, such as the footprint of objects in a C memory
heap (Tuch, 2008) or the inheritance of objects in the Java object heap (Parkinson,

2005; Parkinson and Bierman, 2008).

Granularity 'The granularity of a separation logic is normally something that
is baked into its design. Jensen and Birkedal (2012) developed a separation logic
where the granularity can be specified differently for different proofs, albeit with
greater complexity in the proofs themselves. We avoid such complexities by care-
fully designing our separation logic to have the required level of granularity from
the start.

2.3 The take-grant protection model

The take-grant protection model (Jones et al., 1976; Lipton and Snyder, 1977; Sny-
der, 1977; Bishop and Snyder, 1979) is a family of formal models of a protection
system where the possible future distribution of authority may be analysed. The
key result of the take-grant models, is that security questions such as “can the
entity x ever gain read access to the entity y?” is decidable. The take-grant model
is in contrast to the HRU model of Harrison et al. (1976), where they showed that
the above security question is in fact undecidable for an arbitrary system.

There have been a number of extensions and formalisations of the take-grant
model. Our work builds on some of these, and extends them with two new
contributions—the addition of shared capability storage as a first class citizen,
and an explicit create right to be able to create an entity using a particular iden-
tifier. The take-grant protection model that we present in this work is designed
as a conceptual, high-level model for the seL4 microkernel, showing authority
confinement and simple information flow results.

We explain the take-grant protection model and our contributions to these
models in detail in Chapter 4, but give a brief overview of the existing work and

how we compare here.

Traditional models Traditional take-grant protection models analysed the ac-
cess rights that an entity could explicitly gain access to (Jones et al., 1976), and
the information an entity could implicitly gain access to, without necessarily ac-
quiring the direct authority to do so (Bishop and Snyder, 1979). These models
distinguished between active and passive entities (that is, subjects and objects),
which made the security models more nuanced than the model that we present

here.

2.3. THE TAKE-GRANT PROTECTION MODEL 13

These models do not examine the concept of entity destruction or the finite
nature of memory. Instead, entities are considered to always exist and any entity
can create an unlimited number of other entities. By avoiding reasoning about
entity destruction and the finite nature of entity identifiers, these models avoid any
potential issues of identifier reuse. By allowing entity destruction, we allow the
possibility of a new entity being created with the same identifier as a deleted object.
This reuse of entity identifiers can greatly complicate the security of a model. We
cover these issues of identifier reuse in detail in Section 4.2.

Our work adds the concept of entity destruction and identifier reuse, and does
so in a way that models the nature of real-world systems such as seL4 more closely
and still allowing the same reasoning about the explicit and implicit access entities

can gain.

Diminish-take and SW access models 'The diminish-take access model (Shapiro,
1999) adds new “diminished” access rights that filter all capabilities access through
these diminished capabilities. These additions do not change the decidability of
the model, but allow sharing of capabilities between entities to be done in con-
trolled manner. Shapiro also introduced SW (Shapiro-Weber) as a formal model
of EROS, with a similar authority model to the diminished-take model.

In these models, Shapiro is the first to add entity destruction (present in the
HRU formalisation of access control (Harrison et al., 1976)) to the take-grant
protection model. He does not allow identifier reuse, that is, when an entity is
destroyed, the identifier of the destroyed object cannot be reused by another object.
In our work, we allow the identifiers of deleted objects to be reused, which more
closely models the behaviour of systems such as seL4 and EROS.

The SW model does not distinguish between active and passive entities (that

is, subjects and objects). This is a pattern that we follow in our work.

Elkaduwe et al’s security model for seL4 Elkaduwe et al. (2008) where the first
to formalise a take-grant protection model in a theorem prover. Their aim was to
produce a high-level security model for the seL4 microkernel. Like Shapiro (1999),
Elkaduwe et al. did not distinguish between active and passive entities.

Elkaduwe et al. (2008) restricted the creation of entities and required that en-
tities are only able to create other entities if they possess a capability with Create
access rights. Their model though still allows an unbounded number of entities to
be created, which is unlike the seL4 kernel that it seeks to model. Entity destruc-
tion and entity identifier reuse were not considered in this model, which simplified
the model considerably.

Our formalisation of the take-grant protection model is based directly on

this work. We extend their work by the addition of non-determinism, restricting

14 CHAPTER 2. RELATED WORK

object creation to more closely model the seL4 microkernel and the finite nature
of memory, and added the sharing of capabilities as a first class citizen. These

contributions are explained in detail in Chapter 4.

Chapter Summary

» Existing work on the initialisation of operating systems has either
been informal, or at best modelled at a very high-level of abstrac-
tion with no connection to the underlying operating system code.
Our work aims to bridge this gap, developing a formal algorithm
for system initialisation that is proven correct by formally connect-

ing it to the existing seL4 proofs.

» Separation logic is a technique that has been used to prove prop-
erties about a wide variety codebases and models. Rather than
developing another separation logic from scratch, we utilise an ex-
isting abstract separation logic developed in conjunction with this
thesis (Klein et al., 2012). The separation logic we develop uses
a variation of the Burstall-Bornat model for object heaps, using
a single heap of object components. This allows us to elegantly

construct a separation logic with a fine level of granularity.

» 'The take-grant protection model is a formal model of a protection
system where security questions such as “can the entity x ever gain
read access to the entity y?” is decidable. These models tradition-
ally have not reasoned about the finite nature of computer systems,
and so have avoided many of the implications that come from hav-
ing to reuse memory. Our work extends the literature by taking

such reuse into account.

Chapter 3

Background

The goal of this thesis is to take a declarative specification of the desired state of a
seL4 system, using the capability distribution language capDL, and to verifiably
start the system in conformance with this given specification. In this chapter, we

introduce the work on which this thesis is based. In particular, we describe:

e Isabelle/HOL: In Section 3.1 we introduce formal verification, and the the-
orem prover Isabelle/HOL, and the notation that we use in the rest of this

document.

o Separation logic: In Section 3.3 we give a brief introduction to separation

logic. We explain separation logic in greater detail in Chapter 6.

o seL4: In Section 3.4 we introduce the seL4 microkernel, the capDL language,
the capDL kernel model, and the body of proofs that exist for seL4. We
introduce the authority confinement and integrity proofs of Sewell et al.
(2011) and the information flow proofs of Murray et al. (2013), and show

how they have been linked to capDL by Boyton et al. (2013).

These give us the basis for our work, developing a formal algorithm of sys-
tem initialisation, and showing how we can reason about the correctness of this
algorithm, using the existing seL4 proofs. Parts of this chapter have previously

appeared in Boyton et al. (2013) and Andronick et al. (2012).

3.1 Formal verification

In this discussion, it is important to work out how it is that we can “trust” our
computer systems to behave as intended. Trust in a computer program can come
about in a number of ways. We can make sure that the coder is very good, the
coder follows certain coding practices, or we could ensure the code is checked by

someone else. Alternatively, we could subject our code to a multitude of tests—as

15

16 CHAPTER 3. BACKGROUND

many as we can think of—hoping to uncover any undesired behaviours. Sadly, no
matter how many eyes check over a large body of code, nor how many tests we
run, neither seem to work—we keep finding bugs in even the simplest of code,
such as the bug Google employees found in a binary search algorithm in the Java
API, which had lain dormant for nine or so years (Norvig, 2006).

When we want to have greater confidence in the correctness of our software,
something more is needed. Pen-and-paper proofs allow confidence to be devel-
oped for an algorithm, but require a level of abstraction in which the finer details
are often ignored, such as the precise encoding of numbers. Such abstractions
can miss bugs, such as the arithmetic overflow present in the above binary search
example.

To avoid these issues, various machine aids can be employed. Model checking
is a technique where a computer program automatically checks certain properties
of a program or specification, such as deadlock freedom or termination. While
work is continuing on allowing model checking to scale to larger codebases, it is
generally limited to proving simple properties about small software systems.

In this thesis we use formal verification—developing human-written, machine-
checked proofs, in the interactive theorem prover Isabelle/HOL. We develop a
formal algorithm of what it means to correctly initialise a system, and show the
correctness of this algorithm with respect to a formalised API for seL4, which has
been shown to be a correct abstraction of the seL4 code. By joining our proofs to a
tully-realistic seL4 API, we can have great confidence that we have not abstracted
away important implementation details in our algorithm.

The formal algorithm we develop for this thesis, the formal specification of the
seL4 API, and all associated theorems in this work have been hand written and ma-
chine checked by the proof assistant Isabelle/ HOL (Nipkow et al., 2002). Isabelle
is a LCF-style (Gordon et al., 1979; Gordon, 2000) proof assistant commonly used
for verification. A LCF (or Logic for Computable Functions) theorem prover uses a
minimal proof kernel that must be trusted and then all other functionality goes
through this proof kernel. This approach is not dissimilar from the trusted kernel
approach of the seL4 microkernel that we use in this work. This allows us to have
a small, trustworthy base, and yet extend the functionality and not compromise
the trustworthiness of the theorem prover.

Isabelle/HOL is an instantiation of Higher-Order Logic (or HOL) in Isabelle.
Higher-Order Logic is an extension of first-order logic which adds types and
quantification over functions. This gives us a proving environment with a rich
variety of libraries and mathematic results. We examine the particular syntax of
Isabelle/HOL in Section 3.2.

3.2. SYNTAXAND NOTATION OF ISABELLE/HOL 17

3.2 Syntax and notation of Isabelle/ HOL

The Isabelle/HOL notation used in this thesis largely conforms to everyday math-

ematical notation, lambda calculus, and the conventions of functional program-

ming languages such as Haskell or Standard ML. The main concepts used in the

specification are functions, type declarations and non-recursive function defini-

tions.

Theorems

Types and

Functions

Theorems in this thesis are denoted using the following infer-

ence notation.

PpP—Q P
Q

This theorem states that, if P — Q and P are both true,
then Q is true.

Terms and functions in Isabelle all have a type. We express the
fact that a term x has type 't by the notation x :: t. Isabelle
supports both concrete types, such as natural numbers (nat),
and polymorphic types (which are distinguished from normal
types by a quote character 't).

Functions in Isabelle are total. Function application fol-
lows the convention of functional programming. That means
f x (often written as f(x) in mathematics) is the function f
applied to argument x. Multiple arguments are delimited by
spaces, that is, h x (3 4 y) is the function h applied to two
arguments namely x and 3 + y. The function h could be of
type h :: ‘a = nat = 'a list, meaning that it takes a parameter
of type “a, another parameter of type nat, and returns a value
of type ‘a list. The composition of two functions is defined as
fog=xf (gx).

Functions can be partially applied, that is, not all argu-
ments need be given at the call site. For the function h for
instance, the term h x would denote a function that expects
one further parameter. Functions can be applied to a set of
values using ', for example, f * {1,2,3} = {f 1,f 2, f 3}.

Functions can be higher-order, that is, they can again take
other functions as arguments. For example, the function h
of type nat = (nat = nat) = nat is a function whose first ar-

gument is a natural number and whose second argument is a

< Theorem 3.1

Modus ponens

18

Sets

Lists

Datatypes and
the option type

Words

CHAPTER 3. BACKGROUND

function from nat to nat. Predicates are functions that return
values of type bool.

We can update the value of a function using the nota-
tion: f(a := b), which stands for the function that at posi-
tion a returns the value b, and otherwise returns what f would
have returned. Its formal definition is f(a := b) = Ax. if x =

athen belse f x.

Sets in Isabelle are typed. For example, the set of natural num-
bers is of type nat set. The notation for sets follows that of
standard mathematics: set membership is denoted x € A, the
empty set (), the universal set UNIV, and the cardinality of a
finite set |A|. The term {a | 3b. a * b = 42} denotes the set of

factors of 42.

Lists in Isabelle are denoted [1, 2, 3, ...]. List membership is
denoted x € xs, the empty list [], and the length of a list |xs].
We append an element to the front of a list using the syntax
x-xs, and concatenate two lists using the syntax xs @ ys. The
list of numbers from a to b inclusive is denoted [a..b]. As is
common in mathematics, to improve readability, we implic-
itly convert between lists and sets when displaying our formal

definitions and theorems in this thesis.

New type constructors can be defined using the datatype com-
mand. The option type, for instance, is defined as a datatype
and often used to add a special element to an existing type to
indicate failure or undefinedness. Its definition is

datatype “a option = None | Some ‘a

The option type can be used to model partial functions
(sometimes called partial mappings). The function f of type
‘a = 'b option takes a value of type ‘a and optionally returns
a value of type 'b. A lookup function could for instance re-
turn None for lookup failure and Some r to indicate a result
r. For partial functions we introduce the constant map_empty
for the empty map, the notation f(a — b) as shorthand for
f (a:= Some b), and the notation [a - b] for the partial func-

tion that maps only the value a to the value b.

Isabelle has number of word types. In this work we use word32

and word8 which represent unsigned 32 bit and unsigned 8 bit

3.2. SYNTAXAND NOTATION OF ISABELLE/HOL 19

Pairs

Records

Let binding

words respectively. In the notation of this thesis we implicitly

convert from a word type to a natural number when necessary.

The type of pairs (or 2-tuples) is denoted by ‘a x 'b. Relations
can be modelled using the type (‘a x ‘a) set, that is, as a set
of pairs of the same type. The reflexive, transitive closure of a

relation r is denoted r*.

A record is a tuple with named fields. The definition
record point =

X :: nat

y :: nat
introduces a new type point that contains two fields x, and
Y, both of type nat. If p is of type point, the term x p is the
x-field of p and y p the y-field of p, that is, record fields names
can be used as accessor functions. Theterm (x=3,y=7 |
constructs a new record and stands for a point with x-field 3
and y-field 7. To update an existing record p, we write p (x :=
4]). This stands for the record that has the y-field of p and the
x-field 4.

To simplify definitions, we introduce the let notation, for ex-
ample,

lety=x*xx;b=y+1linhab
is shorthand for

h(x#*x)(x*xx+1)

Common functions

We utilise a number of functions in this thesis, many of which are common in

functional languages such as Haskell or Standard ML. We list them below.

XS [n]

[x4—xs. P x]

take n xs
drop n xs

map f xs

Zip xs ys

The nth element in a list xs.

The list xs filtered to only contain the elements for which the

predicate P x holds.

The first n elements of a list xs (or xs if n < |xs).

The list xs with the first n elements removed (or [] if n < |xs]).
The list where each element has the function f applied to it.

Makes a list of corresponding pairs from the two lists. If one list is

shorter, then the excess elements from the other list are discarded.

20 CHAPTER 3. BACKGROUND

foldl f a xs Reduces a list xs, from left-to-right using a binary operator f and

a starting value a.

foldr f xs a Reduces a list xs, from right-to-left using a binary operator f and

a starting value a.

map_of ps Turns an association list into a partial map, mapping the first

element of a pair to the second element of the pair.

NA... Px Applies a predicate P to a list of values xs and returns true if the
XEXS

predicate P x holds for all the elements x in the list xs.

State Monad and Do-Syntax

Since the system initialiser in this thesis is inherently state-based, many functions
in the specification modify state in some way. Isabelle/HOL provides a convenient
specification mechanism for this that is also known from functional languages
such as Haskell, the so-called state monad (Cock et al., 2008). A state monad is
merely a function from a state s to a pair of new state and return value ‘s x 'r. This
can be thought of as modelling a usual C function that has a side effect (produces
a new state) and returns a value. The syntax for chaining such functions together

is the following:

do
a<+f;
b« ga;
hab
od

In the example, first function f is called, returning value 4, and potentially chang-
ing the underlying state. In this new state g a executes, producing result b and
potentially using f’s result a. The whole do-block returns whatever h a b returns,
and produces the state after execution of h. This means the state is threaded
through the functions implicitly, while the result values are passed explicitly. The
type of each of the single functions is still 's = ‘s x ’r, potentially with additional
arguments if they make use of previous result values.

The idea is to make the syntax reminiscent of an imperative programming
style while staying in a strictly functional setting where the state and its type could
be made explicit if convenient. It also allows the type checker to enforce that
certain functions only modify certain parts of the state.

The library this specification is based on extends such state monads with non-
determinism and a mechanism to raise and check assertions. Non-determinism

basically means that functions do not return only one state and result, but a set

3.2. SYNTAXAND NOTATION OF ISABELLE/HOL 21

of possible new states and results. The type of such functions is abbreviated as
(’s, 'v) nondet_monad where s is the type of the state and 'v the type of the result
value. If the function does not return a result value, the type unit is used for 'v. In
this thesis, as most functions do not return a value, we omit the return value from
the presentation of our theorems for brevity.

We introduce here a number of basic monad functions:

gets expects a function s = ’v as argument and returns the
result of applying this function to the state. It does not
modify the state. It is usually used to extract one field from

the state when the state is modelled as a record. *

assert P fails if the predicate P is false, and returns nothing if it is
true.

assert_opt v fails if the value v is None, and returns x if it is Some x.

return returns its argument and does not modify the state. It is

used to perform computations that are state-independent.

fox applies function f to argument x. This alternative syntax for
function application makes it possible to write fewer paren-

theses. For example, f$ x + v is equivalent to f (x+v).

mapM f xs executes a monadic function f on each element of the list

xs in order, discarding the return result.

whileLoop ¢ Bi applies the body of a loop B, as long as the condition c is
true, given an initial loop iterator value i. This combinator

is taken from Greenaway et al. (2014).
inc_when P x when P is true, returns x + 1, otherwise returns x.
update_when P f ab when P is true, returns f (a — b), otherwise returns f.
As stated before, the full definitions, theorems, and proofs contained in this

thesis are all published under an open-source licence (Trustworthy Systems Team,

2014).

'As the system initialiser specification itself has no state, only an embedding of the
kernel state which it does not read (as will be explained in Section 7.4), it never uses gets.
The capDL kernel model does, however, get (and modify) the kernel state and so does use
gets (and the corresponding monadic operation modify).

22 CHAPTER 3. BACKGROUND

3.3 Separation logic

To reason about the correctness of our system initialiser algorithm, we need to
reason that each step of our algorithm creates and/or configures a specified object,
and that this step does not undo any of the work done by previous steps. To do so,
we use separation logic, an extension of Hoare logic (Hoare, 1969) first proposed
by Reynolds (2002).

Separation logic was first introduced for local reasoning about imperative
programs that access and modify computer memory, and is commonly used to
reason about concurrent programs. We use separation logic in this thesis to reason
about our formal model of system initialisation and how it transforms the objects
in the seL4 kernel state. We have found that it is an elegant fit for this style of
reasoning. The local reasoning provided by separation logic allows us to easily
specify exactly which objects are modified by the system initialiser and which

objects remain unchanged. We cover this in more detail in Chapter 6.

3.4 'The seL4 microkernel

In this section, we introduce the capability-based microkernel seL4 on which we
base this work. We introduce seL4, the existing formal verification work done on
seL4, and capDL—a high-level formalisation of the state and semantics of the seL4

kernel.

selL4 overview

The seL4 microkernel is a general-purpose operating system (OS) kernel designed
as a secure and reliable foundation for a wide variety of applications. An OS kernel
is the only software running in the privileged mode of the processor. The seL4
microkernel is formally verified for full functional correctness to both the C code
and the binary level on the ARM platform (Klein et al., 2009; Sewell et al., 2013).
This means that there exists a machine-checked proof that both the C code and
binary of seL4 are a correct refinement of its functional, abstract specification, as
explained in Section 3.4.

As a microkernel, seL4 provides a minimal number of OS services: threads,
inter-process communication, virtual memory, and capability-based access control.
Throughout this thesis we will use the seL4 system illustrated in Figure 3.1 as a
motivating example for this work. We also use this example in this section to
explain the OS services that seL4 provides. This system contains two threads, a
sender A and a receiver B, communicating via a shared endpoint EP, and a number

of other objects which we will explain below.

23

3.4. THE SEL4 MICROKERNEL

"3SIMI}0 UMOTs ATIOT[dXa ssafun s)Y3LI $s900€ [[NJ 2ABY 0} pawunsse axe saniiqedes [y *(L1durs are umoys jou are jerp
s101s A1p1qedes axoym) umoys santfiqedes [[e M Jurodpua Ue BIA JRDTUNTUTIOD UBD JBY) SPEIIY) OM) YIIM WdISAS paseq-+Tas v :L°E ainbig

(]
479 m_
| FIf FEATEERY e
NRRE I [T elgeL O4l
<m._.xwm_DOZO _ _=_ _ [T _=_ LT
sonliqeded eijx3 N N J s108/go DYl
SlIM
(—)
— ~ cﬂwﬂ aMe|
diM 9l siofs 2 .
. | sios v
| ani [got[| 3
— SI0IS o2 | n_m< |I|VE aM b
|| (NoILO3S) || < | ay SI0fS (2
|| JNvyHd ulodpu _ || an otk
ER mokus s
q H OUASY || amy A V4
ad an ik B S N 1d
4 ﬁ - ol ‘PEsY - +4
G o v B G >V
. - aot[] - PRR=FATe ad
S Q
42iS|q | N\ d3 L. — ame S}
nNu L] peay T N—7 " el — siols 2 W_
3 - julodpuz A ‘ %
B - poIELS ddONO =
mowo_m> |||‘_®t_)_m_ Odl m L] —.< _QWMM_QOWM_V_ m ®Omaw>
Mmomawo MDOZO MDOZO A|<I|
890 ~Yg01
J _ J
g peaiy | v peaiy |

24 CHAPTER 3. BACKGROUND

Each thread is represented by its thread control block (TCB), which stores its
context, virtual address space (VSpace), capability space (CSpace), and IPC bufter?.
A VSpace defines the memory accessible to the thread; it is represented by a set of
frames, generally organised in a hierarchical, architecture-dependent structure of
page tables and page directories.> Each virtual address space in seL4 is assigned
a unique address space identifier (ASID). CSpaces are kernel managed storage
for capabilities. A capability is an unforgeable token that confers authority to an
object. They are stored in a graph of capability nodes (CNodes) and are explained
in detail in Chapter 4. In seL4, when a thread invokes an operation on an object
such as sending a message to an endpoint using the seL4 system call seL4_Send(),
it needs to provide an index into its CSpace that indexes a capability that possess
sufficient authority to that object. For instance, for sender A to send a message to
sender B, sender A needs a write capability to a shared endpoint, while receiver B
needs a read capability to the same endpoint. Similarly, for a thread to be able to
configure itself, its capability address space, or its virtual address space, it requires
a capability with sufficient permissions to its thread control block, its CNodes, or
its virtual memory objects* respectively. In our example, both threads have these
access rights.

seL4 supports three communication primitives: synchronous endpoints (often
referred to simply as endpoints), asynchronous endpoints, and shared memory.
A sender may send a message over an endpoint, and a receiver can wait on an
endpoint for a message. Sending a message over a synchronous endpoint is a
blocking operation where the sender is blocked until the receiver receives the
message. Sending over an asynchronous endpoint is a non-blocking operation.

Capabilities in seL4 can be transferred in two ways. Firstly, a copy can be sent
over a synchronous endpoint (but not an asynchronous endpoint) in a traditional
take-grant style approach (see Chapter 4) if the threads possess sufficient permis-
sions.” Secondly, a capability can be transferred between threads directly if the two
threads share a common CNode. Both of these notions of capability transfer are
formalised in Chapter 4.

Asynchronous endpoints are also used for the delivery of hardware interrupt
requests (IRQs). A thread with sufficient access privileges to a specific IRQ line
(namely an IRQ Handler Capability to that IRQ line) can bind an asynchronous

*The seL4 instruction to be executed by a thread is encoded in the registers of a thread
and the IPC buffer for the thread.

3In this thesis we reason about ARM-based systems, although the concepts work on
both ARM and x86 platforms. Sizes shown are for ARMv6. Note that on ARM-based
systems, a 1IMiB frame is called a section.

4Virtual memory objects consist of page directories, page tables, and frames.

>In Figure 3.1, neither thread is able to transfer capabilities this way as neither possess
a capability to an endpoint with grant permissions.

3.4. THE SEL4 MICROKERNEL 25

endpoint to that IRQ line. The thread is then able to wait on this asynchronous
endpoint until an interrupt is received. Internally, seL4 stores an array of IRQ
Nodes, one node per interrupt line, and when an asynchronous endpoint is bound
to an IRQ line, a capability to that endpoint is stored in the corresponding IRQ
Node. selL4 stores the correspondence from IRQ lines to IRQ Nodes in an IRQ
table. These concepts are illustrated in Figure 3.1.

An index into a CSpace is referred to as a capability pointer, and is decoded to
point to a capability slot in a CNode in a similar way as to how a virtual address
is decoded to point to a page in a guarded page table structure (Elkaduwe et al.,
2006). As the creation and traversing of capability spaces is an important part
of this thesis, we briefly explain how the decoding of a capability pointer to a
capability slot is done. A full understanding of the decoding algorithm is not
required, but a short example of capability decoding should hopefully assist the
reader in understanding the complexities of seL4’s capability spaces. To decode
the capability pointer 0x00200000, using a depth® of 32 bits, in the capability space
illustrated in Figure 3.2, we first strip the first 4 bits of the capability pointer (0x0)
as a guard’ (checking that the guard does indeed match the first 4 bits), leaving
0x0200000. The next 8 bits (0x02) are an index into the top level CNode, CNode,,
where we find an Endpoint Cap at the slot with index oxo2. Since we have reached a
capability that is not a CNode capability, we terminate the decoding, and thus the
capability pointer 0x00200000 points to this Endpoint Cap.

Similarly, to decode the capability pointer 0x0FF20000, with a depth of 32 bits,
we strip the first 4 bits (0x0) off as a guard as before, the next 8 bits (0xFF) index
the top level CNode, CNode,, and point to the CNode capability located in slot
0xFF. Since we have not translated 32 bits yet and have another CNode capability
that we can follow, we continue to decode the rest of the capability pointer, namely
0x200000. The CNode Cap in slot 0xFF of CNode, has an empty guard and points to
CNode;, so we use the next 4 bits (0x2) as an index to find the TCB Cap in the CNode,.
Since this capability is not a CNode, we terminate the decoding here as before, and
the capability pointer 0x0FF20000 points to this TCB Cap.

Capability spaces can be cyclic, allowing the capability pointer 0xOFFE1FF2 to
also point to the same TCB capability as the capability pointer 0x0FF20000 does
(an exercise that we will leave to the reader). As we said earlier, a full understand-
ing of seL4’s liberal capability storage semantics is not required to understand this
thesis, but it suffices to know that they are complicated, and that any process that

wants to distribute these capabilities must be careful to do so correctly. Whereas

%To translate a capability pointer, we always need to include a depth. The depth states
how many bits of the capability pointer should be decoded. The depth is specified by a
user when specifying a capability pointer.

7A CNode capability has a guard, which is a (potentially empty) number of bits.

26 CHAPTER 3. BACKGROUND

TCB

Guard: 0x0 (4 bits)

CNode
vy v 1 .
Guard: 0x00 (8 bits)
0x00 [CNodeCap @
CNode,
0x01
0x000 |Frame Cap o——»
0x02 | Endpoint Cap @&———»
0x001 [CNode Cap @———>»
0x03
0x002 |CNode Cap o———»
0x04
0x05
OxFFE
0x06
OxFFF
OxFE
OXFF [CNode Cap @
Guard: 0x0 (0 bits) v CNodeg

0x0 |CNode Cap o&——»

0x1

0x2 [TCB Cap o— >

OxE |CNode Cap o

OxF

Guard: 0x1 (4 bits)

Figure 3.2: An example capability space.

3.4. THE SEL4 MICROKERNEL 27

most users of seL4 will most likely never create such an intricate capability space,
the initialiser that we develop for this thesis should be able to support the creation
of them.

To be able to create a system such as the one described in Figure 3.1, seL4
allows the allocation of kernel objects by the retyping of untyped memory, an
abstraction of a region of physical memory. Possessing a capability to a region of
untyped memory confers the authority to allocate kernel objects, such as a CNode
or an Endpoint, in this region. At boot time, seL4 first pre-allocates memory for
itself and then gives the remainder to the initial user task in the form of capabilities
to untyped memory. To create the objects described in Figure 3.1, the initial user
task would retype this untyped memory to create the required objects by using the
seL4_Untyped_Retype system call.

This initial user task (sometimes called the root task) is the initialiser we are
targeting in this thesis. Its aim is first to use these untyped capabilities for cre-
ating the required objects, such as TCBa, TCBg, and CNodey, from Figure 3.1, and
then to initialise them appropriately, for example, to set TCBy’s CSpace to CNodea,.
This includes setting up communication channels, for example, storing the write
capability to EP in TCBA’s CSpace.

When seL4 allocates a new object, it creates a new capability with full ac-
cess rights to the newly created object. Further copies of the original capability
may be derived from the original capability (or from other derived copies), either
through explicit copying, or sending a copy of a capability through an Endpoint.
seL4 tracks this derivation of capabilities in a data structure called the capabil-
ity derivation tree (CDT) (Elkaduwe et al., 2007). The derived capabilities are
stored as children of the capability from which they are derived (which would
be the parent). Possessing an original capability confers more authority than a
derived capability—a user can revoke all copies of an original capability (by calling
seL4_CNode_Revoke), which deletes all derived capabilities. For this reason, it is
important to track the difference between original and derived capabilities. As
mentioned earlier in this section, these copies of a capability can be made by send-
ing a copy of a capability through an Endpoint using the seL4_Send system call, or
by copying the capability into another capability slot using the seL4_CNode_Copy
or seL4_CNode_Mint system calls (where minting a capability allows the copy to
have less access rights than the original).

In our example, we wish to have one thread with Read access to the shared
endpoint EP, and the other with Write access. The original capability to this end-
point (which possesses full access rights to the endpoint, namely, Read, Write,

and Grant) needs to be stored somewhere. In our example we have placed this

28 CHAPTER 3. BACKGROUND

“extra” capability in another CNode object CNodegyr,. This extra CNode also needs
a capability pointing to it, and so we store this capability in the CNode itself.

This creation of another CNode is not only convenient for initialisation (as
it allows us to avoid reasoning about capability deletion), it is necessary for the
security properties of seL4 shown by Sewell et al. (2011) (which are introduced
in detail in Section 3.4). Sewell et al. (2011) showed that an object with a parent
capability possesses rights over another object that possesses a child capability
derived from the parent capability (as encoded by the CDT). For example, seL4
allows the holder of a parent capability to revoke derived capabilities.

If two capabilities are derived from the original capability, like in our example
where the two threads both have capabilities to the Endpoint derived from the
original stored in CNodegytra, and then the original capability is deleted, then one of
the derived capabilities becomes the parent capability of the other, which could be
undesirable. For this reason, we do not delete the original capabilities in initialisa-
tion, and instead allow the user of the system to decide where to put these original
capabilities. Since this CNode object CNodegyy, is isolated from the other objects,
neither thread is able to use these original capabilities, which removes these secu-
rity risks. We do not make explicit in Figure 3.1 which capabilities are the original
capabilities. We instead make this information explicit in our formalisation of this

example using capDL in Section 3.4.

seL4 verification and capDL

As stated in the start of this chapter, the seL4 microkernel is formally verified for
full functional correctness to the binary level, as illustrated in Figure 3.3. This
functional correctness proof is done through refinement, a formalised proof that
the seL4 kernel implements an abstract specification of its behaviour. This refine-
ment proof first joins the abstract specification of seL4 to a formal model of the
seL4 source code (using Isabelle/HOL) (Klein et al., 2009), and then to a formal-
isation of the seL4 binary (using Isabelle/HOL, HOL4 and SMT solvers such as
73) (Sewell et al., 2013).

On top of this functional correctness proof, Sewell et al. (2011) showed that
seL4 maintains authority confinement and integrity. Authority confinement pro-
vides an upper bound on how authority may change, similar to the properties
of authority confinement we show of the take-grant model in Chapter 4, whilst
integrity provides an upper bound on write operations. They showed that, for any
initial state conforming to a user-specified access policy, seL4 will, a) ensure that
this policy is always obeyed, and b) ensure that the state will always be in confor-
mance with this policy (given a number of assumptions specified in their paper).

