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Abstract

The function of software used to be calculation; mechanising what was previously done
by hand. Now it runs our communication networks, mass transportation and medical
support. Yet we still build large software systems as if they were small, easily compre-
hensible tools.

The right to manage our safety and security should not be handed over lightly. When
a program has the ability to compromise our security or injure us, we should demand
evidence of its correctness. Formal software verification has demonstrated how to re-
liably and repeatedly build safe and secure high-assurance systems, to a standard not
achievable using other techniques. Yet it remains underused due to perceptions that it is
expensive and time intensive to apply.

In this thesis we demonstrate how to scale formal software verification beyond its current
limits using component-based software engineering. By leveraging the strong isolation
boundaries made possible by the CAmkES component platform operating on the seL4
microkernel, we decompose system verification along lines that correspond to the sys-
tem architecture. The parallels between proof obligations and system architecture aid
the designer’s intuition and allow easing verification challenges through architectural
refactoring.

To uphold the engineering abstraction that a component platform provides, we
demonstrate a fully automated process for verifying functional correctness of platform-
generated code and the correct initialisation of a CAmkES system. The system designer
no longer needs to trust that the platform’s mechanisms do what they claim, as is the
case with other existing component platforms. We also fully automate the production
of an access control policy for a component-based system, allowing the designer to
move seamlessly from architecture layout to security analysis, with knowledge that our
verification guarantees a faithful translation.

The techniques in this thesis represent novel contributions to the fields of component-
based software and formal verification. To our knowledge, they provide the most trust-
worthy development environment for high-assurance, componentised software systems
in existence today. By extending the power and scope of formal verification, we lower the
cost of its application and enable the development of safer and more secure software.
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Chapter 1

Introduction

Software has ever-increasing prominence in our lives and power over them. Where programs used to be solely

tools for scientific calculation, they are now our instruments of communication, transportation and medical

support. With this elevated role comes increased responsibility. The consequences of software failure used to

be inconvenience and lost productivity. Now they include privacy compromises, injury and even death.

Over the course of 2009 to 2011, Toyota issued several recalls of their cars in relation to brake defects (CBS

News 2010). A 2013 court investigation found these brake defects, that led to a number of deaths, could

be attributed to errors in the design of Toyota’s software (Parrish 2013). This design was the result of well-

established, but clearly insufficient software engineering processes. Sadly this example is not atypical of mod-

ern safety-critical software systems.

When the cost of failure is so high, we should be applying every tool we have for guaranteeing software cor-

rectness. While this includes validation techniques such as unit and integration testing, these alone can only

ever prove the presence of bugs, not their absence. A different family of techniques known as formal software

verification provides the complementary approach to testing. Rather than searching for bugs in a program,

formal verification attempts to prove the correctness of the program, and by extension the absence of bugs.

The benefits of software verification techniques are recognised widely enough to be required by some offi-

cial safety and security standards. The leading recognised safety standard for automotive, MISRA, requires

the use of formal methods at its highest tier.1 The leading safety standard for aviation, DO-178C, allows for-

mal methods to substitute for testing. Similarly, the most prominent set of security standards, the Common

Criteria, requires formal verification at its highest level of certification, Evaluation Assurance Level 7 (Com-

monCriteria Recognition Arrangement 2012). Nevertheless, software verification remains underused in high-

assurance environments. The primary motivation for this neglect of software verification is its perceived cost

and impracticality. This has been shown previously to be a misconception in relation to the typical cost of

certified software (Klein et al. 2014), but this misperceived cost is often enough to discourage its use.

It is our position that this status quo is untenable. If we knew of a technique for building safer bridges, it would

be soon incorporated into building codes andmademandatory for new construction. Life-saving technologies

like anti-lock braking have regularly been made compulsory soon after their invention. Software is now a

1It is relevant to note that, despite these standards existing, very few legal jurisdictions require adherence to any level of the MISRA
standard for production automobiles, let alone its Safety Integrity Level 4 that mandates formal verification. For example, the United
States’ vehicle regulation standard (National Highway Traffic and Safety Administration 2016) does not require any level of MISRA com-
pliance. Further guidance on the use of formal verification in the automotive domain is provided in ISO 26262 (ISO26262: Road Vehicles
– Functional Safety 2011) and its precursor, IEC 61508 (IEC 61508: Functional Safety of Electrical, Electronic and Programmable Elec-
tronic Safety Related Systems 1998). However their terms are imprecise and they are inconsistently applied (Sexton 2013). In contrast,
it is much more common for legal jurisdictions to require commercial aviation companies to comply with DO-178C or its predecessors
(Transportation Research Board 2012).

1
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factor in the safety and security of high-assurance systems, as influential as mechanical components. It is

time that high-assurance software be held to the same standards we demand of the physical parts that make

up a safety- or security-critical system.

In this thesis, we propose a divide-and-conquer technique for reducing the verification challenge in large sys-

tems, and thus decreasing the associated cost. By leveraging the principles of Component-Based Software

Engineering (CBSE) (Crnkovic 2001; Szyperski 1997), we decompose verification along the same lines as

the engineering abstractions of the system architecture. We provide strong, provable isolation boundaries

between components in a system, allowing the system architecture to influence and reduce the verification

effort. The proof obligations in such a system are made more intuitive to the system designer by mirroring

the componentisation of the architecture and all obligations related to generated platform code are discharged

automatically.

1.1 Approach

In our work we build on two existing pieces of software, the formally verified seL4 microkernel (Klein et

al. 2009) and the CAmkES component platform (Kuz et al. 2007), that are intended as the basis for high-

assurance, embedded software systems. We use these as the foundation of an environment for the construc-

tion of verified safe and secure software. While the implementations we present use mechanisms specific to

seL4 and CAmkES, our underlying techniques are applicable more broadly. Our results could be repeated

on another capability-based operating system and static component platform, though we know of no others

currently existing that are as well suited to our aims and provide equivalent foundational guarantees.

We aim to ease two orthogonal tasks in the construction of component-based systems: trust in the system of

components described by the designer and trust in the component platform itself. We target the C program-

ming language, which avoids the need to further trust a language runtime. However, this induces a different

set of challenges. As depicted in Figure 1.1, code generated by the component platform is compiled with user-

provided code. The lack of memory safety in C means that the user-provided code and generated code can

affect each other and errors in either are not constrained in scope by the language. This leads to additional

complications when verifying such code.

To address the verification of components themselves, we provide a series of distinct, gradated techniques

for formally verifying the correctness of a system of components. The corresponding formalisms are not con-

nected to each other, but rather providemodels of the same component-based systemwith increasing degrees

of expressivity, fidelity and assurance. This increasing level of detail comes at the cost of decreased automation.

Each has its own utility and the combination allows the system designer to tailor their choice of formalism to

their desired class of properties or level of assurance.

The first of these techniques, described inChapter 4, defines a type system for component systemarchitectures

and a process for automatically generating a representation of a given component system in this type system.

Properties that are true of the system architecture can be proven fully automatically in this formalism. This

work has been the subject of a previous paper (Fernandez, Kuz, et al. 2013) and technical report (Fernandez,

Klein, et al. 2013).

To enable proofs that rely on the runtime behaviour of components, in Chapter 5 we provide a more complex

formalism capable of representing the execution of user-provided code. This formalism still provides signif-

icant automation, only requiring the user to specify the trusted component instances in their system. Proofs

within this formalism generally require somemanual steps, but can showmore complex properties of a system.

This work has been the subject of a previous technical report (Fernandez, Gammie, et al. 2013).
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Figure 1.1: Component platform work flow

Finally, Chapter 6 provides a formalism that represents the behaviour of components by a direct translation

of their source code. This formalism is strongly guaranteed to be faithful to the implementation’s behaviour,

at the expense of greater reasoning effort to discharge correctness goals. This work has been the subject of

a previous paper (Fernandez, Andronick, et al. 2015a) and technical report (Fernandez, Andronick, et al.

2015b).

All three of these formalisms led to the discovery of component platform bugs that have since been fixed. In

particular, the last formalism, and indeed any pervasive component system verification effort, requires deep

justification of the correctness of the component platform itself. To remove this obligation from the system

designer, we demonstrate a technique for the automatic generation of code-level correctness proofs of gener-

ated code (depicted as “generated glue code proofs” in Figure 1.1). To guarantee that this code is operating in

the environment intended, we also demonstrate an automated proof of correct architecture and initialisation

of a component platform in Chapter 7 (depicted as “generated architecture proof” in Figure 1.1). These proofs,

which integrate seamlessly with manual proofs of the components themselves, reduce the challenge of com-

ponent system verification to simply demonstrating the correctness of the hand written code provided by the

system designer themselves.

Our approach enables a machine-checked, code-level proof of the correctness of an entire software system,

providing the highest known level of assurance currently achievable in safety- and security-critical software.

The composed guarantees of seL4 and CAmkES raise the bar for the scale of formal software verification. This

in turn makes possible the next generation of larger high-assurance software at a reduced cost.
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1.2 Contribution

This thesis contains four distinct pieces of work, each of which has a chapter devoted to its exposition:

• A static architecture model of component-based systems (Chapter 4);

• A dynamic behavioural model of component-based systems (Chapter 5);

• A proof-producing process guaranteeing the correctness of platform-generated code (Chapter 6); and

• A proof of the correct architecture implementation of component-based systems (Chapter 7).

Taken together, these represent four novel contributions to the field of computer science, detailed in the fol-

lowing four sections.

1.2.1 Component Platform Correctness

Component platforms provide a development environment and introduce generated code that cooperates

with hand written, user-provided code to achieve the system’s goals. The collaborative control flow between

hand written code and platformmechanisms requires that both are correct for the system to operate correctly.

Whether the user realises it or not, their system implicitly depends on code that the platform has introduced

on their behalf.

There have been many attempts at providing correctness guarantees for component platforms, but previous

work operates on platformmodels, leaving a significant semantic gap between abstract specification and im-

plementation. To our knowledge, our work is the first result that guarantees code-level correctness for the

platformmechanisms. In contrast to proofs on a model of the component platform, we demonstrate the high-

est level of assurance in a component platform currently available.

1.2.2 Automated Verification of Generated Code

Gaining confidence in the correctness of a software system that mixes hand written and generated code re-

quires reasoning about the generated code – artefacts with which the system designer is unfamiliar. A code-

level proof of correctness often necessitates an intimate familiarity with the code in order to have an intuition

for why it is correct. Lacking this intuition, such reasoning can be challenging if not impossible for system

designers.

To resolve this imbalance, we provide automatically generated proofs for generated code. This is possible by

leveraging properties of its regularity. Now the designer is not only freed from this unfamiliar reasoning, but

also no longer needs to trust the correctness of the code generator. This symmetrywith the systemarchitecture

naturally leads to points of interconnection between handwritten and generated proofs that aremore familiar

to the system designer. We effectively remove any assumptions on the correctness of the component platform

by automatically demonstrating it with formal artefacts. To our knowledge, no other existing component

platform provides this utility.

1.2.3 A Methodology for Scaling Software Verification

While formal software verification is a well-established technique, its application in the form of code-level

proofs of realistic systems is still relatively immature. Existing verification techniques are extremely limited

in the size of the code bases they can be applied to. This has impeded the uptake of formal verification in the
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domains of safety- and security-critical software where it is most needed, as existing code bases are typically

orders of magnitude larger than what is feasible to verify.

The techniques we demonstrate allow partitioning and de-duplication of the verification challenge. The sys-

tem architecture boundaries can be leveraged as natural cut points in proofs and verified components can be

instantiated multiple times without repeating proof efforts. Not only does this make individual verification

obligations more tractable, it removes some entirely, by formally defining a bound on the effect one parti-

tion can have on another. Rather than attempting to scale formal verification by optimising individual proof

scenarios, we aim to have the system designer verify less. Using the system’s natural decomposition and by

providing increased automation, we enable software verification on scales not previously achievable.

1.2.4 A Path to Whole System Assurance

While the correctness of general purpose platform mechanisms is a necessary condition for building high-

assurance systems, the ultimate property of interest to the designer is the correctness of their system as a

whole. Traditionally this has required a monolithic, time-intensive effort to validate and verify an entire sys-

tem. By building on the results of the seL4 microkernel verification and verified system initialisation (Boyton

2014), and by producing reusable formal artefacts, we show how to extend our work to cover full functional

correctness of industrial scale systems.

If we further consider non-functional correctness properties, the majority are predicated on functional cor-

rectness itself. For example, an analysis of the worst case execution time of a system is worth relatively little

without an accompanying guarantee of functional correctness. By providing a feasible strategy for showing

functional correctness for an entire system, we enable the extension of high-assurance requirements to other

aspects of a program. We see our current work as a step on the path to more comprehensive whole system

assurance.

1.3 Summary

The ability of software defects to compromise our safety and security is ever-increasing, while the maturity

of software development techniques and their adoption have not kept pace. As the role and responsibility of

software grows, wemust strive to improve our approach for building high-assurance systems. Formal software

verification offers the greatest promise for the construction of robust programs, yet its scalability has proven

challenging to its adoption by many branches of industrial software engineering.

This thesis describes new techniques for scaling formal verification beyond its current limitations. We demon-

strate a comprehensive approach for the verification of a component platform, enabling both greater trust in

a general purpose embedded environment as well as the decomposition of a system verification effort. By

taking an approach of “generated proofs for generated code,” we reduce a system designer’s task to verifying

their own hand written code, and provide them with a proof environment that automates key parts of their

reasoning. The outcomes of our work provide tools for building safer and more secure software, on a scale

not previously possible.
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Chapter 2

Background

This chapter provides an overview of the technologies onwhich thework in this thesis is based. This essentially

falls into three distinct areas: microkernels, component-based software engineering and interactive theorem

proving. We also discuss and disambiguate the term “correctness.” The correctness of a component platform

is a vague concept and it is important to enter into the following chapters with a more precise understanding

of what it is we are attempting to achieve.

Note that the tools and technology discussed in this chapter are predominantly not the work of the current

author, but are simply provided for context. The exception is theCAmkES component platform, whose current

implementation was primarily the work of the author. However, the implementation is not considered a

primary contribution of this thesis.

2.1 Microkernels

At the base of a software system is an operating system, a general purpose program that is responsible for

initialising the hardware platform and providing general runtime services for other programs. The core code

of an operating system is the kernel, a piece of software that runs in the privileged mode of the processor. For

the high-assurance, embedded environments we are targeting, a desktop operating system with a monolithic

kernel is unsuitable. Any incorrect or malicious code in the operating system kernel has the ability to compro-

mise the entire system, and thus monolithic kernels have a large attack surface. For this reason, it is desirable

to minimise the amount of kernel code by applying the Principle of Least Authority (POLA) (Saltzer 1974).

The idea of a microkernel takes POLA to the extreme by evicting everything from the kernel except function-

ality that is impossible to implement efficiently outside it (Brinch Hansen 1970). This approach minimises

the trusted computing base of a system, the set of code which must be correct for the system to operate as in-

tended. Amicrokernel serves as an ideal platform for high-assurance systems because it is able to leverage the

hardware isolation mechanisms of virtual memory and provide a minimal attack surface to hosted processes.

Adoption ofmicrokernels in their early history proved slow due to perceived inherent performance limitations,

but these were shown to be artefacts of the specific microkernel systems of the time and not a fundamental

weakness of the idea (Liedtke 1993). Nowadays, microkernels are used as the basis for several commercially

deployed high-assurance systems (Hieb and Graham 2009; Laroux and Graham 2009; “Microvisor Products

- General Dynamics Mission Systems” 2016; National Security Agency and Center 2010).

7
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2.1.1 Capability-based Access Control

As a general purpose environment, an operating system kernel typically hosts multiple, potentially uncooper-

ative programs. In such an environment, it is necessary to have a mechanism for managing access to shared

resources. Desktop operating systems generally have only coarse-grained mechanisms for granting access

to resources and rely on interactive intervention from a user. Most implement a security model that can be

categorised as discretionary access control, wherein authority is easily passed between parties and it is up to

the user to constrain permissions. They generally assume that failures due to resource exhaustion are accept-

able. Such a model is unsuitable for embedded, high-assurance environments where there may be no user to

intervene and even transient failures can be catastrophic.

An alternative technique formuch finer-grained access control is based on the idea of “capabilities.” A capabil-

ity is an unforgeable token granting access to a specific resource (Dennis and Van Horn 1966; Levy 1984). An

operating system built on this security model requires programs to have capabilities to any shared resources

they use. Discretionary access control can be implemented with capabilities, but it is also possible to use ca-

pabilities to implement mandatory access control, wherein authority is defined by a set of rules enforced by

the operating system. Capabilities, as an abstraction, are powerful in their ability to support formal reasoning

while maintaining a strong connection to a system’s implementation (Shapiro 2003):

The capability model is currently the onlymodel offering a semantics that allows us to reason all

the way from user-level object interactions down to machine-level instructions in a uniform and

consistent way.

Numerous capability-based operating systems have been proposed or implemented previously (Feiertag and

Neumann 1979; Hardy 1985; Shapiro 1997; Wulf et al. 1974). There has traditionally been some skepticism

directed towards capability-based systems, primarily motivated by their perceived inflexibility and inferiority

to access control lists (Boebert 1984; Chander, Dean, andMitchell 2001). More recently this has been refuted

by a critical mass of counter arguments and implementations providing counterexamples to these perceptions

(Miller, Yee, and Shapiro 2003; Shapiro 1999; Shapiro, Smith, and Farber 1999).

2.1.2 seL4

While the microkernel approach decreases the size of the trusted computing base, it does not inherently in-

crease the safety and security of the remaining kernel code. The seL4 microkernel was designed to meet this

challenge by providing an L4-based (Liedtke 1995) implementation that has been proven to be functionally

correct (Klein et al. 2009). This proof guarantees that all system calls terminate, the kernel never crashes

or deviates from its specification, and it never executes any code that has undefined behaviour; for example,

dereferencing a null pointer (Klein et al. 2014). This prevents a large class of the most prevalent bugs in

embedded systems.

The seL4 verification was later extended to prove that the microkernel preserves the integrity of hosted pro-

cesses (Sewell et al. 2011). Furthermore, the design of seL4 enables it to be configured as a separation kernel

(Alves-Foss et al. 2006; Rushby 1981; Rushby 1984), partitioning a system into strongly-isolated domains.

This ability to provide proven-correct isolation boundaries is well aligned with the aims of a component plat-

form – component separation and system decomposition – making seL4 the ideal base for a high-assurance,

component-based system. We are not aware of any other general purpose operating system kernel that pro-

vides as strong safety and security properties as seL4.
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At present, seL4 supports two hardware architectures: ARM and x86. The verification work in the previous

paragraphs applies specifically to seL4 targeting an ARMv6 platform. Following this lead, our work is also

specific to ARMv6, though this is primarily to maximise its utility. Should the seL4 verification be extended

to another hardware platform in future, it would be a trivial matter to adapt our work to the new platform.1

All kernel-managed resources in seL4, including memory, are represented by explicit “kernel objects.” All

memory available after the kernel has booted is provided to the first userspace task (the “root” task) as untyped

memory when the kernel transfers control to the task. From there, it is the responsibility of the (system-

specific) root task to split and retype the untyped memory into other objects and capabilities to construct a

system. The kernel object types are:

• address space identifier (ASID) pool – Each virtual address space requires an assigned identifier. These

identifiers are produced from an ASID pool.

• asynchronous endpoint2 – A form of non-blocking data-less interprocess communication (IPC) can be

performed over an asynchronous endpoint. This communication is similar to the traditional concept of

signalling, or can be seen as equivalent to a set of binary semaphores.

• capability node (CNode) – Capabilities are stored in capability nodes. CNodes are power-of-two sized

from 22 to 227 slots. The contents of CNode slots and their addressing is expanded on below.

• frame – Creation of a virtual address space requires that some untypedmemory be retyped into frames,

units of physical memory, and then mapped into a page directory or page table. The possible frame

sizes are hardware dependent. On ARM, these are 4KB, 64KB, 1MB and 16MB.

• interrupt handler – Each device interrupt can be associated with an interrupt handler, that in turn is

bound to an asynchronous endpoint. Following this, interrupts from the device are delivered by seL4

to the endpoint and a userspace device driver can receive and process them by waiting on the endpoint.

• interrupt control – A single interrupt control object exists that allows creation of interrupt handlers. It

is not possible to copy or create more interrupt control objects because it allows privileged operations.

The root task is expected to setup all interrupt handlers or delegate the interrupt control object to a

trusted second stage loader.

• page directory – The top level paging structure of the hardware is modelled directly as a kernel object

and referred to as a page directory. Page directories are containers for page tables and/or frames.

• page table – Page tables are containers for frames, that must be mapped into page directories when

building a virtual address space. Similarly, frames are mapped into page tables.

• synchronous endpoint – Traditional IPC is performed over synchronous endpoints. Processes can send

up to 484 bytes of data to each other, that they pass through the kernel via a window of their address

space referred to as the IPC buffer. As the name implies, communication over a synchronous endpoint

is blocking.

• thread control block (TCB) – Thread control blocks represent meta data related to threads executing in

userspace. Thread-related system calls such as starting or stopping execution or modifying a thread’s

registers are performed using a TCB object.

• untyped memory – Untyped memory is the default state of uninitialised resources. The only possible

operation on untyped memory is to split and retype it into one of the other object types described.

1The specific details of the target hardware platform only appear in our proofs in the initialisation specifications of Chapter 7. Even
in this formalism, their only inflection to definitions and reasoning is in relation to virtual memory paging structures and the number of
hardware interrupts. Though neither of these are parameterised in our theories, it would be trivial to replace the points where they appear
with references to a different set of paging structures and interrupts. The lack of parameterisation in this respect matches a similar style
of specificity in the seL4 formalisation.

2In recent versions of seL4, asynchronous endpoint objects have been renamed to notification objects. Themajority of the work in this
thesis was completed prior to this change. To avoid confusion stemming from inconsistent naming, we retain the legacy asynchronous
endpoint terminology throughout.
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On the x86 architecture, there are also additional object types for an I/O port range and an I/O address space

for programming an Input/Output Memory Management Unit (IOMMU). We do not describe these in detail,

as they are less relevant to the work of this thesis, but further information is available in the seL4 reference

manual (Trustworthy Systems Team 2014a).

Access to an object requires a capability to that object with appropriate rights for the invocation being per-

formed. The possible capability rights are Read, Write and Grant. The way in which they constrain usage

varies across object types. For example, for synchronous and asynchronous endpoints, a Read right allows

messages to be received and a Write right allows messages to be sent. Grant on a synchronous endpoint ca-

pability conveys the ability to transfer capabilities over the endpoint. Grant has no effect on an asynchronous

endpoint. Kernel objects and their capabilities are typically visualised as a directed graph. An example of this

can be seen in the upcoming Figure 2.6.

The capabilities of a seL4-hosted process exist in a CSpace, analogously to a program’s code and data existing

in a virtual address space. A CSpace is a tree3 rooted at a CNode, which itself contains capabilities to other

objects including, potentially, other CNodes. Addressing of capabilities within a CSpace is by index, referred

to as a “CSpace pointer,” the target of which is a “CSpace slot.” The lookup of CSpace pointers works in a

similar manner to page table lookups. The full algorithm for resolving the slot corresponding to a CSpace

pointer is complex and detailed in full in the seL4 reference manual (Trustworthy Systems Team 2014a), but

all the CSpaces we deal with in this work are single level (no root CNode contains a capability to another

CNode), so resolution is straightforward.

