
Refinement through Restraint: Bringing
Down the Cost of Verification

Liam O’Connor21, Zilin Chen12, Christine Rizkallah4, Sidney Amani12, Japheth Lim1, Toby Murray3,
Yutaka Nagashima1, Thomas Sewell12, Gerwin Klein12

1 Data61 ∗, Australia 2 UNSW, Australia 3 University of Melbourne, Australia 4 University of Pennsylvania, USA
liamoc@cse.unsw.edu.au firstname.lastname@data61.csiro.au toby.murray@unimelb.edu.au

Abstract
We present a framework aimed at significantly reducing the cost of
verifying certain classes of systems software, such as file systems.
Our framework allows for equational reasoning about systems code
written in our new language, Cogent. Cogent is a restricted, poly-
morphic, higher-order, and purely functional language with linear
types and without the need for a trusted runtime or garbage collec-
tor. Linear types allow us to assign two semantics to the language:
one imperative, suitable for efficient C code generation; and one
functional, suitable for equational reasoning and verification. As
Cogent is a restricted language, it is designed to easily interoperate
with existing C functions and to connect to existing C verification
frameworks.

Our framework is based on certifying compilation: For a well-
typed Cogent program, our compiler produces C code, a high-level
shallow embedding of its semantics in Isabelle/HOL, and a proof
that the C code correctly refines this embedding. Thus one can
reason about the full semantics of real-world systems code pro-
ductively and equationally, while retaining the interoperability and
leanness of C. The compiler certificate is a series of language-level
proofs and per-program translation validation phases, combined
into one coherent top-level theorem in Isabelle/HOL.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software / Program Verification—Formal methods; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages; D.3.2 [Programming Languages]: Language Classi-
fication—Applicative (functional) languages

Keywords verification; semantics; linear types; programming lan-
guages; file systems; Isabelle/HOL

∗ This material is based on research sponsored by Air Force Research Lab-
oratory and the Defense Advanced Research Projects Agency (DARPA)
under agreement number FA8750-12-9-0179. The U.S. Government is au-
thorised to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of Air Force Research Laboratory, the Defense
Advanced Research Projects Agency or the U.S. Government.

1. Introduction
Imagine writing low-level systems code in a purely functional lan-
guage and then reasoning about this code equationally and produc-
tively in an interactive theorem prover. Imagine doing this with-
out the need for a trusted compiler, runtime or garbage collector
and letting this code interoperate with native C parts of the system,
including your own efficiently implemented and formally verified
additional data types and operations.

Our verification framework achieves this goal through the cer-
tifying compiler of Cogent: a high-level, pure, polymorphic, func-
tional language with linear types, specifically designed for certain
classes of systems code such as file systems. For a given well-typed
Cogent program, the compiler will produce a high-level shallow
embedding of the program’s semantics in Isabelle/HOL [Nipkow
and Klein 2014], and a proof that connects this shallow embedding
to the compiler generated C code: any property proved of the shal-
low embedding is guaranteed to hold for the generated C.

The compilation target is C, because C is the language in which
most existing systems code is written, and because with the ad-
vent of tools like CompCert [Leroy 2006, 2009]1 and gcc transla-
tion validation [Sewell et al. 2013], large subsets of C now have a
formalised semantics and an existing formal verification infrastruc-
ture.

If C is so great, why not verify C systems code directly? After
all, there is an ever growing list of successes [Beringer et al. 2015;
Gu et al. 2015; Klein et al. 2009, 2014] in this space. The reason
is simple: verification of manually written C programs remains ex-
pensive. Just as high-level languages increase programmer produc-
tivity, they should also increase verification productivity. Cogent is
specifically designed with a verification-friendly high-level seman-
tics. This makes the difference between imperative and functional
verification. It is pointer fiddling and undefined behaviour guards
in C versus abstract functional objects and equations in Cogent. An
imperative VCG [Dijkstra 1997] for C must overwhelm the prover
with detail, while the abstraction and type system of Cogent enable
the use of far stronger existing automation for high-level proofs.

The state of the art for certifying compilation of functional lan-
guages is CakeML [Kumar et al. 2014], which covers an entire
ML dialect. Cogent is targeted at a substantially different point in
the design space. CakeML includes a verified runtime and garbage
collector, while Cogent works hard to avoid these so it can be
applicable to low-level embedded systems code. CakeML covers
full Turing-complete ML with complex, stateful semantics, which
works well for code written in theorem provers. Cogent is a re-
stricted language of total functions with intentionally simple, pure

1 Mind the potential logical gap between our C parser’s C semantics [Tuch
et al. 2007] and that of CompCert.

semantics that are easy to reason about equationally. CakeML is
great for application code; Cogent is great for systems code, es-
pecially layered systems code with minimal sharing such as the
control code of file systems or network protocol stacks. Cogent is
not designed for systems code with closely-coupled, cross-cutting
sharing, such as microkernels.

Cogent’s main restrictions are the (purposeful) lack of recursion
and iteration and its linear type system. The former ensures total-
ity, which is important for both systems code correctness as well
as for a simple shallow representation in higher-order logic. The
latter is important for safe memory management and for enabling
a transition from an imperative C-style semantics, suitable for code
generation, to a functional semantics, suitable for equational rea-
soning and verification.

Even in the restricted target domains of Cogent, real programs
will contain some amount of iteration. This is where Cogent’s
integrated foreign function interface (FFI) comes in: the engineer
provides her own verified data types and iterator interfaces in C and
uses them seamlessly in Cogent, including in formal reasoning.
Our framework guarantees that the verification of combined C-
Cogent code bases has no room for unsoundness.

Cogent is restricted, but it is by no means a toy language. We
have previously used Cogent to successfully implement two effi-
cient full-scale Linux file systems [Amani et al. 2016] — the stan-
dard Linux ext2 and the BilbyFs Flash file system [Keller et al.
2013], and prove two core functional correctness properties of Bil-
byFs. This illustrates that Cogent is suitable both for implemen-
tation and proofs, dramatically reducing the cost of verifying cor-
rectness of practical file systems. These case studies are beneficial
in their own right, as file systems constitute the second largest pro-
portion of OS code, and have among the highest density of faults
[Palix et al. 2011]. The benefits of this language-based approach
for file system verification were conjectured by Keller et al. [2013]
and are confirmed by our work.

Cogent is restricted, but it is not specific to the file systems
domain. This leads us to believe that our language-based approach
for simplifying verification will extend in the near future to other
domains, either with Cogent directly, or with languages that make
different trade-offs suitable for different types of software.

Our main contribution is the framework for significantly reduc-
ing the cost of formal verification for important classes of sys-
tems code, using this language-based approach for automatically
co-generating code and proofs. Specifically, our framework relies
on the following technical contributions:
a) the Cogent language, its formal semantics and its certifying

compiler;

b) the formal machine-checked proof for switching from impera-
tive update semantics to functional value semantics for a full-
featured functional language, justified by linear types (§3). We
build upon well-known theoretical results about linear types,
accounting for pointers and heap allocation;

c) the formal description of the assumptions required for C code
imported via an FFI to maintain the guarantees of the linear type
system (§3.3.2);

d) the top-level compiler certificate (§4.1); and

e) the verification stages that make up the correctness theorem
(§4), including automated refinement calculi, formally verified
type checking, A-normalisation, and monomorphisation. The
final stage connecting Cogent and C code relies on a sophis-
ticated refinement calculus, which is summarised in §4.3, with
more technical details in Rizkallah et al. [2016].

Our case study file system implementations (presented in §5)
demonstrate that our approach supports verified systems program-

Neat

Shallow Embedding

Shallow Embedding

Polymorphic

Deep Embedding

C

Cogent

Program

Simpl Semantics

Monadic Semantics

Update Semantics

Value Semantics

Value Semantics

HOL

HOL (lang. spec.)

generates

is

is

has

has

has

has

has

Functional correctness
specification

1

2

3

4

5

7

6

Isabelle/HOL

Well-typedness

Simpl Code

Monadic Code

Monomorphic

Deep Embedding

generates

generates

Cogent
Compiler

AutoCorres

C Parser

ADT Library

Figure 1: A detailed overview of the verification chain

ming at scale: providing simple, easy to reason about shallow em-
beddings for large-scale software systems by pushing the design
and associated metatheory of linear type systems to the scale of
practical languages. The compiler, Isabelle proofs, and file systems
are available online. 2

2. Overview
Our certifying compiler constructs a chain of proofs relating Co-
gent to efficient C code, such that a proof engineer can reason equa-
tionally about its semantics in Isabelle/HOL and apply the compiler
theorem to derive properties about the generated C code. Formally,
the certificate theorem is a refinement statement between the shal-
low embedding and the C code. This generated C code falls into the
subset that can be compiled by CompCert, or validated by the gcc
translation validation tool of Sewell et al. [2013], whose theorem
would compose directly with our compiler certificate.3

Shallow embeddings are nice for humans, but do not provide
much syntactic structure for constructing a compiler theorem.
Therefore the compiler also generates a deep embedding for each
Cogent program to use in the internal proof chain. There are two
semantics for this deep embedding: (1) a formal functional value
semantics where programs evaluate to values and (2) a formal im-
perative update semantics where programs manipulate references
to mutable global state.
Fig. 1 shows an overview of the program representations generated
by the compiler and the break-down of the automatic refinement
proof that makes up the compiler certificate. The program repre-
sentations are, from the bottom of Fig. 1: the C code, the seman-
tics of the C code expressed in Isabelle/Simpl [Schirmer 2006], the
same expressed as a monadic functional program [Greenaway et al.
2012, 2014], a monomorphic A-normal [Sabry and Felleisen 1992]
deep embedding of the Cogent program, a polymorphic A-normal
deep embedding of the same, an A-normal shallow embedding, and
finally a ‘neat’ shallow embedding of the Cogent program that is

2 http://ssrg.nicta.com.au/projects/TS/cogent.pml
3 At the time of writing, Cogent’s occasionally larger stack frames lead to
gcc emitting memcpy() calls that, while conceptually straightforward to
handle, the translation validator does not yet cover.

http://ssrg.nicta.com.au/projects/TS/cogent.pml

syntactically close to the Cogent source code. Several theorems
rely on the Cogent program being well-typed, which we prove au-
tomatically using type inference information from the compiler.

The solid arrows on the right-hand side of the figure represent
refinement proofs and the arrow labels correspond to the numbers
in the following description. The only arrow that is not formally
verified is the one crossing from C code into Isabelle/HOL at
the bottom of Fig. 1 — this is the C parser [Tuch et al. 2007],
which is a mature verification tool used in a number of large-scale
verifications [Klein et al. 2009]. As mentioned, it could be checked
by translation validation.