These access policies state precisely which rights certain object possess over other

3.4. THE SEL4 MICROKERNEL 29

’ Access Control + Information Flow ‘

ﬁ <] Automatic Translation

ﬁ Proof

’ Abstract Specification ‘

i

’ C Implementation (Semantics) ‘ << C Implementation

i

’ Kernel Binary (Semantics) ‘ << Kernel Binary

Figure 3.3: The refinement layers in the verification of seL4 functional
correctness.

objects. Murray et al. (2013) later extended this work to show noninterference
for the seL4 kernel, and showed exactly how to configure seL4 to provide this
noninterference. These results, while proven on the abstract specification, hold
on the C implementation and the binary via refinement. For a summary of these
results, and their implications, we point the reader to Klein et al. (2014). These
results both assume, however, that the system is started in conformance with an
access control policy, the process of which is the focus of this work.

A system does not imply a single access policy, but instead we can specify an
access control policy for a state, and then can show that our system implements
the policy. As a concrete example of what one of these access policies can look
like, we label the objects of our example state from Figure 3.1 in Figure 3.4. The
grey boxes show objects labelled with the same label and they grey arrows between
the labelled regions show the access permissions between the regions. A user is
then able to show, using the work of Boyton et al. (2013), that this capDL state does
implement this access control policy.®

This work of Sewell et al. (2011), Murray et al. (2013), and Boyton et al. (2013)
then allow us to reason about the access control, integrity and information flow of
this system at a high-level of abstraction, and know that these results hold on the
kernel implementation.

Despite the capability-oriented design of many microkernels, they generally
contain authority relevant to information flow and access control that is not con-
ferred by capabilities.® For example, in our example specification in Figure 3.1,
in the seL4 implementation the page table PT,, is mapped into the page directory
PDa not with a capability but with a pointer. Additionally, when a thread sends a

8The labels and authority of this example have not been proven, but are included as a
guide of what is possible.

Which is why the work of Sewell et al. (2011) and Murray et al. (2013) examined
more than the capabilities of the system, but also other non-capability data, such as page
directory and page table mappings.

CHAPTER 3. BACKGROUND

30

Domain A Domain B
(r
R A||
I CSpace > OZODm>._ Ozoomw CSpace —|
VSpace — IPC Buffer T IPC Buffer — VSpace
T) — 1
I~ Domain — H
_M 2" slots - Write o Read] 5
512 B S 288 T [EPC N 8 512 B
L_| - SyncSend _H_ 16 B Receive | T
U D> < ™ H A H P
dh All . e H
| Read, Write —
W% — b%MMWw and Grant I Mg _Um
| - H viMi
212 5lots A _E] Domain . e B
FRAME |«—— <
16KiB| |, N eaa and AEP FRAME H
2 siots 4KiB = rite AEP] . (SECTION)]
1KiB %A|M AsyncSend, M 27 slots H
— Recieve _lll_ 16 B 4 KiB -
N A o 2'¢ slots
. mw slots .
: 16 KiB
2KiB ead —
- — Write
A e ;)
Domain IRQ T B Domain Extra
s
v H
IRQ Table ﬁ ﬁ ﬁ ﬁ ﬂ _ﬁ_ﬁ_ﬁ_ _ﬁ_ ﬂ ﬂ CNODEgyTgA
IRQ Nodes OO0 OO0 --- O 0 0 \ 22 slots
L 64 B

—

Figure 3.4: The example state Figure 3.1, labelled with access control domains.

3.4. THE SEL4 MICROKERNEL 31

message through a synchronous endpoint, the authority to do so is checked upon
the start of sending the message. If the thread is blocked after starting to send this
message (as is the case when the receiver is not waiting for it), then the thread
sending has an implicit right to conclude sending this message, even if the explicit
right is removed whilst the thread is blocked. These implicit rights present in seL4
are detailed in Sewell et al. (2011).

Having all the protection state described by capabilities would enable reason-
ing about the access control and security of a system through capability distribu-
tions alone. It would also allow components and connections of user-level systems
on top of seL4 to be described by their capability distribution alone. Such a de-
scription is basically a graph with objects as nodes and capabilities as edges. To
reason about such specific graphs, the capability distribution language capDL (Kuz
et al., 2010) was developed. The capDL language unifies all information relevant to

information flow and access control as explicit capabilities.

——

CAmkKES

specification

CapDL
textual
description

CapDL translator

Kernel
debugging tools

Figure 3.5: Some of the suite of tools for producing a capDL specifica-
tion

Kuz et al. (2010) developed a formal semantics for the system state in Isabelle/
HOL, and a suite of tools for describing these capDL specifications, as illustrated
in Figure 3.5. To initialise a system such as the one shown in Figure 3.1, a user can
specify the configuration in a textual description, like the one shown in Figure 3.6,
and import the capDL description into Isabelle/HOL, where they can analyse the
corresponding access control policy in the theorem prover Isabelle/HOL. These
tools can also generate a C data structure that is used by the system initialiser to
start a system in conformance with the capDL specification, as described in Chap-
ter 5, and export the specification in an XML representation for use by other tools.

These capDL textual descriptions can be written by hand, or they can be generated

32 CHAPTER 3. BACKGROUND

arch armll cnode_a2 {
0x0: ep_shared (W)
objects { 0x2: cnode_al (guard: 0, guard_size: 28)
tcb_a = tcb (addr: 0x00000000, 0x3: pd_a
ip: 0x00000F10, 0x4: pt_a
sp: 0x00000100, 0x8: frame_al (RWG)
prio: 125) OxA: aep_irq (RW)
0xB: frame_a2 (RWG)
tcb_b = tcb (addr: 0xo0001000, 0xC: irg_node_0x04
ip: 0x00002E00, }
sp: 0x00100000,
prio: 125) cnode_b {
0x00: tcb_b
cnode_al = cnode (16 bits) 0x02: cnode_b (guard: 0, guard_size: 28)
cnode_a2 = cnode (16 bits) 0x04: ep_shared (R)
0x07: pd_b
cnode_b = cnode (12 bits) 0x08: frame_b (RWG)
OxFE: irqg_node_@xFE
cnode_extra = cnode (2 bits) }
pd_a = pd cnode_extra {
pt_a = pt 0x1: cnode_extra (guard: 0, guard_size: 28)
pd_b = pd 0x3: ep_shared (RWG)
}
frame_al = frame (4k)
frame_a2 = frame (4k) pd_a {
frame_b = frame (IM) 0x0: pt_a
}
ep_shared = ep
aep_irq = aep pt_a {
0x0: frame_al (RWG)
irg_node_0x04 = irq 0x4: frame_a2 (RWG)
irg_node_OxFE = irq }
+
pd_b {
0x0: frame_b (RWG)
caps { }
tcb_a {
cspace: cnode_al (guard: @, guard_size: 28) irg_node_0x04 {
vspace: pd_a OxA: aep_irq (RW)
ipc_buffer_slot: frame_al (RW) }
}
irg_node_OxFE {
tch_b { }
cspace: cnode_b (guard: @, guard_size: 28)}
vspace: pd_b
ipc_buffer_slot: frame_b (RW) cdt {
} (cnode_extra,0x0) {(cnode_a2, 0x0); (cnode_b, 0x3)}
}
cnode_al {
0x0: tcb_a irq maps {
0x1: cnode_a2 (guard: 0, guard_size: 28) 0x04: irqg_node_0x04
} OxFE: irg_node_0OxFE
}

Figure 3.6: CapDL textual description of the state of Figure 3.1.

3.4. THE SEL4 MICROKERNEL 33

automatically from high-level architecture specifications such as CAmKES (Kuz

et al., 2007), or objects from a running kernel using debugging tools.

CapDL kernel Access Control +
specification <::> Information Flow

@ @ <] Automatic Translation
ﬁ Proof

| Abstract Specification |

I

| C Implementation (Semantics) | <] C Implementation

i

| Kernel Binary (Semantics) | < Kernel Binary

Figure 3.7: CapDL model in the seL4 refinement chain (where arrows
denote formal proof).

Boyton et al. (2013) showed that capDL did in fact meet its design aim by show-
ing that we can describe complete access control system configurations (as for-
malised by Sewell et al. (2011)) by capability distributions alone (by using capDL).
They did this by showing that capDL descriptions can be mapped to a correspond-
ing access control policy, as shown in Figure 3.7.

This result justifies the use of capDL to describe the state of a system that
we wish to start a system in conformance with as we know that it captures the
authority of a system (as formalised by Sewell et al. (2011) and Murray et al. (2013))
through its capability distributions, and we know that seL4 will enforce this access
control on the resultant system. This means that each of the arrows in Figure 3.1
are capabilities in capDL, rather than a combination of capabilities and pointers in
the seL4 source code.

In addition to the language itself, which describes snapshots of system states
(which we call capDL system descriptions), Boyton et al. (2013) developed kernel
semantics for the capDL language that describes the effect of each kernel operation
on such states, and formally showed that this capDL kernel model is a correct
abstraction of existing models of seL4, with a complete refinement chain to the
binary level, as shown in Figure 3.7. This ensures that the seL4 kernel implements
the formal specification of the capDL kernel model.

The capDL kernel model abstracts the way that system calls are performed,
encoding the system call to be performed by a thread as an intent, rather than
encoding it as a series of bits scattered between the registers of a thread and the
IPC buffer.

It is into this framework that this thesis fits. First, we developed a formal

model for system initialisation, that takes a capDL system description as input

34 CHAPTER 3. BACKGROUND

of the initialiser, and we show that if the initialiser terminates, if does so in an
initialised state corresponding to the capDL description given as input. Secondly,
we prove this is the case by joining the proof of the system initialiser to a formal
specification of the seL4 API (the capDL kernel model) as explained in Section 7.4.

To prove the correctness of the system initialiser algorithm, and the seL4 API
specifications, we use a separation logic we developed for this thesis, as explained
in Chapter 6.

Chapter Summary

» Formal verification using the theorem prover Isabelle/HOL allows

us to trust the correctness of our software.

» To reason about the correctness of our formal algorithm we need to
reason that each step correctly creates or configures an object, and
also that each step does not undo the work done by the previous
steps. We find separation logic is a convenient way of doing this

style of reasoning.

» The seL4 microkernel can be used to construct systems with guar-
antees about the authority confinement, integrity, and information
flow. If a system is started in conformance with an access con-

trol policy, then seL4 has been formally proven to implement this
policy.

» The capability distribution language (capDL) can be used to de-
scribe the protection state of a system that we wish to initialise, and
has been formally linked to the access control policies of the above
authority confinement, integrity, and information flow proofs. The
system initialiser that we describe in this thesis takes a capDL de-
scription as input, and starts a system in conformance with the

description.

Chapter 4

Capability-Based Access Control

Software systems are becoming increasingly complicated, often built from software
components created by various third parties. To be able to have assurance that our
software systems are worthy of the trust that we increasingly place on them, we
want to make sure that these components are given precisely the access that they
require, and no more.

Capabilities, first introduced by Dennis and Van Horn (1966), allow us to
name and specify this access control at a fine level of granularity. A capability is an
unforgeable, explicit set of access rights to an entity, such as a page in memory or
a communication channel between components. Capabilities can be used confer
both the authority to communicate and the authority to transfer capabilities.

Analysing the security of an arbitrary system was shown to be undecidable by
Harrison et al. (1976), who showed that it was equivalent to solving the halting
problem. This result led to the creation of the take-grant protection model where
various security questions, such as authority confinement, are decidable.

In the remainder of this chapter, we introduce the traditional take-grant pro-
tection model in Section 4.1, and we extend the take-grant protection model with
two new additions in Section 4.2. We have formalised this extended take-grant
protection model in the theorem prover Isabelle/HOL. We first formalise the state
of the model in Section 4.3, and the operations in Section 4.4. We then show
a number of properties of the model, namely authority confinement of entities
in Section 4.5, the authority confinement of groups of connected entities in Sec-
tion 4.6, and we extend this to reason about the flow of information between these
groups of entities in Section 4.7. Finally we relate this work to other research on
the take-grant protection model in Section 4.8. All theorems in this chapter have
been formalised in Isabelle/HOL.

35

36 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

4.1 Take-grant protection model

The take-grant protection model (Jones et al., 1976; Lipton and Snyder, 1977; Sny-
der, 1977; Bishop and Snyder, 1979) is a family of formal models of a protection
system where the possible future distribution of authority may be analysed. The
take-grant protection model is a graph-based model, where entities are nodes
of a graph, and capabilities are the edges of the graph (labelled with their access
permissions). An example state with three entities, e,, e,, and e, is illustrated in
Figure 4.1. In this example, the entity e, has Write access to the entity e, and Take
access to e, and e, has Read access to e;.

These models have an alphabet of access rights comprised of Take and Grant,
and a finite number of inert access rights as fits the context such as Read and
Write.! For example Snyder (1981a) adds an Append right that allows information
to be added, but not destroyed.

Figure 4.1: An example take-grant system.

Early work by Jones et al. (1976) analysed which access rights an entity is able
to explicitly gain access to. Bishop and Snyder (1979) later analysed the informa-
tion an entity can implicitly gain access to, without necessarily acquiring the direct
authority to do so. The former were retrospectively called de jure rights (those
“rightfully” acquired) and the latter de facto rights (those that exist in fact, whether
by right or not). We analyse de jure rights in Section 4.5 and de facto rights in
Section 4.7.

The take-grant protection model has four key operations—take, grant, create,
and remove. All operations being performed by an entity must be authorised by
a capability that entity possesses (except entity creation, which is always autho-
rised in most take-grant protection models®). The take-grant protection model

seeks only to analyse the distribution and movement of capabilities, and does not

'Very early work (Jones et al., 1976; Lipton and Snyder, 1977) used the terms Read
and Write for what was subsequently called Take and Grant respectively. This changing of
naming occurred very early (Snyder, 1977). We follow the later conventions here.

*Restricting entity creation was first done by Elkaduwe et al. (2008) as discussed in
Section 4.2.

4.1. TAKE-GRANT PROTECTION MODEL 37

examine the reading and writing of data (although read and write capabilities are

generally present). We define these operations as follows:

Take An entity e, with a capability with a Take access right to another entity
e, can take a copy of one of that entity’s capabilities a3, as illustrated in

Figure 4.2.

Take ey Take ey
(=) @

Figure 4.2: The take operation

Grant An entity e, with a capability with a Grant access right to another entity
e, is able to grant a copy of one of its capabilities « to that entity, as

illustrated in Figure 4.3.

Grant

Figure 4.3: The grant operation

Create Any entity e, can create a new entity e,, to which it has full access

rights, as illustrated in Figure 4.4.

AII

rlghts

Figure 4.4: The create operation

Remove An entity e, can remove one of its capabilities a, as illustrated in Fig-

ure 4.5.

o
= Remove =

Figure 4.5: The remove operation

3We follow the literature and use a to mean any arbitrary capability.

38 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

We can use this model to both build systems and analyse what capabilities an
entity can acquire.

The key result of the take-grant protection model is that the security question
“is it true that p can & y?7 is decidable (Jones et al., 1976). A somewhat surprising
feature of this model that Jones et al. (1976) showed is that, assuming all entities
work together, an entity e, with a Take right to another entity e, can transfer an

arbitrary capability a to that entity, as illustrated in Figure 4.6.

4.2 Extensions to the take-grant protection model

Create access right

When implementing a capability-based system each entity requires an identifier
such as the memory address of the entity.

In a system where entities are created and destroyed, we either have the option
of reusing entity identifiers, or not. If we never reuse the identifiers of entities we
always have the risk of exhausting the finite supply of identifiers®. Alternatively,
reusing entity identifiers allows the possibility of impersonation of entities. For
example, let us consider the case where we have two entities, the entity with the
identifier e,, and the entity with the identifier eyG. If the former entity has a Read
capability to the latter, and these are the only entities and capabilities in the system,
then the entity with identifier e, should never be able to gain any more access
to the entity with identifier e,, and cannot in the standard take-grant protection
models.

Yet, if entity destruction is allowed, the entity with identifier e, is able to
destroy the entity with identifier e/, and create a new entity with identifier e, to
which is will have full access rights, as illustrated in Figure 4.7a. This behaviour is
certainly undesirable, as the entity with identifier e, is not actually able to gain full
access to the entity with identifier e, but instead a new entity with the identifier e,,.
This precludes us from making statements of the form “the entity with identifier e,
is never able to access the entity with identifier e,”, which are exactly the sort of
statements we wish to make.

This problem is not new, for example, Wu et al. (2013) have the same problem
when formalising the Role-Compatibility Model, and so their completeness theo-
rem for taint analysis is restricted to undeletable files (which generally would be

system files).

“Here a can be any access right, such as Read or Write.

5In real-world systems, computers are finite.

®Specifying “the entity with identifier e,” is cuambersome, and will normally be called
“the entity e,”, but the distinction is important here.

4.2. EXTENSIONS TO THE TAKE-GRANT PROTECTION MODEL 39

Take Take
ey ey ey ey

o —-e¢y creates e, :> o(v all_rights

\4

/

y

ey takes from e

ey takes from eq

Figure 4.6: A sequence of operations that transfer a capability from e,
toe,.
y

40 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

Read Create

n n

e, destroys ey e, destroys e

Create ! _ N

n n

ey creates ey €y creates e

(a) Traditional take-grant models (b) New take-grant model with
(extended with entity destruction) explicit Create access rights

y

y

Figure 4.7: A example illustrating the dangers of identifier reuse. Entity

e, is able to gain full access to e,.

It is for this reason, that Shapiro, in his SW model of EROS (Shapiro, 1999)—
an extension of the take-grant protection model, added a destroy operation that
did not allow identifier reuse.” Real world capability-based systems, such as the
EROS microkernel (which Shapiro was modelling) and the seL4 microkernel
(which we aim to model here) do allow entity destruction and entity identifier
reuse.

Rather than avoiding this problem, we have extended the standard take-grant
model (which did not support entity destruction at all) to allow both entity de-
struction and entity identifier reuse. We do this by adding a new, non-inert access
right Create, which confers the authority to create a new entity with the specified
identifier. Adding a Create access right was first done by Elkaduwe et al. (2008) to
model some of the restrictions that the seL4 microkernel has on entity creation.
These restrictions are present in seL4 to avoid the exhaustion of memory by an
entity creating an arbitrary number of other entities (Elkaduwe et al., 2006). The
Create access right in Elkaduwe et al. (2008) conferred the authority to create new
entities by restricting an entity’s ability to create so that they could only do so if
they possessed a capability with Create access rights. They did not model the finite
nature of memory as possessing a capability with Create access rights allowed such
an entity to create an unbounded number of new entities. They also did not allow

entity destruction, and thus did not consider the problem of entity identifier reuse.

7“The formal evaluation will finesse this issue by assuming that there is a large finite
pool of unallocated objects, and that these objects are never reused.” (Shapiro, 1999)

4.2. EXTENSIONS TO THE TAKE-GRANT PROTECTION MODEL 1

Instead we propose that the Create access right confers the authority to create
an entity with a specific identifier. This allows us to solve the identifier reuse
problem, as well as modelling the behaviour of seL4’s Untyped capabilities more
closely.®

In our model, an entity is only able to create or destroy an entity when it
possesses a capability with Create rights to that entity identifier. In this way, the
possible entity identifiers within a system are fixed, as actually they are in a com-
puter system (even if this is every possible byte in memory). The destruction and
recreation of an entity allows an entity to gain full access to an entity with the
same identifier as any that it possesses a capability with Create rights to. Thus
we consider possessing Create rights to an identifier to be the same as possess-
ing full access rights to the entity located at that identifier. This is formalised
in Section 4.5. We believe that this is the first take-grant protection model that

adequately addresses the issues with identifier reuse.

Capability storage

In many real-world systems, processes store capabilities in intermediate capability
storage objects. In capability-based systems such as seL4 and Barrelfish, these
capability storage objects can be joined together into a chain of storage and shared

between different processes, as illustrated in Figure 4.8.

Shared CSpace TCB
TCB (CNODE <«
— CNODE !
P R . ! VSpace
' VSpace | | | ’
Endpoint
]

Figure 4.8: A seL4 system with two processes that store their capabilities
in a common storage object.

8Earlier versions of this work (Boyton, 2009) allowed entity destruction and entity
identifier reuse, and tried to sidestep the issue by ensuring that the authority confinement
results apply whilst the entities in question have not been destroyed, but this is neither
elegant, nor is the property suitable for refinement (as it cannot be expressed as a Hoare
triple).

42 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

This storage of capabilities by an entity in a (potentially shared) storage object
can be modelled as an entity having take and grant rights to the storage object,
and copying the capabilities to and from the storage object as required. We believe
that this complicates the model as it requires some way of tracking which capabil-
ities are shared, as, for example, when a shared capability is removed, it must be
removed from both. Additionally, such a modelling does not correspond closely
to how such systems actually work (as they do not do this copying of capabilities).
Instead, we here extend the traditional take-grant protection model to make the
storage of capabilities in other entities a first-class citizen of the model and allow
the use of these capabilities to authorise operations. We introduce a new access
right, Store, which confers the authority for an entity to use capabilities stored in
another entity as if they were owned by the entity itself. For example, we model
the example shown in Figure 4.8 in our take-grant protection model in Figure 4.9.
We use two entities Thread 1 and Thread 2 that can store their capabilities in the
entities CNode 1 and CNode 2 respectively. Similarly, CNode 1 and CNode 2 are
both using CNode 3 as a shared storage entity. This allows Thread 1 to use capabili-
ties located in entities CNode 1 and CNode 3 as its own, and allows either thread

to read from the entity Endpoint.

Thread 1 Thread 2

Store Store
y v
St St
CNode 1 28| CNode3 |<4—2{ CNode 2
Read
y

Y
Endpoint

Figure 4.9: Figure 4.8 modelled using Store rights.

We define the capabilities of an entity as the capabilities that they possess
directly and capabilities in entities connected via a series of Store rights. Any of
these capabilities can be used to authorise an operation performed by an entity.
The capability created by an operation can be stored by an entity in any entity
connected via a series of Store rights, as illustrated in Figure 4.10. Here, entity e, is
using the Take right stored in the entity e, to take a copy of entity e,’s Read access
to entity e, (which is stored in entity e,).

To reduce the cumbersome nature of specifying intermediate storage entities
in figures, we introduce the notation shown in Figure 4.1 to specify that a capabil-
ity ¢ is contained either in entity e, or in an entity connected via a series of Store

rights. We define this concept formally in Section 4.3. In the remainder of this

4.3. FORMALISATION OF THE STATE OF THE TAKE-GRANT PROTECTION MODEL 43

chapter we formally show that this addition of allowing an entity to use capabilities

in other store-connected entities does not effect the security of the model.

Figure 4.10: An entity e,, taking a capability from another entity e,
where both e, and e, are storing their capabilities in other
entities.

e1 > g en-1
Store € ¢4 D Store € ¢cp Store € ¢,_4 Read e ¢

is denoted to

___ »
Read € ¢

Figure 4.11: Notation for capabilities stored in other entities.

4.3 Formalisation of the state of the take-grant

protection model

In this section, we formalise the state of the take-grant protection model in the
theorem prover Isabelle/HOL. This model is based on the formalisation by Elka-
duwe et al. (2008). In the following sections we formalise the operations and the
properties of the model. To formalise the state of the take-grant protection model,
we first define precisely the concept of an entity and a capability. In this section,
we take a simple state illustrated in Figure 4.12 as a running example to illustrate
the definitions.

In our formalisation, each entity has a name associated with it—its entity_id.
An entity possesses a number of capabilities, where each capability is a set of
access rights that the entity has over another entity. The access rights are the

standard Read, Write, Take, and Grant, along with the Create and Store access rights

44 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

Store € Cq Grant € Co
€ ey e

Read € C3

\
@

Figure 4.12: An example state. The entity e, has capabilities c;, ¢,, and ;.
The capability c, is from the store-connected entity e,.

introduced in Section 4.2.° We define the access rights, capabilities, and entities

formally below.

datatype right = Read | Write | Take | Grant | Create | Store
record cap = {target :: entity_id, rights :: right set}

In our example, the capabilities are formalised as:

Definition 4.1 » ¢, = ([target = e,, rights = {Store}|)
Example capabilities ¢, = (target = e,, rights = {Grant})
¢, = (target = e,, rights = {Read}

The entities of a state are each associated with an identifier, stored as a partial

mapping from identifiers to entities, and contain a set of capabilities.

types state = entity_id = entity option
datatype entity = Entity (cap set)

We formalise the state, s , of this example as:
example

Definition 4.2 » S xample = [e, > Entity {c,, ¢, }, e, = Entity {c,}, e, = Entity (), e, = Entity ()]
Example state

We define the predicate is_entity to say when an entity exists at a particular
location.

Definition 4.3 » is_entity s e = s e #+ None
is_entity

9The call right that appeared in the early take-grant work was dropped by Snyder in
his 1977 paper (Snyder, 1977), his 1981 paper (Snyder, 1981b), and in his subsequent work.
We follow his convention and omit the call right in our work.

4.3. FORMALISATION OF THE STATE OF THE TAKE-GRANT PROTECTION MODEL 45

One thing that sets this formalisation apart from other take-grant protection
models, is the ability for entities to use capabilities stored directly in them and
capabilities that are stored in other entities connected via a series of Store rights,
as introduced in Section 4.2. The direct capabilities of an entity are the capabilities

stored directly within an entity, and are accessed via the function direct_caps_of.

direct_caps_of s e = case s e of None = {) | Some (Entity caps) = caps < Definition 4.4

direct_caps_of

In our example, the direct capabilities of each of the entities are:

i = <« .
direct_caps_of S xample 0 {6} Lemma .4 1
direct_caps_of s e, ={q} Example direct

example capabilities
direct_caps_of s e, =10

example
direct_caps_of S ample & = 0

We define the relation store_connected, which formalises the concept of which
entities can store capabilities for another entity. In Figure 4.12, e, is store_connected
to itself and the entity e,. The capabilities ¢, and c, are direct capabilities of e,, and
¢, €, and ¢, are all capabilities of entity e, that can be used to authorise operations.

To define store_connected, we first define the relation store_connected_direct
which defines when two entities are connected by a single capability with Store
rights, and then define store_connected as the reflexive, transitive closure of the

relation store_connected_direct.

store_connected_direct s = {(ey, e,) | Jcap. cap € direct_caps_of s e, A <« Definition 4.5
Store € rights cap A store_connected_direct

target cap = e, }

store_connected s = (store_connected_direct s)* <« Definition 4.6

store_connected

In our example, every entity is store_connected to itself, and the entity e, is

store_connected to the entity e,.

store_connected s ={(ex,¢) [e,=¢,Ve,=e,Ne,=¢e} <Lemma 3.2

ample
Example

store_connected
The capabilities of an entity e are defined as the capabilities stored in any entity
that is store_connected to the entity e (including the capabilities in the entity e

itself).

Definition 4.7 »

caps_of

Lemma 4.3 »

Example capabilities

46 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

caps_of s e = | (direct_caps_of s * {e; | (e, ¢;) € store_connected s})

In our example, the capabilities of e, are therefore c,, c,, and ¢;, and the only

capability of e, is c,.

caps_of S ample € = {c,, G 6}
caps_of S xample & = {¢,}
caps_of S vample & = 0

caps_of's, oo & = 0

In Figure 4.13 we show the non-Store capabilities of entity e, using the store

notation of Section 4.2.

Figure 4.13: Alternate representation of the example in Figure 4.12.

4.4 Operations in the take-grant model

We formalise the standard take-grant protection model operations, namely take,
grant, create, and remove, and we extend the model with two new operations
revoke and destroy to allow us to more closely model realistic systems. We do
this so that this model could be shown to be a formal abstraction of a real-world
system such as the seL4 microkernel.

Each operation in the take-grant protection model must be authorised by
a capability conferring the necessary access rights. In our formalisation, these
access rights can be stored directly or in store_connected entities. Execution in
this model is defined using small-step semantics. We model each operation in
the take-grant protection model as a system call that is executed by an entity e.
We break the checking of authorisation and the execution of the operation into
two different stages. A command is executed only if it is legal. Any operation
is allowed to non-deterministically fail for reasons not modelled in this level of
abstraction, where failure is modelled by an operation not changing the state.

The extensions outlined in Section 4.2 (capability storage and restricting entity

4.4. OPERATIONS IN THE TAKE-GRANT MODEL 47

creation) and the non-determinism of the model do not have an impact on the

access control properties we that show.

step cmd s = if legal cmd s then step” cmd s U {s} else {s} <« Definition 4.8
where step

step’ (SysTake e ¢, ¢, R) s = {takeOperation e ¢, ¢, R s}

step’ (SysGrantec, ¢, R) s = {grantOperation e ¢, ¢, R s}
step’ (SysCreate e c, c,) s = {createOperation e ¢, c, s}
step” (SysRemove e ¢, c,) s = {removeOperation e ¢, c, s}
step’ (SysRevoke e) s = revokeOperation e ¢ s

step’ (SysDestroy e c) s = {destroyOperation e c s}

step” (SysCopy e c, ¢, R) s = {copyOperation e c, ¢, R s}

We define execution in our model as the execution of a list of commands from
right to left.

execute [] s = {s} <« Definition 4.9

execute (cmd-cmds) s = | (step cmd " execute cmds s) execute

The legal checks are shown in Figure 4.14, and the definitions of all of the

operations are shown below.
legal (SysTakeec,c,r)s = is_entity se A is_entity s (targetc,) A
¢, € caps_of se A ¢, € caps_of s (target ¢,) A Take € rights c,

legal (SysGrantec,c,r)s = is_entity se A is_entity s (targetc,) A
{c;, ¢,} C caps_of s e A Grant € rights c,

legal (SysCreateec,c,)s = is_entityse A is_entity s (target ¢,) A — is_entity s (target c,) A
{c;, ¢,} Ccaps_ofse A
Write € rights ¢, A Store € rights ¢, A Create € rights c,

legal (SysRemove ec,c,)s = is_entityse Ac, € caps_ofse

legal (SysRevoke e ¢) s is_entity se A ¢ € caps_of s e

legal (SysDestroy e ¢) s = is_entityse A ¢ € caps_of s e A {Create} = rights ¢ A
target ¢ ¢ target ' (all_caps_of s — {c})

legal (SysCopyec,c,r)s = is_entity se A is_entity s (targetc,) A
{c,, ¢,} C caps_of s e A Store € rights c,

Figure 4.14: Definition of when an operation is legal to perform.

48 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

Take An entity e with a capability ¢, with a Take right to another entity e, is
able to take a (potentially diminished) copy of that entity’s capabilities.

Take € Cq @ Take € Cq
el gl
— SysTakeecq cy R :> diminish ¢, R
TS TN
C2 €2 Co)

Figure 4.15: Take Operation

Definition 4.10 » takeOperation e ¢, ¢, R s = s(e — Entity ({diminish R ¢, } U direct_caps_of se))
takeOperation where diminish R cap = cap (| rights := rights cap N R))

Grant An entity e with a capability ¢, with a Grant right to an entity e, is able
to give a (potentially diminished) copy of one of its capabilities to that
entity.

Grant € Cq Grant € Cq ey
4 .4
@ — SysGrantecq cy, R :> @ diminish ¢, R
TS TN
C2 €2 Co)

Figure 4.16: Grant Operation

Definition 4.11 » grantOperationec, c, Rs =
grantOperation s(target ¢, — Entity ({diminish R ¢,} U direct_caps_of s (target c,)))

4.4. OPERATIONS IN THE TAKE-GRANT MODEL 49

Create An entity e possessing a Create capability c, to an identifier e, that is
presently unused by any entity can create a new entity with identifier e,
in this location. This is a modification of the standard take-grant mod-
els where every entity has implicit permissions to create new entities,

as explained in Section 4.2.

Store, Write e Cq Create e (o 1
v 4

@ = SysCreate e ¢y c) —Jpp» @ all_rights
~o . = \\A

A .
Createec2 €5 Createec2

Figure 4.17: Create Operation

°

createOperationec, ¢, s = < Definition 4.12
let new_cap = (| target = target c,, rights = all_rights)); createOperation
new_target = {new_cap} U direct_caps_of s (target c,);
new_entity = Entity ()
in s(target ¢, — Entity new_target, target c, = new_entity)
where all_rights = {Read, Write, Take, Grant, Create, Store}

Remove An entity e that possess a capability ¢, to another entity e,, is able to

remove any capability ¢, from that entity.