All kernel invocations (system calls) manifest as operations on a capability that must be explicitly presented

when calling the kernel. This includes IPC. A process communicates with another over a synchronous end-

point to which both processes have a capability. The sender places data in a dedicated region of its address

space, known as its IPC buffer, and then invokes its capability to the shared endpoint. For example, the fol-

lowing code demonstrates sending a 2-word message on the endpoint to which the process has a capability in

slot 14.

1 /* Write payload into the first two words of the IPC buffer */
2 seL4_SetMR(0, 42);
3 seL4_SetMR(1, -1);
4
5 /* Set up a descriptor for this message */
6 seL4_MessageInfo_t info = seL4_MessageInfo_new(0, 0, 0, /* length: */ 2);
7
8 /* Send the message */
9 seL4_Call(/* CSpace pointer: */ 14, info);

More detailed information about seL4 is available in its referencemanual (Trustworthy Systems Team 2014a).

The Application Programming Interface (API) to seL4 is extremely minimal, as is typical for a microkernel.

It is exposed by a small userspace library, libsel4, that mediates between the C calling convention and the

kernel’s Application Binary Interface (ABI). While it is possible to build strongly isolated systems on seL4

(Klein et al. 2010), the process is cumbersome and the engineering effort required is relatively large. To

expose a higher level – but still general purpose – API to userspace programs requires a further abstraction.

This function is served by a component platform, as described in the following section.

3Technically a CSpace is not necessarily a tree because it can contain cycles when CNodes contain capabilities to other CNodes. How-
ever, this only occurs in dynamic systems. In the static systems we target, CNodes never contain capabilities to CNodes.
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2.2 Component-Based Software Engineering

The scale and complexity of large software systems can pose a significant engineering challenge. One of the

established techniques for coping with such a challenge is Component-Based Software Engineering (CBSE)

(Szyperski 1997). This methodology involves designing a system as a set of isolated functional units that

communicate over well-defined, explicit channels. This separation of concerns allows individual components

to be developed in isolation and then assembled to form a composite system.

A system designer typically provides two inputs when building a component-based system:

1. An architecture description that defines the component instances and how they are connected; and

2. Source code for each type of component.

These two artefacts can be visualised diagrammatically. The architecture description can be thought of as a

collection of boxes representing the component instances and lines between them representing the connec-

tions. The source code can be thought of as the processes that run inside the boxes. For example, Figure 2.1

depicts a system with four component instances, A, B, C and D, with connections between A and B, A and C

and B and D. The designer provides four distinct pieces of source code for this system; one for each of the

component instances. Component systems are often conceptualised this way, though both these artefacts are

typically specified as textual documents; the first in an Architecture Description Language (ADL), and the

second in a standard programming language like C.

A B

C D

Figure 2.1: Example component system depiction

A nuance that is not typically depicted in component system visualisations is component types. A component

type may be instantiated multiple times. Thus, in the previous example, perhaps A and B are two component

instances of the same component type. In this case the designer would only provide three pieces of component

source code, as these are given per type. Though the absence of this information in depictions can lead to some

ambiguity, in practice it rarely causes confusion.

The heart of a component-based software environment is a component platform. This is a frameworkmade up

of an offline build environment and an online runtime environment. At build time, a code generator supplied

by the platform consumes the system architecture description as input and outputs glue code that implements

the connections between component instances. This glue code contains stubs that mediate between the high

level functional interfaces of the component instances and the low levelmechanisms provided by the operating

system kernel. A program binary for each component instance is formed by compiling the provided hand

written source code for the component and the generated glue code and linking the two into a final image.

A component platform’s development environment generally makes these steps transparent to the system
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designer, leaving them to think only about the two input artefacts listed previously. This process is depicted

in Figure 2.2.
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Figure 2.2: Building a component-based system

Component platforms can be categorised into dynamic and static, based on whether they allow runtime

changes to the system architecture or not. The present work focuses on static component platforms as these

are more suitable for high-assurance environments. Runtime reconfiguration is rarely required in such

systems and a static architecture can be implemented without the need for a supporting persistent runtime

process, thereby reducing the trusted computing base.

CBSE has advantages beyond simplifying the initial development of a system. By building all system-specific

functionality on a component platform, the system can be easily transferred to another hardware platform or

another operating system. The abstraction of the component platformpromotes and facilitates this portability.

The boundaries between components in a system also establish APIs for interaction between modules. This

allows changes to communication patterns at the architecture level without needing to refactor component

code. For example, patterns like communication interposition, filtering or virtualisation become trivial to

introduce.

An aspect of CBSE that is particularly desirable when building systems for certification and verification is an

explicit system architecture as an input artefact. Some analysis of system safety and security can be performed

statically on this artefact (Andronick, Greenaway, and Elphinstone 2010), without the need to perform com-

plex code validation or dynamic analysis. We show a practical instance of this in Chapter 4.

2.2.1 CAmkES

CAmkES is a component platform formicrokernel-based embedded systems (Kuz et al. 2007). In terms of the

distinction previously discussed between dynamic and static systems, CAmkES is a static system and has no

persistent runtime process. All configuration of a CAmkES system is performed by an initial userspace loader

that exits on completion. As noted, this is well aligned with high-assurance environments which typically do

not rely on runtime reconfiguration. CAmkES generates communication stubs at compile time that the user

can call to effect component interaction. These stubs are implemented by composing primitive operations

provided by the underlying operating system kernel.
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CAmkES provides three communication abstractions: remote procedure call (RPC) that is similar to the se-

mantics of function calls, events that represent asynchronous signalling and dataports that represent shared

memory. Within each of these categories, there are multiple ways to implement the given communication

style, and CAmkES comes with several implementations of each, called connectors. For example, when tar-

geting seL4 there are three commonly used RPC connectors: seL4RPCSimple, seL4RPC and seL4RPCCall. It

is also possible for a system designer to implement and provide their own connectors. It might be desirable

to do this to encapsulate extra boilerplate code or to use other kernel- or hardware-specific mechanisms. In

the upcoming chapters, we deal with three specific standard connectors, the seL4RPCSimple RPC connector,

the seL4AsynchNative event connector and the seL4SharedData dataport connector, but our work could be

extended to other connectors. We expand on this possibility in Section 9.2.

CAmkES connectors are, by default, one-to-one, in the sense that they connect a single sending component

instance to a single receiving component instance.4 However, it is possible for a connector to specify that

it supports multiple senders, multiple receivers or both. This allows system designers greater expressivity in

implementing patterns like broadcasting ormulti-client services. In the present work, we focus on one-to-one

connectors for simplicity, but we note support formultiple senders and receivers here to give amore complete

overview of CAmkES. Extension of this work tomultiplexing connectors would require amore complexmodel

of kernel interaction and context switching, that we extrapolate on in Section 9.1.

The CAmkES code generator has the ability to target different operating systems and programming languages,

but in this work we focus on the backend for the seL4 microkernel and the C programming language. The

advantage of targeting a formally verified microkernel, is that we can achieve a strong guarantee of overall

system correctness by composing proofs of userspace applications with the existing proofs of the kernel’s

correctness. C programs can be compiled to executables suitable for a bare metal environment and thus we

do not need to assume the correctness of a language runtime. We do need to assume the correctness of the

translation to binary code performed by the C compiler; this is out of scope for our current work. There are

other existing approaches that have the potential to address this (Leroy 2006; Sewell, Myreen, and Klein

2013).

CAmkES represents connections and their types, connectors, explicitly. This distinction is relevant as many

component platforms do not (Flatt and Felleisen 1998; Levis et al. 2005). An explicit concept of connectors

allows properties to be framed on connectors themselves. For example, it may be claimed that a particular

connector only allows unidirectional information flow.

CAmkES supports a concept of “composite components,” components that themselves contain other compo-

nent subsystems.5 The present work does not deal with composite components and requires that any input

specification does not contain any such components. This is not a significant limitation as composite com-

ponents are essentially syntactic sugar; any system involving composite components can be rewritten as a

system without composite components. We expand on this in Appendix A.

2.2.1.1 Visualisation

In Section 2.2, we showed an example of how component systems are typically depicted. This was a generic

architecture, with no details of the connections between component instances. When depicting a CAmkES

system, the mode of communication of a connection is indicated by a decoration applied to its line.

RPC connections are shown with a line ending in a circle on the side of the callee (provider) and a line ending

in an arc on the side of the caller (user). These ends meet, indicating the matching relationship between the

4In a dataport connection, the sender and the receiver are equivalent as the connection is bidirectional. However, the default mode
for a dataport connector is similarly one-to-one, connecting only two component instances.

5Composite components are also sometimes referred to in the literature as “compound components.”
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caller

RPC

callee

event
emitter consumer

dataport

Figure 2.3: Connection mode indicators

two. Event connections have an irregular hexagon on the side of the emitter and an angled line on the side

of the consumer. Dataports have a box at either end of the connecting line, representing the memory window

through which each component instance accesses contained data. Figure 2.3 shows these three alternatives.

It is typical in component system architecture diagrams to omit any interface or connection names. That

is, connections typically appear as unannotated instances of the alternatives in Figure 2.3. However, for the

purposes of this thesis, we annotate connection lines with both the connection name and interface names for

additional clarity. An example of this is demonstrated in the next section in Figure 2.4.

2.2.1.2 Syntax

Asdiscussed, architecture descriptions of CAmkES systems are provided in a textual language. The language is

declarative and C-like, with brace-delineated blocks. Procedural interfaces (endpoints for RPC) are described

as a block of method declarations.

1 procedure my_proc {
2 void ping(void);
3 int echo(in int x);
4 int get_coordinates(out unsigned int x, inout unsigned int y);
5 }

This syntax is referred to as Interface Definition Language (IDL). Such blocks define a set of functions that

comprise an interface and should be familiar from a programming standpoint. Where they deviate from con-

ventional function prototypes is that each parameter has a direction. In the previous listing, the x parameter
to echo is an input parameter, while the x parameter to get_coordinates is an output parameter. The y
parameter to get_coordinates is used as both an input and an output.

The types of method parameters and return values in CAmkES are divided into language-independent types

and C-specific types. Language-independent types such as int map to different native types in different
target languages. Though we only deal with CAmkES’ C backend in this work, the design of CAmkES permits

different components within the same system to be implemented in different languages, with the ability to

exchange data over a procedure method. Using C-specific types, for example uint8_t, in a method prevents
its implementation or use in a component that is not written in C. These are provided for optimisation or

when a type’s in-memory representation affects correctness. When targeting a language like C that allows

definitions of new types (structs), it is also possible to specify parameters of a user-defined type, the details of

which are not known by the CAmkES platform. There is also an array type, whose element type can be any of

the previously introduced types.

The architectural elements of the system are expressed in ADL. Component types appear as blocks that de-

scribe their interfaces and whether they have a main thread (control) or are passive.

1 component my_component {
2 control;
3 uses my_proc p;
4 }



2.2. COMPONENT-BASED SOFTWARE ENGINEERING 15

The architecture of the system, as visualised by the designer, is described within an assembly block. This
block takes the types that have been defined in the specification and describes how to compose them to form

a specific system architecture. For this example, we consider a system that appears in Figure 2.4.

my_instance1 my_instance2
my_conn

p q

Figure 2.4: Example architecture

The assembly block contains a composition block that instantiates component types and wires them to-

gether with connections. The textual description for our example system appears as follows.

1 assembly {
2 composition {
3 component my_component my_instance1;
4 component another_type my_instance2;
5
6 connection seL4RPCSimple my_conn(from my_instance1.p, to my_instance2.q);
7 }
8 }

This is a very brief description of only the basic aspects of CAmkES’ syntax. We expand on this when formal-

ising syntactic elements in Chapter 4.

2.2.1.3 Glue Code

When building a CAmkES system, a code generator that creates the platform’s environment runs prior to

the compilation phase. This generated code is referred to as glue code because it conceptually “glues” the

component instances together.

Recalling Figure 2.2, there are two salient points to note in this work flow diagram. Firstly, CAmkES’ code gen-

erator derives the glue code purely from the architectural description of the system. That is, the user-provided

code has no influence on the form of the generated code. Secondly, the glue code is compiled with the user-

provided code. The implications of this in a language like C that lacks memory safety, are that misbehaving

glue code can affect user-provided code and vice versa. This aspect complicates safety guarantees and leads

to unusual challenges in the verification of component-based systems.

Taking the example from the previous section, this defines two component instances with an RPC connec-

tion linking them. The instance my_instance1 is given an exposed function for each method in the de-
fined procedure, under names prefixed by its interface’s name: p_ping, p_echo and p_get_coordinates.
The instance my_instance2 is expected to implement these functions. Its definition (not shown) names its
corresponding interface q, so its implementations are expected to carry this prefix: q_ping, q_echo and
q_get_coordinates. At runtime, these differing symbols need to have the same semantics. Connecting the
corresponding symbols seamlessly is the role of the glue code.

The glue code for an RPC connection operates by using the underlying seL4 IPC mechanism to transmit and

receive method invocation data. On either side of the connection, it is responsible for serialising and dese-

rialising data into and out of the IPC buffer. In the context of a component platform, these operations are
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typically referred to as marshalling and unmarshalling, respectively. The logic for marshalling and unmar-

shalling method data are intended to be inverses. Informally, unmarshal (marshal x) = x. Figure 2.5
depicts the interaction between hand written and generated code with an abstract version of the glue code’s

functionality.

qp

seL4

int x = 42;

int y = p_echo(x);

assert(x == y);

glue code glue code

user code

int q_echo(int x) {
  return x;
}

void call() {
  int x = unmarshal();
  int r = q_echo(x);
  marshal(r);
}

int p_echo(int x) {
  marshal(x);
  call();
  int r = unmarshal();
  return r;
}

user code

Figure 2.5: Interaction between user-provided code and glue code

Even for this simple system, the glue code produced for the seL4RPCSimple connector is extensive, so for

simplicity we show just the sections related to the echomethod. This is sufficient to give a general idea of the
form and role of glue code. For my_instance1, the glue code for p_echo is as follows.

1 static unsigned int p_echo_marshal(int x) {
2 unsigned int _camkes_length_57 = 0;
3
4 /* Marshal the method index */
5 seL4_SetMR(_camkes_length_57, 1);
6 _camkes_length_57++;
7
8 seL4_SetMR(_camkes_length_57, (seL4_Word)x);
9 _camkes_length_57++;

10
11 return _camkes_length_57;
12 }
13
14 static void p_echo_call(unsigned int length) {
15 /* Call the seL4 endpoint */
16 seL4_MessageInfo_t info = seL4_MessageInfo_new(0, 0, 0, length);
17 (void)seL4_Call(5, info);
18 }
19
20 static int p_echo_unmarshal(void) {
21 unsigned int _camkes_mr_58 = 0;
22
23 int _camkes_ret_59 = (int)seL4_GetMR(_camkes_mr_58);
24 _camkes_mr_58++;
25
26 return _camkes_ret_59;
27 }
28
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29 int p_echo(int x) {
30 /* Save any pending reply cap, as we'll overwrite it during `seL4_Call` */
31 camkes_protect_reply_cap();
32
33 /* Marshal input parameters */
34 unsigned int _camkes_mr_index_60 = p_echo_marshal(x);
35
36 /* Call the endpoint */
37 p_echo_call(_camkes_mr_index_60);
38
39 /* Unmarshal the response */
40 int _camkes_ret_61 = p_echo_unmarshal();
41
42 return _camkes_ret_61;
43 }

This code serialises the function arguments into the process’ IPC buffer (lines 1-12) and then calls the kernel

to transfer this payload (lines 14-18). On return, it deserialises the response from the callee (lines 20-27) and

returns to the user. It works in cooperation with the glue code for my_instance2, the relevant section of
which is as follows, that we will explain following its listing.

1 /* Implementation provided by the user */
2 extern int q_echo(int x);
3
4 /* Per-thread globals */
5 static int echo_x_1;
6 static int echo_x_2;
7
8 static int *get_echo_x(void) {
9 switch (camkes_get_tls()->thread_index) {

10 case 1:
11 return &echo_x_1;
12 case 2:
13 return &echo_x_2;
14 default:
15 assert(!"invalid thread index");
16 abort();
17 }
18 }
19
20 static void q_echo_unmarshal(int *x) {
21 unsigned int _camkes_mr_58 = 1; /* 0 contained the method index */
22
23 *x = seL4_GetMR(_camkes_mr_58);
24 _camkes_mr_58++;
25 }
26
27 static int q_echo_invoke(int x) {
28 /* Call the implementation */
29 return q_echo(x);
30 }
31
32 static unsigned int q_echo_marshal(int _camkes_ret_59) {
33 unsigned int _camkes_mr_60 = 0;
34
35 seL4_SetMR(_camkes_mr_60, (seL4_Word)_camkes_ret_59);
36 _camkes_mr_60++;
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37
38 return _camkes_mr_60;
39 }
40
41 static unsigned int q_echo_internal(void) {
42 int *x = get_echo_x();
43 q_echo_unmarshal(x);
44
45 int _camkes_ret_61 = q_echo_invoke(*x);
46
47 unsigned int _camkes_length_62 = q_echo_marshal(_camkes_ret_61);
48
49 return _camkes_length_62;
50 }
51
52 static seL4_MessageInfo_t q__run_internal(bool _camkes_first_69,
53 seL4_MessageInfo_t _camkes_info_68) {
54 if (_camkes_first_69) {
55 _camkes_info_68 = seL4_Wait(6, NULL);
56 }
57
58 /* We should have at least been passed a method index */
59 assert(seL4_MessageInfo_get_length(_camkes_info_68) >= 1);
60
61 int _camkes_call_70 = (int)seL4_GetMR(0);
62
63 switch (_camkes_call_70) {
64
65 /* ... */
66
67 case 1: { /* echo */
68 unsigned int _camkes_length_72 = q_echo_internal();
69
70 /* Send the response */
71 _camkes_info_68 = seL4_MessageInfo_new(0, 0, 0, _camkes_length_72);
72
73 seL4_ReplyWait(6, _camkes_info_68, NULL);
74
75 break;
76 }
77
78 /* ... */
79
80 }
81
82 return _camkes_info_68;
83 }
84
85 int q__run(void) {
86 bool _camkes_first_74 = true;
87
88 seL4_MessageInfo_t _camkes_info_75 = { { 0 } };
89 while (1) {
90 _camkes_info_75 = q__run_internal(_camkes_first_74, _camkes_info_75);
91 _camkes_first_74 = false;
92 }
93 return 0;
94 }
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This code deserialises a message from the caller (lines 20-25), invokes the user-provided echo implementa-
tion (lines 27-30), then serialises (lines 32-39) and sends the return value back. Note that the code is driven

by an outer event loop (lines 85-94) that repeatedly invokes a dispatch function (lines 52-83) that discrimi-

nates by an index indicating which method the caller invoked. The wire format of messages can be inferred

from these two pieces of glue code, but it is not strictly relevant to the system designer as long as it is agreed

on by the two pieces of glue code. The receiving glue code has some additional code for thread-local variable

support (lines 4-18). This is driven by constraints of our verification toolchain and does not impact usage by

a system designer.

The first piece of glue code is compiled with the user-provided code for my_component to form one bi-

nary for my_instance1, while the second piece of glue code is compiled with the user-provided code for
another_type to form a binary for my_instance2. Note how these two pieces of glue code collaborate

to form the component platform abstraction, namely that my_instance1 can directly call the echo im-

plementation in my_instance2. For example, my_component could contain the following sequence of

statements.

1 int x = 42;
2
3 int y = p_echo(x);
4
5 assert(x == y);

This would be paired with a corresponding implementation in the code of another_type.

1 int q_echo(int x) {
2 return x;
3 }

It may seem that the glue code is overly verbose and omits some obvious optimisation opportunities. This is

not atypical of static component platforms. The glue code is deliberately straightforward and transparent in

order to provide the C compiler a greater ability to optimise it during compilation. The only optimisations

CAmkES performs during code generation are those that cannot be performed by the C compiler due to in-

formation it is lacking. The combined effect of CAmkES’ optimisations and the C compiler’s optimisations

effectively reduce the cost of the component platform’s abstractions to zero. That is, the introduced glue code

is at least as fast as equivalent hand written code.

2.2.1.4 Hardware Devices

Hardware devices are represented as explicit components in CAmkES systems. The abstractions of CAmkES

are well-suited to the communication modes exhibited by hardware. Memory-mapped device registers are

presented as dataports, interrupts as emitted events and I/O ports6 as provided procedural interfaces. In

addition to allowing a unified way of interacting with hardware and software elements, this design assists the

development of device drivers and enforces a well-defined hardware API that permits natural virtualisation

of devices.

The formalisms we present in this thesis support only software components, but this section is included for

completeness. Extension of our work to hardware components would necessitate interaction with a model of

device behaviour.
6I/O ports are a hardware access mechanism not present on all platforms, so the reader may be unfamiliar with them. They are

typically presented by the device to the operating system as a set of virtual registers of word or sub-word width. They are read from or
written to with dedicated assembly instructions. The seL4 microkernel supports access to such ports on the x86 architecture. The access
provided by seL4 is a thin security wrapper over the native x86 instructions.
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2.2.1.5 Attributes

CAmkES provides a mechanism for specialising component instantiations called attributes. This serves to

parameterise a component type with values set at compile time by the system designer. Attributes are defined

with the following syntax.

1 component Client {
2 /* An integer attribute with the name `my_id` */
3 attribute int my_id;
4
5 /* ... */

Within the assembly block that defines the system architecture, the attribute value for each component in-

stance can be set within a configuration block. For example, if we have two instances of the above compo-
nent, they can each be given a different value for the my_id attribute.

1 assembly {
2 composition {
3 component Client c1;
4 component Client c2;
5 component Server s;
6
7 connection seL4RPCSimple conn1(from c1.inf, to s.inf1);
8 connection seL4RPCSimple conn2(from c2.inf, to s.inf2);
9 }

10 configuration {
11 c1.my_id = 1;
12 c2.my_id = 2;
13 }
14 }

At runtime, the attribute values are available to component codewith amatching symbol name. In the example

provided, the component code would have an integer variable, my_id, that would have the value 1 in the first
component instance and 2 in the second.

Attributes can have the type string or int, which has so far proved sufficient for system designers. The

representation of these types at runtime is dependent on the target language.

2.2.1.6 CapDL

Section 2.1.2 detailed how all authority in seL4 is conveyed by capabilities to kernel objects. This makes it

possible to express the state of any seL4-based system as a collection of kernel objects and a directed graph

of capabilities that reference these objects. This is formalised in the CapDL language (Kuz et al. 2010). A

generic userspace boot loader accepts such a CapDL specification as input and configures a seL4 environment

to match this specification (Boyton et al. 2014).