We outline each intermediate theorem, starting with Simpl at
the bottom. For well-typed Cogent programs, we prove:
1 The Simpl code produced by the C parser corresponds to a

monadic representation of the C code. The proof is generated using
an adjusted version of AutoCorres [Greenaway et al. 2012].
2 The monadic code terminates and is a refinement of the update

semantics of the monomorphic Cogent deep embedding [Rizkallah
et al. 2016].
3 If a Cogent deep embedding evaluates in the update semantics,

it evaluates to the same result in the value semantics. We mechanise
this consequence of linear type systems, significantly extending
known theoretical results to accommodate heap data structures, on
a real full-scale language.
4 If a monomorphic Cogent deep embedding evaluates in the

value semantics then the polymorphic deep embedding evaluates
equivalently in the value semantics.
5 If the polymorphic Cogent deep embedding evaluates in the

value semantics then the Cogent shallow embedding evaluates to a
corresponding shallow Isabelle/HOL value.
6 The shallow embedding is (extensionally) equal in Isabelle/HOL

to a neater shallow embedding, more convenient for human reason-
ing. The neat shallow embedding corresponds to the Cogent code
before being A-normalised.

In §4 we define in more detail the relations that formally link
the values (and states, when applicable) that these programs eval-
uate to. Steps 3 and 4 are general properties about the language
and we therefore prove them manually once and for all. Steps 1 ,
2 , 5 , and 6 are generated automatically for every program. The

proof for step 1 is generated by AutoCorres. For steps 2 and 5
we define compositional refinement calculi that ease the automa-
tion of these proofs. Step 6 , the correctness of A-normalisation, is
straightforward to prove via rewriting because at this stage we can
already use equational reasoning.

The refinement proofs state that every behaviour exhibited by
the C code can also be exhibited by the Cogent code and, further-
more, that the C code is always well-defined, including that e.g.
the generated C code never dereferences a null pointer, and never
causes signed overflow. It also implies that the generated C code
is type-safe and memory-safe, meaning the code will never try to
dereference an invalid pointer, or try to dereference two aliasing
pointers of incompatible types. In conjunction with the Cogent typ-
ing proofs, generated by the Cogent compiler for the input pro-
gram, we get additional guarantees that the generated code handles
all error cases, is free of memory leaks, and never double-frees a
pointer. These points will be formally established in §3 and §4.

We previously demonstrated [Amani et al. 2016] how to rea-
son on top of the Cogent formal specification in Isabelle/HOL (ar-
row 7 in Fig. 1), leveraging Cogent’s purely functional seman-
tics. Reasoning here is simpler than reasoning on C code directly
because the Cogent semantics is represented as pure functions in
HOL, rather that complex, stateful embeddings. This purely func-
tional representation makes it possible to reason equationally about
Cogent code via Isabelle’s powerful rewriting engine. If desired,
one could formalise domain-specific program logics, such as the

Crash Hoare Logic of Chen et al. [2015], on top of our generated
Cogent specification. This would enable further improvements to
verification productivity by simplifying reasoning about domain-
specific properties.

3. Cogent Language
Fig. 2 contains an excerpt of a Cogent ext2 implementation,
which demonstrates the use of most language features. Line 1
shows the Cogent side of the FFI. It declares an abstract Co-
gent data type ExSt, implemented in C. Line 2 shows a para-
metric abstract type, and line 9 a corresponding abstract func-
tion uarray create(), also implemented in C. uarray create()
is polymorphic, with a kind constraint E (see §3.1) on type argu-
ment a.

1 type ExSt
2 type UArray a
3 type Opt a = <None () | Some a>
4 type Node = #{ mbuf:Opt Buf , ptr:U32 , fr:U32 , to:U32}
5 type Acc = (ExSt , FsSt , VfsInode)
6 type Cnt = (UArray Node ,
7 (U32 , Node , Acc , U32 , UArray Node) -> (Node , Acc))
8

9 uarray_create : all (a :< E). (ExSt , U32)
10 -> <Success (ExSt , UArray a) | Err ExSt >
11

12 ext2_free_branch : (U32 , Node , Acc , U32)
13 -> (Node , Acc , <Expd Cnt | Iter () >
14 ext2_free_branch (depth ,nd ,(ex ,fs , inode),mdep) =
15 if depth < mdep
16 then uarray_create [Node] (ex ,nd.to -nd.fr) !nd
17 | Success (ex , children) ->
18 let nd_t { mbuf } = nd
19 and (children , (ex , inode , _, mbuf)) =
20 uarray_map_no_break #{
21 arr = children ,
22 f = ext2_free_branch_entry ,
23 acc = (ex , inode , node_t .fr , mbuf),
24 ... } !nd_t
25 and nd = nd_t { mbuf }
26 in (nd , (ex , fs , inode),
27 Expd (children , ext2_free_branch_cleanup))
28 | Err ex -> (nd , (ex ,fs , inode), Iter ())
29 else ...

Figure 2: Cogent example

The integration of foreign functions is seamless on the Cogent side.
It naturally puts requirements on the C code: it must respect the in-
variants of Cogent’s linear type system, terminate, and implement
the user-supplied semantics that appear in the corresponding shal-
low embedding of the Cogent program in Isabelle/HOL. Ideally the
user provides a proof to discharge the corresponding assumption of
the compiler certificate.

Abstract functions can be higher-order and provide the iteration
constructs that are intentionally left out from core Cogent. E.g.
line 20, uarray map no break() implements a map iterator for
arrays. We found that for both of our file system implementations, a
small common library of iterators for types like arrays and Linux’s
existing red-black tree implementation was sufficient.

Lines 3–7 show basic type constructors and declarations of vari-
ants, records and tuples using type variables and the primitive type
U32. E.g. type Cnt is defined as a pair of UArray Node and a func-
tion type. Types in Cogent are structural [Pierce 2002], i.e. types
with the same structure are equal. Moreover, line 16 calls the ab-
stract polymorphic function uarray create(), instantiated with
type argument Node. The !nd notation temporarily turns a linear
object of type Node into a read-only one (see §3.2.1). The two ba-
sic, non-linear fields to and fr in type Node can directly be ac-
cessed read-only using projection functions. Line 17 and 28 are pat-

prim. types t F U8 | U16 | U32 | U64 | Bool
types τ, ρ F α | α! | ()

| t | T τ m | τ→ ρ

| 〈C τ〉 | {f :: τ?} m
field types τ? F τ | τ

permissions P = {D,S,E}
kinds κ ⊆ P

polytypes π ::= ∀(α ::K κ). τ
modes m F r | w | u
type variables 3 α

abs. type names 3 T, U
kind context ∆ F α :K κ

type context Γ F x : τ

∆ ` Γ1
weak
{ Γ2

for each i: ∆ ` τi :K {D}

∆ ` xi : τi,Γ
weak
{ Γ

∆ ` Γ1 { Γ2 � Γ3
for each i: ∆ ` τi :K {S}

∆ ` xi : τi,Γ1,Γ2 { xi : τi,Γ1 � xi : τi,Γ2

(overbar indicates lists, i.e. zero or more)

Figure 3: Type Structure of Cogent & structural context operations

tern matches on the result of the function invocation. Line 18 shows
surface syntax for Cogent’s linear take construct (see §3.2.3), ac-
cessing and binding the mbuf field of nd to the name mbuf (punning
as in Haskell), as well as binding the rest of the record to the name
nd t. The linear type system tracks that the field mbuf is logically
absent in nd t. It also tracks that nd on line 18 was used, so cannot
be accessed again. Thus the programmer is safe to bind a new ob-
ject to the same name nd (on line 25) without worrying about name
shadowing. Line 25 shows surface syntax for put, the dual to take,
which re-establishes the mbuf fields in the example.

3.1 Types and Kinding
Wadler [1990] first noted that linear types can be used as a way to
safely model mutable state and similar effects while maintaining a
purely functional semantics. Hofmann [2000] later proved Wadler’s
intuition by showing that, for a linear language, imperative C code
without heap-allocated data structures can implement a simple set-
theoretic semantics.

Many languages such as Rust [Rust] and Vault [DeLine and
Fähndrich 2001] use linear types to manage resources such as
memory and eliminate the need for run-time support such as
garbage collection.

We use linear types for both of these reasons: we do not require
a garbage collector, and we assign to Cogent programs an equa-
tional, purely functional semantics implemented via mutable state
internally. Unlike Hofmann, our mechanised proof of the corre-
spondence between these two semantics takes heap-allocated data
structures into account, using our heap footprint annotation tech-
nique (§3.3.1).

The type structure and associated syntax of Cogent is presented
in Fig. 3. Our type system is polymorphic, but we restrict this poly-
morphism to be rank-1 and predicative, in the style of ML, to permit
easy implementation by specialisation with minimal performance
penalty.

To ease implementation, and to eliminate any direct dependency
on a heap allocator, we require that all functions be defined on

the top-level, disallowing closures. Any top-level function can be
shared freely, as they cannot capture any local variables, let alone
linear ones.

We include a set of primitive integer types (U8, U16, etc.).
Records {f :: τ?} m comprise (1) a sequence of fields f :: τ?,
where τ is the type on an inaccessible field, and (2) a mode m
(see §3.2.3 and §3.1.1 for a more detailed description). We also
have polymorphic variants 〈C τ〉, a generalised sum type in the
style of OCaml , the mechanics of which are briefly described in
§3.2.2. Abstract types T τ m are also parametrised by modes. We
omit product types from this presentation; they are desugared into
unboxed records.

Similarly to other polymorphic, substructural type systems such
as λURAL [Ahmed et al. 2005] and System F ◦ [Mazurak et al.
2010], we use kinds to determine if a type may be freely shared
or discarded. Kinds in Cogent are sets of permissions, denoting
whether a variable of that type may be discarded without being used
(D), shared freely and used multiple times (S), or safely bound in
a let! expression (E). A linear type, values of which must be used
exactly once, has a kind that excludes D and S, and so forbids it
being discarded or shared. We discuss let! expressions in §3.1.2.

We explicitly represent the context operations of weakening
and contraction, normally relegated to structural rules, as explicit
judgements: ∆ ` Γ

weak
{ Γ′ for weakening (discarding assumptions)

and ∆ ` Γ { Γ1 � Γ2 for contraction (duplicating them). The
rules for these judgements are presented in Fig. 3. For a typing
assumption to be discarded (respectively duplicated), the type must
have kind {D} (resp. {S}).

The full kinding rules for the types of Cogent are given in Fig. 4.
Basic types such as () or U8, as well as functions, are simply passed
by value and do not contain any heap references, so they may be
given any kind. Kinding for structures and abstract functions is
discussed shortly in §3.1.1.