C1
v
o — SysRemove e cq ¢, :> @

Figure 4.18: Remove Operation

removeOperationec, ¢, s = < Definition 4.13
case s (target ¢,) of None = s removeOperation

| Some (Entity caps) = s(target ¢, — Entity (caps — {c,}))

50 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

Revoke In some capability systems such as seL4, an entity is able to revoke
access to all capabilities that have been derived™ from a capability it
possesses. For example, if an entity e has granted a copy of a capability
it possesses ¢, to another entity e,, then it can later revoke the access
from the entity e,. The seL4 microkernel tracks the derivation of ca-
pabilities through a capability derivation tree (Elkaduwe et al., 2007).
In our formalism, which is designed to be a formal abstraction of ca-
pability systems such as seL4, we model revocation of a capability ¢
as a non-deterministic deletion of any capabilities in any entities e;
pointing to the same entity that the capability ¢ does. We do this by
constructing a function, cap_map, mapping from entity identifiers to
the set of capabilities to delete from them (which is a subset of the

capabilities that point to the same entity as the capability ¢ does).

L)
SysRevoke e c4 :>

Figure 4.19: Revoke Operation

Definition 4.14 » revokeOperationecs=
revokeOperation {s” | Icap_map. Ve,. cap_map e; C {cap € direct_caps_of s ¢; | target cap = target c} A
s’ = removeSetOfCaps cap_map s}
where removeSetOfCaps cap_map s =
Ae. case s e of None = None
| Some (Entity caps) = Some (Entity (caps — cap_map e))

'°That is, capabilities that were created as a copy of another capability.

4.5. AUTHORITY CONFINEMENT 51

Destroy

Copy

To model real-world systems, we add a destroy operation to the formal
model to allow the removal of entities. This operation is the counter-
part to the create operation we introduced earlier." An entity e may
destroy another entity e, if it possesses a capability ¢ with Create rights

to the entity, and if no other capabilities to the entity e, exist.

Figure 4.20: Destroy Operation

destroyOperation e ¢ s = s(target ¢ := None) <« Definition 4.15

destroyOperation

As we have extended the standard take-grant model to allow the stor-
age of capabilities in store_connected entities, we add the copy opera-
tion to allow an entity e to copy one of its capabilities ¢, into an entity
e, to which it possesses a capability ¢, with Store rights. This allows an

entity to manage the storage of its capabilities.

Store € Cq Store € Cq
I 4 v
@ — SysCopyecqcy R :> @ diminish ¢, R
TS TN
C2 €2))

Figure 4.21: Copy Operation

copyOperation sRef ¢, ¢, Rs = < Definition 4.16
s(target ¢, — Entity ({diminish R ¢,} U direct_caps_of s (target c,))) copyOperation

4.5 Authority confinement

The key result of the take-grant protection model is that the security question, “is

it true that an entity e, can a an entity e,?” is decidable (where a can be any access

right, such as Read or Write). Looking at the state shown in Figure 4.22, we can see

that the answer to the question “can entity e, gain explicit read access to entity e,?”

is yes.

"The destroy operation is not part of the standard take-grant protection model, but
it was added in the diminished-take model (Shapiro, 1999) and is present in the HRU
formalisation (Harrison et al., 1976).

52 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

tgs-connected entities

ﬂ
-
5
=~
(0]
[¢]
W

e S —

! 1
! 1
! 1
! 1
| €o N
! 1
! 1
!)

—_———————

Figure 4.22: In this example, entity e, can gain read access to entity e,.

As explained in Section 4.1, an entity with the ability to create new entities can
bypass the directionality of Take and Grant access rights. Because of this, when
examining how capabilities can propagate through a system, it does not make
sense to examine to examine the directionality of Take and Grant access rights,
but instead to examine when two entities are connected by capabilities with either
Take or Grant access rights in either direction. Lipton and Snyder (1977) show in
this standard take-grant protection model, entities can transfer capabilities if and
only if they are connected though a series of capabilities with Take or Grant access
rights. Such entities are called tg-connected.”

With the addition of the Store access right, we extend the existing literature by
stating that entities can transfer capabilities if they are tgs-connected, that is, if they
are connected by a series of capabilities with Take, Grant, or Store access rights.
We also say that if an entity e, possesses a capability with Create rights to another
entity e, then entity e, possesses full access to entity e,. We justify both of these
changes below.

Firstly, given that an entity can copy a capability from any store_connected
entity to any entity that it possesses a store capability to, we need to include Store
rights in the definition of connected.

Secondly, as explained in detail in Section 4.2, if an entity e, has Create rights
to another entity e,, then (assuming no other entity has any access rights to the
entity e) entity e, may destroy entity e, and recreate it, giving entity e, full access
rights to entity e,. Because of this, for the purposes of analysing the transfer of
capabilities, we defined a function extra_rights that adds the implicit full access

rights that an entity with Create rights to another entity has to that entity.

Given that we can, in our model, restrict the creation of entities, we could tighten our
definition of tg-connected to be directional for systems with sufficiently restricted entity
creation, but in this model we focus on primarily on more dynamic systems.

4.5. AUTHORITY CONFINEMENT 53

extra_rights cap = if Create € rights cap then cap(rights := all_rights) else cap

In the remainder of this section we will formalise the question we started
the section with—can an entity e, gain specific access rights to an entity e,? We
formalise this by answering the question “can an entity e, gain more access to an
entity e, than what the capability c possesses?”. We show that an entity e, can gain
at most as much access to an entity e, as what any entity tgs_connected to entity
e, possesses. Thus, if no entity tgs_connected to entity e, possesses Write rights
to entity e, then entity e, cannot acquire such rights (even if other disconnected
entities possess these rights). Formally, we express this result in Lemma 4.4 as we
explain below.

We say that in any future state s’, after a number of commands cmds have
executed (s” € execute cmds s), then an entity e, can have at most as much au-
thority to an object as is possessed by the capability ¢ (caps_of s e, Jc,p, cap), if
all the entities e; which are tgs_connected also only have as much authority to an
object as the capability cap does (Ve;. s - e, <+* e; — caps_of s ¢; I, cap). We

introduce these concepts formally below.

s’ €Eexecute cmdss Ve sk e, <> e; — caps_of se; Deap Cap

caps_of s” e, <c,, cap

We first define notation for capabilities with read, write, take, grant, create,

and store access to an entity e.

read_cape = (target = e, rights = {Read})
write_cape = (target = e, rights = {Write} |
take_cape = (target =, rights = {Take})
grant_cape = (target =, rights = {Grant})
create_cape = ([target = e, rights = {Create})
store_cape = (target = e, rights = {Store})
full_cap e = (target = e, rights = all_rights|)

An entity contains a set of capabilities, with each capability possessing a set of
access rights to a specific entity. We define caps <, cap to say that the authority
that a set of capabilities caps has to an entity is dominated by that of the capability
cap if the capability cap has more (or equal) authority to the entity cap points to
than what any of the capabilities in the set caps do (where we say that possessing

Create rights implies having full access).

<« Definition 4.17

extra_rights

<Lemma 4.4

Authority confinement

Definition 4.18 »

Capabilities dominated
by a capability

Definition 4.19 »
Capability rights in
capabilities

Definition 4.20 »
leak

54 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

caps eap cap =
Vcap’ € caps. target cap’ = target cap —
rights (extra_rights cap’) C rights (extra_rights cap)

For example, the authority possessed by a set of capabilities a consisting of a
read_cap and write_cap to an entity e, is not dominated by that of a take_cap to an
entity e, (that is, — {read_cap e,, write_cap e, } Jcap take_cap e,). The authority
possessed by a read_cap and a write_cap to an entity e, is dominated by that of a
create_cap to an entity e, (that is, {read_cap e,, write_cap e, } Jcap Create_cap e,)
as possessing Create access rights to an entity implies full assess rights to the entity.

Similarly, we define cap €, caps to say that there is a capability in the set caps

that has at least as much authority to an entity as the capability cap has.

€ap € ,p Caps =
Jeap’ € caps. target cap = target cap’ A
rights (extra_rights cap) C rights (extra_rights cap”)

For example, the authority possessed by a take_cap to an entity e, is not pos-
sessed by the set of capabilities containing a read_cap e, and a write_cap e, (that
is, take_cap e, %cap {read_cap e,, write_cap e, }), but the authority possessed by a
take_cap to an entity e, is possessed by the set of capabilities containing a read_cap

and a create_cap (that is, take_cap e, Ecap {read_cap e,, create_cap e, }).

To define tgs_connected, we first define the concept of an entity e, being able
to leak capabilities to another entity e, if entity e, has a capability with Take rights
to entity e,, if entity e, has a capability with Grant rights to entity e, or if they can
both store capabilities in a common entity e; (by both being store_connected to a

mutual entity e;).

sk e, — e, =take_cap e, €,, caps_of se, V grant_cap e, €.,, caps_of s e, V
(Je;. (e, e;) € store_connected s A (e, ¢;) € store_connected s)

4.5. AUTHORITY CONFINEMENT 55

We define the relation directly_tgs_connected as the reflexive closure of leak,

and tgs_connected as the reflexive, symmetric, transitive closure of leak.”

sheccre =ske, —e Vsthe, —e,

shece e, = (e, e) €E{(e, e) | she e}

Using these definitions, we first prove that none of our operations can ever
connect disconnected entities. If two entities are transitively connected after a
sequence of operations, they must have been transitively connected before, as

formalised in Theorem 4.1.

A generalised operation

Rather than proving individual properties about the operations takeOperation,
grantOperation, copyOperation, and createOperation, we simplify our analysis by
showing that each of these operations can be considered to be specialisations of
a more general operation generalOperation (where createOperation also creates a

new entity).

Take/Grant/Store € ¢' c'
v 4
V4 V4
@ — SysGenerale e c R :> @
' TA
20 c

Figure 4.23: Generalised capability creation operation.

1
diminish ¢ R
i)

generalOperationee, crs=

s(e, > Entity ({diminish r (extra_rights ¢)} U direct_caps_of se,))

3We have also shown that this definition is equivalent to the transitive closure of Take,
Grant, and Store (hence the name). The definition we present here more closely models
the concept of shared storage, which is why we use it.

<« Definition 4.21

directly_tgs_connected

<« Definition 4.22

tgs_connected

<« Definition 4.23

generalOperation

56 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

takeOperationec,c,rs = generalOperation (target ¢,) e ¢, (r Nrightsc,) s
grantOperationec, ¢, rs = generalOperation e (target ¢,) ¢, (r Nrights ¢,) s
Lemma 4.5 > copyOperationec, ¢, rs = generalOperation e (target ¢,) ¢, (r Nrights ¢,) s
General operation
rewrites If legal (SysCreate e ¢, c,) s then
createOperationec, ¢, s = generalOperation e (target c,) c, all_rights s(target ¢, — null_entity)

Proof: Each of these definitions can be shown by expanding the definitions of
the operations. The createOperation can be composed of a generalOperation fol-
lowed by updating the state to add the empty entity at the location pointed to
by the capability c,, provided that the capability c, possesses Create access rights,

which is true if the createOperation is legal. []

These operations are legal to execute only if the entity e and the target entity

pointed to by the capability ¢, (namely target c,) are already directly_tgs_connected.

legal (SysTake ec, ¢, 1) s legal (SysGrantec,c,7) s
sk e < targetc, sk e < target ¢,
Lemma 4.6 »
General operation legal (SysCopy ec, ¢,) s legal (SysCreate e c, c,) s
rewrites
sk e < targetc, sk e < targetc,

Proof: Each of the operations are legal only if the entity e and the entity pointed
to by the capability ¢, are connected by a capability with either Take, Grant, Store,
or Create access rights respectively, all of which imply the two entities e, and

target ¢, are directly_tgs_connected. |

This generalised operation does not tgs-connect any entities that are not al-
ready tgs_connected. To show this, we first show that if any two entities e, and

e, are directly_tgs_connected after a general operation, then they must have been

tgs_connected before, as shown in Lemma 4.7.
generalOperationee, caprste, <> ¢,

*
ske. e,

cap € caps_ofse ske<re,

Lemma 4.7 »

General operation
connected

Proof: This is true as either e, and e, are already directly_tgs_connected, or they

are connected by the new capability added (diminish ¢ R), which happens only

when they are already tgs_connected via entity e. [

4.5. AUTHORITY CONFINEMENT 57

As the other operations of the model, SysRemove, SysRevoke, and SysDestroy,
remove either capabilities or entities, we can show that no operation directly tgs-

connects any entities that are not already tgs_connected.

s’ estepemds s'Fe e,

- - <Lemma 4.8
shec e Connected was directly

connected

Proof: By Lemma 4.7, we know that the commands SysTake, SysGrant, SysCopy,
and SysCreate do not connect disconnected entities. Since the other operations
(SysRemove, SysRevoke, and SysDestroy) do not create new capabilities they also

cannot connect disconnected entities. [|

By induction, we extend Lemma 4.8 to show that if two entities e, and e, are
tgs_connected after the execution of a sequence of commands, then they must
have been previously tgs_connected. We note that this result is true, even when

we allow for entity destruction within this series of commands.

s’ €executecmdss s e, < e,

< Theorem 4.1
ske . <" e)
Y tgs_connected is

preserved

Proof: This is proven by induction, first on the sequence of commands cmds,
and then on the reflexive, transitive closure of the tgs_connected relation and

using Lemma 4.8. |

A corollary of this theorem is that if entities are not tgs_connected, then they

cannot leak authority.

s’ Cexecutecmdss —ske, «* e

T Do < Corollary 4.1
X Y Non-connected will

not leak

We now show that the capabilities attainable by an entity are only those that
already exist in a tgs_connected entity, formalising the question we started the
section with. First, we show that, if a state s’ is the result of an operation cmd
on the state s, and a capability cap is present in the capabilities of an entity e,,
then this capability must have come from an entity e; which is tgs_connected to
the entity e,, which itself possesses the authority that the capability cap confers
(noting that possessing Create rights to an entity implies possessing all rights to
that entity).

Lemma 4.9 »

Capabilities after an
operation

Theorem 4.2 »
Authority confinement

58 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

s’ € step cmd s cap € caps_ofs/ [

Jde;. ste, <" e; A cap E,p caps_of se;

Proof: We divide the operations into two groups for analysis—those that can
be expressed using generalOperation and those that remove either capabilities or
entities (that is, SysRemove, SysRevoke, and SysDestroy).

The lemma can be seen to be true for the former operations by noting that
any new capabilities created by generalOperation either existed already, or were
present in a connected entity (where possessing a capability with Create access
rights to an entity implies possessing full access rights to that entity).

The other operations remove either capabilities or entities, and so any capabili-
ties present in an entity after these operations must have been present already in
the entity itself. [

Using this, we show authority confinement for our model. We say that the
capabilities of an entity e, to an entity are dominated by a capability cap in any
future state s’ if, in our initial state s, the capabilities in all the entities that are

tgs_connected to the entity e, are also dominated by the capability cap.

s’ Cexecutecmdss Ve, sk e, <> e; — caps_of s e; Jeap cap

caps_of s” e, Ieop cap

Proof: To prove this, we first strengthen the induction hypothesis to:

s’ Cexecutecmdss Ve st e, <" e; — caps_of s e; Deap Cap s’ e " e

caps_of s” e; I, cap

We then induct on the commands cmds, and use Lemma 4.9 and the first

inductive step of Theorem 4.1. |

4.6 Isolation

Snyder (1981b) and later Bishop (1996) use the reflexive, symmetric, transitive
nature of the tgs_connected relation to define equivalence classes of entities, which
they call islands. Using this concept, we can speak of the authority possessed by an
island of entities to a specific entity, and use this to express the isolation property

from Section 4.5.

4.7. INFORMATION FLOW 59

islandse, = {¢; | st e, <" ¢;}

Since no entity e, within an island can acquire more access to another entity
e, (either within or external to that island) than what any other entity within an
island can, it makes sense to define the concept of the capabilities that an island of
entities possess. We define this as the capabilities possessed by entities within that

island.

island_caps s e, = | (caps_of s “island s e,)

Using this definition, we reformulate the final authority confinement statement
from Section 4.5 to say that the authority of an island does not increase. First we

show simpler way of calculating the capabilities of an island.

(island_caps s e, e, cap) = (Ve;. st e, <" ¢, — caps_of s e; I, cap)

Proof: This is shown by expanding the definitions of island, island_caps, and

caps Jc,p cap. |

We use this to show a reformulation of Theorem 4.2 in terms of the authority

of islands.

s’ € execute cmds s island_caps s e, eap cap

island_caps s” e, <, cap

Proof: The capabilities of an island are those stored in tgs_connected entities.

We know by Theorem 4.1 that any entities that are tgs_connected in the future
were tgs_connected previously. Then, using Lemma 4.10, we rewrite this theorem

into the form of Theorem 4.2. [|

4.7 Information flow

Using the authority confinement proofs, we now examine the information flow

channels that are possible using the authority confinement graph of a system. For

41t makes no difference whether we examine the capabilities or the direct capabilities
of the entities within an island, as these are the same. We have proven using our above
definition that island_caps s e, = | (direct_caps_of s “ island s e,.).

<« Definition 4.24

island

<« Definition 4.25

island_caps

< Lemma 4.10

Island caps are bound

< Theorem 4.3

Authority confinement
of Islands

Definition 4.26 »

flow

Definition .27 »

Transitive flow

Theorem 4.4 »

Information flow

60 CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

example, taking the state in Figure 4.24 and assuming the required entities work
together, we can see that information can flow from the island with entity e, to the
island with entity e,, and from the island with entity e, to the island with entity
e;, despite the fact that no entity in the island with entity e, has any capabilities to
any of the entities in the island with entity e; (nor vice versa). Formally, we say
that information can flow from one island to another if the former can write to the
latter, or if the latter can read from the former. This analysis is similar to the de

facto rights first analysed by Bishop and Snyder (1979).

Figure 4.24: In this example, information can flow from the island with
entity e, to the island with entity e,, and from the island
with entity e, to the island with entity e,.

skec~e,=de, €island se,. Je, € island s e,. read_cap e, €, caps_ofse,’ V

write_cap e, €, caps_of s e,/

We define transitive information flow as the reflexive, transitive (but not sym-

metric) flow of information.

shec~"e,=(ee) €{(ene)|she ~ e}

Given this definition of information flow, we then show that, since the capabil-
ities of an island do not increase, the information flow between two islands also

does not increase.

s/ Cexecutecmdss s’ e ~t ey

ske.~"e,
Proof: First, we induct over the list of commands, and are left needing to prove
the result for a single step of execution.

Then, in similar way to Theorem 4.1, we induct on the reflexive, transitive
closure of the s I- e, ~+" e, relation. The base case is obviously true. In the induc-
tive case, we have two islands, island e; and island ¢;, where information can flow

from the former to the latter. This means that there are entities e;» and e;- in these

4.8. CONCLUSION 61

respective islands such that either entity e;+ has a write capability to entity e;/, or
entity e;/ has a read capability to entity e;.

By the first inductive step of Theorem 4.1, we know that if the entity e;/ is in
island e; after a series of operations, then it must have been in the island before-
hand (and similarly with entity e;- and island ¢;).

Since by Lemma 4.9 we know that any access rights after an operation must
have existed in a tgs_connected entity previously, we know that the capability has

to be present in the island originally. [

A corollary of this result is that if information cannot flow between islands
initially, then it can never flow, despite the fact that the islands themselves might
split and change.

s/ Cexecutecmdss sk e, " ey

/ *
os' e e,

4.8 Conclusion

In this chapter we have presented a formalisation of the take-grant protection
model in Isabelle/HOL, based on that of Elkaduwe et al. (2008), and extended it
with the addition of shared capability storage as a first class citizen, and an explicit
create right to be able to create an entity using a particular identifier.

Our changes to entity creation more closely model the behaviour of the seL4
microkernel and the finite nature of memory than previous models.

Our formalisation allows authorisation of operations performed by an entity
by capabilities stored in other entities. This does not change the security implica-
tions of the model, as such entities would be able to copy such capabilities to be
stored directly within the entity, but it models the actions of an operating system
such as seL4, which stores capabilities in intermediate objects more closely.

To our knowledge, allowing identifier reuse through our explicit create right
conferring the permission to be able to create an entity using a particular identifier,
and the addition shared capability storage as a first class citizen, are new contribu-
tions to the take-grant protection model. We have shown that these additions do
not change either the de jure or the de facto security properties of the take-grant

protection model.

< Corollary 4.2

No information flow

62

CHAPTER 4. CAPABILITY-BASED ACCESS CONTROL

Chapter Summary

The take-grant protection model is a family of formal models
where security questions such as “can the entity x ever gain read

access to the entity y?” are decidable.

These models consists of entities which possess capabilities to other
entities. Entities can take capabilities from and grant capabilities
to other entities that they have Take or Grant capabilities to, respec-
tively. In traditional take-grant protection models, entities can also

create an unbounded number of new entities.

We have extended the traditional take-grant protection models
with the addition of shared capability storage as a first class citizen
and an explicit Create right to be able to create an entity using
a particular identifier. These additions more closely model the
behaviour of real-world systems such as the seL4 microkernel, and

do not change the security results of the model.

There are two main security questions analysed of the take-grant
protection models: the authority an entity can explicitly gain access

to and the information an entity could implicitly gain access to.

Entities are able to gain any capabilities possessed by any other

entities connected by a series of Take, Grant, or Store capabilities.

We can divide entities into islands of entities connected by Take,
Grant, and Store capabilities. We can then analyse the way capabili-

ties and information can flow between these islands.

Chapter 5

System initialisation

5.1 Initialisation of computer systems

The initialisation of computer systems is a hard problem. The abstractions com-
monly used to configure systems are generally in the process of being initialised
themselves and thus cannot be used. Additionally, the initial processes that con-
figure a system are often given elevated authority and special care must be taken
to ensure that these processes appropriately manage and diminish this author-
ity (Shapiro and Hardy, 2002).

There has been a lot of recent work on ensuring that the code running on a
system is in fact the correct code. Trusted Platform Modules (TPMs) and code
signing are both used to enforce that each level of initialisation code is in fact the
correct code (Kauer, 2007). Systems are often built up in a layered approach with
each layer adding another layer of abstraction before starting the next layer on top.
For example, on Apple’s iOS devices, the Boot ROM checks the signature on their
Low-Level Bootloader before it allows it to load. When the Low-Level Bootloader
finishes its tasks, it verifies and runs the next-stage bootloader, iBoot, which in
turn verifies and runs the iOS kernel (iOS Security 2014). Whilst this is important
work, we believe that ensuring the correct code is running is a largely orthogonal
problem to ensuring that this startup code is in fact correct.

In this thesis we examine the question, “how can we be confident that our
startup code correctly initialises our system in conformance with a given initial
configuration?”. This is especially important in secure systems such as capability-
based systems as the security of such a system generally requires the access control
primitives to be correctly provisioned. For example, the authority confinement,
integrity, and non-interference proofs for the seL4 microkernel all rely on the ca-
pabilities of the system being configured in conformance with the access control
policy (Sewell et al., 2011; Murray et al., 2013). Without this, these security results

are null and void.

63

64 CHAPTER 5. SYSTEM INITIALISATION

As an example, let us consider the initialisation and configuration of the ex-
ample system from Section 3.4, reshown in Figure 5.1. To initialise this system,
we first need to create these components, and then we configure each component
by distributing the correct access rights to them, as well as setting up any other
required data, such as stack pointers and instruction pointers. Only once these
have been set up can we reason about the authority and information that can flow
between the threads in our system. To have confidence that we have set up our
system correctly, we need to know that the final initialised state is in conformance
with the desired access control policy. We need to repeat this work for each system
we wish to initialise. These systems we wish to initialise can be large. Andronick
et al. (2010) analysed the security of a secure access controller, which, whilst a
relatively simple system, had thousands of capabilities and thousands of objects
to initialise, and ran Linux as one of the components. Clearly, this approach of
specialised, hard-coded initialisers is not ideal, not only because of the tedious
nature of initialising these systems, but also because we need to have confidence

that we have done so correctly.

Thread A Thread B
T

(@]
o9]

A) (
> CNODE,, ‘ ‘\CNﬁODEB

CSpace
EH NODE ,

Cspace]
IPC Buffer|

P

Shared
 Endpoint fond
“>(cp e

Buffer
RELS

JokiB

[[conTEXT[,['T,]

512B

v

1 F’TA 4KiB
2"25its E FRAME

PDy

PDg

16 KiB K

FRAME
(SECTION)

son kB
FRAME

28 siots
4 KiB

1KiB

2" siots

16 KiB

IRQ objects Extra capabilities

IRQTable [[[[[1T

il

Oe——~F

¥
IRQ Nodes 1 &

CCNODEEXTRA

Figure 5.1: An example seL4 system, reshown from Figure 3.1.

Because of this, we think that automating and formally analysing the correct
configuration of a system in conformance with a specified access control policy to
be important work. Much of the previous work in this area has been at best formal
with respect to high-level models of the operating systems themselves, without any
connection to the operating system code itself.

In this thesis, we aim to extend the previous literature by providing a formal
model of a general purpose algorithm for system initialisation on the seL4 micro-

kernel. This lets us eliminate the tedious process of creating a different initialiser

5.1. INITIALISATION OF COMPUTER SYSTEMS 65

for each different system we wish to initialise, whilst also allowing us to prove that
this generic initialiser is correct once.

We build on a formal specification of the API of seL4 (explained in Sec-
tion 7.4), which is written on a formal model of seL4 (the capDL kernel model,
introduced in Section 3.4), which itself has been shown to be a formal abstraction
of the seL4 code and formally linked to the seL4 binary. Connecting the proof of
this algorithm to these seL4 proofs gives us great confidence that our algorithm is
in fact correct." The proof of this algorithm is described in detail in Chapter 7.

We specify the protection state of the desired system using capDL (as intro-
duced in Section 3.4), which has been formally linked to the access control policies
of Sewell et al. (2011) by Boyton et al. (2013). This gives us assurance that we can
start systems in conformance with a security policy and know that the kernel will
enforce these policies.

In the remainder of this chapter, we introduce how systems are initialised
on the seL4 microkernel in Section 5.2, present a formal algorithm for system
initialisation in Section 5.3, and present a C implementation of this algorithm in
Section 5.4.> The relation between the latter two is illustrated in Figure 5.2. Finally,

we conclude the chapter in Section 5.5.

Scope of this thesis

capDL

spec

=T Conformance
; §_ \ Proof

Final
Initialised
State

Initialiser

Initial Boot)
\ specification
\

State

Final
Initialised
State

Initial Boot
State

Figure 5.2: Overview of initialiser correctness proof.

"We only prove safety of our algorithm, not liveness, which reduces our confidence.
We can demonstrate liveness through testing.
*The C implementation was done in conjunction with others.

66 CHAPTER 5. SYSTEM INITIALISATION

5.2 sel4 initialisation

At boot time, seL4 first pre-allocates memory for itself and then gives the remain-
der of the memory to the initial user task (the root task) in the form of capabilities
to untyped memory. More precisely, the kernel creates all the objects needed by
the root task such as its TCB, capability space, and virtual address space. Ca-
pabilities to untyped memory are stored in the capability space, together with
capabilities to allow hardware access. At the end of this booting phase, the root
task is enabled to run and starts executing. The state of the system at this stage is

illustrated in Figure 5.3.

CSpace Untyped Memory Regions

T | CNODE
Root task

5l | | . .
- | N N N
IRQControlCap, ! - bl b
: E . - L L
Untyped J [—————1 — Lo b
Capabilities | | = i — —> b
pTTTR 5 [— — >
VSpace b P
Free {]
Capability € | |
Slots || |
oo, IRQ Objects
|RQTab|e\l\l\l\l\l\l\l\l\ \l\l\l\
" IRQ Nodes bOO00O00 ooo

Figure 5.3: Initial state, after kernel booting.

This root task is the initialiser we are targeting in this thesis. Its aim is first to
use these untyped capabilities for creating the required objects, such as TCB,, TCBg,
and CNodep, from Figure 5.1, and then to initialise them appropriately, for example,
to set TCBx's CSpace to CNodep,. This includes setting up communication channels,
for example, storing the Write capability to EP in TCB,’s CSpace.

We present a formal algorithm for a custom root task to perform system ini-
tialisation. The initialiser specification describes the code for allocating objects,

managing capabilities to the objects, copying or transferring authority, managing

5.3. FORMAL MODEL OF SYSTEM INITIALISATION 67

example_spec =
(cdl_arch = ARM11,
cdl_objects =
[tcb_a_id > Tcb (cdl_tcb_caps =
[o —CNodeCap cnode_a1_id guard guard_sz cnode_a1_sz,
1 —PageDirectoryCap pd_a_id Real None, ...]
cdl_tcb_fault_endpoint = ...,
cdl_tcb_intent = ... |,
tcb_b_id+— Tcb (cdl_tcb_caps =
[o —CNodeCap cnode_b_id guard guard_sz cnode_a1_sz,
1 —PageDirectoryCap pd_b_id Real None, ...]
cdl_tcb_fault_endpoint = ...,
cdl_tcb_intent = ... |),
cnode_a1_id — CNode q cdl_cnode_caps =
[o —»TcbCap tcb_a_id,

1 —CNodeCap cnode_az_id guard guard_sz cnode_a2_sz, ...

cnode_az_id — CNode q cdl_cnode_caps =
[o —=EndPointCap ep_id o {Read, Write},
1 —NullCap,

2 —CNodeCap cnode_az_id guard guard_sz cnode_a2_sz, ...

cnode_b_id — CNode ...
cnode_extra_id — CNode ...
pd_a_id I PageDirectory ...]

current_thread = ...

Figure 5.4: capDL specification of Figure 5.1.

and mapping frames, and setting any required data (such as thread instruction
pointers). Manually performing these tasks for each given system is complicated,
error prone, and inflexible. Instead we choose to provide a generic tool that takes
any capDL specification as input and automatically produces code to create and
initialise the objects. Our initialiser takes a formal capDL specification describing
the target system and runs to give a state where all the components have been

created and their communication channels set up.

5.3 Formal model of system initialisation

In this section, we present an overview of our formal model of the system initial-
isation algorithm in Isabelle/HOL, and examine in detail the creation of objects,
the creation of IRQ Handler capabilities, and the initialisation of the capability
spaces as representative examples.

The system initialiser, being the first user task to run after boot time and
having access to all available memory, is designed to take us from a boot state
illustrated in Figure 5.3 into a state which is in conformance with a given capDL
specification, like the one illustrated in Figure 5.1. We model the algorithm of

the system initialiser as a sequence of high-level instructions, taking a formalised

J

68 CHAPTER 5. SYSTEM INITIALISATION

capDL specification spec as input, and creating and initialising all objects and
capabilities as specified by spec.

These formalised capDL specifications are produced by the capDL translator
we introduced in Section 3.4. If we take the textual description of our example
specification (see Figure 3.6) and run it through the capDL translator, we produce
an Isabelle/HOL representation of the state equivalent? to the one illustrated in
Figure 5.4.

Formally, spec has the type cdl_state, that is, a full state of the capDL kernel
model. Its most important component is the kernel heap cdl_objects of type
obj_id = cdl_object. CapDL objects are formalisations of the TCBs, CNodes,
Endpoints, and other objects mentioned in Section 3.4. These objects consist of a
map from capability slots to capabilities and potentially additional payload such as
further TCB data.

The top-level definition of system initialisation init_system, shown in Fig-
ure 5.5, takes three parameters: the capDL specification spec to be initialised, the
boot information bootinfo provided by the kernel to the initial user task which
specifies the location of untyped memory and free capability slots in the ini-
tialiser’s CSpace, and the list of object names obj_ids mentioned in spec. The
system initialiser is purposely divided into well-defined separate phases, which

simplifies reasoning as we will see in Chapter 7.

o Firstly, the initialiser processes the boot information provided by the kernel

(first line of init_system body).

e Secondly, it

a) creates all the objects specified in the capDL specification while track-

ing the locations of the capabilities to these newly created objects and

b) creates all the required IRQ Handler capabilities while tracking the
locations of these capabilities (second and third lines of init_system
body).

o Thirdly, it duplicates some of the capabilities to the newly created objects
in order to be able to later move some of those capabilities into some other
component’s CSpace, while keeping a copy of the capability for the ini-
tialiser to use itself (fourth line of init_system body).