The CapDL language itself is another C-like declarative language. Specifications are composed of two sections,

objects and caps, describing kernel objects and capabilities to them, respectively. An example specification
is given below.
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1 objects {
2 my_ep = ep /* A synchronous endpoint */
3
4 /* Two thread control blocks */
5 tcb1 = tcb
6 tcb2 = tcb
7
8 /* Four frames of physical memory */
9 frame1 = frame (4k)

10 frame2 = frame (4k)
11 frame3 = frame (4k)
12 frame4 = frame (4k)
13
14 /* Two page tables */
15 pt1 = pt
16 pt2 = pt
17
18 /* Two page directories */
19 pd1 = pd
20 pd2 = pd
21
22 /* Two capability nodes */
23 cnode1 = cnode (2 bits)
24 cnode2 = cnode (3 bits)
25 }
26 caps {
27 cnode1 {
28 0x1: frame1 (RW) /* read/write */
29 0x2: my_ep (R) /* read-only */
30 }
31 cnode2 {
32 0x1: my_ep (W) /* write-only */
33 }
34 tcb1 {
35 vspace: pd1
36 ipc_buffer_slot: frame1
37 cspace: cnode1
38 }
39 pd1 {
40 0x10: pt1
41 }
42 pt1 {
43 0x8: frame1 (RW)
44 0x9: frame2 (R)
45 }
46 tcb2 {
47 vspace: pd2
48 ipc_buffer_slot: frame3
49 cspace: cnode2
50 }
51 pd2 {
52 0x10: pt2
53 }
54 pt2 {
55 0x10: frame3 (RW)
56 0x12: frame4 (R)
57 }
58 }
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The capabilities described in a specification form a directed graph. The corresponding graph for the above

specification is depicted in Figure 2.6, wherein each capability slot is represented as a square, shaded for

occupied or unshaded for empty. Considering cnode1 from the specification, we can see the two capabilities

it contains (lines 27-30) shown as arrows to the objects frame1 and my_ep. More detailed information about
the CapDL syntax can be found in (Lewis et al. 2014).

my_ep

cnode1 cnode2

frame1 frame2 frame3 frame4

tcb1 tcb2

pd1 pd2

pt2pt1
RRWRW R

R WRW

Figure 2.6: CapDL specification depicted as a graph

The CapDL language and this boot loader are fully generic and independent of the targeted system, but they

become relevant in the context of CAmkES because they provide a trustworthy path to booting a CAmkES sys-

tem. Instead of providing its own runtime, the CAmkES code generator produces a CapDL specification based

on the designer’s architecture description. Extending Figure 2.2, we depict CAmkES’ additional production of

an initialisation specification in Figure 2.7. By targeting a verified initialisation path (Boyton et al. 2013), one

of the key challenges of component platform correctness – guaranteeing correspondence between the input

architecture and the running system – is reduced to proving the correctness of the generated CapDL. This is

explained in detail in Chapter 7.

2.3 Interactive Theorem Proving and Code Verification

Formal software verification is a broad field that encompasses numerous techniques for providing evidence

of the correctness of programs. These include automated techniques such as static analysis tools like Coverity

(Engler et al. 2000; Hallem et al. 2002) andmanual techniques such as interactive theorem proving. Though

manual techniques can be more time intensive than automated techniques, there are classes of problems for

which no known automated solution exists, such as general functional correctness. Thus manual techniques

are often used to prove stronger properties than would be possible with automated techniques. Proving gen-

eral functional correctness in an interactive theorem prover also has the added advantage of avoiding con-
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Figure 2.7: CapDL production

straining verification to a specific property. A later proof of a specific functional property can be achieved by

appealing to general functional correctness.

Verifying a program via interactive theorem proving involves writing an abstract specification for the program

in a formal environment. In this work, we focus on the Isabelle/HOL theorem prover (Nipkow, Paulson,

and Wenzel 2002). We know of no technical limitations to our work that would prevent its implementation

in another theorem prover, at least in principle. By proving properties about the abstract specification of a

program, it is possible to show the correctness according to some desired behaviour.

There is a semantic gap between the abstract specification of a program and its implementation. That is, an

abstract specification might describe behaviour that does not precisely correspond to how the actual program

works. This gap is depicted as the arrow labelled “A” in Figure 2.8. To minimise the risk of deviation between

the specification and the implementation, a model of the implementation can be constructed, either hand

written or generated, and a proof that demonstrates this model refines the original abstract specification can

be provided (Back 1978; Morgan 1990). This intermediate artefact is depicted as the central box and its refine-

ment proof as the arrow labelled “B.”While this process does not remove the semantic gap between formalism

and implementation, it reduces the gap to that between the implementation model and the implementation

itself. It is not possible to completely remove this residual semantic gap. There always remains a distance

between a model and the real world. For example, hardware devices are fabricated from precise specifica-

tions, but it it is still possible for the physical implementation of a device to deviate from its specification. In

the limit, a formal model is unavoidably limited by our incomplete representation of the physical world. The

remaining semantic gap appears in Figure 2.8 as the arrow labelled “C.”

When reasoning about code in this thesis, we focus on C code conforming to the C99 standard (ISO/IEC 2005).

As discussed in Section 2.2.1, C serves as a suitable environment for high-assurance embedded systems. To

accomplish this reasoning, we use the pre-existing toolchain described in the following sections.



24 CHAPTER 2. BACKGROUND

abstract
specification

implementation
model

implementation

A

B

C

Figure 2.8: Program refinement as a relationship between artefacts

2.3.1 C-to-SIMPL Parser

A necessary ingredient for reasoning about C code is a formal semantics of the language. Such a semantics for

C99 was previously developed in HOL (Norrish 1998). The accompanying parser for this work translates C

code into a specification in the SIMPL language for Isabelle/HOL. SIMPL is a generic language for represent-

ing imperative programs with exceptions. The tool supports a subset of C that has been shown sufficient for

implementing low level systems (Klein et al. 2009), and that is a superset of the features used by generated

code in CAmkES.

As an example of the functional representation it provides, consider the following C code for taking the abso-

lute value of an integer.

1 int abs(int x) {
2 if (x < 0)
3 return -x;
4 return x;
5 }

The C-to-SIMPL parser transforms this definition into the following Isabelle/HOL representation of the same

function.

1 definition
2 abs :: "(globals myvars, int, strictc_errortype) com"
3 where
4 "abs ≡
5 TRY
6 IF �x <s 0 THEN
7 Guard SignedArithmetic {|- 2147483648 ≤ - sint �x ∧
8 - sint �x ≤ 2147483647|}
9 (creturn global_exn_var_'_update ret__int_'_update

10 (λs. - x_' s))
11 FI;;
12 creturn global_exn_var_'_update ret__int_'_update x_';;
13 Guard DontReach {} SKIP
14 CATCH SKIP
15 END"
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As can be seen, even for a simple C function, the SIMPL representation is more verbose than onemight expect.

The intention of the translation is to be as faithful as possible to the semantics of C99. For example, the defini-

tion contains a guard that the negation of the input value must lie between -2147483648 and 2147483647,
the least and greatest representable signed 32-bit numbers, respectively. This stems from §6.5.5 of the C99

standard (ISO/IEC 2005):

If an exceptional condition occurs during the evaluation of an expression (that is, if the result is

not mathematically defined or not in the range of representable values for its type), the behavior

is undefined.

While this may seem obvious, note that it precludes the input -2147483648. The negation of this value
is 2147483648, which falls outside the range of representable signed 32-bit integers and hence results in
undefined behaviour. Functional representations of this verbose form can be reasoned about and strong cor-

rectness properties can be derived, however the effort to do so is magnified by having to manipulate the large

terms involved.

2.3.2 AutoCorres

While the verbosity of the representations of C code produced by the C-to-SIMPL parser is a positive attribute

for fidelity to the original code, it impedes reasoning by forcing a proof to contain manual steps pertaining to,

for example, safe type casts.

A tool called AutoCorres (Greenaway 2015) addresses these issues by performing a set of further, verified ab-

stractions on the SIMPL representation of C functions. The transformations of AutoCorres have been proven

correct in Isabelle/HOLand therefore do not increase the amount of trusted codewhen interactively reasoning

about a C program.

Applying AutoCorres to the previous function yields the following definition:

1 definition
2 abs :: "32 signed word ⇒ lifted_globals ⇒
3 (32 signed word × lifted_globals) set × bool"
4 where
5 "abs x ≡
6 condition (λs. x <s 0)
7 (do guard (λs. - INT_MAX - 1 ≤ - sint x);
8 guard (λs. - sint x ≤ INT_MAX);
9 return (- x)

10 od)
11 (return x)"

Observe that the structure of this definition more closely matches the C definition of the function. This form

also aids reasoning by automatically removing some extraneous guards; in this case a guard for reaching the

end of the function.

2.3.3 Proving Functional Correctness

To state the correctness of a C function produced as an Isabelle/HOL term by AutoCorres, we employ a

syntax that is a variant of Hoare triples to express the precondition and postcondition of a potentially non-

deterministic monadic function (Cock, Klein, and Sewell 2008). The representations delivered by AutoCorres



26 CHAPTER 2. BACKGROUND

are capable of expressing state modification, a return value and, if relevant, failure. The following notation

states that, if the precondition P holds and the function f terminates normally, then the postcondition Q will
hold after f has executed.

1 "{|P|} f {|Q|}"

P is a predicate over the initial state (memory, global structures, etc.):

1 "P :: lifted_globals ⇒ bool"

Q is a predicate over two parameters: the return value of f and the final state. For example, if f returned a
value of type int, the type of Q would be:

1 "Q :: int ⇒ lifted_globals ⇒ bool"

The previous Hoare triple allows for the possibility that f fails or does not terminate, for example, by perform-
ing an operation with undefined behaviour in C. To express total correctness of f, we use the following variant
that requires termination and absence of failure, including guard violations.

1 "{|P|} f {|Q|}!"

A common idiom used with this syntax is universal quantification of a state parameter to express how a func-

tion modifies the state of the system. To claim that a function modifies the state according to a specification

definition, g, we write:

1 "∀ s0. {|λs. s = s0|} f {|λ_ s. s = g s0|}!"

In the case of a pure function, its modification to the state is simply the identity and we simplify the above

expression to:

1 "∀ s0. {|λs. s = s0|} f {|λ_ s. s = s0|}!"

Further details of this Hoare calculus for monadic functions are available in (Cock, Klein, and Sewell 2008).

To see how this syntax is used with respect to real functions, we return to our abs example from the previ-

ous section. It is possible to phrase a Hoare triple describing its correctness using the syntax we have just

introduced.

1 lemma abs:
2 "∀ s0. {|λs. s = s0 ∧ sint x ̸= INT_MIN|}
3 abs x
4 {|λr s. s = s0 ∧ r = (if x <s 0 then -x else x)|}!"

This statement claims that any input that is not INT_MIN, a constant for the largest representable negative
integer, will yield an output that is the negation of the input. This is a case in which we use the universally

quantified s0 to express that this function is pure.

The proof of this lemma has been elided, but it consists of five straightforward steps. For simple examples

such as this, existing automated tactics (Winwood et al. 2009)make proofs straightforward. Having defined a

leaf function and proven its semantics, we can reuse this lemma in proofs of its callers. Consider the following

caller, a function that divides the absolute value of two integers.
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1 int abs_div(int n, int d) {
2 return abs(n) / abs(d);
3 }

We can state a semantics for this function in a similar style to abs.

1 lemma abs_div:
2 "∀ s0. {|λs. s = s0 ∧ sint n ̸= INT_MIN ∧ sint d ̸= INT_MIN ∧ sint d ̸= 0|}
3 abs_div n d
4 {|λr s. s = s0 ∧ r = (if n <s 0 ∧ ¬ d <s 0 ∨ ¬ n <s 0 ∧ d <s 0
5 then - (n sdiv d)
6 else n sdiv d)|}!"

This lemma states that, if neither of the inputs are INT_MIN and d is not zero, the result is the expected
quotient. It can be proven by reusing the previous lemma of the correctness of abs. The proof itself, that
has been elided, consists of forty-nine uncomplicated, yet laborious steps. This already makes a strong case

for automation where possible. The work in this thesis builds on this formalism and demonstrates how to

automate such proofs when the functions they reference are sufficiently regular.

2.4 Correctness

One of the stated goals of this thesis is to guarantee the correctness of a component platform. However, the

notion of “correctness” is not necessarily well-defined with respect to component platforms. While Section

2.3 demonstrated intuitive and obvious correctness criteria for a simple, isolated function, correctness for a

general purpose abstraction like a component platform is more slippery.

In this section, we elaborate on what properties are necessary and sufficient to guarantee the correctness

of a component platform, and how the correctness of a component platform influences the correctness of

component-based systems. We hope this serves to clarify our goals and orient the reader to our work. We

explore notions of correctness in a top-down manner, beginning with the notion of global correctness in a

component-based system. Note that this section expands on discussion from previously published work (Fer-

nandez, Andronick, et al. 2015a).

2.4.1 Global Correctness

Correctness, as a property of a large software system, is a requirement of the system as a whole. For example,

consider a component-based aviation system responsible for collision avoidance. Itmay be said to be correct if

its operation always results in safe distances between aircraft. This requires correct cooperation between the

components performing calculations and providing feedback, the component platform mediating between

the components, and the underlying operating system kernel. This decomposition of global correctness is

represented visually in Figure 2.9.

We deal with the correctness of each of these elements individually in the following sections. It is inherent in

the approach of CBSE that each hosted element depends on its hosting environment. That is, the correctness

of the components in a system is predicated on the correctness of the component platform, which is in turn

predicated on the correctness of the underlying operating system kernel. A failure in any layer of the system

invalidates the guarantees of those on top.

To say that a component-based system is correct, we need guarantees for the correctness of each of these three

elements in isolation, and we need these guarantees to be composable. That is, the formal properties of each
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Figure 2.9: Compositional correctness

of these artefacts that are shown in isolation, must remain valid in a system formed by their composition.

Ideally these properties are formally connected in a chain, with the assumptions of one formalism discharged

by the proven properties of the previous. For example, the component platform makes assumptions on the

kernel mechanisms it uses, and it is desirable to prove these assumptions as part of the correctness of the

kernel itself. To decompose global correctness, we first consider the correctness of each of these elements in

isolation.

2.4.2 Kernel Correctness

While correctness of the operating system is not one of the direct targets of this work, it is informative to define

what properties we assume the operating system kernel provides. Our component platform implementation

targets seL4, and we rely on its functional correctness (Klein et al. 2009) and strongly-guaranteed, hardware-

enforced isolation mechanisms (Sewell et al. 2011). The generated code of the component platform is formed

by composing operating system primitives to effect communication between component instances. These

primitives are called through a userspace library that provides a thin wrapper that mediates between the C

calling convention and the kernel’s ABI. While we provide functional correctness proofs for some stub func-

tions from seL4’s supporting userspace library, we axiomatise the semantics of the system calls themselves.

We only use a subset of the kernel’s API and the semantics we assume are not overly complex to state (for

example, the seL4_Call system call, when provided with a valid capability to a synchronous endpoint, trans-

fers a requested amount of data to a receiver). However, the proof of these semantics is beyond the scope of

this thesis. We expand on this limitation in Section 9.1.

While our work explicitly targets seL4, there is no fundamental dependency on this specific kernel in the

techniques we apply. Our approach could be applied to equal effect on another kernel that provides equivalent

guarantees, though we are not aware of any currently in existence. It would also be possible to apply our

approach on top of a kernel that provides weaker guarantees. However, as the guarantees of the component

platform are predicated on kernel correctness, this would weaken the global assurance property.

2.4.3 Platform Correctness

Correctness of a component platform, while seemingly intuitive, is challenging to formally define. It is straight-

forward to observe that a component platform should provide isolated containers for component instances to

run in and faithful communication mechanisms for architectural connections, but this is imprecise and it is

not easy to formulate exactly what wemean by the “isolation” and “communication” provided by the platform.

The idea of guaranteeing correctness of a component platform is not new, and there is a wide range of existing

work targeted at this problem (Basu et al. 2011; Cobleigh, Giannakopoulou, and Păsăreanu 2003). However,
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the majority of existing work targets one or both of two related but divergent issues: the correctness of com-

ponent interaction or the compatibility of interfaces. The former of these is concerned with the correctness

of components, rather than the platform, and is more closely aligned with the next section. The latter is a

correctness property of the platform defined by its ability to ensure component instances are only ever con-

nected in semantically consistent ways. While this is necessary for correctness, it is insufficient by itself. It is

also unclear how work in either area could be formally connected to, and integrated into, a larger correctness

argument encompassing the entire platform and operating system kernel.

Conflating issues related to the correctness of component-based systems relegates the correctness of the plat-

form itself to an implicitly defined concept and conceals important concerns. For example, no existing work of

which we are aware guarantees that the code generated by a component platform does what it claims without

other side effects. This is not intended as an indictment of existing component platform formalisms. The code

guarantees we allude to are fragile in isolation and too vulnerable to invalidation from below by bugs in the op-

erating system primitives they rely upon. For example, given a formal proof of correctness of generated RPC

code, this proof is predicated on the assumption that the operating system’s primitives for transmitting byte

data are correct. Such a proof can be trivially undermined by a bug in the operating system implementation

that affects the semantics of this primitive.

In the past there has been little value in providing such guarantees predicated on an unstable foundation.

However, we are now in a position to better anchor such formalisms. By building on a formally verified op-

erating system kernel, these guarantees take on more substance and derive their robustness by extending the

well-founded properties of the kernel. It remains as a challenge for us then to define a provable and useful

correctness property for a component platform.

The key insight that led us to our final definition of correctness was that a component platform serves as amen-

tal abstraction for the system designer. Its utility to them is to allow them to think of their component-based

system in terms of component instances and their interactions, without regard for cross-cutting complexities

or the implementation of the “boxes and lines” in their conceptual view of the system. This observation leads

to a natural and intuitive notion of a component platform being correct if its implementation preserves the

semantics of its abstractions. The parallels to program refinement here are not entirely coincidental.

Narrowing this informal definition to a more precise expression, we define the correctness of platform-

generated code by its preservation of the functional semantics of the communication abstraction it

implements. For RPC glue code, an invocation from one component instance to another should be indistin-

guishable from a direct function call between the corresponding two. That is, a remote procedure call should

be functionally equivalent to a local procedure call. This property has an elegant equivalent formulation in

the functional correctness of generated code (which we elaborate on in Chapter 6), and it corresponds well

with the system designer’s intuition of what the component platform’s function should be. It guarantees that

the RPC glue code “does what it says on the box.”

To quantify the isolation guarantees provided by a correct component platform, we have chosen to leverage

the capability-based access control in seL4 and the accompanying access control formalisation (Sewell et al.

2011). By generating a CapDL specification of a component system, as described in Section 2.2.1.6, we have a

formal representation of the authority within the system, that prior work has guaranteed to accurately reflect

the system at runtime (Boyton et al. 2013). We define an independent model for representing a CAmkES

system (Chapter 4), capturing the precise structure of a component-based system architecture. To unify the

two models, we provide a mapping between CAmkES specifications and CapDL specifications, for which we

generate a specialised proof on a per system basis (Chapter 7). Recalling Figure 2.7, we now extend this di-

agram with the production of a correspondence proof in Figure 2.10. The outcome is a formal link between

a component-based system architecture and a capability specification, from which an access control policy



30 CHAPTER 2. BACKGROUND

can be automatically inferred. It then becomes possible to formally prove precise upper bounds on the effect

one component instance can have on another, while maintaining a strong link between the model and the im-

plementation. This technique for guaranteeing isolation mechanisms effectively lifts the isolation properties

of seL4 to the level of abstraction of the component system architecture, and is expanded upon in Chapter

7. Again, while we use seL4-specific mechanisms to accomplish our aim, the techniques generalise to any

capability-based system.

CAmkES

user-provided
architectural
description

user-provided
code

C

generated
glue code

compiler

component
instance
images

binary

int main() {
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Figure 2.10: Initialisation proof production

2.4.4 Component Correctness

It may not be immediately obvious, even to practitioners, that the correctness of a system of connected com-

ponent instances is not a general purpose property. That is, what is “correct” for a component-based system is

intimately dependent on the system’s purpose. Recalling the aviation collision avoidance system from Section

2.4.1, the correctness criteria for this system is fundamentally inseparable from the specific intended goal of

that system. For this reason, unlike an operating system kernel or a component platform, it is not possible to

provide a generalised proof of the correctness of a system of component instances. Instead, the approach we

take in this thesis is to improve the state of the art in mechanisms and tools available for system designers to

prove the correctness of their systems.

As discussed previously in this chapter, component correctness is predicated on the correctness of the compo-

nent platform hosting the component-based system. For this reason it is crucial to expose a way to integrate

proofs of component correctness with generated artefacts that guarantee the platform’s correctness. The gra-

dated techniques we show for doing this in Chapter 4, Chapter 5 and Chapter 6 go beyond what is present in
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existing work by integrating seamlessly with correctness guarantees of the component platform. Where ex-

isting frameworks for reasoning about component-based systems bottom out in (often implicit) assumptions

about the component platform, we bridge this gap, providing a formal link to guarantees of the platform’s

correctness.

2.4.5 Composable Correctness

Informal associations between formalisms promote ambiguity and leave room for hidden assumptions or

semantic mismatch. In a proof chain, the risk is that the assumptions of one artefact may not be satisfied

by the guarantees of the previous. Such mismatches can be subtle and easily obscured by disconnected type

systems.

To minimise the likelihood of such inconsistencies, we pursue a formal chain from the correctness proofs of

the kernel to the correctness proofs of specific component compositions. At the junction between the compo-

nent platform and the kernel, we tackle this problem by phrasing the properties of the platform in the same

formalism as the seL4 proofs. For code proofs, this means phrasing our proofs in the same generic model

of the C99 standard as the kernel proofs (Norrish 1998) and referring to specifications of the kernel’s prim-

itives (system calls) as the only external functions. There remains an informal connection with respect to

the kernel’s userspace stubs and their semantics, that we detail in Section 9.1. Using the same approach for

the isolation guarantees, we build on the existing CapDL formalism so we are once again “speaking the same

language” as the kernel’s existing proofs.

To draw a formal connection between the component platform and a specific component system, we allow the

system designer full visibility of the component platform proofs. By directly exposing the platform proofs for

reuse by the system designer we admit a proof without assumptions on the platform. More specifically, the

system designer can phrase a lemma about their own code which calls platform-generated code, and have lem-

mas about this generated code available for use within their proof without incurring additional assumptions.

By obviating the need for further assumptions, we allow them to achieve an assurance level as if they had hand

written the generated code and manually proven its correctness. The practical robustness of this integration

is that it is not possible for the system designer to inadvertently assume a property that the generated code

does not provide.

2.5 Summary

This chapter has introduced the basic building blocks upon which our present work is founded. By providing

an overview of microkernels, component-based software engineering and interactive theorem proving, we

intend to have oriented the reader for the material that is to come. When reading the remainder of this thesis,

the present chapter should be referred back to for clarification where necessary.

By narrowing the definition of correctness with respect to component platforms, we have aimed to clarify

precisely what we mean by our claim of a verified component platform. It is our hope that this nuance is dealt

with in a similarly explicit manner in future verification efforts for component-based systems.
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Chapter 3

RelatedWork

The approach taken in this thesis builds on a foundation of previous theory and spans several areas of re-

search. In particular, we combine component-based software engineering and formal methods to enable ro-

bust, reusable software. Previous work has identified this combination as the most promising approach to

building critical software at scale (Meyer 1997; Meyer 2003), and our work extends the state of the art in this

domain.

In this chapter, we present a discussion of the main areas of related work and note how they form the context

in which our work is situated. While a treatment of the most closely related research fields is consolidated

here, individual pieces of work are referenced in other chapters when they are most relevant to particular

sections.

3.1 Component Platforms

While the focus of this thesis is not the design and implementation of a component platform itself, it is worth-

while identifying some other similar platforms to CAmkES in order to characterise its feature set. We hope

this may serve to indicate the portability and applicability of our work to other mainstream component plat-

forms. It is difficult to cover the vast array of component platforms in a meaningful discussion, so we choose

instead to highlight a select set that are widely deployed and/or close in implementation to CAmkES.