A type may have multiple kinds, as a nonlinear type assumption
may be used linearly, never being shared and being used exactly
once. Therefore, a type with a permissive kind, such as {D,S},
would be an acceptable instantiation of a type variable of kind ∅,
as we are free to waive permissions that are included in a kind. We
can prove formally by straightforward rule induction:

Lemma 1 (Waiving rights). If ∆ ` τ :K κ and κ′ ⊆ κ, then
∆ ` τ :K κ′.

This result allows for a simple kind-checking algorithm, not imme-
diately apparent from the rules. For example, the maximal kind of
an unboxed structure with two fields of type τ1 and τ2 respectively
can be computed by taking the intersection of the computed maxi-
mal kinds of τ1 and τ2. This result ensures that this intersection is
also a valid kind for τ1 and τ2.

3.1.1 Kinding for Records and Abstract Types
Recall that Cogent may be extended with abstract types, imple-
mented in C, which we write as T τi m in our formalisation. We al-
low abstract types to take any number of type parameters τi, where
each specific instance corresponds to a distinct C type. For exam-
ple, a List abstract type, parameterised by its element type, would
correspond to a family of C List types, each one specialised to a
particular concrete element type. Because the implementations of
these types are user supplied, the user is free to specialise imple-
mentations based on these type parameters, for example represent-
ing an array of boolean values as a bitstring, so long as they can
show that every different operation implementation is a refinement
of the same user-supplied CDSL semantics for that operation.

Values of abstract types may be represented by references to
heap data structures. Specifically, an abstract type or structure is
stored on the heap when its associated storage mode m is not “u”.

∆ ` τ :K κ

∆ ` () :K κ
KUnit

∆ ` t :K κ
KPrim

∆ ` τ→ ρ :K κ
KFun

(α :K κ′) ∈ ∆ κ ⊆ κ′

∆ ` α :K κ
KVar

(α :K κ′) ∈ ∆ κ ⊆ bang(κ′)
∆ ` α! :K κ

KVar!

for each i: ∆ ` τi :K κ

∆ ` 〈Ci τi〉 :K κ
KVariant

m :K κ′ κ ⊆ κ′

for each i: ∆ ` τi :K κ

∆ ` T τi m :K κ
KAbs

m :K κ′ κ ⊆ κ′

for each τi not taken: ∆ ` τi :K κ

∆ ` {fi :: τ?
i } m :K κ

KRec

m :K κ

r :K {D,S} w :K {E} u :K {D,S,E}

bang(·) : τ→ τ

bang(α) = α!
bang(α!) = α!
bang(()) = ()
bang(t) = t
bang(T τi m) = T bang(τi) bang(m)
bang(τ→ ρ) = τ→ ρ

bang(〈Ci τi〉) = 〈Ci bang(τi)〉
bang({fi :: τ?

i } m) = {fi :: bang(τ?
i)} bang(m)

bang(·) : κ → κ

bang(κ) =

{
κ if {D,S} ⊆ κ
{D,S} otherwise

bang(·) : m→ m

bang(r) = r
bang(w) = r
bang(u) = u

Figure 4: Kinding rules for Cogent types and the bang(·) operator

For boxed records and abstract types, the storage mode distin-
guishes between those that are “w” vs. “r”. The same is true for
record types, written {f :: τ?} m, which are discussed in more detail
in §3.2.3.

The storage mode m affects the maximal kind that can be as-
signed to the type. For example, an unboxed structure with two
components of type U8 is freely shareable, but if the structure is in-
stead stored on the heap, then a writable reference to that structure
must be linear. Thus, the type given to such references has the “w”
mode, whose kind is {E}, thereby preventing such a reference from
being assigned a nonlinear kind such as {D,S}.

3.1.2 Kinding and bang
We allow linear values to be shared read-only in a limited scope,
an idea first explored by Wadler [1990]. This is useful for practical
programming in a language with linear types, as it makes our types
more informative. For example, to write a function to determine the
size of a (linear) buffer object, a naive approach would be to write
a function:

size : Buf → U32 × Buf
This function has a cumbersome additional return value just so
that the linear argument is not discarded. Further, the type above

primops o ∈ {+, *, /, <=, ==, ||, <<, . . . }
literals ` ∈ {123, True, ’a’, . . . }
expressions e F x | () | f [τ] | o(e) | e1 e2

| let x = e1 in e2

| let!(y) x = e1 in e2

| if e1 then e2 else e3

| ` | cast t e | promote 〈C τ〉 e
| case e1 of C x→ e2 else y→ e3

| esac e | C e
| {f = e} | e.f | put e1.f B e2

| take x {f = y} = e1 in e2

function def. d F 〈 f :: π, f x = e〉 | 〈 f :: π,�〉
programs P F d
function names 3 f , g
variables 3 x, y
constructors 3 A,B,C
record fields 3 f, g

primopType(·) : o→ t × t (primop types)
funDef(·) : f → d (definition environment)
| · | : t → N (maximum value)

Figure 5: Syntax of Cogent programs (after desugaring)

does not express the fact that the input buffer and output buffer are
identical — this would need to be established by additional proof.
To address this problem, we include a type operator bang(·), in the
style of Wadler’s ! operator, which changes all writable modes in a
type to read-only ones. The full definition of bang(·) is in Fig. 4.
We can therefore write the type of our function as:

size : bang(Buf)→ U32

For any valid type τ, the kind of bang(τ) will be nonlinear, which
means that our size function no longer needs to be encumbered by
the extra return value. This kinding result is formally stated as:

Lemma 2 (Kinding for bang(·)). For any type τ, if ∆ ` τ :K κ then
∆ ` bang(τ) :K bang(κ).

To integrate this type operator with parametric polymorphism, we
model our solution on Odersky’s Observer types [Odersky 1992],
and tag type variables that have been made read only, using the
syntax α!. Whenever a variable α is instantiated to some concrete
type τ, we also replace α! with bang(τ). The lemma above ensures
that our kinding rule for such tagged variables is sound, and enables
us to prove the following:

Lemma 3 (Type instantiation preserves kinds). For any type τ,
αi :K κi ` τ :K κ implies ∆ ` τ[ρi/αi] :K κ when, for each i,
∆ ` ρi :K κi.

3.2 Expressions and Typing
We only document the core language of Cogent in Fig. 5 to which
the surface syntax is desugared, leaving out the richer surface
syntax due to space constraints.

Fig. 6 shows the typing rules for Cogent expressions. Many of
these are standard for any linear type system. We will discuss here
the rules for let!, where we have taken a slightly different approach
to established literature, and the rules for the extensions we have
made to the type system, such as variants and record types.

∆; Γ ` e : τ

∆ ` Γ
weak
{ x : τ

∆; Γ ` x : τ
Var

∆; Γ ` () : ()
Unit

` < |t|

∆; Γ ` ` : t
Literal

∆; Γ ` ei :∗ ti

primopType(o) = (ti, t)
∆; Γ ` o(ei) : t

PrimOp
∆; Γ ` e : t′ |t′| ≤ |t|

∆; Γ ` cast t e : t
Cast

∆ ` Γ{ Γ1 � Γ2
∆; Γ1 ` e1 : ρ→ τ ∆; Γ2 ` e2 : ρ

∆; Γ ` e1 e2 : τ
App

funDef(f) = 〈∀(αi ::K κi). τ→ τ′, 〉
for each i: ∆ ` ρi :K κi

∆; Γ ` f [ρi] : (τ→ τ′)[ρi/αi]
Fun

∆ ` Γ{ Γ1 � Γ2 ∆; Γ1 ` e1 : 〈A ρ | Ci τi〉

∆; x : ρ,Γ2 ` e2 : τ ∆; y : 〈Ci τi〉,Γ2 ` e3 : τ
∆; Γ ` case e1 of A x→ e2 else y→ e3 : τ

Case

∆; Γ ` e : τ
∆; Γ ` C e : 〈C τ〉

Cons
∆; Γ ` e : 〈B ρ〉 B ρ ⊆ C τ

∆; Γ ` promote 〈C τ〉 e : 〈C τ〉
Prom

∆; Γ ` e : 〈C τ〉

∆; Γ ` esac e : τ
Esac

∆ ` Γ{ Γ1 � Γ2
∆; Γ1 ` e1 : ρ ∆; x : ρ,Γ2 ` e2 : τ

∆; Γ ` let x = e1 in e2 : τ
Let

∆ ` Γ{ Γ1 � Γ2 ∆ ` ρ :K {E}
∆; vi : bang(τi),Γ1 ` e1 : ρ
∆; vi : τi, x : ρ,Γ2 ` e2 : τ

∆; vi : τi,Γ ` let!(vi) x = e1 in e2 : τ
Let!

∆; Γ ` e :∗ τ

∆ ` Γ
weak
{ ∅

∆; Γ ` ε :∗ ε
Lε

∆ ` Γ{ Γ1 � Γ2
∆; Γ1 ` e : τ ∆; Γ2 ` ei :∗ τi

∆; Γ ` e, ei :∗ τ, τi
LC

∆ ` Γ{ Γ1 � Γ2 m , r
∆; Γ1 ` e1 : {gi :: τ?

i , f :: ρ, g j :: τ?
j} m

∆; x : {gi :: τ?
i , f :: ρ, g j :: τ?

j} m, y : ρ,Γ2 ` e2 : τ

∆; Γ ` take x {f = y} = e1 in e2 : τ
Take1

∆ ` Γ{ Γ1 � Γ2 ∆ ` ρ :K {S}
m , r τ?

k = ρ ∆; Γ1 ` e1 : {fi :: τ?
i } m

∆; x : {fi :: τ?
i } m, y : ρ,Γ2 ` e2 : τ

∆; Γ ` take x {fk = y} = e1 in e2 : τ
Take2

∆ ` Γ{ Γ1 � Γ2 m , r
∆; Γ1 ` e1 : {gi :: τ?

i , f :: ρ, g j :: τ?
j} m ∆; Γ2 ` e2 : ρ

∆; Γ ` put e1.f B e2 : {gi :: τ?
i , f :: ρ, g j :: τ?

j} m
Put1

∆ ` Γ{ Γ1 � Γ2 m , r τ?
k = ρ

∆; Γ1 ` e1 : {fi :: τ?
i } m ∆ ` ρ :K {D} ∆; Γ2 ` e2 : ρ

∆; Γ ` put e1.fk B e2 : {fi :: τ?
i } m

Put2

∆ ` {gi :: ρ?
i , f :: τ, g j :: ρ?

j} m :K {S}

∆; Γ ` e : {gi :: ρ?
i , f :: τ, g j :: ρ?

j} m

∆; Γ ` e.f : τ
Member

∆; Γ ` ei :∗ τi

∆; Γ ` {fi = ei} : {fi :: τi} u
Struct

Figure 6: Typing rules for Cogent

3.2.1 Typing for let!
On the expression level, the programmer can use let! expressions,
in the style of Wadler [1990], to temporarily convert variables of
linear types to their read-only equivalents, allowing them to be
freely shared. In this example, we wish to copy a buffer b2 onto
a buffer b1 only when b2 will fit inside b1.

let!(b1, b2) ok = (size(b2) < size(b1)) in
if ok then copy(b1, b2) else . . .