3The precise formatting of the generated Isabelle/HOL specification is subtlety differ-
ent to the definition we show here, with different parts of the definition folded into various
constants. We can prove equivalence between the two definitions.

5.3. FORMAL MODEL OF SYSTEM INITIALISATION 69

init_system spec bootinfo obj_ids =

do (ut_cpts, free_cptrs) < parse_bootinfo bootinfo;
(orig_caps, free_cptrs) <— create_objects spec obj_ids ut_cpts free_cptrs;
(irq_caps, free_cptrs) <— create_irq_caps spec free_cptrs;
dup_caps < duplicate_caps spec orig_caps obj_ids free_cptrs;
init_irgs spec orig_caps irq_caps;
init_pd_asids spec orig_caps obj_ids;
init_vspace spec orig_caps obj_ids;
init_tcbs spec orig_caps obj_ids;
init_cspace spec orig_caps dup_caps irq_caps obj_ids;
start_threads spec dup_caps obj_ids

od

Figure 5.5: The top-level definition of the system initialiser model.

e Fourthly, it initialises each of these objects by type, including installing
the capabilities into the capability storage objects (fifth to ninth lines of
init_system body).

e Finally, it sets all threads to be runnable (tenth line of init_system body).

Parsing boot information

In the first phase of the initialiser, we extract from bootinfo the list ut_cptrs of
capability pointers to the untyped memory regions that the initialiser has access
to and can use to create new objects, as well as the list free_cptrs of capability
pointers to free slots in its CSpace that it can use to store capabilities to these new
objects. These lists of capabilities will each be in contiguous slots in the root task’s
capability space, as illustrated in Figure 5.3. The number of free capability slots
provided to the root task is specified at compile time for seL4 and so it is possible
to make sure that there will be enough free slots available for the initialisation of a

specific system.

Creating objects and IRQ Handler capabilities

In the second phase, we create all objects and original capabilities listed in the
capDL specification.*

Most capabilities in seL4, such as those pointing to Endpoints, TCBs, Page
Tables, etc., point to exactly one object. The original capabilities pointing to these
kinds of objects are created when the objects themselves are created (by retyping

untyped memory). Such capabilities can be thought of as pointing to “real” objects.

+We consider IRQ Handler capabilities as original capabilities as they are not copied
from other capabilities.

70 CHAPTER 5. SYSTEM INITIALISATION

All Supported Objects
“Real” Objects IRQ Nodes

MemoryObjeCtS IRQ Table \l\l\l\l\l\l\l\l\ \l\l\l\

PD IRQ Nodes cooooooo --- DOO
Page -
Directories ||

Ll Endpoint TCBs Tci

Related Vspace |

Page Fil— Objects — IPC Buffer
Tables u E

— Endpoints = B
e Async AEP
Endpoints

Figure 5.6: The different object types the initialiser supports.

The objects that the initialiser supports are illustrated in Figure 5.6.> Further
copies of capabilities pointing to “real” objects can be derived from the original
capability created when creating the object.

Other capabilities in seL4 do not point to an object at all. For example, IRQ
Handler capabilities do not point directly to an object, but instead point to an IRQ
number. This IRQ number can then be looked up in the IRQ table to work out
which object the IRQ Handler capability ultimately points to. The IRQ Nodes in a
system are created by kernel initialisation before the system initialiser starts. Be-
cause of this, to create IRQ Handler capabilities we do not create IRQ Nodes from
untyped memory, but we instead invoke the seL4 system call seL4_IRQControl_Get.
This system call requires the caller to possess an IRQ Control capability in its
capability space. This IRQ Control capability is another example of a capability
that does not point to an object, but confers the authority to create IRQ Handler
capabilities.

Our formal algorithm of the system initialiser first creates the “real” objects
and then creates the required IRQ Handler capabilities. The “real” objects are
created by invoking seL4_Untyped_Retype on the provided untyped memory, as
illustrated in Figure 5.7. Each untyped memory region can be retyped incremen-
tally to create new objects. Any ordering of the creation of objects, and any choice

of the untyped memory region they are created from, is safe. Some orderings may

5In the capDL kernel model, IRQ Nodes are represented as a CNode of size zero. As
actual CNodes are never of size zero, we use the predicate real_cnode_at obj_id spec to
specify that an actual CNode is present at obj_id.

5.3. FORMAL MODEL OF SYSTEM INITIALISATION 71

Slots

CSpace Untyped Memory Regions
‘wer o o oo o
' b P S b
i Q P o E P
! - o ! - [o
O T 3 ! gm g(gt o %Lu o
> [— s = | ol m < o
m 8 10 P 12828 = 1889, 8
O % e EEE 1 888E 1 RRE LY
- g i ‘ [o o [
i AN H H - E ﬁ ﬁ ﬁ b ﬁ H E b
3 Untyped :: % :—4 I 3 i
|Capabilities | | — —> b
i i = — — —
VSpace b b b
E P
Original J [: i
| Capabilities '} [=
\ -
(T e cucupuyuu o
Free || |
Capability 4]

P

IRQ Objects

e
-]
-]

Figure 5.7: Kernel state, after create_objects.

however, make inefficient use of space as seL4 requires all objects to be aligned to
their size. Ordering the creation of objects from the largest object to the smallest,
and from the largest untyped memory region to the smallest, is conjectured to be
optimal, but proving this is outside the scope of this work. In our algorithm, the
creation is done in order of appearance in the list 0bj_ids.°

The operation create_objects, shown in Definition 5.1, has a large loop that
creates each of the objects in the specification in the free slots of the initialiser’s
CSpace. We have three lists which we iterate over, the list of object identifiers for
“real” objects real_obj_ids, the list of free capability pointers free_cptrs where the
capabilities to the newly created objects will be stored, and the list of capability
pointers to the untyped objects untyped_cptrs from which the objects will be cre-
ated. Each list has a corresponding index into it. In each iteration of the loop, we
call retype_untyped to try and create the specified object, in the specified free slot,
using the specified untyped capability.

If the retype_untyped operation succeeds, then we will have created our speci-

fied kernel object, and have an original capability pointing to it in the free capa-

®In our implementation, the ordering is provided by the capDL translator.

72 CHAPTER 5. SYSTEM INITIALISATION

bility slot that was provided to retype_untyped. In this case we then store in our
mapping orig_caps the mapping stating that the original capability for the kernel
object corresponding to the capDL identifier obj_id is located in the capability slot
free_slot. We then move on to the next object to create, and the next free capability
slot.

If the retype_untyped operation fails, we assume the untyped object has no
more free space to create more objects, and instead move to the next untyped
object. The loop continues to execute while none of the indexes overflow. If they
do overflow, then we have either created all of the required objects, or we have
run out of either free slots or untyped objects. We can ensure that we do not run
out of free slots by configuring seL4 to ensure that the root task has enough free
slots. If we run out of memory, we abort initialisation through our final assertion

untyped_index #+ |untyped_cptrs|.

Definition 5.1 » create_objects spec obj_ids ut_cptrs free_cptrs =
create_objects do real_obj_ids < return [obj_id<—obj_ids. real_object_at obj_id spec];
(obj_id_index, ut_index, orig_caps) <
whileLoop (A(obj_id_index, ut_index, orig_caps).
(obj_id_index < |real_obj_ids| A obj_id_index < |free_cptrs| A ut_index < |ut_cptrs|,
do obj_id < return real_obj_ids|o;_ig_index);
free_cptr < return free_cptrsioy; id_index);
ut_cptr < return ut_cptrs(y; index);
object + assert_opt $ opt_object obj_id spec;
object_type <— return $ object_type object;
object_size < return $ object_size object;
fail < retype_untyped free_cptr ut_cptr object_type object_size;
obj_id_index <+ inc_when (— fail) obj_id_index;
ut_index < inc_when fail ut_index;
orig_caps < update_when (— fail) orig_caps obj_id free_cptr;
return (obj_id_index, ut_index, orig_caps)
od))
(0, 0, map_empty);
assert (ut_index + |ut_cptrs|);
return (orig_caps, drop |real_obj_ids| free_cptrs)
od

The operation retype_untyped, shown in Definition 5.2, is a simple wrapper
around the seL4 system call seL4_Untyped_Retype, passing the required parame-
ters to create a single object from the untyped capability pointed to by the capabil-
ity pointer ut_cptr, placing the newly created capability in the capability slot in the
root task’s CNode that is pointed to by the capability pointer free_cptr.

5.3. FORMAL MODEL OF SYSTEM INITIALISATION 73

retype_untyped free_cptr ut_cptr type size_bits = <« Definition 5.2
seL4_Untyped_Retype ut_cptr type size_bits seL4_CaplnitThreadCNode 0 0 free_cptr 1 retype_untyped

To create the required IRQ Handler capabilities, we call create_irq_cap for
each IRQ number used in the specification, that is, those that have an IRQ Han-
dler capability pointing to them. This is shown in Definition 5.3. These capabilities
are stored in the remaining free capability slots in order. The mapping of IRQ
numbers to the capability pointer that points to the respective IRQ Handler ca-
pability is then calculated by zipping the list of IRQ numbers and free capability
slots.

To create an IRQ Handler capability at the specified free capability slot, we call
the seL4 system call seL4_IRQControl_Get, as shown in Definition 5.4. As men-
tioned above, this operation requires the initialiser to possess the IrqControlCap,
which seL4 provides to the initialiser in the slot seL4_CaplRQControl, just as seL4
provides the capability to the root CNode in the slot seL4_CaplnitThreadCNode.

create_irq_caps spec free_cptrs = <« Definition 5.3
do irgs < return $ used_irgs spec; create_irq_caps
mapM (create_irq_cap spec) (zip irgs free_cptrs);
si_irq_caps < return $ map_of (zip irgs free_cptrs);
return (si_irq_caps, drop |irgs| free_cptrs)
od

Once we have created all of the “real” objects and the IRQ Handler capabili-

ties, the kernel state for our example will look like Figure 5.8.

create_irq_cap spec (irq, free_cptr) = < Definition 5.4
do control_cap < return seL4_CaplRQControl; Create_irq_cap
root < return seL4_CaplInitThreadCNode;
index < return free_cptr;
depth < return 0x20;
fail < seL4_IRQControl_Get control_cap irq root index depth;
assert (— fail)
od

74 CHAPTER 5. SYSTEM INITIALISATION

TCB
Root task
[
EP

AEP

[TTT] CNODEgxTRA

[T T T ONODEy,
[T T ONODEp,
o TTTPTA
(]] TOBg
CONTEXT TCBA

3 Untyped
| Capabilities

—

= — L Y
s FRAVER,
| 1 R

L [T TTTJONODEg

Original
| Capabilities
i

I
I IRQ Handler

| Capabilities

i

Free
Capability
Slots

IRQ Objects

Figure 5.8: Kernel state, after Create_irq_caps.

Duplicating capabilities

The original capability that is created when creating an object can then be given
to other threads, either by moving it or by copying it (with full or diminished
rights). Note that, as explained in Section 3.4, an original capability confers more
authority than derived ones. This creates a subtle dependency for the order in
which the initialiser has to distribute capabilities: it eventually needs to give away
original capabilities, and at the same time keep access to the CNodes to finish
their initialisation and the TCBs so it can start all the threads.

For this reason, we duplicate, in this third phase of system initialisation, the
original capabilities to all the TCBs and CNodes created, storing these capabilities
in the initialiser’s CSpace, as illustrated in Figure 5.9. We store the mapping from

object identifiers to the locations of these duplicated capabilities in dup_caps.

Configuring objects

At this stage we can start the initialisation, per object type, including installing the

capabilities into the capability storage objects, as follows:

¢ TRQ Nodes are bound to asynchronous endpoints.

5.3. FORMAL MODEL OF SYSTEM INITIALISATION

-
mE
= 3

o

Original
| Capabilities
1

3 Untyped
| Capabilities

—

I
I IRQ Handler

| Capabilities

i

! Duplicate
i Capabilities
I

Free
Capability
Slots

—— [TIT[I[]Pbg

] FRAVE,,

s FRAVER,
[T TT T CNODEg
[[T CNODE,
[T T T ONODEp,
o TTTPTA

(]] TOBg

CONTEXT TCBp

EP
AEP

[TTT] CNODEgxTRA

IRQ Objects

Figure 5.9: Kernel state, after duplicate_caps.

75

o Page directories each need to be assigned an address-space identifier (ASID)’.

The ASIDs are all assigned from the system initialiser’s ASID Pool.

e VSpaces are initialised by mapping in the required entries into page direc-

tories, and then page tables.

e TCBs are each initialised by setting the required data and capabilities, and

then setting the registers.

e CSpaces are initialised similarly to VSpaces with the added complication

of needing to distinguish between capabilities the that are moved and the

ones that are copied. Moreover, unlike VSpaces which are fixed, two-level

data structures, CSpaces can be arbitrary directed graphs.

The initialisation of CSpaces, shown in Definition 5.5, consists of putting the

desired capability in every slot of every CNode appearing in spec. This occurs in

two phases, depending on whether or not the spec requires the capability to be

the original. For all capabilities that need not be originals, we copy the initialiser’s

7seL4 requires all address spaces to be assigned a valid identifier.

Definition 5.5 »

init_cspace

Definition 5.6 »

init_cnode

76 CHAPTER 5. SYSTEM INITIALISATION

original capability into the target CNode (we actually mint it, diminishing the
access rights to those specified in spec). For the ones that need to be original, we
move the initialiser’s original capability (we actually mutate it with the appropriate
rights specified in spec, except for endpoint capabilities which cannot be mutated
in seL4). Each phase maps over the full list of all CNode slots, but does nothing
to slots not affected by that phase.

init_cspace spec orig_caps dup_caps irq_caps obj_ids =

do cnode_ids <+ return [obj_id<—obj_ids. real_cnode_at obj_id spec|;
mapM (init_cnode spec orig_caps dup_caps irq_caps Copy) cnode_ids;
mapM (init_cnode spec orig_caps dup_caps irq_caps Move) cnode_ids

od

In each phase, we initialise the capability slots one by one, as shown in Defi-

nition 5.6.

init_cnode spec orig_caps dup_caps irq_caps mode cnode_id =
do cnode_slots < return $ slots_of_list spec cnode_id,;
mapM (init_cnode_slot spec orig_caps dup_caps irq_caps mode cnode_id) cnode_slots

od

The initialisation of a single capability slot cnode_slot of a CNode cnode_id
is shown in Definition s5.7. This could, for instance, be the first slot of CNodep, in
our example of Figure 5.1, which needs to contain a non-original capability to the
endpoint EP with a Write right.

In this definition, we first extract the target capability target_cap that spec
requires in cnode_slot. The function opt_cap returns an option type, that is, either
Some cap or None. The function assert_opt asserts that this value is of the form
Some cap and returns cap; otherwise it fails. From farget_cap, we extract the target
object target_cap_obj (say EP), the desired rights target cap_rights (say Write), and
additional data target_cap_data (for example, for endpoints, a so-called badge).
We store in move_cap whether spec requires the capability stored in the slot to be

original (in which case, we move the capability).

5.3. FORMAL MODEL OF SYSTEM INITIALISATION 77

init_cnode_slot spec orig_caps dup_caps irq_caps mode cnode_id cnode_slot =
do target_cap <+ assert_opt (opt_cap (cnode_id, cnode_slot) spec);
target_cap_obj < return (cap_object target_cap);
target_cap_irq < return (cap_irq target_cap);
target_cap_rights < return (cap_rights target_cap);
target_cap_data < return (cap_data target_cap);
is_ep_cap < return (ep_related_cap target_cap);
is_irqhandler_cap < return (is_irghandler_cap target_cap);
move_cap < return (is_orig_cap (cnode_id, cnode_slot) spec);
dest_obj + assert_opt $ opt_object cnode_id spec;
dest_size < return (object_size dest_obj);
dest_root < assert_opt (dup_caps cnode_id);
dest_index < return cnode_slot;
dest_depth < return dest_size;
src_root <— return seL4_CaplnitThreadCNode;
src_index < assert_opt (if is_irqghandler_cap
then irq_caps target_cap_irq
else orig_caps target_cap_obj);
src_depth < return 0x20;
if target_cap = NullCap then return True
else if mode = Move A move_cap
then if is_ep_cap V is_irqhandler_cap
then seL4_CNode_Move dest_root dest_index dest_depth
src_root src_index src_depth
else seL4_CNode_Mutate dest_root dest_index dest_depth
src_root src_index src_depth target_cap_data
else if mode = Copy A — move_cap
then seL4_CNode_Mint dest_root dest_index dest_depth
src_root src_index src_depth
target_cap_rights target_cap_data
else return True
od

In order to be able to invoke seL4’s seL4_CNode_Move, seL4_CNode_Mutate,
and seL4_CNode_Mint operations, the initialiser needs to hold in its CSpace, both
the target capability to be moved or copied, and a capability to the destination slot.
We compute the destination information (dest_root, dest_index, and dest_depth)
from the (duplicated) capability that the initialiser holds for the destination slot.
(We use the duplicate capabilities in case the original capability to the destination

slot has already been given away.) We compute the source information (src_root,

<« Definition 5.7

init_cnode_slot

78 CHAPTER 5. SYSTEM INITIALISATION

src_index, and src_depth) from the (original) capability that the initialiser holds
for the target capability. We then can invoke the appropriate seL4 operation de-
pending if the target capability needs to be original or not. These operations
directly connect to the capDL-level API model of the kernel.

Once create_objects has finished, all the original and IRQ Handler capabili-
ties will have been handed out, and the state will look like the one illustrated in

Figure 5.10.

CSpace Untyped Memory Regions
Tron N S N S S e -
Qg b Lo <
O = o o T
1 Z 8 - o1 ! - o b x
o< & I S I - b g
| 1o a o ol o)
% o0 S22l 000 < 1FFe
O % = EEEEERE 88 &E RRE LS
= o ‘ I 1 i . | '
i | ! i - Lo
—— 1 IRQControlCap, ! ! | ! !
> : ! ! P ﬁ ﬁ E . H H E
I : A N
;T e po P
Untyped J[+—+————— — Lo
| Capabilites) | — —>
””””” 5! [T — f— >
VSpace | P
! Free] i
| Capability { —
| Slots] |
! Duplicate J [
;Capabilines L
' Free \|5
1 Capability 4| |
Slots -
IRQ Ob/ecrsl

Figure 5.10: Kernel state, after init_cspace. Note, capabilities between
objects being initialised are not shown for simplicity.

Starting threads

The final step of the initialisation is to set all threads to be runnable, at which
point the initialiser becomes dormant and the system is ready to run. As the
scheduling of threads is not modelled, we have not proven that this last step is

correct.

5.4. CIMPLEMENTATION 79

5.4 Cimplementation

In this section, we take the formal algorithm of system initialisation from Sec-
tion 5.3 and show how it has been implemented in C. This C implementation was
done in conjunction with others. The implementation follows the formalised al-
gorithm closely, such that a formal refinement between the two is possible, with
functional aspects such as mapM and filter turned into their C equivalents. As a
representative example we examine the initialisation of capability spaces in detail.

The top level-definition of the C function init_system, shown in Figure 5.11,

closely mirrors the Isabelle/HOL definition of init_system.

void init_system(const CDL_Model xspec) {
seL4_BootInfo *xbootinfo = selL4_GetBootInfo();

parse_bootinfo(bootinfo);

create_objects(spec, bootinfo);

create_irg_caps(spec);
duplicate_caps(spec);

init_irqgs(spec);
init_pd_asids(spec);
init_vspace(spec);
init_tcbs(spec);
init_cspace(spec);

start_threads(spec);

Figure 5.11: The C implementation of init_system.

The initialiser constructs a number of large data structures, like the mapping
from object identifiers to the capability slot that the original capability to the corre-
sponding kernel object is stored in—orig_caps in the Isabelle/HOL model. Rather
than passing these data structures between functions and using large amounts of
stack space, or dynamically allocating memory for them in the heap and passing
pointers to them (which requires malloc, a feature best avoided in an initialiser),
we store these large data structures in global variables. This helps us ensure that
the initialiser will not run out of either stack or heap space at runtime.

The boot information provided by the kernel is obtained through the seL4 pro-
vided function selL4_GetBootInfo(). The boot information provided two things
required by the initialiser, the list of free capability slots and the list of untyped
capability pointers. As explained earlier, seL4 provides these capabilities as con-

tiguous regions, and so the boot information encodes each of these lists with two

80 CHAPTER 5. SYSTEM INITIALISATION

capability pointers, one to the first capability slot and one to last capability slot.
We store the capability pointers to the first and last free slots in two global vari-
ables, the former of which is updated as these free slots are consumed. The list of
untyped capabilities is only required for creating objects, and so this information
is passed into the create_objects function by passing in the boot information
data structure.

As we stated above, the C code has been written in such a way that we can
prove refinement between the C code and the formal algorithm for system ini-
tialisation. To do such a refinement, we need to translate our C code into the
theorem prover Isabelle/HOL. One promising new way to do this is to use the
tool AutoCorres (Greenaway et al., 2012; Greenaway et al., 2014) which builds on
an existing C-to-Isabelle parser (Norrish, 1998; Norrish, 2013). Using these tools
requires our C code be written in a subset of C. This means that we cannot use
C unions, function pointers, or take the address of local variables. As the selL4
system call seL4_TCB_WriteRegisters() takes a pointer to a C struct containing
the values of the registers to be set, we need to store this structure in a global vari-
able, updating its value before making each call to seL4_TCB_WriteRegisters(),
passing the address of this global variable. As our code is single threaded, this is
safe, although not particularly ideal.®

This gives us a total of six global variables in our program, three arrays en-
coding the mappings orig_caps, dup_caps, and irq_caps respectively, two global
variables pointing to the start and end of the free capability slots of the initialiser,

and one global variable to store the registers of a thread, as shown in Figure 5.12.

static selL4_CPtr capdl_to_sel4_orig[CONFIG_CAPDL_LOADER_MAX_OBJECTS];
static selL4_CPtr capdl_to_sel4_copy [CONFIG_CAPDL_LOADER_MAX_OBJECTS];
static seL4_CPtr capdl_to_sel4_irq[CONFIG_CAPDL_LOADER_MAX_OBJECTS];

static selL4_CPtr free_slot_start, free_slot_end;
static selL4_UserContext global_user_context;

Figure 5.12: The global variables used by the C implementation.

The capDL specification parsed by the system initialiser is stored in a C data
structure generated by the capDL tools described in Section 3.4. This data struc-
ture contains an array of the objects to be created; each object stores its type, a
(possibly empty) array of capabilities, the object’s size, and any other information

required about the object.

8 Another alternative would have been to change the seL4_TCB_WriteRegisters sys-
tem call to take the structure by value.

5.4. CIMPLEMENTATION 81

Since object identifiers used by capDL are simply identifiers, we assume in our
implementation that object identifiers are continuous and start at zero.® Objects
are initialised by the ordering of the array in which they are stored (meaning we
do not need the list of objects that the Isabelle/HOL specification has).

To examine exactly how we map a monadic Isabelle/HOL function to a C
implementation, we examine the definition of init_cpsace in detail, shown in
Figure 5.13. In the Isabelle/HOL specification of the algorithm, init_cspace maps
the operation init_cnode over the list of CNodes twice, once to copy capabilities,
and once to move capabilities. The list of CNodes is obtained by filtering the list
of objects. In C, we achieve this by looping over the list of objects, and calling
init_cnode on each object that is a CNode. The mode (MOVE or COPY) is encoded

using an enumeration init_cnode_mode.

void init_cspace(const CDL_Model xspec) {
for (CDL_ObjID obj_id = 0; obj_id < spec—>num; obj_id++)
if (spec—objects[obj_id].type == CDL_CNode)
init_cnode(spec, COPY, obj_id);

for (CDL_ObjID obj_id = 0; obj_id < spec—>num; obj_id++)
if (spec—objects[obj_id].type == CDL_CNode)
init_cnode(spec, MOVE, obj_id);

Figure 5.13: The C implementation of init_cspace.

To initialise a CNode, we initialise each of the capability slots within, as shown
in Figure 5.14. The capability slots of an object can be a sparse data structure, and
so we encode it as an array of CDL_CapSlots, which each contain a slot number

and a capability. We index into this array with slot_index.

void init_cnode(const CDL_Model xspec, init_cnode_mode mode, CDL_ObjID cnode_id) {
CDL_Object *xcdl_cnode = get_spec_object(spec, cnode_id);
for (unsigned int slot_index = 0; slot_index < CDL_Obj_NumSlots(cdl_cnode);
slot_index++)
init_cnode_slot(spec, mode, cnode_id, CDL_Obj_GetSlot(cdl_cnode,

slot_index));

Figure 5.14: The C implementation of init_cnode.

°In fact, in our textual descriptions, object are identified by a string, and the capDL
translator generates numerical identifiers for the objects, sorted from largest object to
smallest to ensure allocation is optimal.

82 CHAPTER 5. SYSTEM INITIALISATION

void init_cnode_slot(const CDL_Model xspec, init_cnode_mode mode,
CDL_ObjID cnode_id, CDL_CapSlot *xcnode_slot) {

CDL_Cap xtarget_cap = CDL_CapSlot_Cap(cnode_slot);
CDL_ObjID target_cap_obj = CDL_Cap_ObjID(target_cap);
CDL_IRQ target_cap_irq = CDL_Cap_IRQ(target_cap);
seL4_CapRights target_cap_rights = CDL_Cap_Rights(target_cap);
seL4_CapData_t target_cap_data = get_capData(CDL_Cap_Data(target_cap));
CDL_CapType target_cap_type = CDL_Cap_Type(target_cap);

int is_ep_cap = (target_cap_type == CDL_EPCap ||
target_cap_type == CDL_AEPCap);
int is_irqg_handler_cap = (target_cap_type == CDL_IRQHandlerCap);

int is_orig_cap CDL_Cap_IsOrig(target_cap);
CDL_Object *dest_obj = get_spec_object(spec, cnode_id);
uint8_t dest_size = CDL_Obj_SizeBits(dest_obj);

seL4_CPtr dest_root = dup_caps(cnode_id);
int dest_index = CDL_CapSlot_Slot(cnode_slot);
uint8_t dest_depth = dest_size;

selL4_CPtr src_root = selL4_CapInitThreadCNode;
int src_index = is_irq_handler_cap ? irqg_caps(target_cap_irq)
: orig_caps(target_cap_obj);

uint8_t src_depth = 32;

if ((mode == MOVE) && is_orig_cap) {
if (is_ep_cap || is_irqg_handler_cap) {
int error = seL4_CNode_Move(dest_root, dest_index, dest_depth,
src_root, src_index, src_depth);
seL4_AssertSuccess(error);
} else {
int error = seL4_CNode_Mutate(dest_root, dest_index, dest_depth,
src_root, src_index, src_depth,
target_cap_data);
seL4_AssertSuccess(error);
}
} else if ((mode == COPY) && !is_orig_cap) {
int error = selL4_CNode_Mint(dest_root, dest_index, dest_depth,
src_root, src_index, src_depth,
target_cap_rights, target_cap_data);

seL4_AssertSuccess(error);

Figure 5.15: The C implementation of init_cnode_slot.

5.5. CONCLUSION 83

To initialise a CNode slot, we read the required data from the capDL spec-
ification, as shown in Figure 5.15, and call either seL4_CNode_Mutate, seL4_CN-
ode_Move, or seL4_CNode_Mint. Either way we assert that the seL4 system call

succeeded.

5.5 Conclusion

In this chapter we have presented a formal algorithm of system initialisation that
takes a declarative capDL specification and starts a system in conformance with
this specification. At present, capDL only models the protection state of the sys-
tem, not its memory content. This means we also do not model the loading of
program code. This limitation is less severe than it may sound, because in the
envisioned application space, the system image loaded from disk already contains
all application binaries. That is, loading program code is reduced to mapping the
right memory frames into the right virtual address spaces, which we do model.
This algorithm we have presented here creates and initialises the specified
objects one-by-one. In the next chapter we introduce separation logic, a reasoning
framework that allows us to conveniently reason that each step of this algorithm
brings us one step closer to having an initialised system, whilst also proving that

each step does not undo any of the work done by previous steps.

Chapter Summary

» Correctly setting up a MILS-style system to conform to a specifi-

cation is important for the security of the system.

» To solve this problem, we presented a generic, formal algorithm
that initialises a system in conformance with a declarative capDL
specification. Our algorithm takes a capDL specification as input,
and transforms the initial seL4 boot state to a final initialised state

in conformance with our given specification.

» We presented a C implementation of this algorithm that has been
designed such that we could prove that it refines our formal algo-

rithm.

Chapter 6
Separation logic

In this chapter we introduce the logic that we use for the proof in this thesis,

namely, separation logic.

e We start in Section 6.1 by introducing Hoare logic and the limitations of

using Hoare logic for the proof of the algorithm for our system initialiser.

e We then introduce separation logic, an extension of Hoare logic first pro-
posed by Reynolds (2002), in Section 6.2, and we explain why it is useful for

reasoning about our system initialiser.

¢ In Section 6.3 we explain an abstract separation logic developed by Klein
et al. (2012), and show how it can be used to avoid creating yet another

separation logic from scratch.

o In Section 6.4, we show a number of properties true for all separation logics,

concentrating mainly on some new properties that we show for this thesis.

e We introduce our custom separation logic instance in Section 6.5. We show
how we can achieve a fine level of granularity with a simple instantiation of
an abstract separation logic, and we explain why we have chosen the level

of granularity that we have.

o In Section 6.6, we develop a number of predicates for describing the state—
the so called “arrows” of a separation logic. These are what let us reason
about whole objects, or components of these objects such as the fields or the

individual capabilities.

e We show a variation of the classical frame rule of separation logic, on a
shallow embedding, in Section 6.7. This is what enables us to show that an

operation’s behaviour is local.

85

86 CHAPTER 6. SEPARATION LOGIC

e Finally we conclude this chapter in Section 6.8 with a summary of the re-

sults.

Parts of this chapter have previously appeared in Boyton et al. (2013) and

Andronick et al. (2012).

6.1 Why not use standard Hoare logic?

When reasoning about the system initialiser specification, we wish to precisely
capture the semantics of each operation. Axiomatic semantics are commonly
represented in Hoare logic, using Hoare triples. These triples, written {P} f {Q},
express that if P is true before an operation f, then Q will be true afterwards."

To understand what these semantics look like, we will examine the set_object
operation, defined on a simple object heap, like the object heap in capDL. We
model memory as a partial mapping from object identifiers to objects; at any
memory address an object may or may not exist. In this world, we define the
set_object operation as storing an object object at a memory address obj_id. In
this section, we use the notation [obj_id] := Some object to place the object object

at the location obj_id.

Definition 6.1 » set_object obj_id object = [obj_id] := Some object

set_object

The following Hoare triple describes the behaviour of the monadic operation
set_object. This Hoare triple precisely captures the fact that given any precondi-
tion, if we run the operation set_object, then afterwards obj_id will point to object
as desired. The notation “obj_id < object s” means that there exists an object

object at a memory address obj_id in the state s.

Lemma 6.1 > {As. True}
set_object sets object set_object obj_id object

{As. obj_id < object s}

To be able to chain multiple executions of this rule, we need to know two

things about set_object, namely:

1. that it is local

2. that the objects that set_object modifies are distinct.

'In this thesis, we only reason about partial correctness—if f terminates, then Q will
be true. Termination could be proven separately, if desired.

6.1. WHY NOT USE STANDARD HOARE LOGIC? 87

Showing that an operation is local means both that its behaviour is unaffected
by the state of the rest of the system, and that it does not affect the rest of the
system; it lets us be explicit about what the side-effects of an operation are. Our
Hoare triple, shown in Lemma 6.1, shows that the object located at the address
obj_id, after running set_object obj_id object, will be object, independent of the
rest of the state, but it does not show anything about how set_object could poten-
tially modify the contents of the rest of the state. To illustrate this point, let us
examine set_object_malicious, which not only sets the object at location obj_id to
object, but also deletes the next object (the one located at obj_id + 1).

set_object_malicious obj_id object = <« Definition 6.2

do [obj_id] := Some object; set_object_malicious
[obj_id + 1] := None

od

Now, we can show the same Hoare triple that we showed for set_object, namely

Lemma 6.1, is also true for set_object_malicious.