Perhaps the most familiar component platform to programmers is CORBA (Common Object Request Broker

Architecture 3.3 Specification 2012; Common Object Request Broker Architecture Components 1999). The

name, CORBA, is used to describe a broad ecosystem for building component-based systems, which leads to

some ambiguity, but it was one of the first platforms to popularise many of the concepts that are ubiquitous

in modern CBSE. CORBA has a well-designed IDL that has been reused in other component platforms (for

example, Spring (Mitchell et al. 1994)) and has served as the basis for CAmkES’ IDL. Targeted primarily

at C/C++ programmers, the motivations for its syntax are described in the first version of the specification

(Common Object Request Broker Architecture Specification, Version 1.0 1991):

IDL obeys the same lexical rules as C++, although new keywords are introduced to support dis-

tribution concepts. It also provides full support for standard C++ preprocessing features… IDL

grammar is a subset of ANSI C++ with additional constructs to support the remote operation

invocationmechanism. IDL is a declarative language; it supports C++ syntax for constant, type,

and operation declarations; it does not include any algorithmic structures or variables.

33
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The IDL syntax is an unusual point of similarity between CORBA and CAmkES, and inmost other aspects they

differ. CORBA is a large, all-inclusive platform. It defines a specification,1 allowingmultiple implementations,

covering several axes of dynamism and a complex type system. By this comparison, CAmkES is a deliberately

conservative component platform, with constraints driven by high-assurance target environments.

Many component platforms make a distinction between the languages they use to describe interfaces and ar-

chitectures; for example (Cervantes and Hall 2004; Ommering et al. 2000). While CAmkES was originally

designed this way, its IDL and ADL have since been unified, allowing users to intermingle the two syntaxes.

The distinction still appears in our formal architecture model (Chapter 4) and the syntax is not as tightly inte-

grated as that of some other component platforms (for example, (Reid et al. 2000)), however our observation

was that the distinction was not clear or relevant to users. Removing it allowed more natural expression of

system specifications and reduced user confusion.

Numerous component-based automotive systems are built on top of the AUTOSAR component platform (AU-

TOSAR Release 4.2 Overview and Revision History 2015). Like CAmkES, AUTOSAR is a static platform in

which the precise system architecture is intended to be described at compile time. Rather than targeting a

specific operating system, AUTOSAR targets an operating system specification called OSEK OS (OSEK/VDX

Operating System Specification, Version 2.2.3 2005). OSEK OS is not expected to provide memory isolation,

motivated in part by many of its target environments, Electronic Control Units (ECUs), lacking a Memory

Management Unit (MMU). In contrast, CAmkES assumes mutual distrust between component instances and

that the underlying operating system provides mechanisms to constrain their abilities. CAmkES is only in-

tended to target hardware platforms with an MMU.

Beyond AUTOSAR, there are other less widely acknowledged component platforms that also target environ-

ments without a full MMU. For example, MMLite (Helander and Forin 1998), PECOS (Müller et al. 2001) and

NesC (Gay et al. 2003). A common characteristic among these platforms is that they are aimed at addressing

domain-specific challenges. For example, TinyOS (Levis et al. 2005), the primary consumer of NesC, is specif-

ically intended for use in wireless sensor networks. In contrast, CAmkES aims to support a general purpose

workload.

The terminology of component platforms is not always consistent. Several component platforms are framed

as being toolkits for operating system construction. Notable examples are the previously mentioned MMLite,

THINK (Fassino et al. 2002) and OSKit (Ford et al. 1997). While these may seem to have little in common

with CAmkES and would relate more closely to a componentisation of seL4, this depends on where we draw

the boundary of what is considered the “operating system.” The kernel is only part of an operating system,

and the operating system itself is a nebulous concept. Monolithic operating systems, in general, incorporate

large amounts of functionality that is outside the purview of a microkernel-based operating system. Thus

it is possible to see CAmkES as a toolkit for building a seL4-based operating system, and thereby sharing

commonalities with these other platforms.

There are a number of component platforms that, like CAmkES, target L4-based microkernels, most promi-

nently Genode (Feske and Helmuth 2007) and L4Re (Vogt, Döbel, and Lackorzynski 2010). There are com-

monalities in their implementations and Genode also has the ability to target seL4. However, the focus of nei-

ther is formal verification and both permit a level of architectural dynamism that is not supported by CAmkES.

Verification of a dynamic component platform introduces further challenges that we do not attempt to deal

with in the present work. As such, the use case of these other L4-based platforms somewhat differs from that

of CAmkES.

1The CORBA specification, while detailed, is an informal document not amenable to verification. It provides sufficient information
for the reader to build a conforming implementation, but does not yield a measure of confidence in the correctness of either the model
or any implementation.
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It is worth mentioning more general serialisation frameworks deployed in industry, the closest of which to

CAmkES are Protocol Buffers (Varda 2008) and Cap’n Proto (Varda 2013). Although neither were used as

a basis for CAmkES, there are similarities in their design and mechanisms. Observing the similarities in

their functionality, this is not entirely coincidental as there is often an obvious, logical way of implementing a

particular feature. As far as we are aware, neither provide any formal correctness guarantees.

3.2 Component Platform Correctness

The component platforms with which we compared CAmkES in the previous section for the most part have

no correctness guarantees. While some involve detailed specifications, these specifications are fundamentally

limited by being expressed in informal, imprecise language. In this section, we examine some of the concerted

efforts to guarantee the correctness of component platforms.

One of the most widely deployed approaches in embedded systems is simply to rely on a minimal, manually

auditable code base. Codeminimality is often well alignedwith, and alsomotivated by, other concerns such as

the need for platform abstractions to collapse at compile time. This is observable in platforms such as NesC

(Levis et al. 2005) and Pebble (Gabber et al. 1999), where many of the abstractions of the platform have

no runtime overhead. However, we claim that relying on manual auditing alone for correctness can never

provide sufficient correctness guarantees for a high-assurance component platform. Correctness by virtue of

aminimal trusted computing base is a reasonable approach for a static code base, but a component platform’s

code is generated and differs from system to system. To gain confidence throughmanual auditing requires an

individual inspection for each specific system. The validation effort for one system is not reusable on another

system. While it could be argued that a more comprehensive alternative is to audit the template code of a

component platform, we know of no reliable techniques for auditing such meta code. As a concrete example

of the subtle ways this process can fail, Section 6.1 details a CAmkES bug that was not picked up by a manual

audit of template code.

Pioneering work on the treatment of connectors as first class entities was achieved in the Wright framework

(Allen and Garlan 1997). Wright shares similarities with the formalism we present in Chapter 5, though the

authors do not go further to the level of code (as we do in Chapter 6) or draw a formal connection between

their model and an implementation. Comparing Wright to our dynamic behavioural model alone, the two

differ in several key ways. While both use CSP (Hoare 1985) as a basis, we provide a single choice operator

while Wright offers both external and internal choice. The notions of “external” and “internal” do not have

a well-defined meaning in our framework as the connectors and components are treated equivalently and

neither are in opposition to an environment. Secondly Wright abstracts data in places that our formalism

does not. For example, it is possible to express the contents of a shared memory region in our model, but not

within Wright. However, this abstraction is not fundamental to Wright, rather the authors have taken this

as a simplification. The specification of components within Wright is not described and the authors note this

would require projection functions of the components’ state. In fact, this is exactly the approach our work

takes for representing components. Finally, verification of a component-based system in Wright generally

involves showing conformance to an architectural style (Allen 1996). This is not an intended aim of ours, and

we leave the correctness criteria open for the system designer to define.

There is a large amount of existing research in the area of correct-by-construction component-based systems.

However, themajority of this work deals with the correctness of components, as opposed to the platform itself;

a distinction introduced in Section 2.4. In particular, it is a common approach to solve architecturalmismatch

(Garlan, Allen, and Ockerbloom 1995) by deriving “interface compatibility” of a given system architecture.

This line of work of seeks to show statically that an architecture represents a coherent pairing of component
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instances; that is, component instances involved in a connection communicate in a compatible way. This

has been attempted using state machines (Yellin and Strom 1994; Yellin and Strom 1997), Petri Nets (Silva,

Gorgônio, and Perkusich 2008), constraint solving (Reid et al. 2000), attribute grammars (Batory and Geraci

1997) and numerous other approaches. We distinguish our work from such efforts both by the strength of

the connections between our formalisms and the implementation of a component-based system, and by the

expressiveness and robustness of the guarantees achievable in our work. The previous approaches we have

referred to, orient a verification effort as targeting specific classes of properties. In contrast, we pursue full

functional correctness as a generalised basis for any more specific property the system designer requires. Our

approach can even serve as a basis for one of these previous, specialised techniques. The specialised technique

can be used for reasoning about individual component instances, appealing to our formalisms for correctness

of the platform itself.

Though not framed as component platform verification, there are similarities between the Ensemble system

(Hayden 1998; Liu et al. 1999) and its associated Nuprl proof system and our work. The approach the authors

use for translating code into their formalism (Kreitz 1997) shares aspects with our C-to-SIMPL translation,

though their translation is from OCaml to Nuprl. However, similar to the work from the previous paragraph,

the problem tackled by the authors is essentially interface compatibility. Arguably, in their domain of net-

working protocols, this is where the greatest benefit is to be had.

While interface compatibility is a necessary property for component system correctness, it is insufficient on

its own. PECOS-CoCo (Genßler and Zeidler 2001; Genßler et al. 2002) attempts to take this further by stati-

cally validating a component architecture and additionally inserting runtime checks of functional properties.

When comparing to our work, we show significantly stronger correctness properties and are able to achieve

verification statically at compile time, obviating the need for runtime overhead. Not only does our work pro-

vide stronger guarantees, it precludes runtime failure whichmay be unacceptable in embedded environments

that cannot be easily serviced.

In contrast to many other component verification efforts, the BIP component framework (Basu et al. 2011)

aims to have a strong connection between a model of the behaviour of a component platform and its imple-

mentation. It is possible to generate code from a BIP model or derive a BIP model from an implementation

(Basu et al. 2007). However, a significant gap still remains in the connection between code and model and

the properties that can be proven on a BIPmodel are limited by its automatedmodel checking approach. Like

other existing work, BIP does not address the problem of guaranteeing platform correctness either.

There have been a few notable efforts towards correctness guarantees for L4-based component platforms.

Nitpicker (Feske and Helmuth 2004; Feske and Helmuth 2005) provides a security-focused Graphical User

Interface (GUI) environment, wherein colocated applications only have access to distinct regions of the dis-

play, with their I/O indirected through a server process. L4ReAnimator (Vogt, Döbel, and Lackorzynski 2010)

monitors component execution, restarting crashed components, with the goal of increasing reliability and

availability. To our knowledge, neither of these systems utilise formal methods. The correctness guarantees

are derived from a minimal trusted computing base and the Principle of Least Authority (POLA). While this

does achieve a measure of assurance, formal verification is able to produce a much stronger correctness guar-

antee than these techniques alone.
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3.3 Decompositional Verification

The explicit boundaries between components and the isolation provided by theCAmkESplatformpartition the

task of verifying a component-based system. By providing generated proofs of the platform glue code that are

designed to integrate with hand written proofs, we are effectively providing natural points of decomposition

for a larger proof. Themanner in which the generated proofs and hand written proofs interact has similarities

to, and is informed by, prior work on decompositional program verification.

The area of verification of concurrent programs has long been an active area of research. One of the most

prominent techniques that has emerged from this field is Rely/Guarantee reasoning (Jones 1983; Owicki

and Gries 1976). There are many superficial similarities between this work and ours (for example, Owicki

and Gries’ phrasing for preserving another process’ precondition compared with our requirement to preserve

the glue code’s invariant, inv, as discussed in Chapter 6), albeit employed for differing purposes. However,
ultimately we are solving a more constrained problem. User-provided code and glue code only share state

in a very limited fashion; at any execution point, there is always a definitive “owner” of the shared state. In

addition, the chained, sequential control flow ensures that the guarantees required by a fragment of code only

need to hold on entry to and exit from that block. These are the primary reasons why we are able to achieve a

greater level of automation than traditional Rely/Guarantee procedures.

Rely/Guarantee has previously been applied for reasoning about component-based systems by automatically

generating assumptions and then usingmodel checking or testing (Blundell, Giannakopoulou, and Păsăreanu

2006; Giannakopoulou, Păsăreanu, and Barringer 2002). While this gives some confidence in the correctness

of a system, it can never exhaustively prove the absence of errors. In this respect, our approach has the ad-

vantage of an absolute guarantee; a correctness proof in any of the formalisms we introduce guarantees the

implementation correct under the assumptions of the model.

A natural approach for decompositional program reasoning is separation logic (Reynolds 2002). The form of

the Hoare triples in Chapter 6 suggest that it may be possible to rephrase these in separation logic with a suit-

able frame rule. Retrospectively, it has become apparent how to leverage separation logic for this formalism,

but it was previously unclear that this would be a viable approach. Recent work has applied separation logic

to proofs of seL4-based systems (Boyton 2014; Boyton et al. 2013), demonstrating that this is feasible. At

this stage, reconstructing our formalism using separation logic would gain us little beyond more convenient

syntax. However, it would provide a more natural environment for hand written proofs to build upon, and we

consider it to be a worthwhile future improvement to our work.

3.4 Compiler Correctness

Generalising the functionality of a component platform’s code generator, it is essentially a compiler. It accepts

an input specification and produces executable code based on this specification. The design of component

platform code generators typically share some common principles with conventional compilers. Thus the

verification of a component platform can be compared to compiler verification efforts.

The most prominent low level compiler verification results have been the CompCert C compiler (Leroy 2006)

and the Verisoft XT compiler (Böhme et al. 2010). While such work has commonality with ours in its goals

(verification of a program-generating program) the strategies applied are mostly disjoint. The reason for

this differentiation is that conventional compilers accept an executable input. That is, both the input and

the output have executable semantics and it is the task of the compiler to preserve these semantics during

its transformations. In the case of C, the standards define an abstract machine on which execution of the
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source program takes place (ISO/IEC 2005). This direct equivalence does not exist in a component platform.

While our work gives a well-defined semantics to the input to CAmkES (that we elaborate on in Chapter 4

and Chapter 7), this semantics does not correspond to the code generator’s intended output in such a way

that piecewise equivalence is a desirable property. With this in mind, our work draws on inspiration from

compiler correctness research, but involves the application of different techniques.

Program synthesis is a technique for producing an executable program from an input that is not intended to

be piecewise equivalent, an approach exemplified by Specware (Burstein et al. 2003; McDonald and Anton

2001). This can essentially be seen as the opposite to our approach in Chapter 6. Where we take code and gen-

erate a formal specification, Specware takes a formal specification and generates code. Both approaches have

their strengths and weaknesses, but ours is particularly suitable for the domain of embedded systems where

performance, code density and power consumption are key concerns. By allowing the glue code templates the

full expressive power of the target language, it is possible to have much finer-grained control over the form of

generated code. Related to program synthesis, is the synthesis of data structure representations, exemplified

by systems like RelC (Hawkins et al. 2011) and Fiat (Delaware et al. 2015). However, these efforts are typi-

cally aimed at general programming language data structures and not directly applicable to the correctness of

component platforms. We are not aware of any existing component platform with a formal specification that

generates glue code from this specification and produces code-level correctness guarantees.

One specific technique for showing the correctness of a compiler-like transformation process is known as

translation validation (Necula 2000; Pnueli, Siegel, and Singerman 1998). In this approach, instead of directly

proving the correctness of the compiler, a correspondence between the input and output of the compiler is

shown post hoc. If the proof of correct translation for a single instance is more straightforward than proving

the compiler correct once and for all, this may be an attractive approach. Closely related is the idea of proof-

carrying code (Necula 1997) wherein a program is accompanied by a proof of its correctness, obviating the

need for the program consumer to trust it. The techniques we apply for component platform correctness are

strongly aligned with these concepts. The CAmkES code generator is a large, complex program written in an

interpreted language. Rather than attempt to prove the correctness of the generator and the runtime of its

source language, we have designed it to produce accompanying proofs of the correctness of the artefacts it

generates.

3.5 Summary

This chapter has detailed how our work relates to previous research in the areas of formal methods and

component-based software engineering. In our discussion, we have given priority to work that we believe

most closely relates to our methodology. Selected pieces of work in this chapter are referred to later in this

thesis, when detailing specific technical similarities between our work and previous efforts. We have also

provided context for where our work is situated and how it contributes to the state of the art in component

platform verification.



Chapter 4

Static Architecture Model

In order to apply formal verification to a component platform, we need a formal abstract syntax and type sys-

tem for its concepts. Component platforms are typically not accompanied by formal artefacts providing these

features, and at the outset of our work the meaning of a CAmkES architectural description was only defined

implicitly by the way in which the CAmkES code generator interpreted it. As a first step to the verification of

CAmkES, it was necessary to formalise its syntactic concepts in such a way to allow reasoning about a given

system within Isabelle/HOL.

This chapter discusses a formal model of the architecture of CAmkES systems. We present a set of static

data type definitions. A specific component-based system can be unambiguously specified in terms of these

definitions. Such a formal specification is derived entirely from the architectural description of a component

system and is distinct from the component code itself. With reference to the distinctionmade in Section 2.4.3

and Section 2.4.4, this formalism aids a system designer in reasoning about the correctness of a system of

components, not in gaining confidence in the component platform itself. The expressiveness of the formalism

is limited, but it provides full automation. Any lemma that can be proven within this model can be discharged

by automated proof tactics. This formalism has been the subject of a previous technical report (Fernandez,

Klein, et al. 2013) and introduced in a previous paper (Fernandez, Kuz, et al. 2013). Sections of this chapter

have been adapted from this prior work.

4.1 Utility

Section 2.2.1 described the types of component systems that can be constructed. Given the static architecture

of CAmkES systems, there are certain properties that can be shown based on the architectural description

alone. Informally, properties that are provable from the “boxes and lines” of a component-based system,

without knowledge of what is inside the “boxes.” To demonstrate this, consider the following CAmkES speci-

fication.

39
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1 procedure Inf {
2 /* Read a byte from remote memory */
3 uint8_t read_byte(in unsigned int offset);
4
5 /* Write a byte to remote memory */
6 void write_byte(in unsigned int offset, in uint8_t value);
7 }
8
9 component Client {

10 control;
11 uses Inf inf;
12 }
13
14 component Server {
15 provides Inf inf;
16 }
17
18 assembly {
19 composition {
20 component Client c1;
21 component Client c2;
22 component Server s1;
23 component Server s2;
24
25 connection seL4RPCSimple conn1(from c1.inf, to s1.inf);
26 connection seL4RPCSimple conn2(from c2.inf, to s2.inf);
27 }
28 }

The systemcanbe depicted as in Figure 4.1. Note that there are twodisconnected subsystems thatmake up this

component system. Without knowing the details of the component code itself, it is possible to determine that

c1 and s2 cannot communicate because there is no path between them. That is to say, there are no actions c1
and s2 could take in order to exchange information.1 This is a property that is true of the architecture, rather
than the behaviour of the system.

s2c2

s1c1
inf inf

conn1

inf inf

conn2

Figure 4.1: Example partitioned system

It may seem unusual for a component-based system to be architected this way, with certain component in-

stances completely isolated from each other. However, this often occurs when two distinct systems have been

consolidated to reduce hardware costs and increase utilisation. Though the cases where we can prove an infor-

mation flow property within this formalism are limited, it has the advantage that all contained definitions are

1In this discussion we are excluding communication via side channels. Isolated subsystems in a CAmkES system may still be able to
communicate via, for example, timing channels. Such covert communication is outside the scope of our present work, and addressed by
other ongoing orthogonal efforts (Cock et al. 2014).
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executable, and hence any correctness property that is expressible in this executable subset of HOL is prov-

able automatically. To emphasise this point, a system designer can state a lemma in Isabelle/HOL capturing

a property like the one described above and an automated tactic can discharge the lemma. This technique will

only fail to discharge the lemma if it is false. We will return to this example and demonstrate such a proof in

Section 4.5 after introducing the type system.

4.2 Type System

Recall that there are two inputs the system designer provides to define a CAmkES system: an architecture

description and component source code. What we are representing in this abstraction is the former. There

is a distinction in CAmkES between its ADL and IDL, with the former used to describe component types

and system instantiation, and the latter used to define procedural interfaces. As discussed previously, this

distinction is mostly arbitrary and considered a legacy aspect of CAmkES, but it remains explicit in this model.

It serves some purpose here as these two types of symbols have differing constraints for their validity.

4.2.1 Symbols

CAmkES has two types of symbols that exist in separate namespaces. Symbols of the first type are used in IDL

descriptions to identify names and parameters. These symbols are used during code generation and therefore

need to be distinct within a specific interface.

1 type_synonym idl_symbol = string

Note that the string type in Isabelle/HOL is shorthand for a list of characters, character list.

The second type of symbols is used in ADL descriptions to identify components, connectors and other

architecture-level entities. These symbols are also used during code generation, but are lexically scoped. For

example, instantiated interfaces within separate components can have identical names.

1 type_synonym adl_symbol = string

Although both symbols map to the same underlying type, these have different constraints (for example, IDL

symbols become direct substrings of code-level symbols and hence need to respect symbol naming restrictions

for the target language(s)).

4.2.2 Methods

Methods are the elements that make up a CAmkES procedure, which will be described below. However, we

begin with a treatment of their elements from a bottom up perspective.

Each method within a CAmkES procedure has a list of parameters defined by a type, direction and symbol

name. Each method also has an optional return value type. Recall from Section 2.2.1.2 that the possible types

of method parameters include high level, language-independent types and low level, language-dependent

types. The low level types provide fixed width representations, floating point numbers and an opaque pointer

type2 that are specific to the C programming language. We define both the high level and low level types as

the hierarchical Isabelle/HOL data type primitive as follows.
2The uintptr_t type serves the same role as the uintptr_t type in C, namely an integral representation of a pointer. It is intended

to be used for transferring pointer-like data. The omission of a first class pointer type in CAmkES (that is, void *) is not accidental.
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1 datatype number =
2 -- "High level types"
3 UnsignedInteger
4 | Integer
5 | Real
6 | Boolean
7 -- "C-specific types"
8 | uint8_t
9 | uint16_t

10 | uint32_t
11 | uint64_t
12 | int8_t
13 | int16_t
14 | int32_t
15 | int64_t
16 | double
17 | float
18 | uintptr_t
19
20 datatype textual =
21 -- "High level types"
22 Character
23 | String
24 -- "C-specific types"
25 | char
26
27 datatype primitive =
28 Numerical number
29 | Textual textual

Arrays with a fixed element type are supported as method parameters in CAmkES. Similar to primitive types,

using a high level type for the elementary type of an array allows it to be implemented or used in any compo-

nent, while using a low level type prevents implementing or using it in a component not written in C. Arrays

of arrays andmultidimensional arrays are not supported.3 All arrays are inherently variable length. In C, this

is implemented in generated code with an extra function parameter for array length.

Thus the type of a method parameter is either a primitive or an array, wherein both have a fundamental

primitive type.

1 datatype param_type =
2 Primitive primitive
3 | Array primitive

For the purposes of this static architectural model, we do not need to represent the implementation details

of the individual types. That is, it is not necessary or relevant to know, for example, that the uint8_t type
is a single unsigned byte. Similarly, the serialised data representation of each type is left unspecified in this

model.

Interfaces define a communication payload between component instances that are typically hosted in separate virtual address spaces. In
this environment, a transmitted pointer cannot be sensibly dereferenced as the address it contains points to different data in the sender’s
and receiver’s address spaces. To avoid confusion, we omit a pointer type. In the context of shared memory where component instances
may legitimately wish to exchange pointers, CAmkES provides an alternative mechanism for accomplishing this. More information is
available in the CAmkES documentation (Trustworthy Systems Team 2015).