Note that even though b1 and b2 are used multiple times, they are
only used once in a linear context. Inside the let! binding, they
have been made temporarily nonlinear. Our kind system ensures
these read-only, shareable references inside let! bindings cannot
“escape” into the outside context. For example, the expression
let!(b) b′ = b in copy(b, b′) would violate the invariants of the
linear type system, and ruin the purely functional abstraction that
linear types allow, as both b and b′ would refer to the same object,
and a destructive update to b would change the shareable b′.

We are able to use the existing kind system to handle these
safety checks with the inclusion of the E permission, for Escapable,
which indicates that the type may be safely returned from within a
let!. We ensure, via the typing rules of Fig. 6, that the left hand
side of the binding (ok in the example) has the E permission, which
excludes temporarily nonlinear references via bang(·) (see Fig. 4).

3.2.2 Typing for Variants

A variant type 〈Ci τi〉 is a generalised sum type, where each alterna-
tive is distinguished by a unique data constructor Ci. The order in
which the constructors appear in the type is not important. One can
create a variant type with a single alternative simply by invoking
a constructor, e.g. Some 255 might be given the type 〈Some U8〉.
The original value of 255 can be retrieved using the esac construct.
The set of alternatives is enlarged by using promote expressions
that are automatically inserted by the type-checker of the surface
language, which uses subtyping to infer the type of a given variant.
A similar trick is used for numeric literals and cast.

In order to pattern match on a variant, we provide a case con-
struct that attempts to match against one constructor. If the con-
structor does not match, it is removed from the type and the re-
duced type is provided to the else branch. In this way, a traditional
multi-way pattern match can be desugared by nesting:

case x of
A a→ ea
B b→ eb
C c→ ec

becomes

case x of
A a→ ea
else x′ → case x′ of

B b→ eb
else x′′ → let c = esac x′′ in ec

Note that because the typing rule for esac only applies when only
one alternative remains, our pattern matching is necessarily total.

3.2.3 Typing for Records
Some care is needed to reconcile record types and linear types.
Assume that Object is a type synonym for an (unboxed) record
type containing an integer and two (linear) buffers.

Object = {size :: U32, b1 :: Buf, b2 :: Buf} u

Let us say we want to extract the field b1 from an Object. If we ex-
tract just a single Buf, we have implicitly discarded the other buffer
b2. But, we can’t return the entire Object along with the Buf, as
this would introduce aliasing. Our solution is to return along with
the Buf an Object where the field b1 cannot be extracted again,
and reflect this in the field’s type, written as b1 :: Buf. This field
extractor, whose general form is take x {f = y} = e1 in e2, operates
as follows: given a record e1, it binds the field f of e1 to the vari-
able y, and the new record to the variable x in e2. Unless the type
of the field f has kind {S}, that field will be marked as unavailable,
or taken, in the type of the new record x.

Conversely, we also introduce a put operation, which, given a
record with a taken field, allows a new value to be supplied in its
place. The expression put e1.f B e2 returns the record in e1 where
the field f has been replaced with the result of e2. Unless the type
of the field f has kind {D}, that field must already be taken, to avoid
accidentally destroying our only reference to a linear resource.

Unboxed records can be created using a simple struct literal
{fi = ei}. We also allow records to be stored on the heap to min-
imise unnecessary copying, as unboxed records are passed by
value. These boxed records are created by invoking an externally-
defined C allocator function. For these allocation functions, it
is often convenient to allocate a record with all fields already
taken, to indicate that they are uninitialised. Thus a function
for allocating Object-like records might return values of type:
{size :: U32, b1 :: Buf, b2 :: Buf} w.

For any nonlinear record (that is, (1) read-only boxed records,
which cannot have linear fields, as well as (2) unboxed records
without linear fields) we also allow traditional member syntax e.f
for field access. The typing rules for all of these expressions are
given in Fig. 6.

3.2.4 Type Specialisation
As mentioned earlier, we implement parametric polymorphism by
specialising code to avoid paying the performance penalties of
other approaches such as boxing. This means that polymorphism
in our language is restricted to predicative rank-1 quantifiers.

This allows us to specify dynamic objects, such as our value typ-
ing relations (see §3.3.1) and our dynamic semantics (see §3.3), in
terms of simple monomorphic types, without type variables. Thus,
in order to evaluate a polymorphic program, each type variable
must first be instantiated to a monomorphic type. We show that
typing of the instantiated program follows from the typing of the
polymorphic program, if the type instantiation used matches the
kinds of the type variables.

Lemma 4 (Type specialisation). αi :K κi; Γ ` e : τ implies
∆; Γ[ρi/αi] ` e[ρi/αi] : τ[ρi/αi] when, for each i, ∆ ` ρi :K κi.

The above lemma is sufficient to show the monomorphic instanti-
ation case, by setting ∆ = ε (the empty context). This lemma is
a key ingredient for the refinement link between polymorphic and
monomorphic deep embeddings (See §4.4).

3.3 Dynamic Semantics
Fig. 8 includes most of the evaluation rules for the value seman-
tics of Cogent, as a big-step relation V ` e ⇓v v from expressions
to their values. These values are documented in Fig. 7. This se-
mantics is typical of a purely functional language, by design, and

Value Semantics

v. sem. values v F ` (literals)
| 〈〈λx. e〉〉 (function values)
| 〈〈abs. f | τ〉〉 (abstract functions)
| C v (variant values)
| {f = v} (records)
| () | av

environments V F x 7→ v
abstract values av

~·�v : f → (v→ v) (abstract function semantics)

Update Semantics

u. sem. values u F ` | 〈〈λx. e〉〉 | 〈〈abs. f | τ〉〉
| C u | {f = u} | () | au

| p (pointers)
environments U F x 7→ u
pointers p sets of pointers r, w
abstract values au stores µ : p9 u
~·�u : f → (u × µ→ u × µ) (abstract func. semantics)

Figure 7: Definitions for Value and Update Semantics

we automatically produce a purely functional shallow embedding
from it.

As functions must be defined on the top level, our function
values 〈〈λx. e〉〉 consist only of an unevaluated expression, evaluated
when the function is applied. Abstract function values, written
〈〈abs. f | τ〉〉, are instead passed indirectly, as a pair of the function
name and a list of the types used to instantiate type variables. When
an abstract function value 〈〈abs. f | τ〉〉 is applied, the user-supplied
semantics ~ f �v is invoked, which is just a function from input to
output value.

The update semantics, by contrast, is rather imperative. An
excerpt is presented in Fig. 8, with associated definitions in Fig. 7.
This semantics is an evaluation semantics, written U ` e | µ ⇓u
u | µ′. Values in the update semantics may now be pointers, written
p, to values in a mutable store or heap µ. This mutable store is
modeled as a partial function from a pointer to an update semantics
value.

Most rules in the update semantics only differ from the value
semantics in that they thread the heap µ through the program
evaluation, and so many of those rules have been omitted. However,
key differences arise in the treatment of records and of abstract
types, which may now be represented as boxed structures, stored
on the heap. In particular, note that the rule UPut2 destructively
updates the heap, instead of creating a new record value, and the
semantics of abstract functions ~·�u may also modify the heap.

3.3.1 Update-Value Refinement and Type Preservation
To show the update semantics is a refinement of the value seman-
tics, we must exploit the information given by Cogent’s linear type
system. A typical refinement approach to relate the two semantics
is to define a correspondence relation between update semantics
states and value semantics values, and show that an update seman-
tics evaluation implies a corresponding value semantics evaluation.
However, such a statement is not true if aliasing exists, as a destruc-
tive update (from, say, put) would result in multiple values being
changed in the update semantics but not necessarily in the value se-
mantics. As our type system forbids aliasing of writable references,

V ` e ⇓v v

(x 7→ v) ∈ V

V ` x ⇓v v
VVar

funDef(f) = 〈 f :: ∀(αi ::K κi). τ→ τ′, f x = e〉

V ` f [τi] ⇓v 〈〈λx. e[τi/αi]〉〉
VFunC

funDef(f) = 〈 f :: ∀(αi ::K κi). τ→ τ′,�〉

V ` f [τi] ⇓v 〈〈abs. f | τi〉〉
VFunA V ` ` ⇓v `

VLit

V ` e1 ⇓v 〈〈λx. e〉〉
V ` e2 ⇓v v′ (x 7→ v′) ` e ⇓v v

V ` e1 e2 ⇓v v
VAppC

V ` e1 ⇓v 〈〈abs. f | τ〉〉
V ` e2 ⇓v v′ ~ f �v v′ = v

V ` e1 e2 ⇓v v
VAppA

V ` e1 ⇓v v′

x 7→ v′,V ` e2 ⇓v v

V ` let x = e1 in e2 ⇓v v
VLet

V ` e1 ⇓v v′

x 7→ v′,V ` e2 ⇓v v

V ` let!(y) x = e1 in e2 ⇓v v
VLet!

V ` e ⇓v v

V ` C e ⇓v C v
VCons

V ` e1 ⇓v C v′ x 7→ v′,V ` e2 ⇓v v

V ` case e1 of C x→ e2 else y→ e3 ⇓v v
VCase1

V ` e1 ⇓v B v′ B , C y 7→ (B v′),V ` e3 ⇓v v

V ` case e1 of C x→ e2 else y→ e3 ⇓v v
VCase2

V ` e ⇓v C v

V ` esac e ⇓v v
VEsac

V ` e1 ⇓v {fi = vi}

x 7→ {fi = vi}, y 7→ vk ,V ` e2 ⇓v v

V ` take x {fk = y} = e1 in e2 ⇓v v
VTake

V ` e1 ⇓v {fi = vi} V ` e2 ⇓v v′k
for each i , k: v′i = vi

V ` put e1.fk B e2 ⇓v {fi = v′i }
VPut

U ` e | µ ⇓u u | µ′

funDef(f) = 〈 f :: ∀(αi ::K κi). τ→ τ′, f x = e〉

U ` f [τi] | µ ⇓u 〈〈λx. e[τi/αi]〉〉 | µ
UFunC

funDef(f) = 〈 f :: ∀(αi ::K κi). τ→ τ′,�〉

U ` f [τi] | µ ⇓u 〈〈abs. f | τi〉〉 | µ
UFunA

U ` e1 | µ ⇓u u′ | µ1
x 7→ u′,U ` e2 | µ1 ⇓u u | µ2

U ` let x = e1 in e2 | µ ⇓u u | µ2
ULet

U ` e1 | µ ⇓u 〈〈λx. e〉〉 | µ1
U ` e2 | µ1 ⇓u u′ | µ2 (x 7→ u′) ` e | µ2 ⇓u u | µ3

U ` e1 e2 | µ ⇓u u | µ3
UAppC

U ` e1 | µ ⇓u 〈〈abs. f | τ〉〉 | µ1
U ` e2 | µ1 ⇓u u′ | µ2 ~ f �u (u′, µ2) = (u, µ3)