{2s. True} < Lemma 6.2
set_object_malicious obj_id object set_object_malicious
ts object
{7\5. obj_id < object s} sets objec

As we can see, our Hoare triple in Lemma 6.1 is not nearly precise enough to
capture the locality of set_object. To fix this, we can show another Hoare triple for

set_object that states that the rest of the objects in the system are unchanged.

{As. obj_id’ < object’ s A obj_id #+ obj_id" } <lLemma 6.3
set_object obj_id object set_object leaves other
objects

{As. obj_id” < object’ s}

Lemma 6.3 states that any other objects in the system are unchanged by the
setting of obj_id to point to object. Combining this lemma with Lemma 6.1, we
can capture exactly what set_object does and what it does not do. This allows us
say that set_object is local.

We can then chain Lemma 6.1 and Lemma 6.3 together to show that the set-

ting of two objects, at distinct addresses, sets them in the expected manner.

*Alternatively, we could consider a version of set_object_malicious that could exhibit
different behaviour depending on the contents of the state, as long as it always places
object at obj_id.

Lemma 6.4 »
Setting two objects

Definition 6.3 »

sep_map

88 CHAPTER 6. SEPARATION LOGIC

{s. obj_id + obj_id" }
do set_object obj_id object;
set_object obj_id’ object’
od
{s. obj_id < object s A\ obj_id’ < object” s}

Proof: Because we know the obj_id and obj_id’ are different, we know that
the two calls to set_object will affect different objects. We chain Lemma 6.1 and
Lemma 6.3 (which together show that set_object is a local operation) using the

weakest-precondition framework of Cock et al. (2008) prove this lemma. [

This style of reasoning applies in general—to chain rules we need to know that
they are local and that their areas of influence do not overlap. Unfortunately, while
this style of reasoning scales to atomically setting two objects, it fails to scale well
to setting parts of an object (such as an individual capability slot), or reasoning
about operations that require access to multiple different objects, as specifying
and reasoning about the locality and disjointness of these operations becomes

increasingly unwieldy.

6.2 A simple introduction to separation logic

Separation logic—an extension to Hoare logic first introduced by Reynolds (2002)—
allows us to express these two concepts of locality and disjointness implicitly, by
local reasoning on partial heaps. These partial heaps, just like the object heap in
capDL, are partial mappings from object identifiers to objects.

Using a separation logic allows us to express the notion that the fact that
obj_id points to object and that obj_id’ points to object’ are both true, but in
disjoint parts of the heap. To do this, we construct separation logic predicates,
each operating on a piece of the heap, stating precisely which object is present and
that only this object is present.> In our example heap, we define such a predicate

as follows:

obj_id 1 op; object = As. cdl_objects s = [obj_id > object]

3Separation logics do not require that predicates specify that the objects specified are
the only objects in the heap, but predicates that do are much easier to reason about using
weakest-precondition style reasoning. For this reason, all the separation logic predicates
used in this thesis constrain the heap to only contain the specified objects.

6.2. ASIMPLEINTRODUCTION TO SEPARATION LOGIC 89

This predicate states that the heap contains only the object object located at
address obj_id. We define another similar predicate that states that there exists any

object at an address obj_id.

obj_id 1 4; — = As. Jobject. cdl_objects s = [obj_id — object]

We can use these separation logic predicates to restate a more precise form
of our original rule about set_object. To do so, we divide our object heap in two,
and say that the first piece of the heap previously contained some object located at
address obj_id, and that after set_object is called, that piece of the heap contains
the object object located at address obj_id.

{obj_id =4, — A* R}
set_object obj_id object
{obj_id =y, object * R}

What is different about this rule is that it states that the rest of the object heap,
as captured by the arbitrary separation logic predicate R, is unchanged. Since this
Hoare triple is true for any R, the behaviour of set_object can neither depend on
any of the rest of the state, nor can it modify the rest of the state. This result is
achieved using separation conjunction P A* Q. Separation conjunction is what
allows us to say that a predicate P and predicate Q are true on separate parts of the
state.

To define separation conjunction, we need to formalise what it means to di-
vide a heap into two pieces. To do this we, require a concept of what it means for
two heaps, h, and h,, to be disjoint (h, ## h,), and how we can combine disjoint
heaps together (h, + h,).* Using these concepts of heap disjunction and heap

addition, we define separation conjunction.

PA*Q=Ah. 3, by hy #4t by A =h, +h, APhy A QHh,

We say that the predicate P is true, separately to the predicate Q, when we can
divide our heap h into two disjoint parts, h, and h,, such that h = h, + h,, where
P is true on h,, and Q is true on h,. For simple object heaps, such as the one in

Section 6.1, we can define heap addition as map addition between the two object

4In a classical separation logic, heap addition is a partial function, and heaps are con-
sidered disjoint whenever heap addition is defined. As reasoning about partial functions
is inconvenient in Isabelle/HOL, we follow Klein et al. (2012) and use total functions for
both heap addition and heap disjunction.

<« Definition 6.4

sep_any_map

<Lemma 6.5
Set object

<« Definition 6.5

Separation conjunction

20 CHAPTER 6. SEPARATION LOGIC

heaps, and heap disjunction as map disjunction, to construct a separation logic
with an object-level granularity (a concept we explore further in the rest of this
chapter).

This simple separation logic that we have introduced in this section, with its
objet-level granularity and precise, local predicates, such as obj_id t—; object, al-
low us to use separation conjunction to specify a rule for set_object that implicitly
states both the locality and distinctness requirements from Section 6.1. We reason
about the setting of two objects at distinct addresses simply by instantiating the
R in Lemma 6.5 to include the other object.

Examining the same setting of two objects that we analysed in Lemma 6.4,
that is, setting of obj_id to object and obj_id’ to object’, we use the rule Lemma 6.5
twice. The first time setting R to be obj_id” —,,; — A" R and the second setting R
to be obj_id —4p; object * R, as shown below.

{obj_id =4y — N* 0bj_id” op; — A* R} {obj_id" = qp; — N* 0bj_id ;) object A* R}
set_object obj_id object set_object obj_id’ object’
obj_id \—p,; object * obj_id’ 5, — A* R obj_id’ 4 object’” A* obj_id —.p,; object A* R
). j 091] j] j 09])] j 09

We can chain these rules together, noting that separation conjunction is com-

mutative.

Lemma 6.6 > {obj_id = op; — N* 0bj_id” Fop; — A* R}
Setting two objects set_object obj_id object
{obj_id =y, object N* obj_id” \op; — A* R}
set_object obj_id’ object’
{obj_id =y, object N* obj_id” \p; object” A* R}

Whilst this may not look much simpler than our similar proof of Lemma 6.4,
it scales more easily to reasoning about loops, multiple objects, and, with a sepa-
ration logic of the right granularity (not this simple one), parts of an object. The
calculation for the value for R to use when applying a rule is called frame calcu-
lation and can be automated through the use of custom Isabelle/HOL tactics, as
explained in Section 6.3. We explain the frame in our rules in further detail in

Section 6.7.

6.3 An abstract separation logic

The definitions given in Section 6.2 give us a basic separation logic with the de-

sired properties for the atomic setting of objects. Underneath a separation logic

6.3. AN ABSTRACT SEPARATION LOGIC 91

is an algebraic structure which has been analysed by Calcagno et al. (2007), Dang
et al. (2011), and Dockins et al. (2009). To be able to reason about a separation
logic in a theorem prover such as Isabelle/HOL, custom tactics (such as those that
do frame calculation) are highly useful in automating much of the proof. Rather
than re-deriving the properties we need for our specific separation logic, such
as the associativity and commutativity of separation conjunction, and reimple-
menting tactics for reasoning about them, we build the separation logic we use
for this thesis on an abstract separation logic developed by Klein et al. (2012).
This abstract separation logic formalises the work of Calcagno et al. (2007) in the
theorem prover Isabelle/HOL and provides an Isabelle/HOL locale. This locale
formalises the axioms of a separation algebra, and derives a number of properties,
definitions, and tactics based on those axioms. To use this abstract separation
logic, we are required to instantiate this locale with our own custom definitions of
heap disjunction and heap addition, and then to prove that these custom defini-
tions satisfy the axioms of the locale.> We then get a separation logic, along with
a number of properties, definitions, and tactics. On top of this separation logic,
we define predicates such as obj_id ,; object, and prove the frame rule for our

leaf functions.
h##0
h, ## h, = h, ## h,
h+0="h

h, ## h,
hy+h,=h, +h,

ho #4 h, h #4 h, h, ## h,
(hO +h1) +h2:h0 + (hl +h2)

ho ## h,
h## ho + h, = (h ## hy N h 3 h,)

To understand each of these axioms, let us examine them on a standard object
heap, such as the object heap of capDL, and examine these axioms on the opera-

tions of map addition and map disjunction.® The intuition behind these axioms

5We instantiate a stronger version of the abstract separation logic of Klein et al. (2012)
as it is slightly easier and more intuitive.

®As noted earlier, such an instantiation gives us a separation logic with object-level
granularity. The separation logic we use for this thesis is more complicated, and explained
in Section 6.5.

< Axiom 1
Disjoint identity
< Axiom 2

Disjoint commutativity

< Axiom 3
Addition identity

< Axiom 4

Addition
commutativity

< Axiom 5

Addition associativity

< Axiom 6

Disjunction over
addition

Definition 6.6 »

map_empty

Definition 6.7 »
Map disjunction

Definition 6.8 »
Map addition

92 CHAPTER 6. SEPARATION LOGIC

is that whenever heaps are disjoint, then heap addition should obey the standard
axioms of addition.
As can be seen from the axioms, our algebra requires a zero. In our simple

example of maps as heaps, the empty map is the zero of this algebra.

map_empty = Ax. None

We define heap disjunction as map disjunction. Two maps are defined as

being disjoint when their domains are disjoint.

h, L h,=dom h, N domh, =

Setting heap disjunction as map disjunction and the zero of our algebra as the
empty map satisfies the first two axioms of our locale. Similarly, we define heap
addition as map addition. Map addition combines two maps, and when they both
maps have an entry for a particular value, the entry of the second map is used

(commonly referred to as right-override).

hy ++ h, = (Ax. case h, x of None = h, x | Some y = Some y)

We note that while the third of our axioms is clearly true, map addition is not
always commutative. Thankfully, it is commutative when the maps are disjoint
which satisfies our fourth axiom. Map addition is always associative, and so the
fifth axiom is satisfied.

The sixth axiom is the only potentially unexpected axiom, and is in fact a
stronger version of the corresponding axiom in Calcagno et al. (2007). It specifies
(assuming that &, and h, are disjoint, and can thus be added) that if / is disjoint
to h, + h,, then h is disjoint to both h, and h, (and vice versa). This axiom is used
to show that separation conjunction is associative, amongst other things.

Of course, these axioms allow more exotic heap structures to be shown to be
separation algebras. The use of map addition and map disjunction in this section
is meant only as an aid to intuition.

If we provide our own definitions for heap disjunction, heap addition, and
the zero of the algebra, and show that they satisfy these 6 axioms, then we get a
separation logic that comes with a number of things for free: definitions, such as
separation conjunction; properties, such as the fact that separation conjunction is
associative and commutative; and tactics, such as those that do frame calculation

automatically. Some of these are part of the scope of this thesis and others are

6.4. THE PROPERTIES OF A SEPARATION LOGIC 93

done in collaboration with others. One of the things that we add as part of this
thesis is support for dealing with lists and sets of separation conjunctions, and
using these to reason about mapping a monadic operation over a list, as explained
in Section 6.4. A number of further properties of these structures, developed for
this thesis, which are true for any separation logic, are explored in Section 7.6

where they are used.

6.4 'The properties of a separation logic

Separation logics have a number of properties common to them. By proving such
properties about an abstract separation logic once, then we can have all of these
properties “for free” for a specific separation logic if we show that our structure
forms a separation algebra. The following properties were proven as part of this
thesis, but are true for any instantiation of the abstract separation logic.

When defining propositions using separation logics, we often want to specify
a property is true for a number of objects. For example, consider that we wish
to specify that a range of addresses contain Untyped objects. We can express this
by mapping the predicate obj_id +,,; Untyped over a list of object identifiers
(obj_ids), giving us a list of separation predicates. We then fold this list using
separation conjunction onto the empty predicate [J (where [J = Ah. h = 0, that is,

the predicate stating that the heap is empty).
foldl (AP Q. P A* Q) I (map (Aobj_id. obj_id i—,; Untyped) obj_ids)

As such a style of predicate is common, we define a lifted separation conjunc-
tion that does this fold for us.

A* Ps = foldl (AP Q. P A* Q) O Ps

This lets us express our above predicate about untyped objects as follows:

/* map (Aobj_id. obj_id - p,; Untyped) obj_ids

Sometimes it is more convenient to map a separation predicate over a set
rather than a list. To do so, we define the following predicate, which uses Isabelle/
HOL’s inbuilt mechanisms to fold a function over a set, which does precisely what

we require.

<« Definition 6.9

Lifted separation
conjunction for lists

Definition 6.10 »

Lifted separation
conjunction for sets

Lemma 6.7 »

Lifted separation
conjunction on
mapped lists

Lemma 6.8 »

Converting lifted
separation conjunction
on lists and sets

Definition 6.10 »

Lifted separation
conjunction for sets
defined by predicates

Theorem 6.1 »
Mapping monadic
operations over lists

94 CHAPTER 6. SEPARATION LOGIC

N ey Px=fold(Ax Q. PxA* QLA

While the above definition looks a little terse, it makes more sense when we
realise that we can rewrite our lifted separation conjunction on the list map P xs

as shown in Lemma 6.7.

/* map P xs = foldl (AQ x. P x A* Q) O xs

Assuming that our list is distinct (which they generally are for separation
predicates), we can convert between the list and set forms of lifted separation
conjunction as shown in Lemma 6.8. This allows us to use whichever form is
more convenient. Recall that in this thesis we use the notation x € xs for both list

and set membership.

distinct xs

A\ map Pxs = (* .. Px)

To simplify some of our rules, we introduce the following shorthand when our

set is defined using a predicate.

/\x\foxE/\xe{x\fx}Px

These definitions give us a convenient way of expressing the predicates used
by the proof of the system initialiser, such as those which state that each object in

a specification has been correctly created or is correctly initialised.

Reasoning about monadic maps

The great power of using a separation logic is that it allows us to easily say that
an operation is local, and so we are able to chain together operations that modify
distinct objects. This allows us to reason conveniently about monadically mapping

an operation over a list of objects, as expressed in the following theorem.

VR x.x€xs— {Px A" INR'}fx{QxN"IN"R"}
{/* map P xs A*I A* R} mapM f xs { /* map Q xs A* I A* R}

Proof: 'This rule is proven by induction on xs. The base case where xs is the

empty list is trivially true.

6.5. DEFINING A FINE-GRAINED SEPARATION LOGIC FOR CAPDL 95

In the inductive case, we set xs to be x"-xs’. Since f is local, we can know
that each execution of f will affect only part of the state described by P x’, and
so the rest of the state, that is /* map P xs” A* R, can be covered by the arbitrary

predicate R’ in the assumptions, and is thus unchanged. [

We can also express this theorem in the set form of lifted separation conjunc-
tion that we described above, assuming the list xs is distinct. This is the form of

the rule we use most commonly in the proofs.

distinctxs VRx.x€xs— {Px A*IAN*R} fx{Qx A*IA*R}
{/*XEXS Px A"I A R} maprxS {/*xexs Qx A" IA R}

The above theorem is one of the important theorems in this thesis, and one
that makes this thesis possible. It allows us to reason about the many loops in the
system initialisation specification in a simple and modular way. It is the reason

that we use separation logic in this thesis.

6.5 Defining a fine-grained separation logic for capDL

When constructing a separation logic, one design decision that needs to be made
is one of granularity. The separation logic that we defined in Section 6.2 has an
object-level granularity—it allows us to reason that the setting of an object is a
local operation, but it does not allow us to extend this reasoning to the individual
capability level.

Because our system initialiser does not set objects to their initialised state
atomically, but generally set objects capability by capability, we define a sepa-
ration logic for this thesis at a finer level of granularity. To do so, we break
the capDL objects up into various components, and store these components in
a component heap, which is a mapping from cdl_object_id x cdl_component_id

to cdl_component, as illustrated in Figure 6.1.

datatype cdl_component_id = Fields | Slot nat
datatype cdl_component = CDL_Object cdl_object | CDL_Cap (cdl_cap option)

These components of an object are either the fields of an object, such as the
intent of a TCB or the size of a CNode, or the contents of an individual capability
slot of an object (that is, a capability). Rather than creating a new type for the
fields of an object, we store the fields of an object in a capDL object for which we

simply ignore the capability slots. When storing a capability in a component, since

< Corollary 6.1
Mapping monadic
operations over lists

Definition 6.11
sep_state_add

Definition 6.12

sep_state_disj

926 CHAPTER 6. SEPARATION LOGIC

S
w
I~
P
3
CSpace VSpace IPC Buffer
Component heap P P
(cdl_object_id x cdl_component_id) (0x40 40 00, (0x40 40 00, (0x40 40 00, (0x40 40 00,
= cdl_component Fields) Slot 0) Slot 1) Slot 2)
N " — e’
e
CSpace
VSpace
IPC Buffer

object_project ~

x

w

I~

P

o

Q

CapDL object heap
cdl_object_id = cdl_object 0x40 40 00

Figure 6.1: Lifting the capDL object heap to the component heap.

objects store capabilities in a partial mapping from capability slots to capabilities,
it is easier to make a capability stored in a component optional.

Another alternative way to achieve a fine level of granularity would be to
augment the capDL state with ownership information stating which parts of
the objects in the heap are present, as we presented in an earlier version of this
work (Klein et al., 2012). We found that such an approach gave us much more
complex definitions of heap addition, which unnecessarily complicated proofs of
the frame rules presented in Section 6.7, with no advantage of the expressiveness
of our logic.

As well as lifting the object heap, we also lift the IRQ table (which translates
IRQ numbers to the object identifier pointing to the corresponding IRQ Node)
into our separation state. To do so, we transform the IRQ table from a total
function, to a partial mapping.

Our lifted separation state contains these two heaps—the heap containing
the object components, and the heap containing the IRQ table. The former is a
partial function of type cdl_object_id x cdl_component_id = cdl_component, and
the latter cdl_irq = cdl_object_id option. The definition of heap disjunction and
heap addition is the map disjunction and map addition of each of these heaps

respectively.

sep_state_add (SepState comp_heap; irq_heap;) (SepState comp_heapy irq_heapp) =
SepState (comp_heap; ++ comp_heapy) (irq_heap; ++ irq_heapy)

sep_state_disj (SepState comp_heap; irq_heap;) (SepState comp_heapy, irq_heapy) =
comp_heap; L comp_heapy A irq_heap; L irq_heapy

6.5. DEFINING A FINE-GRAINED SEPARATION LOGIC FOR CAPDL 97

Because our component heap and our IRQ heap are standard heaps, we can
define our separation state addition and disjunction as the addition and disjunc-
tion of both of the heaps, using standard map addition and disjunction, just like
in Section 6.3, thus satisfying the six axioms for the same reasons.”

This state lifting affords other advantages, such as allowing us to easily lift only
the parts of the capDL state that we wish to reason about, such as the object heap
and IRQ table, but not the capability derivation tree nor the ASID numbers of
objects. To lift the object heap out of the capDL state, before we break each object
into its component pieces, we “clean” out two parts of information in them, using
object_clean. The two parts of the object state that we remove when cleaning are
the two parts of the state that we do not reason about in this proof, namely the
ASIDs for memory capabilities (page directories, page tables, and frames), and the
intent of a TCB. These are removed because of technical limitations—the former
as our proof does not guarantee specific ASID numbers for memory objects®, and
the latter because the setting of the intent of an object is presently a non-local
operation as the intents of different TCBs may overlap. As the intent of an object
encodes the system call to be performed by an object, not guaranteeing the con-
tents of a TCB’s intent is not a practical limitation as a thread sets its intent before

a system call.

object_clean = intent_reset o asid_reset

We use object_project to project an object from the capDL object heap into a
component for the component heap. For capabilities, the component stores the
relevant capability, while, for the fields of an object, we store an object with its

capability slots wiped (as we wish to store only the fields of an object).

object_project comp_id object = case comp_id of
Fields = CDL_Object (object_wipe_slots (object_clean object))
| Slot slot = CDL_Cap (object_slots (object_clean object) slot)

7The algebraic structure of our separation logic is, in fact, a member of a
stronger separation algebra, namely a cancellative separation algebra, meaning that
it satisfies an additional axiom to the six already mentioned, namely [h, + h =
By + i by 4 s by F W) = b, = b,

80ur system initialisation algorithm assigns ASIDs to virtual address spaces from its
ASID Pool.

<« Definition 6.13

object_clean

<« Definition 6.14

object_project

Definition 6.15

cap_project

Lemma 6.9
Object project single
capability

Definition 6.16

sep_state_projection

98 CHAPTER 6. SEPARATION LOGIC

To project a single capability, we can use cap_project.

cap_project cap = CDL_Cap (Some (reset_cap_asid cap))

As expected, projecting a capability of an object is equivalent to projecting the

capability directly.

object_slots object slot = Some cap

object_project (Slot slot) object = cap_project cap

To lift the object component heap, we lift each object individually and to lift
the IRQ heap, we turn the IRQ table from total function to a partial function, as

shown below.

sep_state_projection s =
SepState (A(obj_id, comp_id). map (object_project comp_id) (cdl_objects s obj_id))
(Airg. Some (cdl_irg_node s irg))

To lift a separation predicate P to operate on the capDL state, we use the
notation <P> s = P (sep_state_projection s). To lift P to work on the system
initialiser state (which embeds the capDL kernel state inside, as we explain in Sec-
tion 7.4) we use the notation «P> s = P ((sep_state_projection o kernel_state) s).
These predicates simply lift the capDL kernel state (or the system initialiser state)

to a separation state and pass the separation state to the separation predicate P.

6.6 The arrows of our separation logic

With our separation logic defined, we then extend it by defining separation pred-
icates to describe the existence of both whole objects, as well as the existence of
individual components of an object (such as a single capability slot, or the fields
of an object’). To do so, we define a number of arrows which state that part of
an object is located at a particular location. Each of these arrows state that the
heap contains only the specified object, component, or IRQ table entry. The first
arrow that we introduce, obj_id Fobj object, states that the lifted state contains
only the object object at location obj_id in the object heap. This defines the same
concept as the corresponding arrow we defined for our simple separation logic in

Definition 6.3, but here we define our arrow on our lifted state.

°Qur granularity goes down to the level of all of the fields or none of the fields. Given
that these fields are generally set atomically, this level of granularity works well for our
proofs.

6.6. THE ARROWS OF OUR SEPARATION LOGIC 29

obj_id t—,; object = < Definition 6.17
As. s = SepState sep_map_obj
(A(obj_id’, comp_id).
if obj_id’ = obj_id
then Some (object_project comp_id object) else None)

map_empty

This definition states that the component heap consists only of the object
object, as lifted from the capDL types to component heap, and that the IRQ table
heap is empty. This definition makes the same constraints on the state that the
corresponding arrow back in Section 6.2 does, but does so on the lifted separation
state, rather than directly on the capDL object heap.

We introduce the predicate obj_id e 45 0bject which states that the compo-
nent heap contains only the component containing the object fields of object, at
location (obj_id, Fields). This predicate dictates the type of the object, but states
nothing about the capabilities.

obj_id ie1gs Object = < Definition 6.18
As. s = SepState sep_map_fields
(A(obj_id”, comp_id).
if obj_id’ = obj_id N\ comp_id = Fields
then Some (object_project comp_id object) else None)

map_empty

We introduce the predicate (obj_id, slot) -, cap to specify that the compo-
nent heap contains only the component with the capability cap stored at location
(obj_id, Slot slot).

(Obj—ida SZOt) Freap €ap = < Definition 6.19
As. s = SepState sep_map_cap
(A(obj_id’, comp_id).
if obj_id’ = obj_id N\ comp_id = Slot slot
then Some (cap_project cap) else None)

map_empty

While the above predicate is useful for specifying the behaviour of an opera-
tion such as set_cap or a seL4 kernel API, it is often more convenient when de-
scribing the initialisation of an object to specify that a particular capability inside

an object is present in the component heap, for which we provide the predicate

100 CHAPTER 6. SEPARATION LOGIC

(obj_id, slot))., object. Because this predicate constrains only the capabilities

of an object, it constrains nothing about the type of the object.

Definition 6.20 » (obj_id, slot) 4, object =
sep_map_slot As. s = SepState
(AX(obj_id’, comp_id).
if obj_id” = obj_id N comp_id = Slot slot
then Some (object_project comp_id object) else None)

map_empty

Of course, if the object located at address obj_id has a capability cap in the
capability slot slot, then the predicate (obj_id, slot) i, cap should be equivalent
to the predicate (obj_id, slot) o, object. We prove that this is indeed the case

in the following lemma.

object_slots object slot = Some cap

Lemma 6.10 » — - —
Cap predicate (obj_id, slot) =0, object = (obj_id, slot) \=,, cap

equivalence

Proof: This is proven by expanding the definitions of the two predicates and

using Lemma 6.9. |

The predicate obj_id 45 0bject states that all of the capabilities of an object

are present in the component heap.

Definition 6.21 » obj_id o5 Object =
sep_map_slots As. s = SepState
(A(obj_id”, comp_id).
if obj_id’ = obj_id N\ comp_id + Fields
then Some (object_project comp_id object) else None)

map_empty

To specify that all of the empty capability slots of an object are present in the

component heap, we use the predicate 0bj_id —¢mpty 0bject.

Definition 6.22 » 0bj_id ey Object =
sep_map_empty As. s = SepState
(A(obj_id’, comp_id).
if obj_id” = obj_id A comp_id € Slot * (UNIV — dom (object_slots object))
then Some (object_project comp_id object) else None)

map_empty

6.6. THE ARROWS OF OUR SEPARATION LOGIC 101

Finally, we provide the predicate irq =g obj_id which states that the IRQ
table consists of the entry where the IRQ number irg is mapped to the object
identifier obj_id.

irq i \pq 0bj_id = As. s = SepState map_empty [irq — obj_id] <« Definition 6.23

sep_map_irq

Arrow decomposition

When designing a separation logic, the question of granularity is an important
one. Sometimes we wish to use an object-level granularity, and other times we
wish to specify the contents of a specific capability slot. One of the strengths of our
separation logic is that we can do both of these. We decompose a larger predicate,
such as obj_id =, object into smaller predicates, such as obj_id 145 0bject
and obj_id)41 object. To do so, we first show that we can decompose any arrow
that relates to a set of components (such as the fields or the capability slots of an

object) into two arrows talking about part of these components.

comp_ids; N comp_idsg = ()

<Lemma 6.1
(As. s = SepState

(A(obj_id’, comp_id).
if obj_id/ = obj_id N\ comp_id € comp_ids; U comp_idsy

Arrow decomposition

then Some (object_project comp_id object) else None)
map_empty) =
((As. s = SepState
(A(obj_id’, comp_id).
if obj_id” = obj_id N comp_id € comp_ids
then Some (object_project comp_id object) else None)
map_empty) A*
(As. s = SepState
(A(obj_id’, comp_id).
if obj_id’ = obj_id N\ comp_id € comp_idsy
then Some (object_project comp_id object) else None)

map_empty))

Proof: To prove this, we expand the definition of separation conjunction and

divide our state into the parts relating to each of the components. [

Using Lemma 6.11, we can then show that we can decompose any of our ar-
rows into smaller arrows, for example, we decompose the predicate that states that
a whole object is present into a predicate that states that each of the various parts

of this object are present.

102 CHAPTER 6. SEPARATION LOGIC

dom (object_slots object) = slots ~ finite slots
Theorem 6.2 »

obj_id —,; object =
(0bj_id —ie1s Object A* *

Object decomposition

soteslots (obj_id, slot) =0, object A* 0bj_id t—¢pmpry Object)

Proof: To prove this rule, we induct over the slots and then use Lemma 6.11 for

each of our decompositions. |

These arrows and their decomposition gives us a framework for being able to
describe the state of the capDL kernel that can be used for reasoning about a low-
level kernel API, which is concerned with moving particular capabilities between
particular capability slots, right up to being able to say that a set of objects with
particular properties are present in the state.

This reasoning framework is highly flexible as we will see in Chapter 7, and
the decomposability of our predicates allows us to decompose our proofs in the

obvious manner.

6.7 The frame rule

With both our separation logic and the arrows required to specify the state de-
fined, we can now show that our operations such as set_object or set_cap are
local.

The following lemma shows that set_object is local. It is equivalent to the ver-
sion we showed in our simple separation logic in Section 6.2, namely Lemma 6.5,
except that it is defined on the more complex separation logic that we use for this
thesis (which is why we lift the predicates to work on the separation state using
<P>).

Lemma 6.12 » {As. <obj_id Fopj — A" R> s}
Set object set_object obj_id object
{As. <obj_id -, object A* R> s}

The arbitrary R in this lemma is what we use to show that set_object only
affects the object located at obj_id. Traditionally, to show a rule such as this, we

use the frame rule, as illustrated in Theorem 6.3.

{P}s{Q}
{PA*R}f{Qn" R}

where no variable occurring free in R is modified by f.

Theorem 6.3 »

Frame rule

6.7. THE FRAME RULE 103

The frame rule states that if {P} f {Q}, then adding more state will not
change the behaviour of f. This is true as long as there are no free variables in R
that are modified by f.

To use the frame rule, we require a memory safe language. The formalised

semantics of our language need to be such that:

1. adding more memory does not affect the behaviour of a program,

2. a program fails if it does not have the resources that it requires.

We formalise our language’s semantics of a program f executing on a state s as
f s, where our program either succeeds in a valid state Valid s, or fails with a state
Fail.

We formalise the first property of adding more memory by requiring that
if a program succeeds on a heap, then it will succeed on a larger heap (safety

monotonicity).

fs, #Abort s, Ls,
f (s, ++s,) # Abort

We formalise the second property by saying that if a program executes on a
smaller and a larger state, then execution on the larger state can be tracked back

to the smaller state (frame property).

fs,#Abort (s, ++s,)=Valids” s, Ls,
3s,”.s" =5,/ ++ s, ANfs,=s,”

Yang and O’Hearn (2002) showed that the frame rule is equivalent to showing
that our language possesses these two properties. Sadly, for our shallow embed-
ding of a language, such as the formalisation of our system initialiser, we do not
have these properties (Klein et al., 2012). Thankfully, proving the conclusion of the
frame rule directly for our leaf functions is not onerous, and once we have these
proven for the leaf operations, such as set_cap or set_object, then we can have
them for free for all other operations that are built on top of these leaf functions.
This approach is not new and is used on shallow embeddings of languages by
Kolanski (2011).

For this thesis, we proved the following frame rules shown in Figure 6.2,
which were then used by others to develop a formalised API for capDL, as ex-
plained in Section 7.4.

These rules are proven by expanding the definitions of the respective oper-

ations, as well as our separation logic definitions. The definition of separation

< Theorem 6.4
Safety monotonicity

< Theorem 6.5
Frame property

104 CHAPTER 6. SEPARATION LOGIC

{As. <obj_id -4p; — A* R> s} {As. <ptrise,, — AT R> s}
set_object obj_id object set_cap ptr cap
{As. <obj_id -y, object A* R> s} {As. <ptri=cap cap A* R> s}

{)\5 <0b]_1d Hfields Tcb th /* R> 3}
update_thread_fault_endpoint obj_id fault_ep
{As. <obj_id a5 Teb (tcb(cdl_tcb_fault_endpoint := fault_ep|)) A* R> s}

{As. <obj_id -4p; — A* R> s} {As. <obj_id 1 p; 0bj A* R> s}
create_object obj_id obj detype_object obj_id
{As. <obj_id - p; 0bj A* R> s} {As. <obj_id - p,; Untyped A* R> s}

Figure 6.2: Frame rules for the leaf functions of capDL.

conjunction states that we need to break our state up into two pieces, the first
containing the part of the state we are modifying (such as the component with the
capability that set_cap modifies) and the second piece containing the rest of the
state.