3Note that hierarchical or multidimensional arrays can be straightforwardly mapped onto a one dimensional array by the user if
needed.
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Rather than having a single return value per procedure method, each method parameter can be an input

parameter, an output parameter, or both.4

1 datatype param_direction =
2 InParameter (* also covers 'refin' *)
3 | OutParameter
4 | InOutParameter

Each parameter has a type and direction, as described, and an identifier.

1 record parameter =
2 p_type :: param_type
3 p_direction :: param_direction
4 p_name :: idl_symbol

Methods are a list of parameters, an optional return type and an identifier.

1 record "method" =
2 m_return_type :: "param_type option"
3 m_name :: idl_symbol
4 m_parameters :: "parameter list"

The translation from procedure methods in CAmkES’ textual input format to their representation in

Isabelle/HOL is straightforward. Consider the following CAmkES method.

1 int foo(in string s);

This is translated into the following Isabelle/HOL representation.

1 "(|m_return_type = Some (Primitive (Numerical Integer)),
2 m_name = ''foo'',
3 m_parameters = [
4 (|p_type = Primitive (Textual String),
5 p_direction = InParameter,
6 p_name = ''s''|)
7 ]|)"

The translated representation appears verbose, but is composed of simple data types and precisely preserves

the information of the originating declaration. The translation process is entirely mechanical, and CAmkES

automates this for the system designer.

The level of abstraction of this representation is similar to a textual CAmkES architecture description. That

is, little is known about the implementation of interface methods. This abstraction facilitates portability of

component system descriptions between source code languages and operating environments.

4The CAmkES grammar, in addition to in, out, and inout parameters, supports a fourth direction, refin. This is a C-specific
optimisation and refin parameters are semantically equivalent to in parameters. We do not differentiate them explicitly in this model,
as they can be adequately represented using the InParameter type.
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4.2.3 Interfaces

Connections between two components are made from one interface to another. This model distinguishes

between the three types of communication abstraction presented by CAmkES. We have already seen the form

of procedure types. Event types are represented as natural numbers (recall that events carry no data other

than their type) and dataport types as an optional string identifying a target language type. If a dataport type

is None, we consider it to be a built in type named Buf.

1 type_synonym procedure = "method list"
2 type_synonym event = nat
3 type_synonym dataport = "string option"
4
5 datatype interface =
6 Procedure procedure
7 | Event event
8 | Dataport dataport

Note that connectors (the type of connections) are expected to link two interfaces of identical type.

4.2.4 Connectors

Two component instances are connected via a connection. A connection is an instantiation of a particular con-

nector. The type of a connector is an abstraction of the underlying communication mechanism. Connectors

can be categorised into two distinct types: native connectors and hardware connectors.5

1 datatype connector_type =
2 Native native_connector_type
3 | Hardware hardware_connector_type

Native connectors map directly to implementation mechanisms. These are purely a software mechanism and

are the types of connectors that are found in almost all component platforms.

1 datatype native_connector_type =
2 AsynchronousEvent -- "an asynchronous notification"
3 | RPC -- "a synchronous channel"
4 | SharedData -- "a shared memory region"

Recalling from Section 2.2.1 that hardware devices are modelled as components in CAmkES, hardware con-

nectors are used to connect the interface of a device to the interface of a software component. Devices must

be connected using the connector type that corresponds to the mode of interaction with the device.6

1 datatype hardware_connector_type =
2 HardwareMMIO -- "memory mapped IO"
3 | HardwareInterrupt -- "device interrupts"
4 | HardwareIOPort -- "x86 I/O ports"

Connectors are distinguished by the mode of interaction they enable. The reason for this will become clearer

in the following sections.

5As discussed previously, we do not support CAmkES’ hardware connectors, but they appear in this model for completeness. By being
able to represent hardware connectors in this formalism we ease future extensions in this direction.

6Note that we represent x86 I/O ports in this data type even though we are targeting ARM. Currently this member is never used, but
this has been included in the data type to ease future extensions.
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1 datatype connector =
2 SyncConnector connector_type
3 | AsyncConnector connector_type
4 | MemoryConnector connector_type

4.2.5 Components

Functional entities in a CAmkES system are represented as components. These are reusable collections of

source code with explicit descriptions of the exposed methods of interaction (“interfaces” described previ-

ously).

Recall from Section 2.2.1 that components have three distinct modes of communication:

1. Synchronous communication over procedures (RPC). This communication is analogous to a function

call and happens over a channel established from a requires7 interface to a provides interface.

2. Asynchronous communication using events. This is suitable for things like signalling and happens over

a channel from an emits interface to a consumes interface.

3. Bidirectional communication via shared memory. This is suitable for passing large data between com-

ponents. It happens over a channel between two dataports.

We represent a component type as an Isabelle/HOL record with a member for each category of interface

the component may have. We also represent whether the component has an active thread of control with a

dedicated field.

1 record component =
2 control :: bool
3 requires :: "(adl_symbol × procedure) list"
4 provides :: "(adl_symbol × procedure) list"
5 dataports :: "(adl_symbol × dataport) list"
6 emits :: "(adl_symbol × event) list"
7 consumes :: "(adl_symbol × event) list"
8 attributes :: "(adl_symbol × param_type) list"

Note that a component’s attributes are represented in the above record. We represent this information in

this model purely to support a faithful information-preserving translation. The values of attributes are not

examined or constrained within this formalism.

4.2.6 Assembling a System

A complete system is formed by instantiating component types that have been defined, interconnecting these

instances and specifying a system configuration. Connections are specified by the two interfaces they connect

and the communication mechanism in use.

1 record connection =
2 conn_type :: connector
3 conn_from :: "(adl_symbol × adl_symbol)"
4 conn_to :: "(adl_symbol × adl_symbol)"

7A requires interface is entirely equivalent to a uses interface in the CAmkES grammar. The reason for differing terminology
is purely pragmatic; “uses” is a reserved keyword in Isabelle/HOL. It was decided not to change the CAmkES keyword as this would
unnecessarily confuse established developers accustomed to uses.
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In the preceding definition, each of the interfaces is identified by a pair of symbols corresponding to a com-

ponent instance and its interface which participate in the connection. So, for example, if a connection is from

foo.bar (the bar interface of component instance foo), its corresponding Isabelle/HOL definition will have
a conn_from field of (''foo'', ''bar'').

A composition block is used to contain all component instances of the system and the connections that define

their communication with each other.

1 record composition =
2 components :: "(adl_symbol × component) list"
3 connections :: "(adl_symbol × connection) list"

Configurations are used as a way of adding extra information to a component or specialising the component

in a particular context. The attributes available to set are specified in the definition of the component8, as

indicated above. These attributes are accessible to the component code.

1 type_synonym configuration = "(adl_symbol × adl_symbol × string) list"

Finally the system specification is expressed at the top level as an assembly. This extra level of abstraction

allows more flexible reuse of compositions and configurations.

1 record assembly =
2 composition :: "composition"
3 configuration :: "configuration option"

4.3 Wellformed Definitions

On specifications within the type system just described, it is possible to define a generic property of valid

specifications. While this property does not guarantee a system conforms to the designer’s expectations, it

does guarantee internal consistency of the specification itself. We call a static architecturemodel “wellformed”

if it has this internal consistency.

This section provides a definition of what it means to be wellformed for each syntactic element that captures

the necessary conditions for it to represent a valid system architecture. Any wellformed system is capable of

being instantiated in a way that corresponds to its ADL.

4.3.1 Wellformed Interfaces

A procedure method is considered wellformed if the symbols of its name and parameters are distinct. This

constraint ensures the code generation process will produce valid code in the target language.9

8This discussion excludes infrastructure attributes that are implicit and used for configuring runtime characteristics of the platform
(for example, setting thread priority). The infrastructure attributes do not have relevance in this model as runtime behavioural aspects
of the system are not represented. More information about infrastructure attributes is provided in the CAmkES reference manual for the
curious reader (Trustworthy Systems Team 2015).

9Depending on the target language, there may be additional conditions on the validity of CAmkES symbols that have an effect on
symbols in generated code. For example, C identifiers must start with an alphabetic character or underscore and must not collide with
certain keywords. Rather than represent these details, we omit them from our definitions, leaving the notion of a wellformed interface
language-independent. It should be clear how to trivially extend these definitions to capture specific rules of a target language’s syntax.
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1 definition
2 wellformed_method :: "method ⇒ bool"
3 where
4 "wellformed_method m ≡
5 (m_name m /∈ set (map p_name (m_parameters m)) ∧
6 distinct (map p_name (m_parameters m)))"

The code generated for a procedure is within a single namespace and thus the names of all methods in a

procedure must be distinct. Note that we also require procedures to have at least one method. Procedures

without methods have no use, and thus this serves as a sanity check for users.

1 definition
2 wellformed_procedure :: "procedure ⇒ bool"
3 where
4 "wellformed_procedure i ≡
5 (i ̸= []) ∧
6 (∀ x ∈ set i. wellformed_method x) ∧
7 distinct (map m_name i)"

Recall from Section 2.2.1 that events carry no data. The only property an event type has is its distinctness from

other event types. Thus we represent event types as distinct natural numbers. These identifiers are required

to be less than 32 due to implementation-specific concerns.10 This is not fundamental to the design of this

model and this constraint could be removed without excessive effort.

1 definition
2 wellformed_event :: "event ⇒ bool"
3 where
4 "wellformed_event e ≡ e < 32"

Dataports do not have any attributes beyond their type, so they are trivially wellformed.

1 definition
2 wellformed_dataport :: "dataport ⇒ bool"
3 where
4 "wellformed_dataport d ≡ True"

The conditions for an interface to be wellformed can now be defined hierarchically.

1 fun
2 wellformed_interface :: "interface ⇒ bool"
3 where
4 "wellformed_interface (Procedure p) = wellformed_procedure p"
5 |"wellformed_interface (Event e) = wellformed_event e"
6 |"wellformed_interface (Dataport d) = wellformed_dataport d"

4.3.2 Wellformed Components

For a component to be wellformed, we require that its interfaces themselves are wellformed. To instantiate a

component successfully we also need to ensure that the names of the interfaces are distinct. References to a

component’s interfaces are by name, hence we need to ensure that such references are unambiguous. These

two requirements are captured in the following definition.

10This limitation is motivated by the way in which event identifiers are multiplexed onto asynchronous endpoint fields in seL4. Asyn-
chronous endpoints have a single word of data which is used by CAmkES as a bit set of which events have been received. This design
necessitates a maximum of 32 incoming events (identifiers 0 to 31). In practice, users have not found this to be restrictive in the con-
struction of real systems, but the design could easily be restructured to remove this limitation.
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1 definition
2 wellformed_component :: "component ⇒ bool"
3 where
4 "wellformed_component c ≡
5
6 (* No symbol collisions *)
7 (distinct (map fst (requires c) @ map fst (provides c) @
8 map fst (dataports c) @ map fst (emits c) @ map fst (consumes c)) ∧
9

10 (* No C symbol collisions *)
11 (∀ x ∈ set (requires c). wellformed_procedure (snd x)) ∧
12 (∀ x ∈ set (provides c). wellformed_procedure (snd x)) ∧
13
14 (* Events valid *)
15 (∀ x ∈ set (emits c). wellformed_event (snd x)) ∧
16 (∀ x ∈ set (consumes c). wellformed_event (snd x)) ∧
17
18 (* Dataports valid *)
19 (∀ x ∈ set (dataports c). wellformed_dataport (snd x)))"

4.3.3 Wellformed Connectors

A wellformed connector primarily requires internal consistency of its mechanism. That is, that the type of

communication it performs is coherent with its mode of interaction.

1 definition
2 wellformed_connector :: "connector ⇒ bool"
3 where
4 "wellformed_connector c ≡ case c of
5 SyncConnector t ⇒ case t of
6 Native n ⇒ n ∈ {RPC}
7 | Hardware h ⇒ h ∈ {HardwareIOPort}
8 | AsyncConnector t ⇒ case t of
9 Native n ⇒ n ∈ {AsynchronousEvent}

10 | Hardware h ⇒ h ∈ {HardwareInterrupt}
11 | MemoryConnector t ⇒ case t of
12 Native n ⇒ n ∈ {SharedData}
13 | Hardware h ⇒ h ∈ {HardwareMMIO}"

Note that this particular constraint could have been encoded directly in the type system, but we chose to

express this in the wellformed predicate for flexibility during development. In practice it has not caused

problems, and either formulation would have been suitable.

4.3.4 Wellformed Connections

The only internal consistency property for a connection (the instantiation of a connector) is that its references

are valid symbols. This is captured at a higher level in the definition of a wellformed component system

composition. For this reason, we define a trivial predicate for wellformed connections.

1 definition
2 wellformed_connection :: "connection ⇒ bool"
3 where
4 "wellformed_connection c ≡ True"
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4.3.5 Symbol Resolution

A CAmkES specification uses textual identifiers to indicate references to defined entities. For example, in the

following specification, Foo on line 6 references the procedure defined in lines 1-3.

1 procedure Foo {
2 void method(void);
3 }
4
5 component Bar {
6 uses Foo f;
7 }

The resolution of these symbolic textual references is represented formally in this model. For each outgoing

interface (requires and emits), we require that there is a single connection with a matching component
instance.11 Here we use the non-standard binder, ∃ 1, for “there exists exactly one.”

1 definition
2 refs_valid_interfaces :: "adl_symbol ⇒ (adl_symbol × procedure) list ⇒
3 (adl_symbol × event) list ⇒ (adl_symbol × connection) list ⇒ bool"
4 where
5 "refs_valid_interfaces component_instance procedures events conns ≡
6
7 (* Each outgoing procedure is connected *)
8 (∀ x ∈ set procedures.
9 (∃ 1 y ∈ conns. from_component (snd y) = component_instance ∧

10 from_interface (snd y) = fst x)) ∧
11
12 (* Each outgoing event is connected *)
13 (∀ x ∈ set events.
14 (∃ 1 y ∈ conns. from_component (snd y) = component_instance ∧
15 from_interface (snd y) = fst x))"

Incoming interfaces can be left disconnected in a system with no adverse effects. Thus, the only property we

need of components is the correctness of their requires and emits interfaces.

1 definition
2 refs_valid_components ::
3 "(adl_symbol × component) list ⇒ (adl_symbol × connection) list ⇒ bool"
4 where
5 "refs_valid_components comps conns ≡ ∀ x ∈ set comps.
6 refs_valid_interfaces (fst x) (requires (snd x)) (emits (snd x)) conns"

11Recall from Section 2.2.1 that CAmkES supports connections that have multiple component instances at either end. However, for
the purposes of this work, we deal only with one-to-one connections.
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Each connection must be connecting interfaces of the same underlying type.

1 definition
2 refs_valid_connection :: "connection ⇒ (adl_symbol × component) list ⇒ bool"
3 where
4 "refs_valid_connection x component_list ≡
5
6 wellformed_connector (conn_type x) ∧
7 (case conn_type x of
8
9 SyncConnector _ ⇒

10 (* Corresponding procedures exist *)
11 (∃ 1 y ∈ component_list. to_component x = fst y ∧
12 does_provide (snd y) (to_interface x)) ∧
13 (∃ 1 y ∈ component_list. from_component x = fst y ∧
14 does_require (snd y) (from_interface x))
15
16 | AsyncConnector _ ⇒
17 (* Corresponding events exist *)
18 (∃ 1 y ∈ component_list. to_component x = fst y ∧
19 does_consume (snd y) (to_interface x)) ∧
20 (∃ 1 y ∈ component_list. from_component x = fst y ∧
21 does_emit (snd y) (from_interface x))
22
23 | MemoryConnector _ ⇒
24 (* Corresponding dataports exist *)
25 (∃ 1 y ∈ component_list. to_component x = fst y ∧
26 has_dataport (snd y) (to_interface x)) ∧
27 (∃ 1 y ∈ component_list. from_component x = fst y ∧
28 has_dataport (snd y) (from_interface x)))"

1 definition
2 refs_valid_connections ::
3 "(adl_symbol × connection) list ⇒ (adl_symbol × component) list ⇒ bool"
4 where
5 "refs_valid_connections conns comps ≡
6 ∀ x ∈ set conns. refs_valid_connection (snd x) comps"

Putting these together, we have that the validity of references in a composition is the validity of references in

its contained component instances and connections.

1 definition
2 refs_valid_composition :: "composition ⇒ bool"
3 where
4 "refs_valid_composition c ≡
5 refs_valid_components (components c) (connections c) ∧
6 refs_valid_connections (connections c) (components c)"
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4.3.6 Overall System

We obtain a guarantee of the correctness of a component composition by composing the required properties

of its constituents.

1 definition
2 wellformed_composition :: "composition ⇒ bool"
3 where
4 "wellformed_composition c ≡
5
6 (* This system contains ≥ 1 active component *)
7 (∃ x ∈ set (components c). control (snd x)) ∧
8
9 (* All references resolve *)

10 refs_valid_composition c ∧
11
12 (* No namespace collisions *)
13 distinct (map fst (components c) @ map fst (connections c)) ∧
14
15 (* All components are valid *)
16 (∀ x ∈ set (components c). wellformed_component (snd x)) ∧
17
18 (* All connections are valid *)
19 (∀ x ∈ set (connections c). wellformed_connection (snd x))"

The correctness of a configuration is trivial, as the type system already constrains it to only have valid values.

1 definition
2 wellformed_configuration :: "configuration ⇒ bool"
3 where
4 "wellformed_configuration conf ≡ True"

Thus we have the correctness of an assembly as simply the correctness of its members.

1 definition
2 wellformed_assembly :: "assembly ⇒ bool"
3 where
4 "wellformed_assembly a ≡
5 wellformed_composition (composition a) ∧ (case (configuration a) of
6 None ⇒ True
7 | Some x ⇒ wellformed_configuration x)"

These definitions are sufficient to formally define what it means for CAmkES specifications to be wellformed.

We require a specification to be wellformed to instantiate it as a running system. That is, if the CAmkES

code generator is supplied with a specification that is not wellformed, we guarantee nothing about its output

and permit it to generate incorrect code.12 The system designer is expected to defend themselves against this

scenario by showing their specification is wellformed.

It can be observed that all the definitions we have provided in this chapter are executable. This naturally leads

to them being automatically decidable on a concrete specification.13 Thus, the obligation on the system de-

signer to show their specification to be wellformed can be discharged entirely automatically by Isabelle/HOL.

12This may seem unusual, but is a relatively common style of specifying compiler correctness. That is, the compiler, when fed invalid
input, is permitted to do anything including produce the infamous nasal demons (Woods 1992).

13A side effect of an executable model is that we could also use code extraction to obtain a verified wellformed checker for CAmkES
specifications. This was not required for the current work and has not been attempted, but would be a trivial extension to the existing
implementation.
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4.4 Example System

To demonstrate the utility of the model introduced in this chapter, we return to the example system from

Section 4.1. Its specification can be automatically translated into Isabelle/HOL terms using the definitions

we have introduced in this chapter. The procedure from the specification is translated into the following

formal representation.

1 definition
2 Inf :: procedure
3 where
4 "Inf ≡ [(| m_return_type = Some (Primitive (Numerical uint8_t)),
5 m_name = ''read_byte'',
6 m_parameters = [(| p_type = Primitive (Numerical UnsignedInteger),
7 p_direction = InParameter,
8 p_name = ''offset'' |)] |),
9 (| m_return_type = None,

10 m_name = ''write_byte'',
11 m_parameters = [(| p_type = Primitive (Numerical UnsignedInteger),
12 p_direction = InParameter,
13 p_name = ''offset'' |),
14 (| p_type = Primitive (Numerical uint8_t),
15 p_direction = InParameter,
16 p_name = ''value'' |)] |)]"

Observe that the Isabelle/HOL definition closely matches the input specification in the level of detail and

information encapsulated.

The Client component has a corresponding definition containing its single interface and showing that it has
a thread of control.

1 definition
2 Client :: component
3 where
4 "Client ≡ (|control = True,
5 requires = [(''inf'', Inf)],
6 provides = [],
7 dataports = [],
8 emits = [],
9 consumes = [],

10 attributes = []|)"

The Server component’s definition appears similar, though note that it has no thread of control.

1 definition
2 Server :: component
3 where
4 "Server ≡ (|control = False,
5 requires = [],
6 provides = [(''inf'', Inf)],
7 dataports = [],
8 emits = [],
9 consumes = [],

10 attributes = []|)"

These are the only generated component definitions. Although there are four component instances in this sys-

tem, there are only two component types. Each definition is instantiated twice, once per component instance.
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1 definition
2 c1 :: component
3 where
4 "c1 ≡ Client"
5
6 definition
7 c2 :: component
8 where
9 "c2 ≡ Client"

10
11 definition
12 s1 :: component
13 where
14 "s1 ≡ Server"
15
16 definition
17 s2 :: component
18 where
19 "s2 ≡ Server"

The connections are given as definitions that capture their type (a connector) and each of their ends as textual

references.

1 definition
2 conn1 :: connection
3 where
4 "conn1 ≡ (|conn_type = seL4RPCSimple,
5 conn_from = (''c1'', ''inf''),
6 conn_to = (''s1'', ''inf'')|)"
7
8 definition
9 conn2 :: connection

10 where
11 "conn2 ≡ (|conn_type = seL4RPCSimple,
12 conn_from = (''c2'', ''inf''),
13 conn_to = (''s2'', ''inf'')|)"

Finally these definitions are combined in a composition, configuration and ultimate assembly.

1 definition
2 composition' :: composition
3 where
4 "composition' ≡ (|
5 components = [(''c1'', c1), (''c2'', c2), (''s1'', s1), (''s2'', s2)],
6 connections = [(''conn1'', conn1), (''conn2'', conn2)]|)"
7
8 definition
9 configuration' :: "configuration option"

10 where
11 "configuration' ≡ None"
12
13 definition
14 assembly' :: assembly
15 where
16 "assembly' ≡ (|composition = composition',
17 configuration = configuration'|)"
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Each term has an accompanying proof that it is wellformed. We show the proof corresponding to the assembly

as an example.

1 lemma wf_assembly': "wellformed_assembly assembly'"
2 by code_simp

To clarify the definitions provided in this section, all Isabelle/HOL artefacts are produced automatically from

the designer’s initial textual specification. That is, the translation of the specification into Isabelle/HOL and

the proof that it is wellformed are fully automatic. The fact that the proof can be completed automatically is

not due to the simplicity of this example, but rather the executability of thismodel, as discussed in the previous

section. Any given CAmkES specification can be proven wellformed automatically in this manner. There is no

ambiguity in the model and thus conversely, a failure of this proof definitively indicates that a specification is

not wellformed.

4.5 Information Flow

We move now to demonstrating how simple information flow properties can be automatically proven in this

formalism. We can phrase a definition that extracts the connections in the system and specifies a set of con-

nected component instance names.

1 definition
2 links :: "(string × string) set"
3 where
4 "links ≡ set (map (λc. (fst (conn_from c), fst (conn_to c)))
5 (map snd (connections (composition assembly'))))"

Observe that this set describes a relation between connected component instances. From this, we can write a

lemma in terms of the transitive closure of this relation that states c1 is unreachable from s2. As with proving
the specification is wellformed, this property is discharged automatically.