U ` e1 e2 | µ ⇓u u | µ3
UAppA

(x 7→ u) ∈ U

U ` x | µ ⇓u u | µ
UVar

U ` e1 | µ ⇓u {fi = ui} | µ1

x 7→ {fi = ui}, y 7→ uk ,U ` e2 | µ1 ⇓u u | µ2

U ` take x {fk = y} = e1 in e2 | µ ⇓u u | µ2
UTake1

U ` e1 | µ ⇓u {fi = ui} | µ1
U ` e2 | µ1 ⇓u u′k | µ2 for each i , k: u′i = ui

U ` put e1.fk B e2 | µ ⇓u {fi = u′i } | µ2
UPut1

U ` e1 | µ ⇓u p | µ1 µ1(p) = {fi = ui}

x 7→ p, y 7→ uk ,U ` e2 | µ1 ⇓u u | µ2

U ` take x {fk = y} = e1 in e2 | µ ⇓u u | µ2
UTake2

U ` e1 | µ ⇓u p | µ1 U ` e2 | µ1 ⇓u u′k | µ2

µ2(p) = {fi = ui} for each i , k: u′i = ui

U ` put e1.fk B e2 | µ ⇓u p | µ2(p B {fi = u′i })
UPut2

Figure 8: Some of the important rules for the two dynamic semantics of Cogent

we must include this information in our correspondence relation.
Written as u | µ : v : τ [r ∗ w], this relation states that the update
semantics value u with heap µ corresponds to the value semantics
value v, which both have the type τ. Unlike prior work [Hofmann
2000], we account for the heap by annotating this relation with the
sets r and w, which contain all pointers accessible (transitively)
from the value u that are read-only and writable respectively. We
call these pointer sets the heap footprint of the value. By annotating
the correspondence relation with the heap footprint, we can encode
the uniqueness properties ensured by linear types as explicit non-
aliasing constraints in the rules, given in Fig. 9. Read-only point-
ers may alias other read-only pointers, but writable pointers do not
alias any other pointer, whether read-only or writable.

Because our correspondence relation includes types, it naturally
implies a value typing relation for both value semantics (written
v : τ) and update semantics (written u | µ : τ [r ∗ w]). In fact,
the rules for both relations can be derived from the rules in Fig. 9
simply by erasing either the value semantics parts (highlighted
like this) or the update semantics parts (highlighted like this). As
we ultimately prove preservation for this correspondence relation
across evaluation, this same erasure strategy can be applied to our
proofs to produce a type preservation proof for either semantics.

Dealing with mutable state We define a framing relation which
specifies exactly how evaluation may affect the mutable heap µ.
Given an input set of writable pointers wi, an input heap µi, an
output set of pointers wo and an output heap µo, the relation, written
wi | µi frame wo | µo, ensures three properties for any pointer p:
Inertia If p < wi ∪ wo, then µi(p) = µo(p).

Leak freedom If p ∈ wi and p < wo, then µo(p) = ⊥.

Fresh allocation If p < wi and p ∈ wo, then µi(p) = ⊥.

Framing implies that our correspondence relation, for both values
and environments, is unaffected by updates to parts of the heap not
mentioned in the heap footprint:

Lemma 5 (Unrelated updates). Assume two unrelated pointer sets
w ∩ w1 = ∅ and that w1 | µ frame w2 | µ

′ , then
• If u | µ : v : τ [r ∗ w] then u | µ′ : v : τ [r ∗ w] and w ∩ w2 = ∅ .
• If U | µ : V : Γ [r ∗ w] then U | µ′ : V : Γ [r ∗ w] and w ∩ w2 = ∅ .

We are now able to prove refinement between the value and the
update semantics.

We first prove that the correspondence relation is preserved
when both semantics evaluate from corresponding environments.
By erasing one semantics, this becomes a type preservation the-
orem for the other. Full details of the proof are available in our
Isabelle/HOL formalisation.

Theorem 1 (Preservation of types and correspondence). For any
program e where ∆; Γ ` e : τ, if U | µ : V : Γ [r ∗ w] and V ` e ⇓v v
and U ` e | µ ⇓u u | µ′ , then there exists r′ ⊆ r and w′ such that
u | µ′ : v : τ [r′ ∗ w′] and w | µ frame w′ | µ′ .

To prove refinement, we must show that every evaluation on the
concrete update semantics has a corresponding evaluation in the
abstract value semantics. While Theorem 1 gets us most of the way
there, we still need to prove that the value semantics can evaluate
whenever the update semantics does.

Theorem 2 (Upward-propagation of evaluation). For any pro-
gram e where ∆; Γ ` e : τ, if U | µ : V : Γ [r ∗ w] and
U ` e | µ ⇓u u | µ′, then there exists a v such that V ` e ⇓v v

Composing this lemma and Theorem 1, we can now easily prove
our desired refinement statement.

u | µ : v : τ [r ∗ w]

` < |t|

` | µ : ` : t [∅ ∗ ∅]
RLit

() | µ : () : () [∅ ∗ ∅]
RUnit

u | µ : v : τ [r ∗ w] C τ ∈ Ci τi

C u | µ : C v : 〈Ci τi〉 [r ∗ w]
RVariant

∅; x : τ1 ` e : τ2

〈〈λx. e〉〉 | µ : 〈〈λx. e〉〉 : τ1 → τ2 [∅ ∗ ∅]
RFunC

funDef(f) = 〈∀(αi ::K κi). τ→ τ′,�〉

〈〈abs. f | τi〉〉 | µ : 〈〈abs. f | τi〉〉 : (τ→ τ′)[τi/αi] [∅ ∗ ∅]
RFunA

au | µ :A av :A T τ u [r ∗ w]

au | µ : av : T τ u [r ∗ w]
RAU

µ(p) = au au | µ :A av :A T τ w [r ∗ w]

p | µ : av : T τ w [r ∗ {p} ∪ w]
RAW

µ(p) = au au | µ :A av :A T τ r [r ∗ ∅]

p | µ : av : T τ r [{p} ∪ r ∗ ∅]
RAR

ui | µ :∗ vi :∗ τ?
i [r ∗ w]

{fi = ui} | µ : {fi = vi} : {fi :: τ?
i } u [r ∗ w]

RRU

µ(p) = {fi = ui}

ui | µ :∗ vi :∗ τ?
i [r ∗ w]

p | µ : {fi = vi} : {fi :: τ?
i } w [r ∗ {p} ∪ w]

RRW

µ(p) = {fi = ui}

ui | µ :∗ vi :∗ τ?
i [r ∗ ∅]

p | µ : {fi = vi} : {fi :: τ?
i } r [{p} ∪ r ∗ ∅]

RRR

au | µ :A av :A T τ m [r ∗ w]

(rules for abstract types are user provided)

U | µ : V : Γ [r ∗ w]

for each xi : τi ∈ Γ :
(xi 7→ ui) ∈ U (xi 7→ vi) ∈ V

ui | µ : vi : τi [ri ∗ wi]
for each j, k where j , k: w j ∩ (rk ∪ wk) = ∅

U | µ : V : Γ [
⋃

iri ∗
⋃

iwi]
REnv

u | µ :∗ v :∗ τ? [r ∗ w]

ε | µ :∗ ε :∗ ε [∅ ∗ ∅]
RL1

u | µ : v : τ [r ∗ w] ui | µ :∗ vi :∗ τ?
i [r′ ∗ w′]

w ∩ (r′ ∪ w′) = ∅ w′ ∩ (r ∪ w) = ∅

u, ui | µ :∗ v, vi :∗ τ, τ?
i [r ∪ r′ ∗ w ∪ w′]

RL2

ui | µ :∗ vi :∗ τ?
i [r ∗ w]

u, ui | µ :∗ v, vi :∗ τ, τ?
i [r ∗ w]

RL3

Figure 9: Value Typing and Refinement (For value typing rules, erase this text for value semantics, and this text for update semantics.)

Theorem 3 (Value ⇒ Update refinement). For any program e
where ∆; Γ ` e : τ, if U | µ : V : Γ [r ∗ w] and U ` e | µ ⇓u u | µ′,
then there exists a value v and pointer sets r′ ⊆ r and w′ such that
V ` e ⇓v v, and u | µ′ : v : τ [r′ ∗ w′] and w | µ frame w′ | µ′.

3.3.2 FFI requirements
Each of the above theorems makes certain assumptions about
the the semantics given to abstract functions, ~·�v and ~·�u.
Specifically, we assume the preservation theorem above for these
functions: for any abstract function f of type τ → ρ, if the
argument values u and v correspond and are well typed i.e.
u | µ : v : τ [r ∗ w] and ~ f �u(u, µ) = (u′, µ′) and ~ f �v v = v′, then
then u′ | µ′ : v′ : ρ [r′ ∗ w′] for some r′ ⊆ r and w′ such that
w | µ frame w′ | µ′ . The well-typedness requirement ensures that
the returned value does not include internal aliasing, and the frame
requirements ensure that the abstract function does not manipulate
any state other than values passed into it. These requirements are
necessary to integrate C code with Cogent’s linear type system. In
order to show refinement, we must also assume that abstract func-
tions evaluate in the value semantics whenever they evaluate in the
update semantics, as in Theorem 2.

4. Compiler Certificate
This section describes each of the proof steps that make up the
compiler certificate, depicted in Fig. 1.

4.1 Top-Level Theorem
The top-level theorem is the overall certificate emitted by the com-
piler. We say a C program correctly implements its Cogent shallow
embedding if: (i) it terminates with defined execution; and (ii) as-
suming that the initial C and Cogent stores are related and the pro-
gram inputs are related, then their outputs are related.

In other words, the compiler theorem states that a value relation
is preserved across evaluation. In §3.3.1, we present a value relation
between update and value semantics. At every other refinement

stage, we introduce a similar relation between values of the two
respective programs. By composing these relations, we get the
value relation V between a result vm of a C program pm and a
shallow embedding s, that relies on the intermediate update and
value semantics results. The relation in §3.3.1 depends on a Cogent
store µ, which is related to the C state using the state relation R,
defined in §4.3.