We can then use these “frame rules” we have developed for our leaf functions
to prove the “frame rule” for other operations that build on top of these leaf func-
tions. For example, to reason about swap_cap we use our rule for set_cap. We
continue this process to slowly build up separation logic rules for the seL4 API,
that will be shown in Section 7.4.

Since the system initialiser does not detype objects, we do not require the
rule for the detyping of objects for this thesis, but it is included here to show the
completeness of the separation logic. In capDL, objects are never really created or
destroyed, but are instead retyped from untyped objects, and then can be detyped
back into untyped objects, modelling the behaviour of the seL4 kernel which
deals only with a finite memory. This model is similar to the destruction model
we present in Chapter 4 (as should be expected). This model not only avoids the
issues of identifier reuse described in Section 4.2, but the lack of object destruction
avoids any issues in the separation logic that come from owning empty parts of

the state, thus simplifying the logic.

6.8 Conclusion

The separation logic we have presented in this chapter is designed to allow us to
prove that each step of our system initialiser algorithm brings us one step closer
to having an initialised system, whilst also proving that each step does not undo

any of the work done by previous steps.

6.8. CONCLUSION 105

By allowing reasoning about parts of the heap, separation logic allows us to
easily specify exactly which objects are modified by the system initialiser and
which objects remain unchanged. By designing a separation algebra with the right
level of granularity we can specify exactly how individual components of an object
are transformed.

In the next chapter we use this separation logic to both specify what it means
for a system to be correctly initialised and to prove that our system initialiser
algorithm will correctly initialise a system. The style of reasoning afforded by
a separation logic fits well with the highly loop driven model of the system ini-

tialiser and is key to its proof.

Chapter Summary

» Separation logics allow local reasoning to take place on separate

parts of an object heap.

» 'This local reasoning allows us to reason both about what an oper-

ation does and what it does not do.

» Rather than creating yet another separation logic from scratch, we

reuse an abstract separation logic developed by Klein et al. (2012).

» Further, we extended the abstract separation logic of Klein et al.
(2012) to allow us to fold separation logic predicates over list and

sets, and to be able to reason about monadic loops (mapM).

» We have defined a fine-grained separation logic, designed to al-
low us to reason about the individual steps of system initialisation,
such as setting each capability slot individually. This separation
logic is defined on a separation logic heap consisting of object com-
ponents and IRQ table entries that we lift out of the capDL state.

» We have defined a number of predicates for specifying the pres-
ence of objects, capabilities, object fields, and IRQ table entries in
the separation logic heap, and have shown how we can decompose
larger predicates about whole objects into predicates about the in-
dividual components of an object. This decomposability of our

separation predicates allows us to decompose our proofs.

Chapter 7

Correctness of system

initialisation

The aim of this thesis is to develop a framework for the correct initialisation of
capability-based computer systems. To do this, we have developed a formal algo-
rithm for system initialisation, explained in Chapter 5, and a proof framework for
reasoning about such systems using separation logic, as introduced in Chapter 6.
We have found separation logic convenient for both expressing what it means for a
system to be correctly initialised and proving that it is indeed correctly initialised.

The correctness statement for the system initialiser states that, if the boot
information provided by the kernel is correct, then at the end of the initialisation,
all objects and all hardware interrupts in the system either belong to the initialiser
itself (and are inactive), or are initialised in conformance with the given capDL
specification, as illustrated in Figure 7.1. We give the formal definition of this fact
in Section 7.3. The system initialiser, the proof, and the given specification are all
defined using the capDL kernel model which simplifies reasoning.

In this chapter we dive into the proof of correctness for the formal algorithm
of our system initialiser, and unpack what the above statement of correct initiali-

sation means.

capDL
spec
5 Conformance
I
E: Proof
|
v Final
Initial Boot Initialiser rina
— Initialised
State specification State

Figure 7.1: Overview of initialiser correctness proof.

107

108 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

¢ We define what it means for the individual objects in a system to be cor-

rectly initialised in Section 7.1.

e We explain in Section 7.2 how we specify the data structures of the ini-
tialiser itself—its capability space, the capabilities it requires, and the capa-

bilities it creates.

e We provide the formal definition of what it means for a system to be cor-

rectly initialised in Section 7.3.

e We explain in Section 7.4 how we build this proof on a formalised API for
seL4 developed by Boyton et al. (2013). This formalised API is built on the

separation logic we constructed in Chapter 6.

e We explain what it means for a capDL specification to be well-formed, and

list the assumptions of the proof in Section 7.5.

e We explain how we decompose the proof in Section 7.6, drilling in detail
into the creation of IRQ Handler capabilities and the initialisation of capa-

bility spaces as representative examples.

¢ Finally we conclude with our experience of using separation logic for these

proofs in Section 7.7.

Parts of this chapter have previously appeared in Boyton et al. (2013).

7.1 Correct object initialisation

In this section, we define precisely what it means for an object, or a hardware
interrupt, to be correctly initialised.

In capDL specifications, systems are described as a mapping from object iden-
tifiers to objects. These identifiers of objects in a capDL specification are treated
by the system initialiser as simply names—in a textual description they are a string
naming the object, whereas in the C implementation, they are ascending numbers
starting at zero.

The initialiser creates each of the objects specified in a capDL specification
at particular physical memory addresses. This produces a natural injection ¢ be-
tween the object identifiers in a capDL specification spec and the physical memory
addresses of the initialised system. The injection ¢ captures the subtlety that the
kernel decides physical memory addresses at runtime.

For a system to be correctly initialised, each one of the objects in the capDL
specification should exist in the initialised system, at a physical memory address,

with the capabilities of each object pointing to the correct objects (which will each

7.1. CORRECT OBJECT INITIALISATION 109

also be located at physical memory addresses). More formally, if we consider a
capDL specification as a graph of objects pointing to other objects, then ¢ can
be used to define an injective homomorphism, or monomorphism, between the
given capDL specification spec and the kernel state after system initialisation. This
monomorphism is simply the renaming of object identifiers in the specification
with the corresponding physical memory addresses, as shown in Figure 7.2. The
reason that this is a monomorphism and not an isomorphism (that is, a bijective
homomorphism), is that the kernel state will include the objects that belong to the
initialiser itself, which do not appear in the capDL specification and so it cannot

be bijective.

CapDL textual specification

arch armil

objects {

(Ece2)= teb (addr: 0200000000,
H ip: 0zO0000F10,
| o e00000100, Kernel state
el prio: 125) 0g o
___________ injection TCB,
tcb_b = tcb (addr: 0200001000, |-~ TTTTTTTmses B> 0x40 42 00 > CNODE
ip: 0z00002E00, Al

sp: 0200100000,
prio: 125)

0x40 10 00

I~
3 CNODE,,
cnode_al = cnode (16 bits) I~
cnode_a2 = cnode (16 bits) g 0x40 18 00
(8]
cnode_b = cnode (12 bits) PD
cnode_extra = cnode (2 bits) 0x30 00 00 ;;

V 0x308000

A
b= pd 0x40 20 ME FRANE

frame_al = frame (4k) 0x30 90 00

——>___FRAME __|j<——

=)
[0]
Q
=
=)
AS)
T
_|
[T T

Monomophism

(injective homomorphism)

Figure 7.2: In a correctly initialised system, there is an injection ¢ be-
tween object identifiers in the given capDL specification and
the physical memory addresses of the running kernel state.
This injection ¢ defines a monomorphism between the two.

We define this monomorphism using two different predicates. Firstly, we
define the predicate object_initialised that specifies that a “real” object is correctly
initialised (along with the capabilities stored within these objects). Secondly, we
define the predicate irqs_initialised that specifies that an IRQ Node is correctly
initialised."

The predicate object_initialised, defined in Definition 7.1, encodes the fact that,
in a kernel state s, the object corresponding to obj_id in the capDL specification
has been created as specified in the spec. More precisely, the predicate states that
obj_id maps to a kernel_obj_id via the injection ¢, and that, in the object heap

"We distinguished between “real” objects and IRQ Nodes in Section 5.3, and illus-
trated the types of objects supported by the system initialiser in Figure 5.6.

Definition 7.1 »

object_initialised

Definition 7.2 »

irg_initialised

Definition 7.3 »

object_empty

110 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

of s, kernel_object_id points to spec_object where all object identifiers have been
renamed by ¢ —including those within the capabilities of each object, defined by
spec2s. The function cdl_objects spec extracts the mapping from obj_id to object

from spec.

object_initialised spec ¢ obj_id =

As. Jkernel_obj_id spec_object. @ obj_id = Some kernel_obj_id N
(kernel_obj_id p; specas ¢ spec_object) s A
cdl_objects spec obj_id = Some spec_object

Similarly, the predicate irq_initialised, defined in Definition 7.2 specifies that
the IRQ Node pointed to by an IRQ number is correctly initialised. Recall that
IRQ numbers do not point to IRQ Nodes directly in capDL, but instead IRQ
numbers are looked up in an IRQ table, which contains the object identifier of the
corresponding IRQ Node.

We specify this correct initialisation of an IRQ number formally by stating
that an IRQ Number irq maps to a spec_irq_id in the IRQ table of the capDL
specification spec, which itself points to an IRQ Node spec_irq_node, and that irq
maps to a kernel_irg_id in the IRQ table of the kernel state s, which itself points
to an IRQ Node spec_irq_node where all object identifiers have been renamed by

¢@—including those within the capabilities of each object, defined by specas.

irq_initialised spec @ irq s =

Jkernel_irq_id spec_irq_node spec_irq_id. ¢ spec_irq_id = Some kernel_irq_id N
(irq > pq kernel_irq_id N* kernel_irq_id iy, specas ¢ spec_irq_node) s A
cdl_irg_node spec irq = spec_irq_id A

cdl_objects spec spec_irq_id = Some spec_irq_node

As we recall from Section 5.3, our initialisation is a multistage process where
all objects are first created and then initialised by their type. For this reason, we
define the predicates object_empty and irq_empty to describe the state of these
objects when they are first created.

The predicates object_empty and object_initialised are defined very similarly,
the difference being that an empty object is not one with its capabilities renamed

by speczs, but one in a default state, as defined by the function object_default_state.

object_empty spec ¢ obj_id s =

Jkernel_obj_id spec_object. @ obj_id = Some kernel_obj_id N
(kernel_obj_id p,; object_default_state spec_object) s A
cdl_objects spec obj_id = Some spec_object

7.2. STATE OF THE SYSTEM INITIALISER 111

Similarly, we define the predicate irq_empty, which defines the equivalent

property for IRQ Nodes.
irq_empty spec @ irqg s = <« Definition 7.4
Jkernel_irq_id spec_irq_node spec_irq_id. ¢ spec_irq_id = Some kernel_irq_id N irq_empty

(irq = pq kernel_irq_id * kernel_irq_id Hop; Object_default_state spec_irq_node) s \
cdl_irg_node spec irq = spec_irq_id N

cdl_objects spec spec_irq_id = Some spec_irq_node

7.2 State of the system initialiser

Recall that the system initialiser is the root task that runs first after the kernel has
finished its own initialisation. The system initialiser has a number of objects (and
components of these objects) that are unchanged throughout system initialisation,
such as the fields of its TCB, or the IRQ Control capability the system initialiser
uses to create IRQ Handler capabilities. We encode these using the predicate
si_objects which we introduce below. These unchanged objects are used by the
various rules that we define for each stage of system initialisation. These objects
will all remain as part of the initialiser in the final initialised state.

The system initialiser also has a number of capabilities and objects that are
changed throughout system initialisation. For example, the untyped capabilities
store the free addresses they point to, which are consumed as objects are created.
The system initialiser stores the original capabilities to each of these created ob-
jects, before moving them into the relevant capability spaces that it configures (as
was illustrated in the figures back in Section 5.3).

In this section, we define predicates to describe these various states that the
system initialiser is in throughout initialisation, concentrating particularly on the

initial and final states of system initialisation.

Initial state of the system initialiser

The system initialiser has its own thread control block, capability space, virtual
address space, and an empty ASID pool (for assigning ASIDs to page directories).
We specify the layout of the parts of these objects that do not change using the
predicate si_objects, shown in Definition 7.5. We specify, the capabilities and the
fields of these objects, using the obj_id e 145 0bject and (obj_id, slot) =,y cap
notation from Section 6.6. The fields of the system initialiser’s TCB, CNode, and
ASID pool should be the default fields for objects of their size. The system ini-
tialiser’s TCB should have a capability to its capability space and be set to running.
The system initialiser’s CNode should have a capability to itself, the IRQ Control

Definition 7.5 »

si_objects

112 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

capability, and an ASID Pool. The system initialiser’s ASID pool should have a
number of entries in it, although their contents does not matter for these proofs
and thus we leave it underspecified. These fields and capabilities specified by

si_objects remain constant throughout system initialisation.

si_objects = si_tcb_id F>¢¢14s Tcb default_tcb A*

si_cnode_id e 1qs CNode (empty_cnode si_cnode_size) A*

si_ap_id —fie1qs AsidPool empty_asid A*

(si_tcb_id, tcb_cspace_slot) ., si_cspace_cap A*

(si_tcb_id, tcb_pending_op_slot) —,, RunningCap A*

(si_cnode_id, seL4_CaplnitThreadCNode) i, , si_cnode_cap A*

(si_cnode_id, seL4_CaplRQControl) -, IrqControlCap A*

(si_cnode_id, seL4_CaplnitThreadASIDPool) > cap AsidPoolCap si_ap_id si_ap_base N*

/*

slot | slot < 2

asid_low_bits (si_ap_id, SlOt) Frcap —

The system initialiser also has a number of other objects and capabilities given
to it by seL4 after kernel initialisation which change during system initialisation
and which are not specified by si_objects. These objects and capabilities that
change, combined with the unchanged parts of objects described above, comprise
the initial boot state of the system initialiser. We explain each of these objects and
capabilities that change throughout system initialisation below.

The system initialiser has a number of untyped capabilities from which it
creates the required objects, and it has a number of free capability slots to place
the capabilities to each of the objects that it creates. The location of these untyped
capabilities and free capability slots is encoded in the boot information passed
to the kernel. We say that this boot information is valid if these capabilities at
the locations specified by bootinfo and the free object identifiers for each of the
untyped capabilities do indeed point to untyped objects. The locations of the
untyped capabilities and free capability slots must fall within the size of the system
initialiser’s capability space. These untyped capabilities each contain a range of
object identifiers that they cover (either those identifiers that are in use or those
that could be used) and a range of object identifiers that are available for object
creation. We require that the former is a superset of the latter. We also require that
the free object identifiers pointed to by the untyped capabilities do not overlap.
These constraints are shown in Definition 7.7.

When seL4 initialises itself, it creates an IRQ Node for each IRQ number. For

system initialisation we require only that the kernel has created IRQ Nodes for the

>This should be true for seL4 kernel initialisation, although proving that this is the
case is outside the scope of this thesis.

7.2. STATE OF THE SYSTEM INITIALISER 113

IRQ numbers used in our given capDL specification spec.> We encode this using
the separation logic predicate si_irg_nodes spec, defined in Definition 7.6. We do
not need to know anything about the IRQ table itself, other than it maps from

IRQ numbers to memory address containing empty IRQ Nodes.

si_irq_nodes spec = As. 3k_irq_table.
(/*irq@sed,irqs pec (irq b>pq k_irg_table irqg *
k_irq_table irq —y,; empty_irq_node)) s

Finally, we also require that there are enough free capability slots for each
of the objects (both for the original capabilities to the “real” objects that the sys-
tem initialiser creates, and for the IRQ Handler capabilities pointing to the IRQ
Nodes that the system initialiser initialises) and for the required duplicated ca-
pabilities (to TCBs and CNodes)*. Strictly speaking this is not part of having
valid boot information, but considering the number of free capability slots can be
set at compile time for seL4, we include it here in this definition. These require-
ments, namely the objects and capabilities required by the system initialiser, are

formalised in the definition of valid_boot_info, shown in Definition 7.7.

valid_boot_info bootinfo spec =
As. Jut_caps fstart fend ustart uend.
(si_objects A* si_irg_nodes spec A*

* : : *
/\ (cptr, cap)€ezip [ustart..uend — 1] ut_caps (si_cnode_id, CPtr) Frcap cap /

A cotrclftart. fond — 1] (si_cnode_id, cptr) t-,, NullCap A

obj_id —p; Untyped) s A

«
/\ obj_ide(lJ capeut_caps cap_free_ids cap)
|objects_of spec| + |real_cnodes_and_tcbs_of spec| < fend — fstart A

|ut_caps| = uend — ustart A distinct_sets (map cap_free_ids ut_caps) A
/\u t_capeut_caps is_full_untyped_cap ut_cap A

ut_capEut_caps well_formed_untyped_cap ut_cap A

bi_untypes bootinfo = (ustart, uend) A bi_free_slots bootinfo = (fstart, fend) N

si_cnode_size si_cnode_size

ustart <2~ Auend <2~ A uend #+ 0 A
fstart < 2S|_cnode_5|ze /\fend < 25|_cnode_s|ze /\fend 7& 0

Intermediate states of the system initialiser

The system initialiser creates a number of capabilities during its operation—it
creates a list of original capabilities to each new object it creates, it creates a list of

duplicate capabilities to the TCBs and CNodes that it creates, and it also creates a

3Any other IRQ Nodes are unchanged by system initialisation.
4The duplication of these capabilities was described back in Section 5.3.

<« Definition 7.6

si_irq_nodes

<« Definition 7.7

valid_boot_info

114 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

list of IRQ Handler capabilities. When the system initialiser wishes to access an
object, or to hand out a capability to an object, it needs to know where the relevant
capability is located. Because of this, it stores three data structures orig_caps,
dup_caps, and IRQ_caps, as was explained in Section 5.3.°

The various rules in our proof need to know that these data structures hold
the correct information. The data structure orig_caps maps object identifiers to
the capability pointers (which in turn point to the corresponding kernel objects).
We use the predicate si_cap_at ¢ orig_caps spec obj_id, defined in Definition 7.8,
to specify that a single entry, namely obj_id in the mapping orig_caps, does indeed
point to the right capability slot. (Note that the definition of si_cap_at can take in
an arbitrary mapping from object identifiers to capability slots, not just orig_caps.)

We do this by specifying that in orig_caps, the object identifier obj_id points
to a capability pointer cptr, and that cptr points to the default capability for the
object, located at the physical memory address obtained by the injection ¢. We
also specify that this capability pointer cptr points to a capability slot within the
system initialiser’s CNode. Similarly, we use the same predicate si_cap_at to assert
the correctness of the data structure dup_caps for a single object identifier obj_id

by asserting si_cap_at ¢ dup_caps spec obj_id.

Definition 7.8 » si_cap_at ¢ si_caps spec obj_id =
si_cap_at As. Jeptr object kernel_object_id. ¢ obj_id = Some kernel_object_id N
((si_cnode_id, cptr) =+, default_cap_to_object object kernel_object_id) s A
cdl_objects spec obj_id = Some object N

o i cnodesi
si_caps obj_id = Some cptr A cptr < gi-cnedesize

We define a similar separation logic predicate si_irq_cap_at to check the cor-
rectness of the data structure irq_caps for a single IRQ number, as defined in Defi-
nition 7.9. si_irq_cap_at irq_caps spec irq specifies that the data structure irq_caps
points to a capability pointer cptr which points to an IRQ Handler capability (to

the correct IRQ number) in the system initialiser’s capability space.

Definition 7.9 » si_irq_cap_at si_irq_caps spec irq =
si_irq_cap_at As. Jeptr. ((si_cnode_id, cptr) =, IrgHandlerCap irg) s A

si_cnode_size

si_irq_caps irq = Some cptr N\ cptr <2~

5In our C implementation, we declare these data structures as statically allocated
global arrays, as shown in Section 5.4. This means that we do not need extra memory to
store these data structures.

7.2. STATE OF THE SYSTEM INITIALISER 115

Final state of the system initialiser

When the system initialiser has finished creating all the required objects it will
have handed out all of the original and IRQ Handler capabilities, but will still
possess the duplicated capabilities that it created (as was illustrated in Figure 5.10).
The objects and capabilities that the system initialiser possesses are specified by
the predicate si_final_objects spec ¢, expressed in Definition 7.10.

The objects of the system initialiser that remain after initialisation has com-
pleted are as follows. Firstly, the parts of the objects of the system initialiser
that are unchanged, such as the root task’s TCB and parts of the root CNode
(all of which we encoded using si_objects), are all still present after initialisation.
Secondly, the untyped capabilities will still exist (although with fewer available
object identifiers) and the unused object identifiers of these untyped capabilities
should point to untyped objects. Thirdly, the capability pointers pointing to the
capability slots in the system initialiser’s CNode which were used to hold the orig-
inal capabilities and the IRQ Handler capabilities will now all be free (the first
|objects_of spec| of the free_cptrs), as will the free slots that were not used (the last
|objects_of spec| + |real_cnodes_and_tcbs_of spec| of the free_cptrs).® Finally, the
duplicated capabilities the initialiser created to the CNodes and the TCBs will still

be present.

si_final_objects spec ¢ =
As. 3dup_caps ut_cptrs free_cptrs ut_caps all_available_ids.
(si_objects A*

X
/\ (cptr, ut_cap)€zip ut_cptrs ut_caps
* s . *
obj_ideall_available_ids Ob]_ld Fobj Untyped A
X

cptretake |objects_of spec| free_cptrs
%

cptredrop (|objects_of spec| + |real_cnodes_and_tcbs_of spec|) free_cptrs

si_cap_at @ dup_caps spec obj_id) s

(si_cnode_id, cptr) =, ut_cap N*

(si_cnode_id, cptr) ¢, NullCap A*

*
obj_idéereal_cnodes_and_tcbs_of spec

> > > >

SRecall from Section 5.3 that the capDL kernel model represents IRQ Nodes as CN-
odes of size zero, and so we use the term real_cnodes spec to describe the “real” CNodes
(that is, not IRQ Nodes).

<« Definition 7.10

si_final_objects

(si_cnode_id, cptr) >, NullCap A*

116 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

7.3 Top-level theorem

Using the predicates defined in Section 7.2, we can formally state the top-level

theorem that we prove for system initialisation, as shown in Theorem 7.1.

Theorem 7. » If well_formed spec and obj_ids = objects_of spec and distinct obj_ids then

Frame rule {s. «valid_boot_info bootinfo spec * R> s}
init_system spec bootinfo obj_ids
{As. Jp. <* object_initialised spec ¢ obj_id N*

obj_idereal_objects_of spec

/\ irqeused_irqs spec irg_initialised spec @ irq A* si_final_objects spec ¢ A* R>s A

injective @ A dom @ = obj_ids}

This theorem states that, given a well_formed capDL specification (as ex-
plained in Section 7.5), the system initialiser, if it terminates, transforms an initial

boot state described by boot_info into a state containing:

1. each “real” object in the specification correctly initialised,
2. each IRQ Node in the specification correctly initialised,

3. the data structures of the initialiser.”

Additionally, this theorem states that the mapping ¢ (from object identifiers
in spec to the physical memory addresses where the objects are located) is injective
and covers all specification objects (both “real” and IRQ Nodes). The “R” in this
rule is the frame, as introduced in Section 6.7. It specifies that the rest of the
kernel state, such as unused IRQ Nodes or the system initialiser’s virtual address
space, is unchanged during initialisation. In the remainder of this chapter we

explain how we prove this result.

7.4 seL4 kernel semantics

Recall that our system initialiser specification, init_system, eventually calls func-
tions in the seL4 API. For example, the operation init_cnode_slot, defined in Defi-
nition 5.7, invokes seL4 to move a capability using the seL4_CNode_Move system
call. This means that to be able to prove the correctness of init_system we need
formal specifications of the seL4 system calls that init_system uses.

One of the greatest risks when using formal specifications of software is that

the specification does not meet requirements, is inconsistent, or does not match

7As explained in Section 7.2, the initialiser does not delete the capabilities that it
duplicates, and so these also remain.

7.4. SEL4 KERNEL SEMANTICS 117

the code (Rushby, 2009). For example, when formal specifications for UNIX writ-
ten in the Z specification language were later analysed, they were shown to contain
numerous errors (Saaltink, 1997). In our work, we narrow the requirements gap
by proving a high-level correctness statement. We additionally address the latter
two hazards by not simply assuming a specification for the behaviour of seL4, but
instead formally connect it to the capDL model of the seL4 kernel, which itself
formally abstracts the seL4 binary as was illustrated in Figure 3.7. This capDL
kernel model (Boyton et al., 2013) was developed in conjunction with this work
and is a monadic specification of the behaviour of the kernel.

To join our proofs to this monadic specification of seL4, a formal specification
of seL4’s APIs were developed outside the scope of this work, which are formally
connected to the seL4 kernel. Unlike most of the seL4 proofs, these API specifica-
tions describe the behaviour of seL4 from the perspective of a userspace program.
These API specification proofs are of a different flavour to the other proofs about
seL4, which were mostly concerned about global invariants and all possible, poten-
tially malformed or malicious, inputs. Exercising the kernel API from a user-level
proof, however, required a different perspective—given a specific “good” initial
state for an API call, we need to know the effect of the API call on this state, and
determine which other parts of the kernel state are and are not affected.

Separation logic proved a good match for this kind of specification, as the
seL4 API calls tend to only modify small, localised parts of the system’s state.
These specifications were built using the separation logic implementation we de-
veloped for this thesis, as was the model of the seL4 system calls that we explain
below.® The specifications themselves are outside the scope of this work, so we will
not explain them in detail here.

The seL4 API specifications do not tell us anything about the kernel’s internal
data structures, but they give us the information we need for user-level proofs.
The API specifications are typically large, around 30-50 lines each, because they
capture the precise conditions needed for a specific kernel call to succeed. For
example, the API specification of seL4_CNode_Move is shown in Figure 7.3, and
is typical of many of the API specifications. By joining the proof of system initiali-
sation to this verified abstraction of seL4, we are forced to deal with the intricacies
of a low-level kernel API in our proofs.

The system model we developed for this work and used by these API specifica-

tions is somewhat simplistic—it assumes that only one thread in the system can

$1n particular, the separation logic, the arrows, and the frame rule for the functions
shown in Section 6.7 are all in scope of this thesis, as is the system model used by the seL4
kernel calls in the capDL kernel model. Using these to prove the API specifications such
as Figure 7.3 is not part of the scope. The proof of the system initialiser, which uses these
API specifications is in scope.

118 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

Theorem 7.2 » {As. <si_tcb_id g5 tcb A*
;‘:1:1 il;jf;jj\:’; voef (si_tcb_'id7 tcb_pending_op_slot) —¢,, — A* |
cnode_id F4e1qs CNode (empty_cnode root_size) A*
dest_id —ie1qs CNode (empty_cnode dest_size) A*
(si_tcb_id, tcb_cspace_slot) >, cnode_cap N*
(cnode_id, dest_root_slot) > cap dest_root_cap N*
(cnode_id, cnode_cap_slot) \,, cnode_cap’ N*
(cnode_id, src_slot) =, src_cap N*
(dest_id, dest_slot) —,, NullCap A* R>s A
one_lvl_lookup cnode_cap 32 root_size N
one_Ivl_lookup cnode_cap’ src_depth root_size A
one_lvl_lookup dest_root_cap dest_depth dest_size N
0 < src_depth A src_depth <32 A 0 < dest_depth A dest_depth < 32 A
is_tcb tcb A is_cnode_cap dest_root_cap A is_cnode_cap cnode_cap A
is_cnode_cap cnode_cap’ A src_cap # NullCap A
guard_equal cnode_cap src_root 32 A guard_equal cnode_cap dest_root 32 A
guard_equal cnode_cap src_index src_depth N\ cap_object cnode_cap = cnode_id N
guard_equal cnode_cap’ src_index src_depth N cap_object cnode_cap/ = cnode_id N
guard_equal dest_root_cap dest_index dest_depth N cap_object dest_root_cap = dest_id N
offset src_index root_size = src_slot N offset src_root root_size = cnode_cap_slot A
offset dest_index dest_size = dest_slot N offset dest_root root_size = dest_root_slot}
seL4_CNode_Move dest_root dest_index dest_depth src_root src_index src_depth
{As. <si_tcb_id Fgieqs fcb A*
cnode_id F4q1qs CNode (empty_cnode root_size) A*
dest_id —ie1qs CNode (empty_cnode dest_size) *
si_tcb_id, tcb_cspace_slot) Fcap cnode_cap N*
si_tcb_id, tcb_pending_op_slot) —,, RunningCap A*
cnode_id, dest_root_slot) =, dest_root_cap *

(
(
(
(cnode_id, cnode_cap_slot) =, cnode_cap’ N*
(cnode_id, src_slot) -, NullCap A*

(

dest_id, dest_slot) ., src_cap A* R> s}
Figure 7.3: API specification of seL4_CNode_Move

make kernel calls (and hence, only one thread can affect the system state). This
allows the initialiser model to treat the kernel as a library that embeds the entire
kernel state inside of the initialiser’s state. It also allows us to avoid reasoning
about interleaved user executions. To do so, we assume that the seL4 scheduler
always schedules the initialiser. This works for our one-thread initialiser, but

obviously would have to be generalised for more complex systems. This simpli-

7.5. WELL-FORMED CONSTRAINTS AND ASSUMPTIONS OF THE CAPDL SPECIFICATION 119

fication is the reason why the formalisations for the seL4 system calls such as

seL4_CNode_Move assume that the thread calling a kernel operation is the system

initialiser (si_tcb_id).

75

Well-formed constraints and assumptions of the

capDL specification

The system initialiser requires the capDL specifications that it initialises to be well-

formed. We require this as capDL allows the specification of infeasible systems—

for example, capDL allows objects to store an infinite number of capabilities and

capabilities to point to an object of the wrong type.

These fundamental constraints are summarised as follows:

There is only a finite number of objects in the system.

Every object is of the correct size, with the correct number of capability

slots.

Every capability that points to an object points to a real object (for example,
not an IRQ Node?), and there is a capability in the system for every real
object. The types of the object and corresponding capability need to match.

Each object only possesses capabilities of the right type, for example, page
tables only store frame capabilities, whereas CNodes can contain most ca-

pability types.

Capability rights are well formed, for example, frames cannot have write

permissions without read permissions.
Each capability has a unique original capability that it is derived from.

Original capabilities must be in a default state and derived capabilities must
be of a type that can be derived (for example, IRQ Handler capabilities

cannot be derived).
Page tables cannot be shared.
Page tables must be empty or be mapped in a page directory.

IRQ Nodes that are bound to an asynchronous endpoint must have an IRQ

Handler capability pointing to them.

The IRQ table cannot have two entries pointing to the same IRQ Node.

°IRQ Handler capabilities point to an IRQ number, which the IRQ table maps to an
IRQ Node, rather than the IRQ Handler capability pointing directly to an IRQ Node.

120 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

There are further constraints in well_formed that encode current limitations
of the initialiser, not fundamental constraints—we currently do not allow the sys-
tem configuration to mention untyped capabilities, ASID pool capabilities, or the
ASID and IRQ control capabilities that can be used to create new ASID pools and
IRQ Handler capabilities respectively. This corresponds to static system configura-
tions as used in a separation-kernel setting (Murray et al., 2013). Additionally, we
do not support the domain capabilities nor the setting of the domain of a thread
as these are recent additions to selL4.

These excluded capabilities break the assumption that there is a one-to-one
correspondence between real objects and the original capability pointing to this
object. This assumption is already relaxed with IRQ Handler capabilities (which
do not point to an object, but an IRQ Number) and so, with the basic reasoning
framework set up, we think these limitations can be lifted in future work.

Finally, our formal algorithm for system initialisation does not support map-
ping shared frames. Recall that our algorithm for system initialisation hands out
all the capabilities it creates (except the capabilities it duplicates for the TCBs and
CNodes). In seL4, the capability used to map a frame can also be used to un-
map the frame, so if we share frames between two threads and wish to hand out
the two capabilities used for each mapping, it is desirable to know where these
capabilities used to map the frames should be placed. Unfortunately, the capDL
specification language does not allow us to specify which capability is used to map
a frame in an address space, which is why the initialiser does not support shared
frames.'® If the tracking of which capability was used to map a frame was added
to the capDL specification language and the capDL kernel model, then this limita-
tion in the initialiser could be addressed.” Our C implementation does support
shared frames by not handing out the capabilities used to do the mappings and
thus supports systems built with CAmKES (Kuz et al., 2007). This approach of not
handing out the capabilities used to map frames could also be taken by our formal

algorithm.