1 lemma "{(''c1'', ''s2''), (''s2'', ''c1'')} ∩ links+ = {}"
2 by code_simp

Any property in the executable subset of Isabelle/HOL can be proven automatically in this manner. For ex-

ample, on a given system we could prove properties such as “every connection to a network interface passes

through an encryption component” or “all input from untrusted components passes through a sanitising com-

ponent.” More powerfully, such properties can be written as executable predicates on an architecture speci-

fication (assembly ⇒ bool) and Isabelle/HOL’s code extraction can be used to generate an independent
program to test this property of arbitrary future specifications.

4.6 Limitations

The properties that can be expressed and proven on this model are limited. For instance, it is generally not

possible to prove properties about directly connected component instances. However, the advantage of this

model is its executability. A property in the expressive subset of this model can be proven automatically. This

makes it particularly attractive for system designers who are not formalmethods experts. The only complexity

in reasoning is constructing the property to be proved.
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A natural consequence of the limited expressiveness of this model is that a property that cannot be proven is

not inherently false. There are certain properties that depend on both the system architecture and behaviour

of individual component instances. For example, even if c1 and s2 were transitively connected in the previ-
ous example, it may still be true that there is no information flow between them because they never use the

connections available to them. Such properties cannot be proven on this model, and are the motivation for

the more expressive, lower level models discussed in Chapter 5 and Chapter 6.

4.7 Summary

In this chapter, we have shown a formalism for describing the static architecture of component systems. Def-

initions for a specific component system are automatically generated from the designer’s architecture specifi-

cation. The formalism is comparatively basic, but specification validation and the proof of simple properties

can be performed automatically. We have demonstrated how this can be applied in the context of an example

system.

The pervasive automationwithin this formalism aids its use by non-experts. A designerwho understands their

architecture and its intended separation properties can check that it is wellformed and then prove isolation

lemmas with little introduction to Isabelle/HOL or formal verification. In part, the value of this model is in

lowering the barrier to the use of formal methods in CBSE.
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Chapter 5

Dynamic Behavioural Model

The behaviour of a software system at runtime is dictated by its code. A component-based system contains

code the designer has provided for its components and code introduced by the component platform. Under-

standing and reasoning about complex systems requires a model of what this collection of code does. As with

many software systems, there is an upper bound on what is provable statically on a representation of a com-

ponent architecture, and certain properties require analysis of the dynamic behaviour1 of the contents of the

system.

The topic of this chapter is a model of the dynamic behaviour of CAmkES systems. This model is built on

a message passing formalism for imperative programs and allows the expression of an upper bound on the

runtime behaviour of a component system. As with the static architecture model from the preceding chapter,

generated artefacts for a specific component system in this model are based entirely on the system’s architec-

ture specification, and are independent of the component code provided. We infer a component instance’s

behaviour from the constraints imposed by the architecture. This formalism provides greater expressiveness

than the static architecture model, but at the cost of full automation. Proofs in this formalism will typically

require somemanual reasoning, though we automate the production of system artefacts that do not affect cor-

rectness. This material has been the subject of a previous technical report (Fernandez, Gammie, et al. 2013)

and part of a previous paper (Fernandez, Kuz, et al. 2013) and some content from this chapter is adapted from

these.

We begin by describing what is possible to express within this model and its utility to a system designer. We

then introduce the foundations of the formalisation and show example generated theories for each CAmkES

communication mode. Finally, we return to the initial example to demonstrate how to prove properties that

rely on runtime behaviour.

5.1 Expressiveness

Chapter 4 described a formalism suitable for proving properties that are statically true of the architecture of a

component-based system. That is, properties that are provable without needing to consider the behaviour of

component instances. This chapter is concernedwith a formalism inwhich properties that rely on the runtime

behaviour of component instances can be specified. Consider a scenario involving component instances that

1Within this chapter, we use the phrase “dynamic behaviour” to refer to the system’s execution, in opposition to its “static architecture.”
We spell this out to avoid the misinterpretation that we are instrumenting the system at runtime. All our formal analysis, including the
work in this chapter, is performed offline.

57
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are transitively reachable from one another. The following system contains three component instances that,

if we view connections as bidirectional edges, all lie within the same strongly connected group.

1 procedure Lookup {
2 int get_value(in int key);
3 }
4
5 component Client {
6 control;
7 uses Lookup l;
8 }
9

10 component Filter {
11 provides Lookup external;
12 uses Lookup backing;
13 }
14
15 component Store {
16 provides Lookup l;
17 }
18
19 assembly {
20 composition {
21 component Client client;
22 component Filter filter;
23 component Store store;
24
25 connection seL4RPCSimple one(from client.l, to filter.external);
26 connection seL4RPCSimple two(from filter.backing, to store.l);
27 }
28 }

filter storeclient
l external

one

backing l

two

Figure 5.1: Example interconnected system

This system, depicted in Figure 5.1, has a dictionary of integers hosted in store that can be looked up through
the provided interface. The instance filter interposes on client’s access to this dictionary in order to
restrict access to the keys it can look up. Consider the source code of the component type Store to be the
following.

1 int l_get_value(int key) {
2 if (key == 0) {
3 /* Secret value */
4 return 42;
5 } else if (key == 1) {
6 return 7;
7 } else {
8 return -1;
9 }

10 }
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And the following as the source code for the component type Filter.

1 int external_get_value(int key) {
2 int value = backing_get_value(key);
3 if (value == 7) {
4 return value;
5 } else {
6 /* Deny access to secrets */
7 return -1;
8 }
9 }

Observe that Filter never returns the secret value 42. In our example system, the only way client can
receive values fromstore is viafilter, sowe know client cannot receive42. However, this is not provable
within the formalism of Chapter 4. What is necessary but lacking, is a representation of the behaviour of

filter at runtime. The following sections outline a formalism that allows this specification. We will return

to this example in Section 5.10 to demonstrate how to accomplish this after detailing the model’s foundations.

5.2 CIMP

We build on top of a previously existing language called CIMP (Gammie 2015). CIMP is a small concurrent

imperative language with synchronous message passing, in the style of communicating sequential processes

(Hoare 1985). The sequential part of the language is a standard, minimal, Turing-complete While-language.

Though the language was not initially designed with CAmkES inmind, it is sufficient to express the semantics

of CAmkES glue code and the behaviour of small, trusted component instances.

The message passing mechanism is a slight variation of standard synchronous message passing instructions,

send and receive, that would map directly to seL4’s synchronous IPC. The standard mechanism in labelled

transition systems would identify the message with a message label and potentially a payload. In our setting,

we extend this concept to the instructions Request and Response, that come with two labels, one for a
question and one for the corresponding answer that is provided in the same execution step. The standard

mechanism can be obtained simply by leaving out answers, that is by setting the answer type to unit.

We additionally allow these messages to depend on the state when they are sent as a question and to modify

the local state to store the content of an answer. This variation allows us to conveniently use the same mech-

anism for modelling memory, where the response from memory is instantaneous, or to model asynchronous

messages, where the effect is simply to store the message in a buffer. We will return to this possibility in

Section 5.5.

Below follows the data type for sequential commands in the language. We first define the type of (shallowly

embedded) boolean expressions to be a function from the state 's to bool.

1 type_synonym 's bexp = "'s ⇒ bool"

In this data type, and inmany of those that follow, the definition is parameterisedwith a type for the state. This

gives the system designer the flexibility to represent only the elements of the system state that are of interest

to them. This is crucial for supporting a model that is expressive enough to capture desirable correctness

properties, but sufficiently constrained to scale to large systems.
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The type of sequential commands itself is parameterised by a type 'a for answers, a type 'q for questions and
a type 's for the state of the program. The alternatives of the data type are standard:

• Skip, which does nothing;

• A local operation that can model any function on the local state 's, such as a variable assignment;
• Sequential composition;

• If-then-else;

• While loops with a boolean expression and a body;

• Binary non-deterministic choice;

• Message sending (Request); and
• Message receiving (Response).

In Isabelle/HOL, this appears as follows. There are also convenient notational alternatives provided for some

members. For example, we can express a while loop more naturally as WHILE condition DO body. Note
that this data type is recursive; for example a Seq contains two other com terms.

1 datatype ('a, 'q, 's) com
2 = Skip ("SKIP")
3 | LocalOp "'s ⇒ 's set"
4 | Seq "('a, 'q, 's) com" "('a, 'q, 's) com"
5 (infixr ";;" 60)
6 | If "'s bexp" "('a, 'q, 's) com" "('a, 'q, 's) com"
7 ("(IF _/ THEN _/ ELSE _)" [0, 61] 61)
8 | While "'s bexp" "('a, 'q, 's) com"
9 ("(WHILE _/ DO _)" [0, 61] 61)

10 | Choose "('a, 'q, 's) com" "('a, 'q, 's) com"
11 (infixl "⊔" 20)
12 | Request "'s ⇒ 'q set" "'a ⇒ 's ⇒ 's set"
13 | Response "'q ⇒ 's ⇒ ('s × 'a) set"

For convenience, we introduce infinite loops as an abbreviation. They are, for instance, used in event handling

loops.

1 abbreviation
2 LOOP_syn ("LOOP/ _")
3 where
4 "LOOP c ≡ WHILE (λ_. True) DO c"

After the sequential part, we are now ready to define the externally-visible communication behaviour of a pro-

cess. Processes execute by taking labelled steps, p →label p'. A process can make three kinds of labelled
steps: internal τ steps, message sends, and message receives. Both of the latter are annotated with the ac-

tion/payload of both the request and instantaneous response (if any) of that message. Again, this data type is

parameterised by two types and offers notational alternatives for each member.

1 datatype ('a, 'q) seq_label
2 = SL_Internal ("τ")
3 | SL_Send 'q 'a ("≪_, _≫")
4 | SL_Receive 'q 'a ("≫_, _≪")

The following inductive definition now gives the small-step or structural operational semantics of the sequen-

tial part of the language. The semantics judgement is a relation between configurations, labels, and follow-on

configurations. A configuration consists, as is usual in such settings, of a command and local state 's.
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The two interesting rules are at the beginning: a Request action val command canmake a step labelled as
≪α, β≫ from state s to s' if α is one of the actions that is enabled by action in state s, and if val extracts
s' from the response β in s. Similarly, a Response action command progresses from s to s' with label
≫α, β≪ if β is among the possible responses for the request α, and if s' is in the possible successor states
after potentially extracting α’s payload into the local state.

The other rules are a standard small-step semantics for a minimal non-deterministic imperative language.

Local and terminating steps produce τ transitions and all other labels are passed through appropriately. In

preference to showing the raw Isabelle/HOL definition, we present its type signature and then the rule alter-

natives in the style of proof trees for clarity.

1 inductive small_step ::
2 "('a, 'q, 's) com × 's ⇒ ('a, 'q) seq_label ⇒
3 ('a, 'q, 's) com × 's ⇒ bool"

α ∈ action s s′ ∈ val β s
Request:

(Request action val, s) →≪α, β≫ (SKIP, s′)

(s′, β) ∈ action α s
Response:

(Response action, s) →≫α, β≪ (SKIP, s′)

s′ ∈ R sLocalOp:
(LocalOp R, s) →τ (SKIP, s′)

Seq1:
(SKIP ; ; c2, s) →τ (c2, s)

(c1, s) →α (c1′, s′)
Seq2:

(c1 ; ; c2, s) →α (c1′ ; ; c2, s′)

b s (c1, s) →α (c1′, s′)
IfTrue: (IF b THEN c1 ELSE c2, s) →α (c1′, s′)

¬ b s (c2, s) →α (c2′, s′)
IfFalse: (IF b THEN c1 ELSE c2, s) →α (c2′, s′)

b s (c, s) →α (c′, s′)
WhileTrue: (WHILE b DO c, s) →α (c′ ; ; WHILE b DO c, s′)

¬ b s
WhileFalse: (WHILE b DO c, s) →τ (SKIP, s)

(c1, s) →α (c1′, s′)
Choose1: (c1 ⊔ c2, s) →α (c1′, s′)

(c2, s) →α (c2′, s′)
Choose2: (c1 ⊔ c2, s) →α (c2′, s′)
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Note that the generic nature of the LocalOp command lets us choose the atomicity of local actions as appro-
priate for the language. Since we are in a message passing setting, the atomicity of the internal τ actions is

not important for the generation of verification conditions.

With the semantics for the sequential part, we can now define composition of sequential processes into sys-

tems. For this purpose, we define the global state of a component system as a function from process names,

'proc, to configurations. The type 'procwill later be instantiated with a data type that enumerates precisely
all process names in the system.

1 type_synonym ('a, 'proc, 'q, 's) global_state =
2 "'proc ⇒ (('a, 'q, 's) com × 's)"

With this, we can nowdefine an execution step of the overall system,→, as either any enabled internal τ step of

any process, or as a communication step between two processes. We refer to these alternatives as LocalStep
and CommunicationStep, respectively. For a communication step to occur, two different processes p1 and
p2 must be ready to execute a request/response pair with matching labels α and β. Again, we present the

Isabelle/HOL definition’s type signature followed the rule alternatives as proof trees for clarity.

1 inductive system_step ::
2 "('a, 'proc, 'q, 's) global_state ⇒ ('a, 'proc, 'q, 's) global_state ⇒ bool"

gs p →τ c′ gs′ = gs(p := c′)
gs → gs′

gs p1 →≪α, β≫ c1
′ gs p2 →≫α, β≪ c2

′ p1 ̸= p2 gs′ = gs(p1 := c1
′, p2 := c2

′)
gs → gs′

To make this execution model more clear, we consider a simple example of two cooperating processes.

1 datatype proc
2 = P1
3 | P2

We provide a single question and answer and give the processes a state consisting of a single boolean value.

1 datatype question = Ping
2
3 datatype answer = Pong
4
5 type_synonym state = bool

To the first process, we give a program text that sets an initial state then loops sending the question Ping.

1 definition
2 p1 :: "(answer, question, state) com"
3 where
4 "p1 ≡ LocalOp (λ_. {False}) ;;
5 WHILE (λs. ¬ s)
6 DO Request (λ_. {Ping}) (λ_ _. {True})"
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The second process’ program text loops responding to messages with Pong.

1 definition
2 p2 :: "(answer, question, state) com"
3 where
4 "p2 ≡ LOOP Response (λ_ s. {(s, Pong)})"

We summarise the execution of these two processes in Figure 5.2. Observe that the system as a whole makes

either local steps, in which one process performs an action, or communication steps, in which both processes

perform an action. Recall that this model is non-deterministic, so this depiction is a possible execution of the

system.

P1

LocalOp (λ_. {False}) ;;
WHILE (λs. ¬s)
  DO Request (λ_. {Ping}) (λ_ _. {True})

state = False

P2

LOOP Response (λ_ s. {(s, Pong)})

state = False

SKIP ;;
WHILE (λs. ¬s)
  DO Request (λ_. {Ping}) (λ_ _. {True})

state = False

WHILE (λs. ¬s)
  DO Request (λ_. {Ping}) (λ_ _. {True})

state = False

SKIP ;;
WHILE (λs. ¬s)
  DO Request (λ_. {Ping}) (λ_ _. {True})

state = True

SKIP ;;
LOOP Response (λ_ s. {(s, Pong)})

state = False

WHILE (λs. ¬s)
  DO Request (λ_. {Ping}) (λ_ _. {True})

state = True

SKIP

state = True

↓LocalStep

↓CommunicationStep

LOOP Response (λ_ s. {(s, Pong)})

state = False

SKIP

state = True

↓LocalStep

↓LocalStep

↓LocalStep

↓LocalStep

LOOP Response (λ_ s. {(s, Pong)})

state = False

LOOP Response (λ_ s. {(s, Pong)})

state = False

SKIP ;;
LOOP Response (λ_ s. {(s, Pong)})

state = False

SKIP ;;
LOOP Response (λ_ s. {(s, Pong)})

state = False

Figure 5.2: Example execution of two CIMP processes

From this point, we could go on to provide standard definitions of finite and infinite execution traces and

properties on these, depending on which flavour of properties are desired for a specification verification (for

example, invariants, safety, liveness). For the purposes of defining the semantics of CAmkES’ glue code we

only need the one-step execution, and can therefore leave open which expressive power is desired on top of

this semantics structure.
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5.3 Type System

This section builds up the basic data types that are necessary to model CAmkES glue code in terms of the

concurrent imperative language. In particular, we define data types for the types of variables that glue code

interacts with, the type of messages that CAmkES components send and receive, the local state of compo-

nents, the resulting type of components and finally the partially instantiated, but still generic, global state of

a component system.

5.3.1 Messages

Processes communicate via messages which represent IPC payloads in seL4. The only message operations

performed in a CAmkES system are initiated by the glue code. Variable data contained in messages are rep-

resented using the following data type. This is conceptually equivalent to param_type from Chapter 4, with

a value attached. Note that there is no need to distinguish the C-specific types in this model, as we are not

concerned with the implementation details of the glue code.

1 datatype variable
2 = Boolean bool
3 | Char char
4 | Integer int
5 | Number nat
6 | String string
7 | Array "variable list"

Messages are sent from one process to another as questions and acknowledgedwith answers. Communication

with function call semantics – “procedures” in CAmkES terminology – is represented by a sequence of two

transmissions; a call and the return. The call message takes a nat parameter that is an index indicating
which method of the relevant procedure is being invoked. The variable list of a call message contains all the

input parameters, while the variable list of a return message contains the return value, if there is one, and the

output parameters. To emphasise this, both the call and return of an RPC connection are questions, neither

are answers, contrary to what may have been anticipated.

Event and shared memory connections are modelled using an intermediate component. This is expanded

upon in Section 5.5.

1 datatype question_data
2 -- "Inter-component questions"
3 = Call nat "variable list"
4 | Return "variable list"
5 -- "Questions from components to events"
6 | Set
7 | Poll
8 -- "Questions from components to shared memory"
9 | Read nat

10 | Write nat variable

1 datatype answer_data
2 -- "Answers from events to components"
3 = Pending bool
4 -- "Answers from shared memory to components"
5 | Value variable
6 -- "An answer that conveys no information"
7 | Void
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1 record ('channel) question =
2 q_channel :: 'channel
3 q_data :: question_data

1 record ('channel) answer =
2 a_channel :: 'channel
3 a_data :: answer_data

Message transmission is accomplished using a matching pair of Request and Response actions. This corre-
spondence arises from using the same channel in a question and answer. A channel in this representation
corresponds to a connection in the CAmkES implementation.

5.3.2 Local State

In this section, we define the local state of components. There are three kinds of components: user-defined,

event buffers and shared memory.

We keep the local state of a component parameterised to allow the user to represent asmuch (or as little) of the

concrete state of a component as appropriate for a specific verification. If the local state of a component is not

relevant to our current aim, it can be instantiated with an undefined type declaration, as we will demonstrate

later.

As mentioned, communication channels involving events and shared memory are modelled using an inter-

mediate component with its own local state. For events, the intermediate component has a single bit of state

indicating whether there is a pending signal or not. This is consistent with the desired semantics of the imple-

mentation, that emitting an event that is already pending has no effect.

The local state of a sharedmemory component is amapping fromaddress offsets (or indices) to variable values.

At this level of abstraction, every sharedmemory region is considered infinite and all operations on the region

are represented as manipulations of well-defined types. There is no loss of expressiveness here as raw byte

accesses can be represented by mapping each offset to a variable of subtype Number.

1 datatype 'component_state local_state
2 = Component 'component_state
3 | Event bool
4 | Memory "(nat, variable) map"

5.3.3 Components

We model each component in the system as a process. The type itself is only partially instantiated to let the

type representing the local state of a component be stated more precisely later as described above.

1 type_synonym ('channel, 'component_state) comp =
2 "('channel answer, 'channel question, 'component_state local_state) com"

5.3.4 Global State

The global state of a system is a mapping from component instance identifiers to a pair of component (that

is, program text) and local state. The global state and local state types are parameterised with general types

so they can be instantiated to specifically apply to a given system. During generation, a global state is derived

that covers all component instances; that is, the generated global state is total.
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1 type_synonym ('inst, 'channel, 'component_state) global_state =
2 "('inst, ('channel, 'component_state) comp ×
3 'component_state local_state) map"

5.4 Convenience Definitions

This section defines static functionality that the generated glue code semantics relies on. It provides the basic

building blocks for the CAmkES communication mechanisms. They can also be used as building blocks for

users describing the behaviour of trusted components.

5.4.1 Local Component Operations

The set of all possible states a component can be in is referred to as UNIVc. This is essentially any local state
with the exception of the states representing events and sharedmemory. UNIVc can be thought of as a superset
of user component states, or a safe upper bound on the state of a component. That is, a component can be

underspecified to have a state that lies in this set.

1 definition
2 "UNIVc" :: "'component_state local_state set"
3 where
4 "UNIVc ≡ {x. case x of Component _ ⇒ True | _ ⇒ False}"

An internal step is one in which a component arbitrarily modifies its own local state. Note that it is not pos-

sible for an event or shared memory component (see Section 5.5) to take this step. Analogously to UNIVc, a
component’s actions that are not observable to other components can be over-approximated by internal.

1 definition
2 internal :: "'component_state local_state ⇒ 'component_state local_state set"
3 where
4 "internal s ≡ case s of Component _ ⇒ UNIVc | _ ⇒ {}"

We need a wrapper around internal that lifts it into the concurrent imperative language. This represents
an arbitrary local step.

1 definition
2 UserStep :: "('channel, 'component_state) comp"
3 where
4 "UserStep ≡ LocalOp internal"

5.4.2 Communication Component Operations

The following operation receives a Void message and does nothing in reaction to it. This construct is essen-
tially an artefact of the synchronous message passing basis of our formalism. There are natural actions for

a CAmkES component instance to take that represent unidirectional communication, but appear in this for-

malism as bidirectional. To alleviate this discrepancy, we represent such scenarios using a discard action to
describe how the sender deals with the (empty) response to their communication. Usage of this can be seen

in EventEmit below.
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1 definition
2 discard :: "'channel answer ⇒ 'component_state local_state ⇒
3 'component_state local_state set"
4 where
5 "discard a s ≡ if a_data a = Void then {s} else {}"

The following expresses non-deterministically sending any message on a given channel. This provides a way

of specifying unconstrained behaviour of a component given access to a particular outgoing channel. The

command produces the set of all messages on a given channel as possible questions and receives any response

with a fully non-deterministic local state update.

1 definition
2 ArbitraryRequest :: "'channel ⇒ ('channel, 'component_state) comp"
3 where
4 "ArbitraryRequest c ≡ Request (λ_. {x. q_channel x = c}) (λ_ _. UNIVc)"

The following expresses non-deterministically receiving any message on a given channel. The command re-

ceives anymessage, makes a non-deterministic local state update, and returns the set of all possible responses,

β, on the given channel. It is the counterpart of ArbitraryRequest, expressing unconstrained behaviour
given access to an incoming channel.

1 definition
2 ArbitraryResponse :: "'channel ⇒ ('channel, 'component_state) comp"
3 where
4 "ArbitraryResponse c ≡
5 Response (λ_ _. {(s',β). s' ∈ UNIVc ∧ a_channel β = c})"

The following command sends the message Set on the given channel and discards any response to model
asynchronous behaviourwith respect to the event buffer components. Note that themessage is independent of

the local state, s. This action is only expected to be used in communication with event components, described
in Section 5.5.1.

1 definition
2 EventEmit :: "'channel ⇒ ('channel, 'component_state) comp"
3 where
4 "EventEmit c ≡ Request (λs. {(|q_channel = c, q_data = Set|)}) discard"

On the receiving side of an event connection, the user has the following primitive for polling for a pending

event from an event component. The command sends a Pollmessage to the buffer component, and expects
a message, a, back that has the form Pending b with a boolean payload, b. The payload is embedded in the
local state of the component using the user-provided function, embed_data.