Let λe.Me r e and λv.Mv r v (defined in §4.4) be two functions
that monomorphise expressions and (function) values respectively,
using a rename function r provided by the compiler. Further, let s
be a shallow embedding, e a monomorphic deep embedding, pm a
C program, µ a Cogent store and σ a C state. We define the overall
refinement predicate correspondence as follows:
If (∃r w.U | µ : V : Γ [r ∗ w]) and (µ, σ) ∈ R, then pm successfully
terminates starting at σ; and for any resulting value vm and state σ′
of pm, there exist µ′, u, and v such that:

(µ′,σ′)∈R ∧ U `e | µ⇓u u | µ′ ∧ V `e⇓vMv r v ∧V r µ′ vm u v s

Intuitively, our top-level theorem states that for related input val-
ues, all programs in the refinement chain evaluate to related output
values. This can of course be used to deduce that there exist inter-
mediate programs through which the C code and its shallow em-
bedding are directly related. The user does not need to care what
those intermediate programs are.

Theorem 4. Given a Cogent function f that takes x of type τ as
input, let pm be its generated C code, s its shallow embedding, and
e its deep embedding. Let vm be an argument of pm, and u and v
be the update and value semantics arguments, of appropriate type,
for f .
∀µ σ.V r µ vm u v s −→

correspondence r R (s vs) (Me r e) (pmvm) U V Γ µ σ
where U = (x 7→ u), V = (x 7→ v), and Γ = (x 7→ τ).

This refinement theorem additionally assumes abstract functions in
the program adhere to their specification and their behaviour stays
unchanged when monomorphised.

4.2 Well-typedness
We first mention the well-typing theorems used in refinement. The
Cogent compiler proves, via an automated Isabelle tactic, that the
monomorphic deep embedding of the input program is well-typed.
Specifically, the compiler defines funDef(·) in Isabelle and proves
that each Cogent function f x = e matches the signature given
by funDef(f). The typing proof for the polymorphic embedding is
described in §4.4.

Theorem 5 (Typing). Let f be a (monomorphic) Cogent function,
where funDef(f) = 〈 f :: τ→ τ′, f x = e〉. Then ε; x : τ ` e : τ′.

As we will see in §4.3, proving refinement requires access to the
typing judgements for program sub-expressions and not just for
the top level, so the Cogent compiler instructs Isabelle to store all
intermediate typing judgements established during type checking.
These theorems are stored in a tree structure, isomorphic to the
type derivation tree for the Cogent program. Each node is a typing
theorem for a program sub-expression.

4.3 C to CogentMonomorphic Deep Embedding
This section outlines the bottom three (the red arrow, 1 and 2)
transformations in Fig. 1. Details of this proof automation can be
found in Rizkallah et al. [2016]. First, the C code is converted to a
Simpl embedding by the C parser used in the seL4 project [Klein
et al. 2009]. This step is simple makes no effort to abstract from
low-level C semantics.

The second step applies a modified version of AutoCorres to
produce a monadic shallow embedding of the C code, and to prove
that the Simpl embedding is a refinement of the monadic shallow
embedding. We modify AutoCorres to make its output more pre-
dictable by switching off its control-flow simplification and forcing
it to output the shallow embedding in the nondeterministic state
monad of Cock et al. [2008], where computation is represented by
functions of type state ⇒ (α × state) set × bool. Here state is the
global state of the C program, including global variables, while α
is the return-type of the computation. A computation takes as input
the global state and returns a set, results, of pairs with new state
and result value. The computation also returns a boolean, failed,
indicating the presence of undefined behaviour.

While AutoCorres was designed to ease manual reasoning about
C, we use it as the foundation for automatically proving correspon-
dence to the Cogent input program. One of the main benefits Au-
toCorres gives us is a typed memory model. Specifically, the state
of the AutoCorres monadic representation contains a set of typed
heaps, each of type 32 word ⇒ α, one for each type α used on the
heap by the C input program.

If the monadic code never fails, then the C code is type- and
memory-safe, and free of undefined behavior [Greenaway et al.
2014]. We prove non-failure as a side-condition of refinement, ba-
sically using Cogent’s type system to guarantee C memory safety.

The 2 step in Fig. 1 is a refinement proof between deeply-
embedded Cogent and a shallow, monadic embedding of C. To
phrase the refinement statement we first define how deeply embed-
ded Cogent values and types relate to their corresponding values in
the monadic embedding. This value-mapping is captured by a value
relation val-relC , generated in Isabelle automatically by the Cogent
compiler, using ad hoc overloading. We must generate val-relC sep-
arately for each Cogent program because the types used in the shal-
low embedding depend on those used in the deep embedding. For
example, C structs are represented directly as Isabelle records.

Given all the relation definitions for a particular Cogent pro-
gram, the state relation R defines the correspondence between the
store µ which the Cogent update semantics manipulates, and the
state σ for the monadic shallow embedding.

(x 7→ u) ∈ U val-relC u vm

corres R x (return vm) U Γ µ σ
Corres-Var

` Γ{ Γ1 � Γ2 ε; Γ1 ` a : τ corres R a a′ U Γ1 µ σ
(∀vu vm µ

′ σ′. val-relC vuvm −→

corres R b (b′ vm) (x 7→ vu,U) (x : τ,Γ2) µ′σ′)
corres R (let x = a in b) (a′ >>= b′) U Γ µ σ

Corres-Let

Figure 10: Two example corres rules

Definition 1 (Monad-to-Update State Relation). (µ, σ) ∈ R if and
only if for all pointers p in the domain of µ, there exists a value v in
the corresponding heap of σ at location p, such that val-relC µ(p) v
holds.

With R and val-relC , we define refinement generically between a
monadic computation pm and a Cogent expression e, evaluated
under the update semantics. We denote the refinement predicate
corres. Because R changes for each Cogent program, we parame-
terise corres by an arbitrary state relation R. It is parameterised also
by the typing context Γ and the environment U, as well as by the
initial update semantics store µ and monadic shallow embedding
state σ.

Definition 2 (Monad-to-Update Correspondence).

corres R e pm U Γ µ σ =
(∃r w. U | µ : Γ [r ∗ w]) −→ (µ, σ) ∈ R −→
(¬ failed (pm σ) ∧ (∀vm σ′. (vm, σ

′) ∈ results (pm σ) −→
(∃µ′ u. U ` e | µ ⇓u u | µ′ ∧ (µ′, σ′) ∈ R ∧ val-relC u vm)))

The definition states that if the state relation R holds initially, then
the monadic computation pm cannot fail and, moreover, for all
executions of pm there must exist a corresponding execution under
the update semantics of the expression e such that the final states are
related by R and val-relC holds between their results. AutoCorres
proves automatically that: ¬ failed (pm σ) −→ results (pm σ) , ∅.

The refinement proof is automatic in Isabelle, driven by a set
of syntax-directed corres rules, one for each Cogent construct.
The proof procedure uses the fact that the Cogent terms are in A-
normal form to reduce the number of cases that need considering
and to simplify the higher-order unification problems that some of
the proof rules pose to Isabelle.

Fig. 10 depicts two corres rules, one for expressions x that
are variables and the other for let x = a in b. These correspond
respectively to the basic monadic operations return, which yields
values, and >>=, for sequencing computations.

Observe that Let is compositional: Proving that let x = a in b
corresponds to a′ >>= b′ requires proving correspondence for a
to a′ and b to b′. This compositionality significantly simplifies the
automation of the refinement proof. The typing assumptions of Let
are discharged by appealing to the compiler generated type theorem
tree (see §4.2).

The rules for some of the other constructs, such as take, put,
and case, contain non-trivial assumptions about R and about the
types used in the program. Once a program and its R are fixed, a
set of simpler rules is automatically generated by specialising the
generic corres rules for each of these constructs to the particular R
and types used in the input program. This in effect discharges the
non-trivial assumptions of these rules once-and-for-all, allowing
the automated proof of correspondence to proceed efficiently. This
specialisation technique is documented in Rizkallah et al. [2016].

Conceptually, the refinement proof proceeds bottom-up, starting
with the leaf functions of the program and ending with the top-level
entry points; corres results proved earlier are used to discharge
corres assumptions for callees. The corres proof tactic thus follows

the call-graph of the input program. Currently, the tactic is limited
to computing call graphs correctly only for programs containing up
to second-order functions. We have not needed any higher orders
in our applications, but the tactic can be extended using similar
techniques if needed.

The final refinement theorem for this stage assumes that corres
holds for all the abstract functions used in the program.

Theorem 6. Let f be a (monomorphic) Cogent function, such that
funDef(f) = 〈 f :: τ → τ′, f x = e〉. Let pm be its monadic shallow
embedding, derived from its generated C code. Let u and vm be
arguments of appropriate types for f and pm respectively. Then:

∀µ σ. val-relC u vm−→ corres R e (pm vm) (x 7→ u) (x : τ) µ σ

4.4 Monomorphic to Polymorphic Deep Embedding
To complete the refinement step from the update to the value se-
mantics, the compiler just applies Theorem 3. We establish the
correctness of the compiler’s monomorphisation pass, moving up-
wards in Fig. 1 from a monomorphic to a polymorphic deep em-
bedding in the value semantics.

The compiler generates a renaming function r that, for a poly-
morphic function name fp and types τ, yields the specialised
monomorphic function name fm. Just as we assume abstract func-
tions are correctly implemented in C, we also assume that their
behaviour remains consistent under r.

We write an Isabelle function to simulate the compiler monomor-
phisation phase, and prove that (1) the monomorphised program the
Isabelle function produced is identical to that produced by the com-
piler, and (2) the monomorphised program is a correct refinement
of the polymorphic one. We define two Isabelle functions param-
eterised by r: Me for monomorphising expressions and Mv for
monomorphising (function) values.

Step (1) is proved by straightforward rewriting, and is auto-
mated on a per-program basis. Step (2) is embodied in the following
refinement theorem, which we prove, once and for all, by rule in-
duction over the value semantics. The specialisation Lemma 4 of
§3.2.4, is a key ingredient of this proof.

Theorem 7 (Monomorphisation). Let f be a (polymorphic) Co-
gent function whose definition given by funDef(·) is f x = e. Let v
be an appropriately-typed argument for f . Let r be a renaming
function. Then:

∀v′. (x 7→ Mv r v) ` Me r e ⇓v Mv r v′ −→ (x 7→ v) ` e ⇓v v′

As the compiler generates a well-typedness proof for a monomor-
phic deeply embedded program (§4.2), Theorem 7 implies well-
typedness of the polymorphic deep embedding.

4.5 Deep to Shallow Embedding
In this section, the proof once again connects deep and shallow em-
beddings, where the shallow embedding is, this time, a pure func-
tion in Isabelle/HOL. This shallow embedding is still in A-normal
form and is produced by the compiler: For each Cogent type, the
compiler generates a corresponding Isabelle/HOL type definition,
and for each Cogent function, a corresponding Isabelle/HOL con-
stant definition. We drop the linear types and remain in Isabelle’s
simple types, because we have already used the linear types to jus-
tify our switch to the value semantics.