7.6 Decomposition of the final theorem

The key to this proof is the ability to decompose it along the functionality of the

initialiser. In this section we explain how we do this decomposition and drill

'°It is possible to give two threads a shared frame capability, allowing them both to
map the shared frame themselves, which, while less than ideal, is a possible workaround.

"Technically this limitation is not apparent in our formal model (and is not encoded
in well_formed) as the capDL kernel model non-deterministically allows a frame capabil-
ity to be used to map a frame (due to the fact that it does not record if a capability has
been used to map a frame).

7.6. DECOMPOSITION OF THE FINAL THEOREM 121

into the proof of the creation of IRQ Handler capabilities and the handing out of
capabilities as representative examples.

There are two aspects to this decomposition—decomposing the proof itself
along function boundaries and decomposing predicates about objects, such as the
predicate object_initialised, into smaller predicates. The former is provided by the
frame rule (see Section 6.7), and the latter by our heap structure (see Section 6.5
and Section 6.6).

The proof of the system initialiser is divided into the same four sections that

we divided the system initialiser into in Section 5.3.

o The first part ensures that parsing the kernel provided bootinfo structure
correctly extracts the information about untyped memory and free capabil-

ity slots in the boot state.

¢ The second part of the proof ensures that creation correctly occurs. It firstly
ensures that the create_objects operation creates all the “real” objects de-
scribed by the specification in their default state and stores the correspond-
ing capabilities in the slots that later parts of the initialiser expect. This
involves some internal book-keeping using the mapping orig_caps and loop-
ing over the collection of untyped capabilities. The second half of this part
of the proof ensures that the create_irq_caps operation does similarly, that
is, creating the required IRQ Handler capabilities, storing them in the cor-

rect slots, and storing the locations in the mapping irq_caps.

o The third part of the proof of system initialisation ensures that the original
capabilities pointing to the CNodes and TCBs are duplicated and stored in

the correct slots, as encoded in the mapping dup_caps.

¢ In the last, most complex part of the proof, we show that each object is
transformed from a default state (described by the predicate object_empty)
to its fully initialised state (described by the predicate object_initialised).

In the rest of this section, we examine the creation of IRQ Handler capabil-
ities and the initialisation of capability spaces as representative examples of the
structure of these proofs.

Each of these proofs maps a monadic function over a list. For example we
map init_cnode over the list of CNodes, and similarly, we map init_cnode_slot over
each capability slot inside a given CNode. To be able to reason about such maps,
recall that we can reason about mapping a monadic function f over a distinct list
xs using a rule such as Lemma 7.1. This rule is equivalent to the one presented
in Section 6.4, except that it works on lifted heaps. This rule allows us to reason

about how f transforms the state, such that the predicate P is true for each element

Lemma 7.1 »

mapM rule

122 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

of the list xs, into a state where the predicate Q is true for each element of the list

xs. This rule is utilised in a number of these proofs.

distinct xs
VRx.x €xs— {As. <Px A*I A* R>s} f x {As. «Qx A* I A" R> s}

{2 «*pers PX AT TA* R> s} mapM f xs {As. <A\ Qx A*IA*R>s}

XEXS

Proof of object and capability creation

In this subsection we dive into the creation of IRQ Handler capabilities as a rep-
resentative example for capability creation. As we can recall from Section 7.1, we
used the predicates object_empty and object_initialised to describe the state of an
object when it was first created and when it was correctly initialised, respectively.
Similarly, we use the predicates irq_empty and irq_initialised to describe the same
results for IRQ Nodes. Recall that each of these predicates requires an injection
¢, which maps from the object identifiers used in our capDL specification to the
physical memory addresses where the corresponding objects are located in the
running kernel. The creation of real objects and IRQ Handler capabilities each
produce their own injections, ¢,.,; and @ respectively, with each covering
their respective objects, which are later combined to produce our final injection ¢.
We explain in detail how we construct this injective mapping ¢ in the remainder
of this section.

While the creation of real objects uses a while loop, as opposed to a monadic
map, (and is thus the only place where we reason about loop invariants), we ex-
amine the creation of IRQ Handler capabilities as a more illuminating example
of both capability creation and the flexibility of our separation logic.

To explain how we prove that the creation of IRQ Handler capabilities is done
correctly, we take a bottom-up approach, explaining first how we create a single
IRQ Handler capability, and then build this up into a larger statement about the
initialisation of all of the IRQ Handler capabilities. Our final theorem about the
initialisation of IRQ Handlers, Theorem 7.3, is designed such that it can be com-
bined with our theorems for the initialisation of other object types (some of which
are shown later in Figure 7.4) to prove our top-level theorem, Theorem 7.1.

Our rule for creating a single IRQ Handler capability states that, given a free
capability pointer free_cptr and an IRQ number that points to an empty IRQ Node
in the kernel’s IRQ table, the function create_irg_cap creates an IRQ Handler
capability at the location free_cptr as recorded in the mapping irq_caps. The pre-
condition is written in a form that fits well with our definition of si_irg_nodes,
whilst the postcondition is written in a form that fits with our other theorems (by

using the predicate irq_empty).

7.6. DECOMPOSITION OF THE FINAL THEOREM 123

{As. «(si_cnode_id, free_cptr) i, NullCap A* <Lemma 7.2
irq = rq kernel_irq_id * kernel_irq_id - ,; empty_irq_node A* create_irq_cap
si_objects A* R>s A

well_formed spec A irq € used_irgs spec A

@1rq (cdl_irg_node spec irq) = Some kernel_irq_id N

irq_caps irq = Some free_cptr N free_cptr < ZSi‘mOde_Size}
create_irq_cap spec (irq, free_cptr)

{As. <irq_empty spec @ rq irq A
si_irq_cap_at irq_caps spec irq * si_objects A* R> s}

Proof: To prove this we simply expand all of the definitions of create_irq_cap,
irg_empty, si_irq_cap_at, and si_objects and use the seL4 API specification for
seL4_IRQControl_Get. [|

Moving up the stack, to prove create_irq_caps correctly initialises all of the
required IRQ Handler capabilities, we need to provide the injection ¢ that
Lemma 7.2 requires. As opposed to the injection ¢,,,;, constructed when creating
the real objects capturing the subtlety that the kernel decides physical memory
addresses at runtime, the injection ¢ g, can be specified explicitly. We do this by
exploiting the fact that a separation logic creates an algebraic structure that can

be used to construct an injection, which we use to construct our injection @z.

finite A (A", _, (f X) o —) s
inj_on f A

<Lemma 7.3

sep_map_obj injection

Proof: This is true because it is not possible for two objects to be separately lo-

cated at the same address. []

Using this, we show an equivalent definition of si_irq_nodes to the one shown
in Definition 7.6 that shows that the IRQ table of the kernel state must be an

injection.

si_irg_nodes spec s = <Lemma 7.4

(3k_irq_table. inj_on k_irq_table (used_irgs spec) A si_irq_nodes alternate
* . . . " definition
(A irqcused. irgs spec (irq \rq k_irg_table irg A

k_irq_table irq 1oy, empty_irq_node)) s)

Lemma 7.5 »

create_irq_caps helper

124 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

We now combine the injections of the IRQ table of the kernel state and of the
capDL specification to produce our injection ¢ in the following rule. This rule
states that, if that state contains |used_irgs spec| free capability pointers, the origi-
nal capabilities as described by the orig_caps data structure, and the IRQ Table and
Nodes (as encoded by si_irq_nodes), before executing create_irq_caps spec free_cptrs,
then after executing the state will contain all the empty IRQ Nodes (as encoded by
irg_empty), the IRQ Handler capabilities as described by irg_caps, and the original
capabilities as described by orig_caps. The operation create_irq_caps returns a
tuple containing the data structure irq_caps and the list of capability pointers that

are still free (free_cptrs_new).

(s <A

x
/\ obj_idereal_objects_of spec
si_objects A* si_irg_nodes spec A* R>s A\

. . *
cptretake |used_irgs spec| free_cptrs (st_cnode_id, Cpt?’) cap NullCap A

si_cap_at @, orig_caps spec obj_id N*

well_formed spec A |used_irgs spec| < |free_cptrs| A
A si_cnode_size
distinct free_cptrs A /\cptre free_eptrs PIT < 2 }
create_irq_caps spec free_cptrs
{A(irq_caps, free_cptrs_new) s.
* f : *
o1rg- <\ irqcused_irqs spec "0-EMPYY SPeC Prrq irq A
/\ obj_idereal_objects_of spec
si_objects A* R>s A
irg_caps = map_of (zip (used_irqgs spec) free_cptrs) A

irgcused_irgs spec si_irg_cap_at irq_caps spec irq N\

si_cap_at @,,,; orig_caps spec obj_id N*

free_cptrs_new = drop |used_irgs spec| free_cptrs A

inj_on @rq (used_irq_cnodes spec) A dom @;pq = used_irg_cnodes spec}

Proof: Firstly, the mapping ¢z, takes us from the identifiers for the IRQ Nodes
in our capDL specification spec to the physical addresses of the corresponding
IRQ Nodes in the running kernel. Since we know from our well_formed con-
straints of our capDL specification (outlined in Section 7.5) that the IRQ table of
the capDL specification is an injection, and we know from Lemma 7.4 that the
IRQ table of the running kernel must also be an injection, we compose the ker-
nel’s IRQ table with the inverse of the capDL specification’s IRQ table to produce
our injection @grq. The rest of the proof then follows by using our mapM rule

(Lemma 7.1) and our rule for create_irq_cap proven (Lemma 7.2). [|

However, in this rule, we have two injections, ¢,,.,; and @ g, which cover
different object ranges. To be able to combine them, we first show that they are
indeed distinct, that if they are distinct we can combine them, and then show that

we can rewrite our predicates to work on an extended mapping.

7.6. DECOMPOSITION OF THE FINAL THEOREM 125

A

/*irqeused_irqs spec
well_formed spec inj_on @,.,; (real_objects_of spec)
inj_on @pq (cdl_irg_node spec * used_irgs spec)
dom @,,,; = real_objects_of spec dom @ = cdl_irq_node spec * used_irgs spec

obj_idereal_objects_of spec object_empty spec ¢ q 0bj_id /A

irg_empty spec @ rq irg N* R>s

7 <Lemma 7.6
ran @ ., M ran @rq = Ranges distinct

Proof: This is true because both of the predicates object_empty and irq_empty
specify that an object exists for every real object identifier and IRQ number re-
spectively, and since there cannot be two objects at the one physical memory

address the ranges of the mappings must be disjoint. [

Given then that the ranges of the two mappings are disjoint (from Lemma 7.6)
and the domains of the two mappings are disjoint (as the real objects and IRQ
Nodes are disjoint), we can combine the two mappings to produce a new injection

using the following rule.

inj_on m; (dommy) inj_on my (dom my)

m; L omy ran m; Nran my = () L
<Lemma 7.7

inj_on (mL ++ mR) (dom my, U dom mR) Extending injections

Now, we use this new injection in our predicates object_empty, irq_empty,

and si_cap_at as long as we do not change any of the entries that they reference.

dom Preal = Obj—ids Dreal 1 PIrQ <L s
emma 7.

object_empty spec @, ., 0bj_id) =

*
(/\ obj_ideobj_ids Extending

(/*obj_i deob ids object_empty spec (¢,.q ++ @1rq) 0bj_id) object_empty

dom @ = cdl_irg_node spec \ irgs

" - - < Lemma 7.9
(/\ irq€irgs Irq_empty spec ¢1rq irq) = Extending irq_empty

(/*irqeirqs irq_empty SPeC ((preal ++ (pIRQ> ln])

dom Preal = Obj_idS Dreal 1 <pIRQ
si_cap_at @, si_caps spec obj_id) =

- < Lemma 7.10
(/\ obj_ideobj_ids Extending si_cap_at

</*Obj_ideobj_ids Si_cap_at ((preal ++ (pIRQ) si_caps SPCC Obj—ld)

Putting all of these lemmas together, we rewrite our earlier lemma about

create_irg_caps, namely Lemma 7.5, into a form that can be combined with our

Theorem 7.3 »

create_irq_caps

126 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

theorems about the creation and initialisation of the other object types to give
our final theorem for create_irq_caps. This rule takes both the original list of free
capability pointers that the system initialiser started with, namely free_cptrs_orig,

and the list of free capability pointers that create_irq_caps uses, namely free_cptrs.

{}\5 EI(preall'
<</\ obj_id€ereal_objects_of spec object_empty spec ¢ eq 0bj_id /
A* si_cap_at @,.,; orig_caps spec obj_id N* si_objects A*

obj_idereal_objects_of spec
si_objects_extra_caps’ (real_objects_of spec) [free_cptrs_orig ut_cptrs *

si_irg_nodes spec A" R>s A\
well_formed spec A |used_irgs spec| < |free_cptrs| A
free_cptrs = drop |real_objects_of spec| free_cptrs_orig A

O
distinct free_cptrs_orig A /\ cptr < 27O

cptrefree_cptrs
inj_on ¢,.,; (real_objects_of spec) A dom ¢,,,; = real_objects_of spec A
dom orig_caps = real_objects_of spec}
create_irq_caps spec free_cptrs
{A(irq_caps, free_cptrs_new) s.
H(p. <</\>‘<
/\ irg€used_irgs spec
/\ irg€used_irgs spec
si_objects_extra_caps’ (objects_of spec) free_cptrs_orig ut_cptrs A* R>s A

obj_idereal_objects_of spec object_empty spec ¢ Obj_ld A
irq_empty spec @ irg *

obj_idereal_objects_of spec sl_cap_at ¢ orig_caps spec Ob] _id \
si_irq_cap_at irq_caps spec irq * si_objects A*

irg_caps = map_of (zip (used_irqgs spec) free_cptrs) A
free_cptrs_new = drop |used_irgs spec| free_cptrs A
inj_on ¢ (objects_of spec) A dom ¢ = objects_of spec}

Proof: To prove this, we use Lemma 7.5 and instantiate the existential injec-
tion ¢ with @,.,; ++ @rg. We know that ¢ will be injective by Lemma 7.7,
which requires that the ranges of ¢,.,; and @, are distinct, a fact we know from
Lemma 7.6. Finally, we extend the predicates using Lemma 7.8, Lemma 7.9, and

Lemma 7.10. [|

Object initialisation

Once all of the objects have been created, we then need to prove that we initialise
each type of object correctly. We further divide this final part of the proof into
separate proofs about the initialisation of each type of object. Recall that we
categorised the different object types back in Section 5.3. Stateless objects are

those with no state in capDL, that is, endpoints, asynchronous endpoints, and

7.6. DECOMPOSITION OF THE FINAL THEOREM 127

frames. We separate the proof about the initialisation of the different types of real

objects by showing the following rewrite rule.”

well_formed spec
P obj_id) =

obj_idEreaI_cnodes_of spec P Ob]_ld A /\
Pobj_id A* *

< Theorem 7.4
Object type
P obj_id N* decomposition

P obj_id)

(A"
(A"
/*

obj_idereal_objects_of spec
obj_idetcbs_of spec

obj_idetables_of spec obj_idestateless_objects_of spec

Expanding this map of an arbitrary predicate over all real objects into maps
by type allows us to use the frame condition in each rule to allow us to look
at the initialisation of each type of object in isolation. As an example, consider
the rules in Figure 7.4 for init_tcbs and init_cspace. We will go into the rule for
init_cspace in detail in the remainder of this section, however, we can note here
that each of these rules talk about a separate part of the overall object map, men-
tion some side conditions about the presence of capabilities in the initialiser itself
(si_cap_at @ caps spec obj_id and si_objects), and have a frame condition R than

can be suitably instantiated to join them up to each other.

CNode initialisation

The proof of CNode initialisation is representative of the proofs of other object
types. Capability slots in CNodes are initialised in a two-step process as described
in Section 5.3. Each one of the CNodes has capabilities that are not original capa-
bilities first copied in (each copy is copied from an original). Then, each CNode
has the original capabilities moved in. We define a predicate cnode_half_initialised,
shown in Definition 7.12, to describe this intermediate state of a CNode, when
the non-original capabilities have been copied in. To do this, we first define the
function cnode_half that takes a CNode, and returns a CNode with the original

capabilities removed.

cnode_half spec obj_id obj = <« Definition 7.11
update_slots (Aslot. if is_orig_cap (obj_id, slot) spec A object_slots obj slot # None cnode_half

then Some NullCap

else object_slots obj slot) obj

Using this function, we define our predicate cnode_half_initialised in a similar
way to how we defined the predicates for object_empty and object_initialised in
Section 7.1.

?Recall from Section 5.3 that the capDL kernel model represents IRQ Nodes as CN-
odes of size zero, and so we use the term real_cnodes spec to describe the “real” CNodes
(that is, not IRQ Nodes).

128 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

Theorem 7.5 » {As. </* object_empty spec @ obj_id A*

init_tcbs /*

obj_idetcbs_of spec
obj. idereal_objects.of spec si_cap_at @ orig_caps spec obj_id N* si_objects A* R>s A\

well_formed spec A obj_ids = objects_of spec A distinct obj_ids }
init_tcbs spec orig_caps obj_ids

s, <"
/*

obj_idetcbs_of spec object_initialised spec ¢ obj_id N

obj.idreal_objects_of spec si_cap_at ¢ orig_caps spec obj_id N* si_objects A* R> s}

Theorem 7.6 » {As. </*
init_cspace /\

object_empty spec @ obj_id N*

obj_idereal_cnodes_of spec

obj_idereal_objects_of spec sl_cap_at ¢ orig_caps spec Ob] _id

A irqcused_irgs spec S—TO-CaP_at irq_caps spec irq /

*
/\ obj_idéereal_cnodes_and_tcbs_of spec
si_objects A* R>s A

well_formed spec A obj_ids = objects_of spec A |obj_ids| < |free_cptrs| A
distinct obj_ids A distinct free_cptrs A

si_cap_at @ dup_caps spec obj_id N*

orig_caps = map_of (zip [obj«—obj_ids. real_object_at obj spec] free_cptrs) A
irq_caps = map_of (zip (used_irgs spec) (drop |real_objects_of spec| free_cptrs))}
init_cspace spec orig_caps dup_caps irq_caps obj_ids
{As. <A*
/*
/*objjde real_cnodes_and_tcbs_of spec
si_objects A* R>s}

object_initialised spec ¢ obj_id N*

obj_idereal_cnodes_of spec

si_cnode_id, cptr) >c,p NullCap A*
cpiretake \objectsfofspec|freefcptrs(- id, cptr) ap P

si_cap_at @ dup_caps spec obj_id N*

Figure 7.4: Individual rules for init_tcbs and init_cspace.

Definition 7.12 » cnode_half_initialised spec @ obj_id s =
cnode_half_initialised Jkernel_obj_id spec_object. ¢ obj_id = Some kernel_obj_id N
(kernel_obj_id +p; (specas @ o cnode_half spec obj_id) spec_object) s N
cdl_objects spec obj_id = Some spec_object

We use our rule for monadic maps mapM, Lemma 7.1, to prove both halves
of the initialisation of all of the CNodes. We use it first to transform the proof of
half-initialising all of the CNodes into a proof of half-initialising a single CNode.
We then decompose the problem of initialising a single object into the separate
parts of an object, namely its fields and its individual capability slots. This is

embodied in Theorem 7.7.

7.6. DECOMPOSITION OF THE FINAL THEOREM 129

well_formed spec

object_initialised spec ¢ obj_id =
(object_fields_initialised spec ¢ obj_id N*

*
/\ slot€obj_slots obj_id spec
object_empty_slots_initialised spec ¢ obj_id)

object_slot_initialised spec ¢ obj_id slot *

Such a decomposition is not necessarily true for any separation logic and any
definition of partly initialised objects. Being able to prove the rule above as an
equality was one of the design goals of our separation logic. In particular, the
definition of object_initialised (see Section 7.3) contains an existential quantifier
over kernel_obj_id and spec_object which needs to be well-behaved enough to lift
over the separating conjunction on the right hand side of the rule.

We use Theorem 7.7 (and similar rules for decomposing object_empty and
cnode_half_initialised) to decompose the proof of initialising a single CNode into
a proof of initialising the fields of an object, the capability slots of an object, and
the empty slots of an object. The empty slots of an object need no initialisation,
the only field of a CNode is its size (which is set when the CNode is created), and
so we are left with a proof of how to initialise all of the capability slots of a CNode.
To prove all the capability slots we use Lemma 7.1 again to decompose this into a
proof of initialising a single capability slot. The ability to be able to use the same
rule for both loops shows some of the power of our separation logic.

Arriving at the leaf kernel calls of the init_cnode operation, the initialiser
extracts the capabilities that authorise it to make these calls. The presence of these
capabilities in the correct locations is encoded in the predicates such as si_cap_at,
as introduced in Section 7.2. We use the rule shown in Lemma 7.11 to extract the
specific capability we need from the precondition and postcondition of a lemma.
We then join the initialiser proof with formal specifications of the seL4 API that
were introduced in Section 7.4, expanding the definitions of object_slot_initialised

and similar to complete this proof.

finite A x€eA VR. {}\S «P AN* I x A* R> S}f {}\S <QAN*Ix N R» S}
* * / * * * / *
{7\5. <P A /\ ed Ix” A" R> S}f {7\5 <QA /\ ed Ix” A" R» S}

Proof: To be able to use the Hoare triple in our assumption, we first break the
. . . * an * / * .
separation logic predicate /\ ea I x’ into /\ e {x) I x” A* I x. Then, since
our assumption requires {As. <P A* I x A* R> s} f {As. «<Q A* I x A* R> s} is
true for any R, we can prove our conclusion by setting the R in our assumptions

* / *
o/\x,eAi{x}Ix A* R. |

< Theorem 7.7

object_initialised
decomposition

< Lemma 7.11

Separation conjunction
invariant extraction

Lemma 7.12 »

init_cspace helper

130 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

Rewriting predicates

Unfortunately the proof above of init_cspace ignores one crucial fact. When rea-
soning about monadic maps (that is, loops constructed using mapM), our rules
such as Lemma 7.1, require that the predicates P and Q be folded over the same
list xs as the function f is mapped over. Recall from Section 5.3, the operation
init_cspace is mapped first over each CNode, and then over each CNode slot (and
this is done twice, first to copy non-original capabilities, and second to move the
original capabilities).

Examining the lemma for init_cspace, while the predicates object_empty and
object_initialised are defined using the set of CNodes that init_cspace loops over,
the other predicates such as si_cap_at @ orig_caps spec, si_irq_cap_at irq_caps spec,
and si_cap_at ¢ dup_caps spec are defined over all the real objects, the IRQ Nodes
that are used in the specification, and the CNodes and TCBs of a specification
respectively. To be able to use our mapM rules, such as Lemma 7.1, we need to
rewrite each of these predicates into a form that is defined using the set of CNodes
(and possibly also the capability slots inside these CNodes).

For this reason, to prove Theorem 7.6, we first prove the following rule. This
version of the rule has all of the separation predicates defined using the same list
that init_cspace loops over, and so fits well with our mapM rules and is the lemma

we actually proved above.

(s N\
/*

/*
/*obj,id €real_cnodes_of spec
well_formed spec A obj_ids = objects_of spec A distinct obj_ids}

object_empty spec ¢ obj_id N*

obj_idéereal_cnodes_of spec

si_obj_caps_at @ orig_caps spec obj_id N*

obj_idereal_cnodes_of spec

obj._idereal_crodes_of spec si_spec_irq_caps_at irq_caps spec obj_id N\

si_cap_at @ dup_caps spec obj_id N* si_objects A* R>s A

init_cspace spec orig_caps dup_caps irq_caps obj_ids

{2s. <\
/*
/*
/*

object_initialised spec ¢ obj_id N*

obj_idereal_cnodes_of spec

obj.idereal_cnodes_of spec si_spec_obj_null_caps_at ¢ orig_caps spec obj_id N

obj. idereal_cnodes.of spec si_spec_irq_null_caps_at irq_caps spec obj_id N

si_cap_at @ dup_caps spec obj_id * si_objects A* R> s}

obj_idereal_cnodes_of spec

In the rest of this section, we show how we use this helper lemma, Lemma 7.12,
to prove our top-level theorem for init_cspace, Theorem 7.6. To do so, we con-
centrate on the conversion of the predicate about the capabilities pointed to by
the mapping orig_caps, from being defined on the real objects of a capDL spec-

ification spec (that is, /* si_cap_at @ orig_caps spec obj_id)

obj_idéereal_objects_of spec
into a predicate defined on the CNodes of a capDL specification spec (that is,

7.6. DECOMPOSITION OF THE FINAL THEOREM 131

/*ohj_i dereal cnodes spec si_obj_caps_at ¢ orig_caps spec obj_id) as a representative
example. We prove this conversion at the end of this section in Theorem 7.8.

The former predicate, defined using si_cap_at, specifies that for each real ob-
ject there is a master capability pointing to it (in the specified capability slot
in the system initialiser’s capability space). Our new predicate, defined using
si_obj_caps_at, specifies that the system initialiser contains all the original capa-
bilities that are required by the CNodes that it is initialising. Of course, since there
exists a one-to-one correspondence between original capabilities handed out by
the initialiser and the real objects the initialiser creates, we are able to prove these
two predicates are equivalent.

To define si_obj_caps_at, we first define the predicate si_obj_cap_at which
specifies, for a particular capability slot, if the capability slot is one where an
original capability is located, and the capability located there has an object (recall
that IRQ Handler capabilities do not), then our predicate specifies that there must
exist a capability spec_cap in the slot, and the predicate si_cap_at ¢ si_caps spec is

true for the object that spec_cap points to.

si_obj_cap_at ¢ si_caps spec obj_id slot = < Definition 7.13
if is_orig_cap (obj_id, slot) spec A cap_at cap_has_object (obj_id, slot) spec si_obj_cap_at
then As. Ispec_cap. si_cap_at @ si_caps spec (cap_object spec_cap) s A

opt_cap (obj_id, slot) spec = Some spec_cap
else [

Using our new predicate si_obj_cap_at, we define si_obj_caps_at which spec-

ifies that si_obj_cap_at is true for each capability slot of an object.

si_obj_caps_at ¢ si_caps spec obj_id = < Definition 7.14

. . . . P si_obj_caps_at
A ot obi_slots obj.id spec si_obj_cap_at ¢ si_caps spec obj_id slot

As we can see, this new predicate is defined in such a way that, given a one-to-
one correspondence between original capabilities and real objects, we can prove
the two predicates equivalent. To prove this one-to-one correspondence between
original capabilities and real objects, we define the function object_at_cap_slot,
which, given a capability slot in a given CNode, returns the object identifier
pointed to by the capability in a specific capability slot (assuming this exists, and
otherwise the return result is undefined). We show in Lemma 7.13 that the func-
tion object_at_cap_slot is a bijection between the capability slots of a CNode con-

taining original capabilities that point to objects, and the real objects in a system.

Lemma 7.13 »
Original capabilities
and real objects
bijection

Lemma 7.14 »

Nested separation
conjunction

Lemma 7.15 »

Lifted separation
conjunction reindexing

132 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

well_formed spec

bij_betw (object_at_cap_slot spec)

{(obj_id, slot) | is_orig_cap (obj_id, slot) spec A
cap_at_to_real_object (obj_id, slot) spec A
real_cnode_at obj_id spec}

(real_objects_of spec)

Proof: The fact that this function is a bijection between original capabilities in
real CNodes (that is, not IRQ Nodes) and real objects is due to the constraints
we place on the capDL specification spec in the predicate well_formed spec, which
mandates that this must be the case, namely, that all original caps must be unique
(that is, two original capabilities cannot point to the same object), each real object
must have an original capability pointing to it, and all capabilities pointing to real

objects must point to an object. [

To prove equivalence between our two predicates describing the original ca-

pabilities, firstly /* si_cap_at @ orig_caps spec obj_id (which

obj_idereal_objects_of spec
maps over each of the real objects of a specification) and the second predicate

/\ obj_id€ereal_cnodes spec
each of the capability slots of all of the CNodes of a specification), we need a

si_obj_caps_at @ orig_caps spec obj_id (which maps over

way of rewriting a nested separation conjunction. Recall that, because separation
conjunction is an associative, commutative operation, it is well defined to fold
a separation predicate over a set. We rewrite a nesting of these folds using the

following lemma, Lemma 7.14.

finite A Vx € A. finite (B x)

(N gea N yep Pxy) = (N

Pxy)

()€U g Uepy (600D

yEBx

Next, we need a way of transforming predicates defined on one set to another.
We can transform the folding of a predicate P over one set A, to the folding of
a predicate Q over another set B, providing we have an bijection f between the
two sets A and B, and that f transforms between the two predicates in the obvious

mannet, as shown in Lemma 7.15.

bij_betwfAB Va.a€A—Pa=Q(fa)
(A'yen P2 = (N Q%)

Using these results, we now rewrite our predicate si_cap_at, which specifies

that there must be an original capability for each real object, into a predicate that

7.7. CONCLUSION 133

specifies that each capability slot with an original capability must point to a real

object, as shown in Theorem 7.8.

well_formed spec

< Theorem 7.8

(A"
(A"

si_cap_at @ orig_caps spec obj_id) =

obj_idereal_objects_of spec si_caps_at conversion

si_obj_caps_at ¢ orig_caps spec obj_id)

obj_idereal_cnodes_of spec

Proof: We first expand the definition of si_obj_caps_at and rewrite it using our
lemma for nested separation conjunction, Lemma 7.14, to produce a new predicate,
folded over a set of (obj_id, slot) tuples. We then rewrite this new predicate using
Lemma 7.15, where we set the bijection f in the rule to be object_at_cap_slot spec.
Finally, we know that object_at_cap_slot spec is a bijection from Lemma 7.13, com-

pleting the proof. u

Using this rewrite, and similar one for the IRQ Handler capabilities, there
is one remaining part left to be able to transform our theorem for init_cspace,
shown in Theorem 7.6, into a form that can be used with our mapM rules, namely
Lemma 7.12. This last remaining difference between the two rules is the inclusion
of the duplicate capabilities for the TCBs in the former rule, but not the latter.
These can be safely ignored and placed in the frame of the latter rule in a similar
way to Lemma 7.11. With all these pieces in place, we have shown how we correctly
initialise capability spaces, and show that all of the original capabilities are handed

out by the system initialiser.

7.7 Conclusion

In this chapter, we have examined the proof of a formal model of the algorithm for
the system initialiser with respect to a formalised API for the seL4 microkernel.
By joining these proofs to a verified abstraction of seL4, we are forced to deal with
the intricacies of a low-level kernel API in our proofs, the complexity of which is
illustrated in Section 7.4.

We have shown that our separation logic is suitable to prove both these kernel
API specifications, as well as the specification of our user-level program—the sys-
tem initialiser. Designing our separation logic to have the right level of granularity
and decomposability was crucial for reasoning about individual components of
each object separately.

While the proof of functional correctness of seL4, and other proofs building
on the functional correctness of seL4, had to show global invariants that are in-
convenient to express in separation logic, we instead express the properties we

needed, such as the original capabilities that the initialiser creates, and where they

134 CHAPTER 7. CORRECTNESS OF SYSTEM INITIALISATION

are stored using separation logic predicates. Not requiring any invariants made
the proof much more modular and easier to extend.

The system initialiser makes heavy use of nested loops. Again, our separation
logic setup enabled us to decompose these loops into local steps without stating
complex invariants.

We think that this model of using a separation logic for the specification of
kernel APIs and for proving the initialisation of user-level systems is applicable
in capability-based microkernels, as is using an abstract separation logic for a
large-scale proof. Its modular, decomposable reasoning without invariants made

it ideal for this style of proof.

7.7. CONCLUSION 135

Chapter Summary

» We defined precisely what it means for a system to be correctly
initialised in conformance with a given capDL specification. In
particular, every object in the specification must be present in the

kernel state at some physical memory address.

» We defined the state of the system initialiser, the objects it contains

and the capabilities it possesses throughout initialisation.

» We have decomposed our proof along the various stages of initial-
isation, initialising the objects type-by-type, object-by-object, and
capability-by-capability.