1 definition
2 EventPoll :: "'channel ⇒
3 ('component_state local_state ⇒ bool ⇒ 'component_state local_state) ⇒
4 ('channel, 'component_state) comp"
5 where
6 "EventPoll c embed_data ≡
7 Request (λ_. {(|q_channel = c, q_data = Poll|)})
8 (λa s. case a_data a of Pending b ⇒ {embed_data s b} | _ ⇒ {})"
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Similar to EventPoll but with blocking semantics, EventWait waits for a pending event. The command
takes a channel, c, and embedding function, embed_data. Because the set of target states is only non-empty
when the pending bit of the polled event is set, this has the effect of blocking the component’s execution until

the event is available.

1 definition
2 EventWait :: "'channel ⇒
3 ('component_state local_state ⇒ bool ⇒ 'component_state local_state) ⇒
4 ('channel, 'component_state) comp"
5 where
6 "EventWait c embed_data ≡
7 Request (λ_. {(|q_channel = c, q_data = Poll|)})
8 (λa s. case a_data a of Pending b ⇒ if b then {embed_data s b} else {}
9 | _ ⇒ {})"

To express reading from a shared memory location we have MemoryRead. As mentioned above, shared mem-
ory is modelled as a separate process in our glue code semantics. The command below issues a Read request
message to this process with a specified address, and expects an immediate response in the form Value v
back, which is embedded into the local state with the same mechanism as above.

1 definition
2 MemoryRead :: "'channel ⇒
3 ('component_state local_state ⇒ nat) ⇒
4 ('component_state local_state ⇒ variable ⇒ 'component_state local_state) ⇒
5 ('channel, 'component_state) comp"
6 where
7 "MemoryRead c addr embed_data ≡
8 Request (λs. {(|q_channel = c, q_data = Read (addr s)|)})
9 (λa s. case a_data a of Value v ⇒ {embed_data s v} | _ ⇒ {})"

The pair to MemoryRead is MemoryWrite for writing to a shared memory location. The command sends a
Write message to the memory component with specified address and value (which are extracted from the

local state) and does not expect a response.

1 definition
2 MemoryWrite :: "'channel ⇒ ('component_state local_state ⇒ nat) ⇒
3 ('component_state local_state ⇒ variable) ⇒
4 ('channel, 'component_state) comp"
5 where
6 "MemoryWrite c addr val ≡
7 Request (λs. {(|q_channel = c, q_data = Write (addr s) (val s)|)}) discard"

5.5 Connector Components

Asmentioned in previous sections, we represent events and shared memory as components. These connector

components, unlike the component instances in the system, always have a well-defined, constrained execu-

tion because they are effectively implemented by the kernel. This section outlines the definition of the program

text and local state of these components.

The semantics of small steps in the concurrent imperative language are such that a request and a response

can only correspond and allow a global state transition when the question and answer match. Additionally,

all communication between component instances and connector components is atomic, in the sense that they
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involve a single global transition consisting of a single request-response pair. The implication of this is that

an untrusted component cannot disrupt the execution of an event or shared memory component causing it

to stop responding to other components. Untrusted component definitions may contain unsafe transitions

involving malformed messages, but these transitions can never be taken in a global step because there is

no corresponding unsafe step in the connector component definition. This faithfully represents the imple-

mentation constraints that prevent untrusted components from interfering with the operation of the kernel’s

mechanisms.

5.5.1 Event Components

We represent a CAmkES event connector as a component always listening for Set or Poll questions that
then immediately responds with the relevant answer. In particular, the local state is expected to be of the

form Event s, and the component listens to messages of the form Set or Poll. No other messages are
enabled. If a Set is received, the local state becomes Event True, and the response back is Void. If the
message is Poll, the local event state is cleared, and the response message contains the previous event state,
s. Recall that waiting on an event is mapped onto a Poll message, so there is no need for an extra case to
represent this.

1 definition
2 event :: "'channel ⇒ ('channel, 'component_state) comp"
3 where
4 "event c ≡ LOOP
5 Response (λq s'. case s' of Event s ⇒
6 (case q_data q of
7 Set ⇒ {(Event True, (|a_channel = q_channel q, a_data = Void|))}
8 | Poll ⇒ {(Event False, (|a_channel = q_channel q, a_data = Pending s|))}
9 | _ ⇒ {}))"

An event component always starts without a pending event. This accurately models the initial state of the

underlying asynchronous endpoint.

1 definition
2 init_event_state :: "'component_state local_state"
3 where
4 "init_event_state ≡ Event False"

5.5.2 Shared Memory Components

We represent shared memory as an always listening component that reads or writes information into its local

state. Executing these reads and writes unconditionally accurately represents the behaviour of a read/write

region of memory. The implementation is similar to event, it merely replaces a one-bit buffer with a map.

1 definition
2 memory :: "'channel ⇒ ('channel, 'component_state) comp"
3 where
4 "memory c ≡ LOOP
5 Response (λq s'. case s' of Memory s ⇒
6 (case q_data q of
7 Read addr ⇒ {(Memory s,
8 (|a_channel = q_channel q, a_data = Value (case s addr of
9 Some var ⇒ var
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10 | _ ⇒ Number 0)|))}
11 | Write addr val ⇒ {(Memory (s(addr 7→ val)),
12 (|a_channel = q_channel q, a_data = Void|))})
13 | _ ⇒ {})"

The initial state of a shared memory component is an empty map. A shared memory region is assumed to be

zeroed on startup. Note that the preceding definition guarantees these semantics.

1 definition
2 init_memory_state :: "'component_state local_state"
3 where
4 "init_memory_state ≡ Memory empty"

In CAmkES descriptions, shared memory regions can have a type, typically defined as a C struct. For now,

only the default type Buf is represented in this model. The model can be trivially extended to represent user
types as components with a memory local state that have additional constraints on what can be read from or

written to the state.

1 type_synonym "Bufd_channel" = unit
2
3 definition
4 "Bufd" :: "(Bufd_channel ⇒ 'channel) ⇒ ('channel, 'component_state) comp"
5 where
6 "Bufd ch ≡ memory (ch ())"

5.6 Component Behaviour

A combination of generated and user-provided theories provide the definitions of a full system. CAmkES

creates a base theory using the types and definitions previously discussed that defines primitive operations

of a specific system. The system designer is then expected to provide a theory that constrains the system

behaviour by giving more precise definitions for the trusted component instances. We then automatically

extract a generated state that contains definitions for each component instance, falling back on the generated,

generalised definitions for any instance for which a trusted definition has not been provided. The designer

can then perform correctness proofs on this generated state.

This interleaving of generated and user-provided theories is achieved using a locale. A locale is an Is-

abelle/HOL feature designed to capture a set of fixed parameters and assumptions that apply to all enclosed

proofs. The locale we use in this formalism has the effect of leaving “holes” in the generated base definitions

of a system for the type of component instances’ state and the definitions of trusted component instances,

that will be filled in by the system designer post hoc. Appendix B provides a more extended introduction to

the concept of locales for the interested reader.

The theory interleaving we have described may appear counterintuitive but leads to an environment that bal-

ances expressivity with automation. The designer is free to specify as much or as little of their components’

behaviour as they wish, leaving unspecified behaviour to fall back on a generic upper bound provided by the

platform.

If the system designer’s desired correctness property is provable using the generalised component instance

definitions, they are free to provide no trusted component instance definitions at all. However, any such prop-

erty will only be provable by way of architectural constraints of the system. A simpler approach for proving

such properties is to use the formalism from Chapter 4, wherein such proofs would be automatic.
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When using generated theories from the current formalism, the designer is expected to provide the following

type instantiations and definitions:

• A type for component_state indicating the local state that should be represented for each component;
• An initial component_state for untrusted components to be given on startup; and
• A (possibly empty) mapping from component instance identifiers to trusted component definitions.

This relationship between generated and user-provided artefacts is depicted in Figure 5.3.

global_state p ≡ case p of
    monitor ⇒ mon_trusted
  | _ ⇒ untrusted p

lemma "P global_state"
  ...

record st =
  counter   :: nat
  read_data :: bool
  ...

trusted ≡ [
  monitor ↦ mon_trusted
]

⦇
  counter = 0,
  read_data = False,
  ...
⦈

locale
  component state type
  initial state
  trusted components

...

global_state p ≡ case trusted p of
    Some C ⇒ C
  | None ⇒ untrusted p

⇒ ⇒

generated base theory

instantiated locale

hand written correctness proofs

user-provided parameters

Figure 5.3: Instantiating a generated locale with user-provided inputs

The remainder of this section describes the default component definitions that are fallen back onwhen trusted

definitions are not provided.

5.6.1 Local Component State

The user should specify a type for component_state if they want to reason about the behaviour of user-
provided code. If not, then they can use a type declaration to create a new, undefined type.

1 typedecl component_state

The generated theories need to be provided with a default value for the local state type. This is used as the

initial local state for untrusted components. This definition must be visible even if there are no untrusted

components in the system, although in this case it will not be used. If the components’ state is irrelevant to

the current aim, the user can provide a constant of the type declared previously. Note that nothing is known

about this term.

1 consts init_component_state :: component_state

5.6.2 Untrusted Component Instances

Any component which does not have its definition supplied will be given a generated definition that allows it

to non-deterministically perform any local operations or send or receive anything on any channel available to

it. Without providing definitions of any trusted components it will generally be impossible to reason about

anything beyond architectural properties of the system.
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5.6.3 Trusted Component Instances

Trusted components should be given a defined program text (type component) and an initial local state. The
user should provide a definition of trusted, a mapping from component instances to a pair of component

and initial local state. Any instance not present in themapping will be assigned the broad definition described

in the previous paragraph.

The default mapping is as defined below, empty, causing all instances to fall back on their untrusted defini-

tions.

1 type_synonym ('channel) component = "('channel, component_state) comp"

1 type_synonym lstate = "component_state local_state"

1 definition
2 trusted :: "('inst, ('channel component × lstate)) map"
3 where
4 "trusted ≡ empty"

5.7 Example – Procedures

In this section, we provide an example of the generated types and definitions that are derived from a CAmkES

procedure interface. Throughout, this section uses an example system involving two component instances

defined by the following CAmkES specification.

1 procedure Simple {
2 int echo_int(in int i);
3 int echo_parameter(in int pin, out int pout);
4 }
5
6 component Client {
7 control;
8 uses Simple s;
9 }

10
11 component Echo {
12 provides Simple s;
13 }
14
15 assembly {
16 composition {
17 component Echo echo;
18 component Client client;
19
20 connection seL4RPCSimple simple(from client.s, to echo.s);
21 }
22 }
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The system can be depicted as two component instances connected with a single interface in Figure 5.4.

echo clients s

simple

Figure 5.4: Simple component system

5.7.1 Types

Data types are generated to enumerate the connections in the system, channel, and the component instances
in the system, inst. As this system only has a single connection, the channel data type is trivial. Note that
the inst type enumerates component instances, not component types.

1 datatype channel
2 = simple

1 datatype inst
2 = client
3 | echo

For each component type, a data type is generated that enumerates the interfaces of that component.

1 datatype Client_channel
2 = Client_s

1 datatype Echo_channel
2 = Echo_s

This type does not indicate whether the interfaces are outgoing or incoming, or what type of interface they

represent. All component type definitions are parameterised with a mapping from this type to channel.
When a component type is instantiated, this mapping must be specified to describe the architecture of the

system. In this example system, both component instances each have their single interface mapped to the

only connection, simple.

5.7.2 Instantiations of Primitives

The component instance primitives are relatively straightforward, as they are formed by partially applying

component interface definitions, that we will introduce in the next section. We show the definition of the

instance primitives first to aid understanding of the motivation for the interface primitives that are quite

dense.

A call definition is generated for each method in each outgoing interface in each component instance that

partially applies the call definitions from the next section, with a mapping from the component’s interface to

the system connection.

The parameter used to specialise the component interface primitives, a function from that component’s chan-

nel type to the system channel type, is derived from the architecture of the system. In this example the instance
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clienthas its interfaces connected to the connectionsimple. Thus its primitives are expressed using a func-
tion that maps its channel type Client_s to the corresponding system channel, simple. In the case of this
example where the client instance has a single interface, the function could be given as λ_. simple, but
for simplicity the generator does not make this optimisation.

1 definition
2 Call_client_s_echo_int :: "('cs local_state ⇒ int) ⇒
3 ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
4 (channel, 'cs) comp"
5 where
6 "Call_client_s_echo_int ≡
7 Call_Client_s_echo_int (λc. case c of Client_s ⇒ simple)"
8
9 definition

10 Call_client_s_echo_parameter :: "('cs local_state ⇒ int) ⇒
11 ('cs local_state ⇒ int ⇒ int ⇒ 'cs local_state) ⇒
12 (channel, 'cs) comp"
13 where
14 "Call_client_s_echo_parameter ≡
15 Call_Client_s_echo_parameter (λc. case c of Client_s ⇒ simple)"

Similarly, a receive definition is generated for each incoming interface in each component instance.

1 definition
2 Recv_echo_s :: "('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
3 (channel, 'cs) comp ⇒ ('cs local_state ⇒ int) ⇒
4 ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
5 (channel, 'cs) comp ⇒ ('cs local_state ⇒ int) ⇒
6 ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp"
7 where
8 "Recv_echo_s ≡ Recv_Echo_s (λc. case c of Echo_s ⇒ simple)"

Recall that we have a receive definition per-interface, not per-method, as it performs method dispatch.

5.7.3 Interface Primitives

We now present the definitions of the interface primitives, the functions used in the previous section. We

describe the glue code specifications generated for each interface of each component type. For an outgoing

procedure interface, a definition is generated for each method in that interface, prefixed by “Call,” the compo-

nent name and the interface name. These can be composed with each other and user-provided steps to form

a process that describes the execution of the component.

The interface in this example has two methods, echo_int and echo_parameter, hence two separate call
definitions are generated. These functions take a sequence of embedding and projection functions into and

out of the component’s local state. The types of these functions are derived from the parameter types of the

method and are used for marshalling arguments. For example, echo_int takes an int input parameter,
i, which necessitates a projection function, iP, as a parameter to Call_Client_s_echo_int. Conversely,
themethod returns an int parameter, necessitating an embedding function, embed_data as a parameter. In
general, an input parameter requires a projection, an output parameter or return value requires an embedding

and an input/output parameter requires both.
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1 definition
2 Call_Client_s_echo_int :: "(Client_channel ⇒ channel) ⇒
3 ('cs local_state ⇒ int) ⇒
4 ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
5 (channel, 'cs) comp"
6 where
7 "Call_Client_s_echo_int ch iP embed_data ≡
8 Request (λs. {(|q_channel = ch Client_s,
9 q_data = Call 0 [Integer (iP s)]|)}) discard ;;

10 Response (λq s. case q_data q of Return xs ⇒
11 {(embed_data s (case hd xs of Integer v ⇒ v),
12 (|a_channel = ch Client_s, a_data = Void|))} | _ ⇒ {})"
13
14 definition
15 Call_Client_s_echo_parameter :: "(Client_channel ⇒ channel) ⇒
16 ('cs local_state ⇒ int) ⇒
17 ('cs local_state ⇒ int ⇒ int ⇒ 'cs local_state) ⇒
18 (channel, 'cs) comp"
19 where
20 "Call_Client_s_echo_parameter ch pinP embed_data ≡
21 Request (λs. {(|q_channel = ch Client_s,
22 q_data = Call 1 [Integer (pinP s)]|)}) discard ;;
23 Response (λq s. case q_data q of Return xs ⇒
24 {(embed_data s (case hd xs of Integer v ⇒ v)
25 (case xs ! 1 of Integer v ⇒ v),
26 (|a_channel = ch Client_s, a_data = Void|))} | _ ⇒ {})"

For an incoming procedure interface, a single definition is generated with the prefix “Recv,” the component’s

name and the interface name. There is a single definition on the incoming side, rather than one per interface,

to match the semantics of the implementation. That is, the blocking receive followed by method dispatch are

captured in this definition. Projection and embedding functions are again necessitated, but their roles are

reversed.

Each receive definition is also parameterised with a process for each method representing the user-provided

implementation of this method. For example, in the definition below, the Echo_s_echo_int parameter is
expected to be the user’s implementation of the echo_intmethod.

1 definition
2 Recv_Echo_s :: "(Echo_channel ⇒ channel) ⇒
3 ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
4 (channel, 'cs) comp ⇒ ('cs local_state ⇒ int) ⇒
5 ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
6 (channel, 'cs) comp ⇒ ('cs local_state ⇒ int) ⇒
7 ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp"
8 where
9 "Recv_Echo_s ch echo_intE Echo_s_echo_int echo_int_returnP

10 echo_parameterE Echo_s_echo_parameter echo_parameter_returnP
11 echo_parameter_poutP ≡
12 (Response (λq s. case q_data q of Call n xs ⇒
13 (if n = 0 then {(echo_intE s (case xs ! 0 of Integer v ⇒ v),
14 (|a_channel = ch Echo_s, a_data = Void|))} else {}) | _ ⇒ {}) ;;
15 Echo_s_echo_int ;;
16 Request (λs. {(|q_channel = ch Echo_s,
17 q_data = Return [Integer (echo_int_returnP s) ]|)}) discard)
18 ⊔
19 (Response (λq s. case q_data q of Call n xs ⇒
20 (if n = 1 then {(echo_parameterE s (case xs ! 0 of Integer v ⇒ v),
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21 (|a_channel = ch Echo_s, a_data = Void|))} else {}) | _ ⇒ {}) ;;
22 Echo_s_echo_parameter ;;
23 Request (λs. {(|q_channel = ch Echo_s,
24 q_data = Return [Integer (echo_parameter_returnP s),
25 Integer (echo_parameter_poutP s)]|)}) discard)"

Though the type signature and definition of this term are extensive, observe that they are not complex. The

large number of parameters is motivated by the manner in which this generated definition must interact with

user-provided definitions.

5.7.4 Untrusted Components

For each component type, a definition is generated that describes its execution without specifying the be-

haviour of any user-provided code. These definitions allow the component to perform anymanipulation of its

local state or to send or receive any message on the interfaces available to it. These definitions are intended

for use in a system composition when the behaviour of a specific component is not relevant to the desirable

property of the whole system. These definitions are more general than the implementation allows. For exam-

ple, they permit an untrusted component to perform actions such as sending on an incoming interface which

may not be possible in the implementation. This over-generalisation is deliberate, as we want to capture an

upper bound on component behaviour.

Recall fromSection 5.6 that the user is expected to provide amapping describing trusted component instances.

A definition of untrusted execution for each component instance is generated unconditionally as the platform

does not know in advance what property the user ultimately wishes to prove and hence does not know which

instances will need trusted definitions.

1 definition
2 Client_untrusted :: "(Client_channel ⇒ channel) ⇒ (channel, 'cs) comp"
3 where
4 "Client_untrusted ch ≡
5 LOOP (
6 UserStep
7 ⊔ ArbitraryRequest (ch Client_s)
8 ⊔ ArbitraryResponse (ch Client_s))"
9

10 definition
11 Echo_untrusted :: "(Echo_channel ⇒ channel) ⇒ (channel, 'cs) comp"
12 where
13 "Echo_untrusted ch ≡
14 LOOP (
15 UserStep
16 ⊔ ArbitraryRequest (ch Echo_s)
17 ⊔ ArbitraryResponse (ch Echo_s))"

5.7.5 Component Instances

As was the case for the instantiation of primitives in Section 5.7.2, with the definition of an untrusted compo-

nent’s execution generated previously, a definition of the execution of an untrusted instance can be formed by

partially applying the component definition. A definition of untrusted execution is generated for each compo-

nent instance, whether it is required or not.
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1 definition
2 client_untrusted :: "(channel, 'cs) comp"
3 where
4 "client_untrusted ≡ Client_untrusted (λc. case c of Client_s ⇒ simple)"
5
6 definition
7 echo_untrusted :: "(channel, 'cs) comp"
8 where
9 "echo_untrusted ≡ Echo_untrusted (λc. case c of Echo_s ⇒ simple)"

5.7.6 Initial State

The final generated definition is the initial state of the system. Following the type instantiations in Section

5.7.1, the initial global state is a mapping from component instance names to a pair of their program text and

local state. The generated definition looks for the instance’s definition in themapping of trusted instances and,

if it does not find this, falls back on the generated untrusted definitions. Recall that the mapping of trusted

instances is a locale parameter to be provided by the designer later.

1 definition
2 "gs0" :: "(inst, channel, 'cs) global_state"
3 where
4 "gs0 p ≡ case trusted p of Some s ⇒ Some s | _ ⇒
5 (case p of client ⇒ Some (client_untrusted, Component init_component_state)
6 | echo ⇒ Some (echo_untrusted, Component init_component_state))"

5.8 Example – Events

Following on from Section 5.7, this section gives a corresponding example of the definitions that are gen-

erated for a system involving CAmkES events. A system defined by the following specification will be used

throughout.

1 component Emitter {
2 control;
3 emits SomethingHappenedEvent ev;
4 }
5
6 component Collector {
7 control;
8 consumes SomethingHappenedEvent ev;
9 }

10
11 assembly {
12 composition {
13 component Emitter source;
14 component Collector sink;
15
16 connection seL4AsynchNative simpleEvent1(from source.ev, to sink.ev);
17 }
18 }
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5.8.1 Types

The data types generated for a system involving events are similar to those for a system involving procedures,

however an additional instance is derived for every connection in the system that carries eventmessages. This

generated instance models the state of the event; that is, whether it is pending or not.

1 datatype channel
2 = simpleEvent1
3
4 datatype inst
5 = sink
6 | source
7 | "simpleEvent1e" (* artificial component to represent event *)
8
9 datatype Collector_channel

10 = Collector_ev
11
12 datatype Emitter_channel
13 = Emitter_ev

5.8.2 Interface Primitives

For each component type with a consumes interface, two primitives are generated for each interface. These
correspond to the wait and poll functions in generated glue code. As for procedures, embed_data functions
must be supplied by the designer to save the result of the operation into the component’s local state.

1 definition
2 Poll_Collector_ev :: "(Collector_channel ⇒ channel) ⇒
3 ('cs local_state ⇒ bool ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
4 where
5 "Poll_Collector_ev ch embed_data ≡ EventPoll (ch Collector_ev) embed_data"
6
7 definition
8 Wait_Collector_ev :: "(Collector_channel ⇒ channel) ⇒
9 ('cs local_state ⇒ bool ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"

10 where
11 "Wait_Collector_ev ch embed_data ≡ EventWait (ch Collector_ev) embed_data"

For each component type with an emits interface, a single primitive is generated to correspond to the emit
function in the glue code. The emit definition needs no embedding or projection functions because it is state-

independent.

1 definition
2 Emit_Emitter_ev :: "(Emitter_channel ⇒ channel) ⇒ (channel, 'cs) comp"
3 where
4 "Emit_Emitter_ev ch ≡ EventEmit (ch Emitter_ev)"

5.8.3 Instantiations of Primitives

As for procedure interfaces, the event primitives are specialised for each interface in the system by partially

applying them with a function mapping the interface to the relevant – in this case the only – system connec-

tion.
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1 definition
2 Poll_sink_ev :: "('cs local_state ⇒ bool ⇒ 'cs local_state) ⇒
3 (channel, 'cs) comp"
4 where
5 "Poll_sink_ev ≡
6 Poll_Collector_ev (λc. case c of Collector_ev ⇒ simpleEvent1)"
7
8 definition
9 Wait_sink_ev :: "('cs local_state ⇒ bool ⇒ 'cs local_state) ⇒

10 (channel, 'cs) comp"
11 where
12 "Wait_sink_ev ≡
13 Wait_Collector_ev (λc. case c of Collector_ev ⇒ simpleEvent1)"
14
15 definition
16 Emit_source_ev :: "(channel, 'cs) comp"
17 where
18 "Emit_source_ev ≡
19 Emit_Emitter_ev (λc. case c of Emitter_ev ⇒ simpleEvent1)"

5.8.4 Untrusted Components

As before, an untrusted definition is generated for each component type that permits any local operation or

sending or receiving on any available interface. Once again, we deliberately over-approximate the compo-

nents’ behaviour.