In addition to these definitions, the compiler produces a the-
orem that the deeply embedded polymorphic Cogent term under
the value semantics correctly refines this Isabelle/HOL function.
Refinement is formally defined here by the predicate scorres that
defines when a shallowly embedded expression s is refined by a
deeply embedded one e when evaluated under the environment V .

1 ext2_free_branch (depth, nd (ex, fs, inode), mdep) ≡
2 if depth < mdep then
3 case uarray_create (ex, (to f nd - fr f nd)) of
4 R11.Success (ex, children) ⇒
5 let (mbuf, nd_t) = takeG nd mbuf f ;
6 (children, ds16) = takeG
7 (uarray_map_no_break
8 (ArrayMapP.mk children ext2_free_branch_entry
9 (ex, inode, (fr f nd_t), mbuf) ...)); ...

Figure 11: Shallow embedding for the example from §2

Definition 3 (Deep to Shallow Correspondence).

scorres s e V ≡ ∀r. V ` e ⇓v r −→ val-relS s r

That is, s corresponds to e under V if, whenever e evaluates to an
r under V , s and v are in the value relation val-relS . Similarly to
the proof from monadic C to update semantics, the value relation
here is one polymorphic constant in Isabelle/HOL, defined incre-
mentally via ad hoc overloading. The program-specific refinement
theorem produced is:

Theorem 8 (Deep to Shallow Refinement). Let f be an A-normal
Cogent function such that funDef(f) = 〈 f :: π, f x = e〉, and let s
be f ’s shallow embedding. Then
∀vs v. val-relS vs v −→ scorres (s vs) e (x 7→ v)

val-relS vs v ensures that vs and v are of matching types. Like the C
refinement proof in §4.3, we have fully automated this proof using
a specifically designed syntax-directed rule set.

4.6 Shallow Embedding to Neat Shallow Embedding
Fig. 11 depicts the top-level shallow embedding, only mildly pol-
ished for presentation, for the Cogent example of Fig. 2. As it
shows, the Isabelle definitions use the same names as the Cogent
input program and keep the same structure, making it easy for the
user to reason about.

The correctness statement for this phase is simple: it is pure
Isabelle/HOL equality between the A-normal and neat shallow
embedding for each function. For instance:
. Shallow.ext2 free branch = Neat.ext2 free branch

The proof is simple as well. Since we can now use equational
reasoning with Isabelle’s powerful rewriter, we just unfold both
sides, apply extensionality and the proof is automatic given the
right congruence rules and equality theorems for functions lower
in the call graph.

5. Discussion
Our aim is to significantly reduce the cost of verifying real-world
systems software with minimal performance impact. In this section,
we evaluate the performance and usability of Cogent in two real-
istic file system implementations, as well as discuss ways in which
Cogent can be improved in the future.

Cogent as a Systems Programming Language Running IO-
Zone [IOZone] microbenchmarks, we previously demonstrated
that the ext2 implementation in Cogent exhibits a modest im-
provement compared to the C version in random- and sequential-
writes throughput, with similar CPU usage at around 10% [Amani
et al. 2016]. For our own file system BilbyFs, the Cogent ver-
sion performs slightly worse than the C version, with 10–20% less
throughput and CPU usage of 20% compared to 10%. In the ab-
sence of any I/O disturbance, the Cogent implementation of ext2
is also slightly slower than native ext2fs when performing ran-
dom writes to a RAM disk. These slight performance overheads are
due to the fact that the Cogent implementations tend to use data

Application C Cogent
git clone golang 84 sec 88 sec
make filebench 48 sec 50 sec
tar 80 sec 96 sec
du 30 sec 31 sec

Figure 12: Running time for applications on top of BilbyFs

structures that strongly resemble those of the original C, rather than
more idiomatic functional data structures, which are handled better
by our compiler. For some operations, the C implementation would
rely on unsafe features for performance, where the Cogent imple-
mentation uses slower, but easier to verify techniques. One way to
improve this on a language level would be to include specialised
constructs for these operations in the language, allowing for the
generation of efficient, yet automatically verified code. Including
support for such constructs is at the top of the priority list for future
work on Cogent. These case studies are invaluable for identifying
common patterns and guide this important next step.

Occasionally, some overheads are introduced in C code genera-
tion, as we rely on the C compiler for low-level optimisation. Gen-
erated code displays patterns which are uncommon in handwritten
code and therefore might not be picked up by the C optimiser, even
if they are trivial to optimise. For example, the generated code is
already quite close to SSA form used by gcc internally for optimi-
sation, however gcc does not recognize this and optimise accord-
ingly. Generating a compiler’s SSA representation directly, such as
that of LLVM [LLVM], may eliminate these problems, however
this would imply significant changes to our verification tool chain.

In addition to the results in Amani et al. [2016], we eval-
uated a set of standard applications on top of the C and Co-
gent BilbyFs implementations. The evaluation configuration is a
Mirabox [Mirabox] with 1 GiB of NAND flash, a Marvell Armada
370 single-core 1.2GHz ARMv7 processor and 1 GiB of DDR3
memory, running Linux kernel 3.17 from the Debian 6a distribu-
tion. Fig. 12 shows the running time of the applications on top of
native C BilbyFs compared to Cogent BilbyFs. The first scenario
clones the git repository of the language Go [Go], creating 580
directory and 5122 files, for a total of 152MB. The next test com-
piles the Filebench-1.4.9.1 source code [Filebench Project] with
44 C files for a total of 19K SLOC. The third application extracts
a large tarball (an archlinux distribution), and the fourth measures
the total size of a large directory structure. The tar command has
a 20% slowdown, but all other scenarios show the formally verified
Cogent version performing within 5% of the unverified native C
implementation.

User Experience We have found that the BilbyFs proofs were
significantly easier and less time consuming than direct C proofs;
partly because the purely functional shallow embedding enabled a
high degree of automation with Isabelle/HOL, and partly because
the linear type system provided free theorems: e.g. operations that
do not write to disk represent the disk as a shareable type, which
automatically establishes that no writes are performed to it. This
illustrates that Cogent is practical and usable for writing real-world
systems, that the generated C code is efficient, and that reasoning on
top of the neat shallow embedding is much simpler than reasoning
about C directly.

Effort and Size Cogent has been under development for over two
years and has continually evolved as we have scaled it to ever
larger applications. All up, the combined language development
and certifying compiler took five person years. Engineering the
Cogent compiler, excluding 33.5 person months (pm) spent on
proof automation and proof framework development, consumed

ten pm. The remaining 18 pm were for the design, formalisation
and proof of Cogent and its properties (e.g. the theorems of §3).
The total size of the development in Isabelle is 16, 423 LOC, which
includes the once-and-for-all language proofs plus automated proof
tactics to perform the translation validation steps, given appropriate
hints from the Cogent compiler. The Cogent compiler, written in
Haskell, is 11, 456 SLOC. For 9,447 lines of ext2 Cogent code
the compiler generates 119,167 lines of Isabelle/HOL proofs and
embeddings.

Verifying Cogent programs Our initial case studies [Amani et al.
2016] demonstrated that writing file systems in Cogent makes ver-
ification significantly easier when compared to traditional verifica-
tion methods for C programs, such as in seL4. The verification of
two major file system operations never had to deal with proof obli-
gations arising from possible aliasing of pointers, invalidation of
memory, or the possibility of undefined behaviour in the program,
as Cogent statically proves all these obligations. In addition, the
Isabelle equational simplifier was able to make short work of many
proof goals, as the shallow embedding given is just a pure HOL
function.

One area left unverified in Amani et al. [2016] is the abstract
data types used by the Cogent code. Some of these are Linux-
wide data structures and can’t be easily verified, but others are
internal to the file systems and are amenable to verification. Veri-
fying these ADTs, and connecting them to the Cogent semantics
by proving the conditions presented in §3.3.2, is left as a self-
contained problem for future work. Initial experiments verifying
simple ByteArray operations have been promising.

Optimisation The current Cogent compiler applies few optimisa-
tions when generating C code and leaves low-level optimisation to
gcc or CompCert. Involved optimisations in the Cogent-to-C stage
would complicate our current syntax-directed correspondence ap-
proach. Cogent-to-Cogent optimisations, however, are straightfor-
ward. The ease of proving A-normalisation correctness over the
shallow embedding via rewriting suggests that this is the right ap-
proach in our context. In particular, some of the source-to-source
optimisations discussed in Chlipala [2015] seem promising for Co-
gent.

6. Related Work
Like Cogent, HASP’s systems language [HASP project 2010],
Habit, is a functional language. It has a verified garbage collector
[McCreight et al. 2010], but no full formal language semantics
yet. Ivory [Pike et al. 2014] is a domain specific systems language
embedded in Haskell. It generates well-defined, memory safe C
code, but unlike Cogent it does not prove its correctness.

Linear types have been used in several general purpose imper-
ative languages such as Vault [Fahndrich and DeLine 2002] and
Rust [Rust]. PacLang [Ennals et al. 2004] uses linear types to guide
optimisation of packet processing on network processors. Similar
substructural type systems, namely uniqueness types, have been in-
tegrated into the functional language Clean [Barendsen and Smet-
sers 1993]. However, the intent is only to provide an abstraction
over effects, and thus Clean still depends on run-time garbage col-
lection.

Hofmann [2000] proves, in pen and paper, the equivalence of the
functional and imperative interpretation of a language with a linear
type system. The proof is from a first order functional language
to its translation in C, without any pointers or heap allocation.
In contrast, Cogent is higher order, accommodates heap-allocated
data, and its compiler produces a machine checked proof linking a
purely functional shallow embedding to its C implementation.

As discussed in §1, Kumar et al. [2014] prove the correctness of
the high-level language compiler CakeML. As it depends on run-

time garbage collection, it is not suitable for our systems target.
Furthemore, as it is an unrestricted, Turing-complete language with
mutable state, its high-level semantics are not amenable to equa-
tional reasoning. By contrast, Neis et al. [2015] focus on a com-
positional approach to compiler verification for a relatively sim-
ple functional language, Pilsner, to an idealised assembly language.
Like us, Charguéraud [2010, 2011] generates shallow embeddings
to facilitate mechanical proofs, but unlike us they do not prove com-
pilation correctness.

Chen et al. [2015] formally show in Coq [Bertot and Castéran
2004] full crash-resilience of FSCQ. FSCQ is smaller than ext2
and BilbyFs, and an order of magnitude slower than asynchronous
ext4. Its implementation relies on generating Haskell code from
Coq, and executing that code with a full Haskell runtime in
userspace. We focus on bridging high-level specification and low-
level implementation, on efficiency, and on providing a small
trusted computing base, while Chen et al. [2015] assume all these
are given and focus on crash resilience. The approaches are com-
plementary, i.e. it would be straightforward to implement Crash
Hoare Logic on top of Isabelle Cogent specifications, enabling a
verification in the style of FSCQ.