» We have joined our proof to a formalised API for seL4 that was
proven using the separation logic we defined in Chapter 6. By
joining our proof to a verified abstraction of seL4, we are forced to

deal with the intricacies of a low-level kernel API in our proofs.

» We have explored the creation of IRQ Handler capabilities and
the initialisation of capability spaces as illustrative examples of
the style of proof that we have done in this work. All of the
proofs and definitions have been published under an open-source

licence (Trustworthy Systems Team, 2014).

» By formally reasoning about the correctness of initialisation, we
can have confidence that we can start a system correctly and that

seL4 will enforce the security of our system as specified.

Chapter 8

Conclusion

8.1 Discussion

In this thesis we' presented the formalisation and correctness proof of a generic,
automatic system initialiser that brings a seL4-based system from its initial boot
state into a desired configuration. From such a configuration, we can then reason
with confidence about the security of the resulting system.

We have examined how capability-based systems, based on the take-grant
protection model, can give us guarantees about the authority confinement and
possible information flow of the entire system solely through the examination of
the capabilities.

This result predates the work of Sewell et al. (2011), Murray et al. (2013), and
Boyton et al. (2013) which proved stronger results directly on the abstract model
of the seL4 microkernel. Combined, these latter works show that we can rea-
son about the access control, integrity, and information flow of this system using
only the capabilities present in the capDL kernel model, and know that these
results hold on the kernel implementation. This gives us great confidence that
we can build systems using our formal algorithm of system initialisation that we
presented here, and hence be able to have confidence in the overall system.

We have additionally shown a general separation logic framework that can be
used to reason about such user-level systems, have produced a proof framework to
reason about user-level executions on top of a formally verified microkernel API,
and have applied it to show the correctness of the initialiser model.

There are of course a number of limitations in this work. The initialiser we
present here is specific to the capability-based microkernel seL4. We think that the

general principle and pattern of reasoning we have employed in this work would

"Throughout this thesis we have used the royal “we” to indicate the author.

137

138 CHAPTER 8. CONCLUSION

generalise to other capability-based systems, although the feasibility of doing so
has not been examined.

We have aimed to design a generic separation logic framework for reasoning
about user-level executions on top of a formally verified microkernel API. So
far this framework has only been used to show the correctness of the system
initialiser algorithm. Formally connecting this to our C implementation remains
a target for our future work.

The results we have proven here are all safety and not liveness results. That is,
we prove that if the system initialiser successfully terminates, then it will have set
up the system correctly. This is due to the non-deterministic nature of the capDL
kernel model. We could gain confidence in the liveness of our algorithm through
testing, code inspection, or informal reasoning. Alternatively, we could gain a
guarantee of liveness by formally reasoning at a lower-level of abstraction, but this
is outside the scope of this thesis.

We discuss a number of further limitations and how they could be addressed

in future work in Section 8.3.

8.2 Implementation experience

It is worth noting some of the design decisions that we made and explore some of

their implications. We discuss three such decisions below.

Separation logic We have found that designing a separation logic with the right
level of granularity has been invaluable for developing the proofs in this thesis. We
have found separation logic allows for convenient expression of both what an API
does and what it leaves unchanged. Unfortunately the API specifications developed
for (but outside the scope of) this thesis, as illustrated in Theorem 7.2, cannot be
described as concise. We could attempt to simplify such theorems by creating
definitions that wrap up many of the preconditions, although another problem
remains if we wished to use these rules in other contexts, namely the need for
some operations to require multiple rules to specify their behaviour, which we
explain below.

The separation logic predicates we describe must be disjoint. For example, the
predicate obj_id - op; 0bj * 0obj_id +,; 0bj is never true, as two predicates about
the same object location cannot be disjoint.> What this means is that to specify
the behaviour of an operation such as swap_objects, which swaps the objects at

two locations, then Lemma 8.1 can only be used when the locations are different,
that is, when obj_id + obj_id’.

>This is the same reasoning we used to prove that separation predicates create natural
injections, as shown in Lemma 7.3.

8.2. IMPLEMENTATION EXPERIENCE 139

{obj_id - op; 0bj N* 0bj_id” Fop; 0bj” A* R}
swap_objects obj_id obj_id’
{obj_id oy 0bj” N* 0bj_id” op; 0bj A* R}

To reason that calling swap_objects obj_id obj_id leaves the object located at

obj_id unchanged, we need a different rule, namely Lemma 8.2.

{obj_id - 0bj A* R}
swap_objects obj_id obj_id
{obj_id -) 0bj A* R}

When moving capabilities in seL4 using seL4_CNode_Move, there are 4 possi-
ble scenarios, each of which requires a custom rule—the capability being moved
could be in the root task’s CNode, or another CNode the root task has access to,
and the location that the capability is being moved to could be in the root task’s
CNode, or another CNode the root task has access to. Thankfully, in this work,
we only required one version of this rule, namely Theorem 7.2, but this situation
is less than ideal.

A separation logic with permissions, such as that of Bornat et al. (2005),
Parkinson (2005), or Dockins et al. (2009), allows reasoning about concurrent
programs where multiple operations concurrently read the same data as long as
no operation is simultaneously writing to the data. Whilst using such a separation
logic would not help us when proving rules for swapping objects, it could help us
when reasoning about moving capabilities using seL4_CNode_Move, due to the
fine level of granularity of our predicates.> A separation logic with permissions
comes with greater cost of complexity to the separation logic itself and the rea-
soning about it, but it might reduce the number of rules required. The tradeoffs

between such systems are not addressed here.

Local specifications Separation logic requires our specification to be local, that
is, operations of our specification cannot depend on, or modify, the whole pro-
gram state. We found that while the operations in the capDL kernel model (which
were not originally designed with separation logic in mind) were often local in
their behaviour, many parts were not. We found that there was sometimes a ten-

sion between elegance and locality when writing a monadic specification—it was

3A separation logic with permissions generally allows multiple readers, but only one
writer, which is why it does not help with swap_objects, but the collisions in our rule
for seL4_CNode_Move come from reading the various CNode’s fields, not writing their
capability slots, hence a separation logic with permissions may help.

<Lemma 8.

Swap object (different
object identifiers)

< Lemma 8.2

Swap object (same
object identifier)

140 CHAPTER 8. CONCLUSION

common in many parts of the specification to state “for all objects in the speci-
fication, non-deterministically pick one and do something to it”. For example,
should the fact that a thread is schedulable be stored in the thread itself or in
a global schedulable set? As capDL is an abstraction of the behaviour of the C
implementation of seL4 we are free to do either, but one model allows separation
logic to reason about scheduling and one does not.

While many parts of the capDL kernel model were changed to allow a sepa-
ration logic specification for their operation, other non-local operations such as
scheduling remain. This non-locality of scheduling in capDL precludes us from
reasoning about scheduling using separation logic. This could be addressed in

future work.

Proof size We found that using a separation logic for reasoning required custom
tactics to be constructed to be able to manage the large predicates used. The tac-
tics that were developed along with the proof and earlier proofs could be greatly
simplified using the more advanced tactics for weakest-precondition style reason-
ing.

Overall, the formal algorithm for the system initialiser is around 500 lines,
whereas the proof of the system initialiser algorithm is around 12,000 lines. The
connection to the fully realistic kernel model is the main source of complexity in
the proof. In comparison, there are 7,600 lines for the proof of the capDL kernel
API specification, 27,000 lines for the refinement proof between the capDL ker-
nel model and the functional specification, and 200,000 lines for the functional
specification to the C code of the kernel (Klein et al., 2009).# The take-grant pro-
tection model we presented in Chapter 4 is much smaller, at around 1,700 lines of

specification and proof.

These specifications and proofs are all available as part of the seL4 release (Trust-
worthy Systems Team, 2014). The C implementation of the initialiser has also been

released (Boyton et al,, 2014).

8.3 Future work

There are a number of limitations and areas of future work that could be ad-
dressed.

The final result of this thesis, that the system has been started in conformance
with a given capDL specification has not been formally linked to the access control

policy of Sewell et al. (2011) and Murray et al. (2013). The capDL kernel model

4In absence of good metrics for counting the size of a proof, we use wc -1 which
simply counts the number of lines in each file, including all comments and blank lines.

8.3. FUTURE WORK 141

itself has been linked to these access control policy, as shown in the work of Boy-
ton et al. (2013), but there are a few pieces missing before the work of this thesis
can be joined up to these access control policies. Firstly, our proof statement is
a separation logic statement, whereas the access control policies are specified in
traditional Hoare logic. We can convert from a separation logic specification of
the state to a more traditional form, but this uncovers the problem of identifiers.
Throughout this work we have assumed capDL identifiers are simple names, not
memory addresses as they are assumed to be in the link between capDL and the
access control policies. This is correspondence between the two is encoded in the
injection ¢ in our final statement proof statement, Theorem 7.1.

As the work of Boyton et al. (2013) which links capDL to the access control
policies assumes that capDL identifiers correspond to the memory addresses in
an access control policy, this mismatch could be addressed by changing this link
between capDL and the access control policies, by changing the state relation of
the capDL refinement, or by removing the implicit assumptions about the physical
memory addresses in the proofs of Sewell et al. (2011) and Murray et al. (2013). We

leave reconciling these to future work.

Limitations of our proof

There are also a number of limitations in the kind of capDL specifications that
we initialise, as detailed in Section 7.5. The main limitations are the exclusion
of various capability types (untyped capabilities, ASID pool capabilities, and the
ASID and IRQ control capabilities), and the lack of support for shared frames.

The capabilities that we exclude break the one-to-one correspondence be-
tween objects and the original capability pointing to this object. As we have lifted
this assumption to support IRQ Handler capabilities, we believe we could extend
the algorithm and the proof to support these additional capabilities in a similar
way.

seL4 requires a new frame capability to be used for each frame-mapping in
an address space. A thread holding the frame capability that was used to map a
frame possesses the authority to unmap that frame. At present, the capDL kernel
specification does not track this correspondence, and so we cannot use capDL to
safely specify a system with shared frames, lest two threads accidentally be given
the frame capability used to map the other’s frame. If capDL was extended to
track this mapping, then the proofs could be updated to allow shared frames.

The kernel interaction model developed for this thesis embeds the kernel
state inside that of the initialiser and treats the kernel as an API, as explained in
Section 7.4. While this is how developers often view an operating system, it is not

how this operating system actually works. Flipping this around so the kernel is the

142 CHAPTER 8. CONCLUSION

one scheduling threads is outside the scope of this thesis. This modelling of the
seL4 interaction also assumes that the libseL4 API (the API used by a developer,
such as seL4_CNode_Move) corresponds to the intents of the capDL kernel model,
which has been axiomatised in our work. Proving this would require reasoning
about the kernel/user-space boundary and the assembly code system-call stubs.

At present, we wipe the intent and ASIDs of memory objects when we lift the
heap; it would be nice to avoid both. The former could be addressed by changes
to the intent modelling in capDL to make the setting of intents a local operation’,
and the latter could be changed by more formal reasoning about the ASIDs of
memory objects. As the ASID of a memory object is determined by the kernel at
runtime, this would most likely require constructing another injection, similar to
the one mapping from object identifiers of a capDL specification to the physical
memory addresses where corresponding objects are located.

Finally, we do not reason about the behaviour of the scheduler, as the capDL
kernel model does not model the scheduling of threads with a sufficient level of
detail. For this reason, we have assumed that the root task is the only task that

runs, and have not reasoned about starting threads.

Implementation refinement

While care has been taken to implement the formal algorithm of system initial-
isation in C, we could greatly increase our confidence in the implementation by
formally proving refinement between the C code and our abstract algorithm. Gen-
erally, such refinement proofs are rather labour intensive, especially for codebases
such as the seL4 microkernel.

We expect the refinement of the initialiser code to be much simpler than that
of the seL4 kernel for two main reasons. Firstly, the system initialiser code is
much simpler than the code of seL4, as the initialiser code consists mostly of
simple loops—its complexity lies in the interaction with the kernel, which we
have treated in the proof of the correctness of the algorithm. Secondly, there have
been great recent advances in tools for proving refinement of C code, such as
AutoCorres (Greenaway et al., 2012; Greenaway et al., 2014). Our C code has been

specifically written in such a way that it can be used by such tools.

Turn the system initialiser into a library for clients to use

The ability to create and configure objects in conformance with a specification

is useful not just for the root task of an operating system (that is, the very first

To make setting a thread’s intent a local operation, intents would need to be (at least
partially) stored outside the TCB in a data structure which would be shared by TCBs that
share an IPC buffer. This change would also more closely model reality.

8.4. CONCLUDING REMARKS 143

task that runs in the system), but for other processes in a system, which may
also wish to dynamically setup new subsystems at runtime. The root task that we
created that does system initialisation could be transformed into a library that
could be used by other processes. This would require minor transformations of
the initialiser to not read the state of the system from the boot information passed

by the kernel, but there are no conceptually hard parts in doing this.

Take-grant protection model

Our formalisation of the take-grant protection model does not distinguish be-
tween active subjects and passive objects, but treats both as active entities, which
can lead to an overestimation of authority confinement and information flow. The

model could be refined by making a distinction between the two.

8.4 Concluding remarks

The security of an operating system depends on setting it up correctly. The author-
ity confinement, integrity, and information flow proofs for seL4 (Sewell et al., 2011;
Murray et al., 2013) show that if the state of a system is initialised in conformance
with an access control policy, then seL4 will enforce this policy.

Often code that does this initialisation is ad-hoc and manually written, with
little guarantee about correctness. Instead, in this thesis we have presented a for-
mal algorithm of a generic system initialiser that starts a system in conformance
with a given specification.

The specifications of systems are described using the capability distribution
language, capDL, which Boyton et al. (2013) formally linked to the access control
policies of the authority confinement, integrity, and information flow proofs for
seL4, allowing us to reason about the security of a system by examining the capDL
specification of a system.

We have shown the about the correctness of this formal algorithm, proving
that each step of our algorithm correctly creates and configures the objects de-
scribed, while not undoing the work done by the previous steps. To do this, we
have developed a custom separation logic that is used to reason both about the
correctness of our formal system initialisation algorithm and to develop a formal
API specification for the seL4 kernel itself.

By connecting the proof of correctness of our system initialisation algorithm
to the existing proofs of the formally verified seL4 microkernel, and using the
capDL language to specify our system, we can have a very strong confidence in
the correctness of our algorithm, knowing that we can start a system correctly and

that seL4 will enforce the security of our system as specified.

144 CHAPTER 8. CONCLUSION

Bibliography

Alves-Foss, Jim et al. (2006). “The MILS Architecture for High-Assurance Embed-
ded Systems.. In: Int. J. Emb. Syst. 2, pp. 239-247.

Andronick, June, David Greenaway, and Kevin Elphinstone (2010). “Towards prov-
ing security in the presence of large untrusted components’. In: 5th SSV.

Andronick, June, Andrew Boyton, and Gerwin Klein (2012). Final Report for
AOARD Grant #FA2386-11-1-4070, Formal System Verification - Extension. Tech-
nical Report. NICTA.

Barth, Adam et al. (2008). The security architecture of the Chromium browser.
URL: http://crypto.stanford.edu/websec/chromium/chromium- security -
architecture.pdf.

Bishop, Matt (1996). ‘Conspiracy and Information Flow in the Take-Grant Protec-
tion Model’ In: Journal of Computer Security 4.4, pp. 331-360.

Bishop, Matt and Lawrence Snyder (1979). “The transfer of information and au-
thority in a protection system. In: 7th SOSP, pp. 45-54. ISBN: 0-89791-009-5.

Bornat, Richard (2000). ‘Proving pointer programs in Hoare Logic’. In: 5th MPC.
Vol. 1837. LNCS, pp. 102-126. po1: 10.1007/10722010_8.

Bornat, Richard et al. (2005). ‘Permission Accounting in Separation Logic’ In:
SIGPLAN Not. 40.1, pp. 259—270. DOI: 10.1145/1047659.1040327.

Boyton, Andrew (2009). ‘A Verified Shared Capability Model In: 4th International
Workshop on Systems Software Verification, pp. 25-44.

Boyton, Andrew et al. (2013). ‘Formally Verified System Initialisation. In: 15th
ICFEM, pp. 70-85. DOL: 10.1007/978-3-642-41202-8_6.

Boyton, Andrew et al. (2014). capDL initialiser+loader, version 1.0.0. po1: 10.5281/
zenodo.11254.

Burstall, Rod (1972). ‘Some techniques for proving correctness of programs which
alter data structures’ In: Machine Intelligence 7, pp. 23-50.

Calcagno, Cristiano, Peter W. O’Hearn, and Hongseok Yang (2007). ‘Local Action
and Abstract Separation Logic’. In: Proc. 22nd LICS, pp. 366-378. por: 10.1109/
LICS.2007.30.

145

http://crypto.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://crypto.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://dx.doi.org/10.1007/10722010_8
http://dx.doi.org/10.1145/1047659.1040327
http://dx.doi.org/10.1007/978-3-642-41202-8_6
http://dx.doi.org/10.5281/zenodo.11254
http://dx.doi.org/10.5281/zenodo.11254
http://dx.doi.org/10.1109/LICS.2007.30
http://dx.doi.org/10.1109/LICS.2007.30

146 BIBLIOGRAPHY

Cock, David, Gerwin Klein, and Thomas Sewell (2008). ‘Secure Microkernels,
State Monads and Scalable Refinement. In: 21st TPHOLSs, pp. 167-182. DOIL:
10.1007/978-3-540-71067-7_16.

Dang, H.-H., P. Hofner, and B. Moller (2011). ‘Algebraic separation logic’ In: The
Journal of Logic and Algebraic Programming 80.6. Relations and Kleene Alge-
bras in Computer Science, pp. 221 —247. DoI: 10.1016/j.jlap.2011.04.003.

Dennis, Jack B. and Earl C. Van Horn (1966). ‘Programming Semantics for Mul-
tiprogrammed Computations. In: CACM 9, pp. 143-155.

Dockins, Robert, Aquinas Hobor, and Andrew W. Appel (2009). ‘A Fresh Look
at Separation Algebras and Share Accounting. In: Programming Languages
and Systems. Vol. 5904. Lecture Notes in Computer Science, pp. 161-177. DOL:
10.1007/978-3-642-10672-9_13.

Elkaduwe, Dhammika, Philip Derrin, and Kevin Elphinstone (2006). ‘Kernel Data
- First Class Citizens of the Systemy. In: 2nd Int. WS Obj. Syst. & Softw. Arch.
Pp. 39-43.

— (2007). ‘A Memory Allocation Model for an Embedded Microkernel’ In: 1st
MIKES. NICTA, pp. 28-34.

Elkaduwe, Dhammika, Gerwin Klein, and Kevin Elphinstone (2008). ‘Verified
Protection Model of the seL4 Microkernel’. In: VSTTE 2008. Vol. 5295. LNCS,
Pp- 99-114.

Filliatre, Jean-Christophe and Claude Marché (2007). “The Why/Krakatoa/Ca-
duceus Platform for Deductive Program Verification. In: Computer Aided
Verification. Vol. 4590. Lecture Notes in Computer Science, pp. 173-177. DOI:
10.1007/978-3-540-73368-3_21.

Gordon, Michael J. C., Robin Milner, and Christopher P. Wadsworth (1979). Ed-
inburgh LCF. Vol. 78. LNCS. Springer. ISBN: 3-540-09724-4.

Gordon, Mike (2000). ‘Proof, Language, and Interaction’ In: chap. From LCF to
HOL: A Short History, pp. 169-185. ISBN: 0-262-16188-5.

Greenaway, David, June Andronick, and Gerwin Klein (2012). ‘Bridging the Gap:
Automatic Verified Abstraction of C’ In: 3rd ITP. Vol. 7406. LNCS, pp. 99-115.
ISBN: 978-3-642-32346-1.

Greenaway, David et al. (2014). ‘Don’t Sweat the Small Stuft: Formal Verification
of C Code Without the Pain’ In: Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 429-439. DOL:
10.1145/2594291.2594296.

Greenhills Software, Inc. (2008). Integrity Real-Time Operating System. Accessed
August 2014. URL: http://www.ghs.com/products/rtos/integrity.html.

Harrison, Michael A., Walter L. Ruzzo, and Jeffrey D. Ullman (1976). ‘Protection
in Operating Systems. In: CACM, pp. 561-471.

http://dx.doi.org/10.1007/978-3-540-71067-7_16
http://dx.doi.org/10.1016/j.jlap.2011.04.003
http://dx.doi.org/10.1007/978-3-642-10672-9_13
http://dx.doi.org/10.1007/978-3-540-73368-3_21
http://dx.doi.org/10.1145/2594291.2594296
http://www.ghs.com/products/rtos/integrity.html

BIBLIOGRAPHY 147

Hicks, Boniface et al. (2007). ‘A logical specification and analysis for SELinux
MLS policy. In: SACMAT, pp. 91-100. DOI: 10.1145/1266840.1266854.

Hoare, C. A. R. (1969). ‘An axiomatic basis for computer programming’. In: CACM
12.10, pp. 576-580.

iOS 7: Understanding Location Services (2014). Accessed August 2014. Apple. URL:
http://support.apple.com/kb/HT5594.

iOS Security (2014). White Paper. Apple.

Jensen, Jonas Braband and Lars Birkedal (2012). ‘Fictional Separation Logic’. In:
Programming Languages and Systems. Vol. 7211. Lecture Notes in Computer
Science, pp. 377-396. DOI: 10.1007/978-3-642-28869-2_19.

Jones, A. K., R.]. Lipton, and L. Snyder (1976). ‘A Linear time algorithm for decid-
ing security’ In: Foundations of Computer Science, 1976., 17th Annual Sympo-
sium on, pp. 33—41. boI: 10.1109/SFCS.1976.1.

Kauer, Bernhard (2007). ‘OSLO: Improving the Security of Trusted Computing’
In: Proceedings of 16th USENIX Security Symposium on USENIX Security Sym-
posium. S§°07, 16:1-16:9. ISBN: 111-333-5555-77-9.

Klein, Gerwin et al. (2009). ‘seL4: Formal Verification of an OS Kernel’ In: SOSP,
pp. 207-220. DOI: 10.1145/1629575.1629596.

Klein, Gerwin, Rafal Kolanski, and Andrew Boyton (2012). ‘Mechanised Separa-
tion Algebra. In: Interactive Theorem Proving (ITP), pp. 332-337.

Klein, Gerwin et al. (2014). ‘Comprehensive Formal Verification of an OS Micro-
kernel’ In: Trans. Comp. Syst. 32.1, 2:1-2:70. DOI: 10.1145/2560537.

Kolanski, Rafal (2011). “Verification of Programs in Virtual Memory Using Sepa-
ration Logic’. Available from publications page at http://ssrg.nicta.com.au/.
PhD thesis. UNSW.

Kuz, Thor et al. (2007). ‘CAmKES: A component model for secure microkernel-
based embedded systems. In: Journal of Systems and Software Special Edition
on Component-Based Software Engineering of Trustworthy Embedded Systems
80.5, pp. 687-699. DOI: 10.1016/j.j55.2006.08.039.

Kuz, Thor et al. (2010). ‘capDL: A Language for Describing Capability-Based Sys-
tems’. In: 1st APSys, pp. 31-36.

Lipton, Richard]. and Lawrence Snyder (1977). ‘A Linear Time Algorithm for
Deciding Subject Security’. In: J. ACM 24.3, pp. 455-464. DOI: http://doi.acm.
org/10.1145/322017.322025.

Martin, W. B., P. D. White, and E S. Taylor (2002). ‘Creating High Confidence
in a Separation Kernel. In: Automated Softw. Engin. 9.3, pp. 263-284. URL:
http://portal.acm.org/citation.cfm?id=592088.

http://dx.doi.org/10.1145/1266840.1266854
http://support.apple.com/kb/HT5594
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1109/SFCS.1976.1
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1145/2560537
http://ssrg.nicta.com.au/
http://dx.doi.org/10.1016/j.jss.2006.08.039
http://dx.doi.org/http://doi.acm.org/10.1145/322017.322025
http://dx.doi.org/http://doi.acm.org/10.1145/322017.322025
http://portal.acm.org/citation.cfm?id=592088

148 BIBLIOGRAPHY

Murray, Toby et al. (2013). ‘seL4: from General Purpose to a Proof of Information
Flow Enforcement. In: IEEE Symp. Security & Privacy, pp. 415—-429. DOI: 10.
1109/SP.2013.35.

National Security Agency (2007). U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness, Version 1.3.

Nipkow, Tobias, Lawrence Paulson, and Markus Wenzel (2002). Isabelle/ HOL —
A Proof Assistant for Higher-Order Logic. Vol. 2283. LNCS. Springer. por: 10.
1007/3-540-45949-9.

Norrish, Michael (1998). ‘C formalised in HOL. PhD thesis. University of Cam-
bridge Computer Laboratory.

— (2013). C-to-Isabelle Parser, version 1.13.0. Accessed August 2014. URL: http:
//ertos.nicta.com.au/software/c-parser/.

Norvig, Peter (2006). Extra, Extra — Read All About It: Nearly All Binary Searches
and Mergesorts are Broken, Google Research Blog. Accessed August 2014. URL:
http://googleresearch.blogspot.com.au/2006/06/extra-extra-read-all-about-
it-nearly.html.

Open Kernel Labs (2008a). Elfweaver Reference Manual. URL: http://wiki.ok-labs.
com/downloads/release-2.1.1-patch.9/elfweaver-user-manual_2.1.1.pdf.

— (2008b). OKL4 Microkernel, Reference Manual. URL: http://wiki.ok-labs.com/
downloads/release-3.0/0kl4-ref-manual-3.0.pdf.

Parkinson, Matthew J. (2005). ‘Local Reasoning for Java. PhD thesis. Computer
Laboratory. UrL: http://www.cl.cam.ac.uk/techreports/ UCAM- CL- TR-
654.html.

Parkinson, Matthew J. and Gavin M. Bierman (2008). ‘Separation Logic, Ab-
straction and Inheritance’ In: Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL 08, pp. 75-
86. pOI: 10.1145/1328438.1328451.

Reynolds, John C. (2002). ‘Separation Logic: A Logic for Shared Mutable Data
Structures’. In: Proc. 17th IEEE Symposium on Logic in Computer Science, pp. 55—
74.

Rushby, John M. (1981). ‘Design and Verification of Secure Systems’ In: 8th SOSP,
pp. 12—21. DOIL: 10.1145/800216.806586.

Rushby, John (2009). ‘Software verification and system assurance’ In: Software
Engineering and Formal Methods, 2009 Seventh IEEE International Conference
on. IEEE, pp. 3-10.

Saaltink, Mark (1997). ‘Domain checking Z specifications’ In: 4th NASA Formal
Methods Workshop, pp. 185-191.

Saltzer, Jerome H. (1974). ‘Protection and the Control of Information Sharing in
Multics’ In: CACM 17, pp. 388-402.

http://dx.doi.org/10.1109/SP.2013.35
http://dx.doi.org/10.1109/SP.2013.35
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://ertos.nicta.com.au/software/c-parser/
http://ertos.nicta.com.au/software/c-parser/
http://googleresearch.blogspot.com.au/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com.au/2006/06/extra-extra-read-all-about-it-nearly.html
http://wiki.ok-labs.com/downloads/release-2.1.1-patch.9/elfweaver-user-manual_2.1.1.pdf
http://wiki.ok-labs.com/downloads/release-2.1.1-patch.9/elfweaver-user-manual_2.1.1.pdf
http://wiki.ok-labs.com/downloads/release-3.0/okl4-ref-manual-3.0.pdf
http://wiki.ok-labs.com/downloads/release-3.0/okl4-ref-manual-3.0.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-654.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-654.html
http://dx.doi.org/10.1145/1328438.1328451
http://dx.doi.org/10.1145/800216.806586

BIBLIOGRAPHY 149

Sewell, Thomas et al. (2011). ‘seL4 Enforces Integrity’ In: 2nd ITP. Vol. 6898.
LNCS, pp. 325-340. DOI: 10.1007/978-3-642-22863-6_24.

Sewell, Thomas, Magnus Myreen, and Gerwin Klein (2013). “Translation Valida-
tion for a Verified OS Kernel’ In: PLDI, pp. 471-481.

Shapiro, Jonathan S. (1999). ‘EROS: A Capability System’ PhD thesis. University
of Pennsylvania. URL: http://www.eros-os.org/papers/shap-thesis.ps.

Shapiro, Jonathan S. and Norman Hardy (2002). ‘EROS: A Principle-Driven Op-
erating System from the Ground Up. In: IEEE Software 19.1, pp. 26—33. DOL:
10.1109/52.976938.

Shapiro, Jonathan S. and Sam Weber (2000). “Verifying the EROS Confinement
Mechanism. In: IEEE Symposium on Security and Privacy, pp. 166-176. DOL:
10.1109/SECPRI.2000.848454.

Singaravelu, Lenin et al. (2006). ‘Reducing TCB Complexity for Security-Sensitive
Applications: Three Case Studies. In: 1st EuroSys, pp. 161-174. DOI: 10.1145/
1217935.1217951.

Snyder, Lawrence (1977). ‘On the synthesis and analysis of protection systems. In:
ACM SIGOPS Operating Systems Review 11.5, pp. 141-150.

— (1981a). ‘Formal models of capability-based protection systems’ In: Computers,
IEEE Transactions on 100.3, pp. 172—181.

— (1981b). “Theft and Conspiracy in the Take-Grant Protection Model’ In: Jour-
nal of Computer and System Sciences 23.3, pp. 333-347.

Trustworthy Systems Team (2014). seL4 proofs for API 1.03, release 2014-08-10. DOI:
10.5281/zenodo.11248.

Tuch, Harvey (2008). ‘Formal Memory Models for Verifying C Systems Code’
PhD thesis. UNSW.

Verbeek, Freek et al. (2014). ‘Formal Specification of a Generic Separation Kernel.
In: Archive of Formal Proofs. Formal proof development. ISSN: 2150-914X. URL:
http://afp.sf.net/entries/CISC-Kernel.shtml.

Wu, Chunhan, Xingyuan Zhang, and Christian Urban (2013). ‘A Formal Model
and Correctness Proof for an Access Control Policy Framework. In: Certified
Programs and Proofs. Vol. 8307. Lecture Notes in Computer Science, pp. 292—
307. DOI: 10.1007/978-3-319-03545-1_19.

Yang, Hongseok and Peter W. O’Hearn (2002). ‘A Semantic Basis for Local Rea-
soning. In: Foundations of Software Science and Computation Structure, pp. 402—

416.

http://dx.doi.org/10.1007/978-3-642-22863-6_24
http://www.eros-os.org/papers/shap-thesis.ps
http://dx.doi.org/10.1109/52.976938
http://dx.doi.org/10.1109/SECPRI.2000.848454
http://dx.doi.org/10.1145/1217935.1217951
http://dx.doi.org/10.1145/1217935.1217951
http://dx.doi.org/10.5281/zenodo.11248
http://afp.sf.net/entries/CISC-Kernel.shtml
http://dx.doi.org/10.1007/978-3-319-03545-1_19

	Contents
	List of Figures
	Introduction
	Thesis objectives and contributions
	Outline

	Related work
	Operating System Initialisation
	Separation Logic
	The take-grant protection model
	Summary

	Background
	Formal verification
	Syntax and notation of IsabelleHOL
	Separation logic
	The seL4 microkernel
	Summary

	Capability-Based Access Control
	Take-grant protection model
	Extensions to the take-grant protection model
	Formalisation of the state of the take-grant protection model
	Operations in the take-grant model
	Authority confinement
	Isolation
	Information flow
	Conclusion
	Summary

	System initialisation
	Initialisation of computer systems
	seL4 initialisation
	Formal model of system initialisation
	C implementation
	Conclusion
	Summary

	Separation logic
	Why not use standard Hoare logic?
	A simple introduction to separation logic
	An abstract separation logic
	The properties of a separation logic
	Defining a fine-grained separation logic for capDL
	The arrows of our separation logic
	The frame rule
	Conclusion
	Summary

	Correctness of system initialisation
	Correct object initialisation
	State of the system initialiser
	Top-level theorem
	seL4 kernel semantics
	Well-formed constraints and assumptions of the capDL specification
	Decomposition of the final theorem
	Conclusion
	Summary

	Conclusion
	Discussion
	Implementation experience
	Future work
	Concluding remarks

	Bibliography