7. Conclusions
We presented a framework for dramatically reducing the cost of
formal verification of important classes of systems code. It relies
on the Cogent language, its certifying compiler, their formal defi-
nitions and top-level compiler certificate theorem, and the correct-
ness theorems for each compiler stage. Cogent targets systems code
where data sharing is minimal or can be abstracted, performance
and small memory footprint are requirements, and formal verifica-
tion is the aim.

Cogent is a pure, total functional language to enable productive
equational reasoning in an interactive theorem prover. It is higher-
order and polymorphic to increase conciseness. It uses linear types
to make memory management bugs compile time errors, and to en-
able efficient destructive in-place update. It avoids garbage collec-
tion and a trusted runtime to reduce footprint. It supports a for-
mally modeled FFI to interoperate with C code and to implement
additional data types, iterators and operations. It does all of these
with full formal proof of compilation correctness and type-safety
in Isabelle/HOL.

Acknowledgements
We would like to thank Partha Susarla, Peter Chubb, and Alex
Hixon for their assistance in implementing and evaluating our case
studies; and Joseph Tuong and Sean Seefried for their work on
generating Isabelle proofs from Haskell.

References
Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed model of

substructural state. In Proceedings of the 10th International Conference
on Functional Programming, pages 78–91, 2005.

Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb,
Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas
Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and
Gernot Heiser. Cogent: Verifying high-assurance file system implemen-
tations. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 175–188, Atlanta,
GA, USA, April 2016.

Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing in
graph rewrite systems. In Foundations of Software Technology and The-
oretical Computer Science, volume 761 of Lecture Notes in Computer
Science, pages 41–51, 1993.

Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W.
Appel. Verified correctness and security of OpenSSL HMAC.

In Proceedings of the 24th USENIX Security Symposium,
pages 207–221, Washington, DC, US, August 2015. URL:
https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/beringer.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. An EATCS Series. 2004.

Arthur Charguéraud. Program verification through characteristic formulae.
In Proceedings of the 15th International Conference on Functional Pro-
gramming, ICFP ’10, pages 321–332, New York, NY, USA, 2010. URL
http://doi.acm.org/10.1145/1863543.1863590.

Arthur Charguéraud. Characteristic formulae for the verification of im-
perative programs. In Proceedings of the 16th International Confer-
ence on Functional Programming, ICFP ’11, pages 418–430, New York,
NY, USA, 2011. URL http://doi.acm.org/10.1145/2034773.
2034828.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using Crash Hoare logic for cer-
tifying the FSCQ file system. In ACM Symposium on Operating Systems
Principles, pages 18–37, Monterey, CA, October 2015.

Adam Chlipala. An optimizing compiler for a purely functional web-
application language. In Proceedings of the 20th International Confer-
ence on Functional Programming, ICFP 2015, pages 10–21, New York,
NY, USA, 2015. URL http://doi.acm.org/10.1145/2784731.
2784741.

David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state
monads and scalable refinement. In Proceedings of the 21st Interna-
tional Conference on Theorem Proving in Higher Order Logics, pages
167–182, Montreal, Canada, August 2008.

Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in
low-level software. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’01, pages
59–69, New York, NY, USA, 2001. URL http://doi.acm.org/10.
1145/378795.378811.

Edsger Wybe Dijkstra. A Discipline of Programming. Upper Saddle River,
NJ, USA, 1st edition, 1997.

Rob Ennals, Richard Sharp, and Alan Mycroft. Linear types for packet
processing. In Proceedings of the 13th European Symposium on Pro-
gramming, volume 2986 of Lecture Notes in Computer Science, pages
204–218, 2004.

Manuel Fahndrich and Robert DeLine. Adoption and focus: Practical lin-
ear types for imperative programming. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’02, pages 13–24, New York, NY, USA, 2002. URL
http://doi.acm.org/10.1145/512529.512532.

Filebench Project. Filebench file system benchmark. http://
sourceforge.net/projects/filebench. Accessed Nov 2015.

Go. The Go programming language. https://go.googlesource.com/
go, 2015. Accessed Nov 2015.

David Greenaway, June Andronick, and Gerwin Klein. Bridging the gap:
Automatic verified abstraction of C. In International Conference on
Interactive Theorem Proving, pages 99–115, Princeton, New Jersey,
USA, August 2012.

David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. Don’t
sweat the small stuff: Formal verification of C code without the pain.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 429–439, Edinburgh, UK, June 2014.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiong-
nan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo.
Deep specifications and certified abstraction layers. In Proceedings of
the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 595–608, 2015.

HASP project. The Habit programming language: The revised prelim-
inary report. Technical Report http://hasp.cs.pdx.edu/habit-
report-Nov2010.pdf, Department of Computer Science, Portland
State University, Portland, OR, USA, November 2010.

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
http://doi.acm.org/10.1145/1863543.1863590
http://doi.acm.org/10.1145/2034773.2034828
http://doi.acm.org/10.1145/2034773.2034828
http://doi.acm.org/10.1145/2784731.2784741
http://doi.acm.org/10.1145/2784731.2784741
http://doi.acm.org/10.1145/378795.378811
http://doi.acm.org/10.1145/378795.378811
http://doi.acm.org/10.1145/512529.512532
http://sourceforge.net/projects/filebench
http://sourceforge.net/projects/filebench
https://go.googlesource.com/go
https://go.googlesource.com/go
http://hasp.cs.pdx.edu/habit-report-Nov2010.pdf
http://hasp.cs.pdx.edu/habit-report-Nov2010.pdf

Martin Hofmann. A type system for bounded space and functional in-place
update–extended abstract. In ESOP, volume 1782 of Lecture Notes in
Computer Science, pages 165–179, 2000.

IOZone. IOzone filesystem benchmark. http://www.iozone.org/.
Accessed Mar 2015.

Gabriele Keller, Toby Murray, Sidney Amani, Liam O’Connor-Davis, Zilin
Chen, Leonid Ryzhyk, Gerwin Klein, and Gernot Heiser. File systems
deserve verification too! In Workshop on Programming Languages and
Operating Systems (PLOS), pages 1–7, Farmington, Pennsylvania, USA,
November 2013.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal verification of an OS kernel. In ACM Sym-
posium on Operating Systems Principles, pages 207–220, Big Sky, MT,
USA, October 2009.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive formal
verification of an OS microkernel. ACM Transactions on Computer
Systems, 32(1):2:1–2:70, February 2014.

Ramana Kumar, Magnus Myreen, Michael Norrish, and Scott Owens.
CakeML: A verified implementation of ML. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 179–191,
San Diego, January 2014.

Xavier Leroy. Formal certification of a compiler back-end, or: Program-
ming a compiler with a proof assistant. In Proceedings of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 42–54, Charleston, SC, USA, 2006.

Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

LLVM. The Low-Level Virtual Machine Compiler. Accessed Feb 2016.
Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. Lightweight Linear

Types in System F◦. In Proceedings of the 5th ACM SIGPLAN Workshop
on Types in Language Design and Implementation, TLDI ’10, pages
77–88, New York, NY, USA, 2010. URL http://doi.acm.org/10.
1145/1708016.1708027.

Andrew McCreight, Tim Chevalier, and Andrew Tolmach. A certified
framework for compiling and executing garbage-collected languages. In
Proceedings of the 15th International Conference on Functional Pro-
gramming, pages 273–284, 2010.

Mirabox. MiraBox development kit. https://www.
globalscaletechnologies.com/p-58-mirabox-development-
kit.aspx, 2015. Accessed Nov 2015.

Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek
Dreyer, and Viktor Vafeiadis. Pilsner: A compositionally verified com-
piler for a higher-order imperative language. In Proceedings of the 20th
International Conference on Functional Programming, ICFP ’15, pages
166–178, New York, NY, USA, 2015. URL http://doi.acm.org/
10.1145/2784731.2784764.

Tobias Nipkow and Gerwin Klein. Concrete Semantics with Isabelle/HOL.
2014.

Martin Odersky. Observers for linear types. In ESOP ’92: 4th European
Symposium on Programming, Rennes, France, Proceedings, pages 390–
407, February 1992. Lecture Notes in Computer Science 582.

Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall,
and Gilles Muller. Faults in Linux: ten years later. In Proceedings
of the 16th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 305–318, Newport
Beach, CA, US, 2011.

Benjamin C. Pierce. Types and Programming Languages. 2002.
Lee Pike, Patrick Hickey, James Bielman, Trevor Elliott, Thomas DuBuis-

son, and John Launchbury. Programming languages for high-assurance
autonomous vehicles: Extended abstract. In Proceedings of the
2014ACM SIGPLAN Workshop on Programming Languages Meets Pro-
gram Verification, pages 1–2, San Diego, California, USA, 2014.

Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell, Zilin
Chen, Liam O’Connor, Toby Murray, Gabriele Keller, and Gerwin Klein.
A framework for the automatic formal verification of refinement from
cogent to c. In International Conference on Interactive Theorem Prov-
ing, Nancy, France, August 2016.

Rust. The Rust programming language. http://rustlang.org, 2014.
Accessed March 2015.

Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. SIGPLAN Lisp Pointers, V(1):288–298, Jan-
uary 1992.

Norbert Schirmer. Verification of Sequential Imperative Programs in Is-
abelle/HOL. PhD thesis, Technische Universität München, 2006.

Thomas Sewell, Magnus Myreen, and Gerwin Klein. Translation validation
for a verified OS kernel. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 471–481, Seattle, Wash-
ington, USA, June 2013.

Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and
separation logic. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 97–108, Nice, France, January 2007.

Philip Wadler. Linear types can change the world! In Programming
Concepts and Methods, 1990.

http://www.iozone.org/
http://doi.acm.org/10.1145/1708016.1708027
http://doi.acm.org/10.1145/1708016.1708027
https://www.globalscaletechnologies.com/p-58-mirabox-development-kit.aspx
https://www.globalscaletechnologies.com/p-58-mirabox-development-kit.aspx
https://www.globalscaletechnologies.com/p-58-mirabox-development-kit.aspx
http://doi.acm.org/10.1145/2784731.2784764
http://doi.acm.org/10.1145/2784731.2784764
http://rustlang.org

	Introduction
	Overview
	Cogent Language
	Types and Kinding
	Kinding for Records and Abstract Types
	Kinding and bang

	Expressions and Typing
	Typing for let!
	Typing for Variants
	Typing for Records
	Type Specialisation

	Dynamic Semantics
	Update-Value Refinement and Type Preservation
	FFI requirements

	Compiler Certificate
	Top-Level Theorem
	Well-typedness
	C to Cogent Monomorphic Deep Embedding
	Monomorphic to Polymorphic Deep Embedding
	Deep to Shallow Embedding
	Shallow Embedding to Neat Shallow Embedding

	Discussion
	Related Work
	Conclusions