1 definition
2 Collector_untrusted :: "(Collector_channel ⇒ channel) ⇒ component"
3 where
4 "Collector_untrusted ch ≡
5 LOOP (
6 UserStep
7 ⊔ ArbitraryRequest (ch Collector_ev)
8 ⊔ ArbitraryResponse (ch Collector_ev))"
9

10 definition
11 Emitter_untrusted :: "(Emitter_channel ⇒ channel) ⇒ component"
12 where
13 "Emitter_untrusted ch ≡
14 LOOP (
15 UserStep
16 ⊔ ArbitraryRequest (ch Emitter_ev)
17 ⊔ ArbitraryResponse (ch Emitter_ev))"

5.8.5 Event Components

For each connection in the system over which events are transmitted, a definition is generated of a component

type that models the state of the event. The type enumerating the interfaces of this component is expressed

as unit because, naturally, there is only a single interface to this introduced component. The details of the
execution of the component can largely be expressed statically, and are captured by the definition, event,
given in Section 5.5.1.
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1 type_synonym SomethingHappenedEvent_channel = unit
2
3 definition
4 SomethingHappenedEvent :: "(SomethingHappenedEvent_channel ⇒ channel) ⇒
5 component"
6 where
7 "SomethingHappenedEvent ch ≡ event (ch ())"

5.8.6 Component Instances

The definitions of untrusted component instances are generated as in Section 5.7.5, but a definition is also

derived for an instance of the introduced component. There is no opportunity for the user to provide a defini-

tion of the trusted execution of this component, because we already know exactly what actions this component

takes. Being part of the component platform itself, we can generate a definition that exactly expresses its exe-

cution.

1 definition
2 sink_untrusted :: component
3 where
4 "sink_untrusted ≡
5 Collector_untrusted (λc. case c of Collector_ev ⇒ simpleEvent1)"
6
7 definition
8 source_untrusted :: component
9 where

10 "source_untrusted ≡
11 Emitter_untrusted (λc. case c of Emitter_ev ⇒ simpleEvent1)"
12
13 definition
14 "simpleEvent1e_instance" :: component
15 where
16 "simpleEvent1e_instance ≡ SomethingHappenedEvent (λ_. simpleEvent1)"

5.8.7 Initial State

The generated global state for this system also contains a case for the introduced event component, mapping

to the instance definition presented above and the common initial event state. While this definition of the

global state makes it possible for the user to override the mapping of simpleEvent1e in trusted, there is
no practical reason to do this.

1 definition
2 "gs0" :: gstate
3 where
4 "gs0 p ≡ case trusted p of Some s ⇒ Some s | _ ⇒
5 (case p of sink ⇒ Some (sink_untrusted, Component init_component_state)
6 | source ⇒ Some (source_untrusted, Component init_component_state)
7 | simpleEvent1e ⇒ Some (simpleEvent1e_instance, init_event_state))"
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5.9 Example – Dataports

The final example we provide is the corresponding set of generated types and definitions derived from a

CAmkES dataport interface. The specification we will use in this case is as follows.

1 component DataportTest {
2 control;
3 dataport Buf d1;
4 dataport Buf d2;
5 }
6
7 assembly {
8 composition {
9 component DataportTest comp1;

10 component DataportTest comp2;
11
12 connection seL4SharedData simple1(from comp1.d1, to comp2.d2);
13 connection seL4SharedData simple2(from comp2.d1, to comp1.d2);
14 }
15 }

Note that this system, unlike the previous two examples, contains a component type that is instantiated twice.

5.9.1 Types

As with the previous examples, a type is generated for the connections in the system and the component

instances in the system. The data type, channel, is as before, but inst also contains a member generated
for each connection in the system involving a dataport, simple1d and simple2d.

1 datatype channel
2 = simple1
3 | simple2
4
5 datatype inst
6 = comp1
7 | comp2
8 | "simple1d"
9 | "simple2d"

The type for the interfaces of the single component in the system is generated as in the previous examples.

1 datatype DataportTest_channel
2 = DataportTest_d1
3 | DataportTest_d2

5.9.2 Interface Primitives

For each dataport interface of each component type, definitions are generated for performing a read or write

to the dataport. Like events, the details of these operations can be determined statically and are captured in

the definitions, MemoryRead and MemoryWrite, introduced previously.
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Read and write are unconditionally generated for each dataport interface because all dataports are read/write

memory regions. A trivial extension to this formalism would be to model dataports with constrained permis-

sions, but we defer this for now. The motivation for dataport-related compromises is discussed in Section

9.3.

1 definition
2 Read_DataportTest_d1 :: "(DataportTest_channel ⇒ channel) ⇒
3 ('cs local_state ⇒ nat) ⇒
4 ('cs local_state ⇒ variable ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
5 where
6 "Read_DataportTest_d1 ch addr embed_data ≡
7 MemoryRead (ch DataportTest_d1) addr embed_data"
8
9 definition

10 Write_DataportTest_d1 :: "(DataportTest_channel ⇒ channel) ⇒
11 ('cs local_state ⇒ nat) ⇒ ('cs local_state ⇒ variable) ⇒
12 (channel, 'cs) comp"
13 where
14 "Write_DataportTest_d1 ch addr proj ≡
15 MemoryWrite (ch DataportTest_d1) addr proj"
16
17 definition
18 Read_DataportTest_d2 :: "(DataportTest_channel ⇒ channel) ⇒
19 ('cs local_state ⇒ nat) ⇒
20 ('cs local_state ⇒ variable ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
21 where
22 "Read_DataportTest_d2 ch addr embed_data ≡
23 MemoryRead (ch DataportTest_d2) addr embed_data"
24
25 definition
26 Write_DataportTest_d2 :: "(DataportTest_channel ⇒ channel) ⇒
27 ('cs local_state ⇒ nat) ⇒ ('cs local_state ⇒ variable) ⇒
28 (channel, 'cs) comp"
29 where
30 "Write_DataportTest_d2 ch addr proj ≡
31 MemoryWrite (ch DataportTest_d2) addr proj"

5.9.3 Instantiations of Primitives

The specialisation of the primitives fromSection 5.9.2 is similar to the previous examples, except thatmultiple

instantiations for each are generated because the component type DataportTest is instantiated twice in this
system.

1 definition
2 Read_comp1_d1 :: "('cs local_state ⇒ nat) ⇒
3 ('cs local_state ⇒ variable ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
4 where
5 "Read_comp1_d1 ≡
6 Read_DataportTest_d1 (λc. case c of DataportTest_d2 ⇒ simple2
7 | DataportTest_d1 ⇒ simple1)"
8
9 definition

10 Write_comp1_d1 :: "('cs local_state ⇒ nat) ⇒
11 ('cs local_state ⇒ variable) ⇒ (channel, 'cs) comp"
12 where
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13 "Write_comp1_d1 ≡
14 Write_DataportTest_d1 (λc. case c of DataportTest_d2 ⇒ simple2
15 | DataportTest_d1 ⇒ simple1)"
16
17 definition
18 Read_comp1_d2 :: "('cs local_state ⇒ nat) ⇒
19 ('cs local_state ⇒ variable ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
20 where
21 "Read_comp1_d2 ≡
22 Read_DataportTest_d2 (λc. case c of DataportTest_d2 ⇒ simple2
23 | DataportTest_d1 ⇒ simple1)"
24
25 definition
26 Write_comp1_d2 :: "('cs local_state ⇒ nat) ⇒
27 ('cs local_state ⇒ variable) ⇒ (channel, 'cs) comp"
28 where
29 "Write_comp1_d2 ≡
30 Write_DataportTest_d2 (λc. case c of DataportTest_d2 ⇒ simple2
31 | DataportTest_d1 ⇒ simple1)"
32
33 definition
34 Read_comp2_d1 :: "('cs local_state ⇒ nat) ⇒
35 ('cs local_state ⇒ variable ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
36 where
37 "Read_comp2_d1 ≡
38 Read_DataportTest_d1 (λc. case c of DataportTest_d1 ⇒ simple2
39 | DataportTest_d2 ⇒ simple1)"
40
41 definition
42 Write_comp2_d1 :: "('cs local_state ⇒ nat) ⇒
43 ('cs local_state ⇒ variable) ⇒ (channel, 'cs) comp"
44 where
45 "Write_comp2_d1 ≡
46 Write_DataportTest_d1 (λc. case c of DataportTest_d1 ⇒ simple2
47 | DataportTest_d2 ⇒ simple1)"
48
49 definition
50 Read_comp2_d2 :: "('cs local_state ⇒ nat) ⇒
51 ('cs local_state ⇒ variable ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
52 where
53 "Read_comp2_d2 ≡
54 Read_DataportTest_d2 (λc. case c of DataportTest_d1 ⇒ simple2
55 | DataportTest_d2 ⇒ simple1)"
56
57 definition
58 Write_comp2_d2 :: "('cs local_state ⇒ nat) ⇒
59 ('cs local_state ⇒ variable) ⇒ (channel, 'cs) comp"
60 where
61 "Write_comp2_d2 ≡
62 Write_DataportTest_d2 (λc. case c of DataportTest_d1 ⇒ simple2
63 | DataportTest_d2 ⇒ simple1)"

5.9.4 Untrusted Components

A definition is generated for the untrusted execution of the component, DataportTest. In this definition
there are two interfaces the component can send and receive on, but the other details of the definition are

identical to the previous examples.
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1 definition
2 DataportTest_untrusted :: "(DataportTest_channel ⇒ channel) ⇒ component"
3 where
4 "DataportTest_untrusted ch ≡
5 LOOP (
6 UserStep
7 ⊔ ArbitraryRequest (ch DataportTest_d2)
8 ⊔ ArbitraryResponse (ch DataportTest_d2)
9 ⊔ ArbitraryRequest (ch DataportTest_d1)

10 ⊔ ArbitraryResponse (ch DataportTest_d1))"

5.9.5 Component Instances

The definitions for untrusted execution of the two component instances are generated by partially applying

the untrusted definition of DataportTestwith different functions mapping its interfaces to connections. In
this way, two processes are formed that have identical local behaviour, but have different effects when they

perform communication actions.

1 definition
2 comp2_untrusted :: component
3 where
4 "comp2_untrusted ≡
5 DataportTest_untrusted (λc. case c of DataportTest_d1 ⇒ simple2
6 | DataportTest_d2 ⇒ simple1)"
7
8 definition
9 comp1_untrusted :: component

10 where
11 "comp1_untrusted ≡
12 DataportTest_untrusted (λc. case c of DataportTest_d2 ⇒ simple2
13 | DataportTest_d1 ⇒ simple1)"

5.9.6 Shared Memory Components

A component instance is generated for each connection involving a dataport, as mentioned previously. As

for events, the user is given no opportunity to provide trusted definitions for these instances because we can

automatically generate their precise behaviour without ambiguity.

1 definition
2 "simple2d_instance" :: component
3 where
4 "simple2d_instance ≡ Bufd (λ_. simple2)"
5
6 definition
7 "simple1d_instance" :: component
8 where
9 "simple1d_instance ≡ Bufd (λ_. simple1)"

5.9.7 Initial State

The initial state for this system includes cases for the introduced shared memory components, using the def-

initions presented above. Both begin in the common initial memory state containing the empty map. Again,



5.10. EXAMPLE – SYSTEM LEVEL REASONING 85

the designer could override the definitions of simple1d and simple2d in trusted but there is no practical
reason to do this.

1 definition
2 "gs0" :: gstate
3 where
4 "gs0 p ≡ case trusted p of Some s ⇒ Some s | _ ⇒
5 (case p of comp2 ⇒ Some (comp2_untrusted, Component init_component_state)
6 | comp1 ⇒ Some (comp1_untrusted, Component init_component_state)
7 | simple2d ⇒ Some (simple2d_instance, init_memory_state)
8 | simple1d ⇒ Some (simple1d_instance, init_memory_state))"

5.10 Example – System Level Reasoning

Having introduced the foundations of this model, we now return to the example from Section 5.1. We omit

the generated types and definitions for this example as they are similar to those from the previous sections,

and instead move to properties that can now be proven about this system.

5.10.1 Architectural Properties

Using the most generalised (untrusted) version of the system, we cannot show anything except architectural

properties. These are true by construction of the generated system. To demonstrate this, we show a proof

that the client and store instances cannot directly communicate. For this we need to interpret the locale,
providing default values for the locale parameters. See Appendix B for a primer on locale interpretation in

general. The default parameters we provide are unit, (), to indicate the components have no relevant local
state and an empty map of trusted component instances.

1 interpretation system_state "()" empty
2 done

First we introduce some definitions to aid the statement of the property. A predicate specifying that a compo-

nent sends on a given channel is defined as sends_on.

1 fun
2 sends_on :: "channel ⇒ component ⇒ bool"
3 where
4 "sends_on c (Request f _) = (∃ s. ∃ q ∈ f s. q_channel q = c)"
5 | "sends_on c (a ;; b) = (sends_on c a ∨ sends_on c b)"
6 | "sends_on c (IF cond THEN a ELSE b) =
7 (∀ s. cond s ∧ sends_on c a ∨ ¬ cond s ∧ sends_on c b)"
8 | "sends_on c (WHILE cond DO a) = (∀ s. cond s ∧ sends_on c a ∨ ¬ cond s)"
9 | "sends_on c (a ⊔ b) = (sends_on c a ∨ sends_on c b)"

10 | "sends_on _ _ = False"
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The corresponding predicate for receiving on a channel is defined as receives_on.

1 fun
2 receives_on :: "channel ⇒ component ⇒ bool"
3 where
4 "receives_on c (Response f) = (∃ q s. ∃ a ∈ f q s. a_channel (snd a) = c)"
5 | "receives_on c (a ;; b) = (receives_on c a ∨ receives_on c b)"
6 | "receives_on c (IF cond THEN a ELSE b) =
7 (∀ s. cond s ∧ receives_on c a ∨ ¬ cond s ∧ receives_on c b)"
8 | "receives_on c (WHILE cond DO a) =
9 (∀ s. cond s ∧ receives_on c a ∨ ¬ cond s)"

10 | "receives_on c (a ⊔ b) = (receives_on c a ∨ receives_on c b)"
11 | "receives_on _ _ = False"

Now whether a component communicates on a channel can be defined as the disjunction of these two.

1 definition
2 communicates_on :: "channel ⇒ component ⇒ bool"
3 where
4 "communicates_on ch c ≡ sends_on ch c ∨ receives_on ch c"

We can now state, and prove, the property that client and store never directly communicate. Note that the
theorem prover needs to be manually directed to a solution by applying the proof tactic auto and supplying
definitions to unfold. Were one merely interested in this property, a simpler way to achieve such a guarantee

would be an automated proof within the formalism of Chapter 4.

1 lemma "∀ c. ¬(communicates_on c client_untrusted ∧
2 communicates_on c store_untrusted)"
3 by (auto simp:communicates_on_def client_untrusted_def Client_untrusted_def
4 store_untrusted_def Store_untrusted_def UserStep_def
5 ArbitraryRequest_def ArbitraryResponse_def)

Were we to try reasoning about a property of the system that depended upon the behaviour of any component

in the system, we would not be able to do it using the existing definitions. To show a property of this form we

need to provide a more precise definition of the critical components. An example of this is shown in the next

section.

5.10.2 Behavioural Properties

To reason about the behaviour of components themselves, we need to provide more information when inter-

preting the locale. In this section we present an example of this and a proof that client never receives the
secret, 42. This property is dependent on the behaviour of filter, to which client is directly connected.

First we specify a more precise set of messages to be sent by filter. We define its valid responses as only

the values 7 and -1.

1 definition
2 filter_responses :: "channel question set"
3 where
4 "filter_responses ≡ {x. ∃ v ∈ {7, -1}. q_data x = Return [Integer v]}"
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Then we give a more constrained definition of filter that no longer allows it to send any message on the
channel connected to client. Note that for the target property we can still leave the remainder of its be-
haviour arbitrary.

1 definition
2 filter_trusted :: component
3 where
4 "filter_trusted ≡
5 LOOP (
6 UserStep
7 ⊔ ArbitraryRequest two
8 ⊔ ArbitraryResponse two
9 ⊔ ArbitraryResponse one

10 ⊔ Request (λ_. filter_responses) discard)"

This trusted definition of filter is passed to the generated system theory in the definition of trusted.

1 definition
2 trusted :: "(inst, (component × lstate)) map"
3 where
4 "trusted ≡ [filter 7→ (filter_trusted, Component init_component_state)]"

We can use these definitions to interpret the locale with a different set of constraints.

1 interpretation system_state "()" trusted
2 done

Now it is possible to state and prove the desired property of the system; that client never receives the secret
42.

1 lemma "∀ p. ∃ e s. gs0 p = Some (e, s) ∧ (e = client_untrusted ∨
2 ¬(∃ c. sends e {x. q_channel x = c ∧ q_data x = Return [Integer 42]} ∧
3 receives_on c client_untrusted))"

While the proof of this property (elided) was relatively straightforward, its link to the implementation remains

informal. Wemanually specified the behaviour of filter and there is little to guarantee that this specification
matches the actual behaviour of filter. In the next chapter we introduce a formalism with a stronger link

to the implementation, at the expense of automation. A significant advantage of the formalism of the present

chapter is the ease with which properties can be formalised and proven.

5.11 Summary

In this chapter, we have described a formalism for representing component system architectures and the

behaviour of component instances. Wehave demonstrated howgenerated and user-provided theories interact

and how this can be applied to prove sample correctness properties. The guarantee that the user-provided

description of a component’s behaviour matches the behaviour of their provided code for that component is

informal, but this trade off enables significant automation in both system specification and reasoning. By

streamlining the process of system specification, we enable an accessible path to system verification.
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Chapter 6

Correct Code Generation

CAmkES’ RPC connectors provide a mechanism for one component instance to seamlessly invoke a function

provided by another component instance. This mechanism works by introducing generated code into both

instances. The correctness of a component instance implicitly relies on this colocated generated code.

This chapter discusses a technique for proving the correctness of generated C code for one of CAmkES’ RPC

connectors, seL4RPCSimple. Recall that, as outlined in Section 2.4.3, the correctness property we wish to

show is that a remote function invocation is equivalent to a local function invocation. The remote function call

involves parametermarshalling, an IPC transfer, parameter unmarshalling and then calling the user-provided

implementation. This is followedby the reverse process ofmarshalling, transferring andunmarshalling return

values. The equivalence we aim to show is depicted informally in Figure 6.1.

user
function

marshal
parameters IPC

unmarshal
parameters

marshal
return
values

unmarshal
return
values

IPC

user
function

≈

Figure 6.1: Remote and local function invocation equivalence
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Our approach leverages previous work on manual, interactive verification of C code, but shows how to auto-

mate the proofs of sufficiently regular code. The generated proofs can be manually connected to hand written

proofs about user code that interoperateswith the generated code, forming a correctness guarantee of the com-

posed system equivalent to a fully hand written proof. Through this process, we achieve code-level functional

correctness with a high degree of expressivity and assurance. In comparison to the formalisms of Chapter

4 and Chapter 5, we sacrifice a degree of proof automation to achieve a significantly reduced semantic gap

between the model and implementation. Though the implementation presented is specific to C code, the un-

derlying approach is applicable to other languages, with the proviso that most other languages additionally

depend on a runtime that would be implicitly trusted. Sections of this work have been the subject of a previous

publication (Fernandez, Andronick, et al. 2015a) and technical report (Fernandez, Andronick, et al. 2015b).

6.1 Utility

A static component platform like CAmkES operates by generating communication stubs – glue code – prior

to compilation time. This glue code is then compiled with hand written, user-provided code to form the full

program for a component instance. The control flow within a component instance interleaves glue code with

hand written code and the correctness of the system depends on both. A bug in the glue code can undermine

concerted efforts to guarantee correctness of hand written code.

As an example of incorrect glue code, consider generated code for an RPC connection where the callee’s glue

code unmarshals parameters in the reverse order to that in which the caller’s glue codemarshalled them. This

error is similar to reading and writing data with conflicting endianness, and can lead to problems which are

difficult to debug. In part, the debugging complexity stems from the assumed correctness of glue code. Just

as a programmer’s intuition is not to suspect a compiler fault as the most likely cause of a bug, the user of a

component platform is conditioned not to suspect faulty code generation by the platform.

While it could be argued that the logic error described above could be exposed by testing, it is not feasible

to exhaustively test glue code. There are an infinite number of possible interface definitions, each of which

produces unique glue code. Furthermore, there are classes of glue code bugs that can never be caught by

testing. To quantify this, we describe a genuine bug that was present in CAmkES’ glue code that was only dis-

covered during verification. The bug can be observed in a simple system. Consider two component instances

communicating over an RPC connection, as depicted in Figure 6.2.

client serverp p

conn

Figure 6.2: 64-bit echo server
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The two component instances, client and server, use a simple procedure containing a single method for
echoing a 64-bit signed integer. The entire ADL specification for the system is as follows.

1 procedure P {
2 int64_t echo(in int64_t x);
3 }
4
5 component Client {
6 control;
7 uses P p;
8 }
9

10 component Server {
11 provides P p;
12 }
13
14 assembly {
15 composition {
16 component Client client;
17 component Server server;
18
19 connection seL4RPCSimple conn(from client.p, to server.p);
20 }
21 }

This system was built and run successfully. With reference to the intended role of glue code explained in

Chapter 2, the glue code for the system appeared as expected and manual audits of this code – including one

by the current author – had not raised any issues.

When client calls p_echo, glue code marshals the input parameter into the process’ IPC buffer. An abbre-
viated and commented version of the glue code that was generated is as follows.

1 /* Hardware word size (bits) */
2 #define __WORDSIZE 32
3
4 /* Write `mr` to the word at offset `i` in the IPC buffer */
5 extern void seL4_SetMR(int i, seL4_Word mr);
6
7 unsigned int p_echo_marshal(int64_t x) {
8 unsigned int length = 0;
9

10 /* Marshal the method index */
11 seL4_SetMR(length, 0);
12 length++;
13
14 /* Marshal the input */
15 seL4_SetMR(length, (seL4_Word)x);
16 length++;
17 seL4_SetMR(length, (seL4_Word)(x >> __WORDSIZE));
18 length++;
19
20 return length;
21 }
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On the callee’s side, the glue code generated for server unmarshals this input from the process’ IPC buffer.

This corresponding code appeared as follows.

1 /* Read the word at offset `i` in the IPC buffer */
2 extern seL4_Word seL4_GetMR(int i);
3
4 void p_echo_unmarshal(int64_t *x) {
5 unsigned int mr = 1; /* Skip over 0 that contained the method index */
6
7 /* Unmarshal the input */
8 *x = ((int64_t)seL4_GetMR(mr)) | (((int64_t)seL4_GetMR(mr + 1)) << __WORDSIZE);
9 }

When verifying the above code, it was impossible to discharge one of the proof obligations. This remaining

goal pointed to a subtle bug. An experienced practitioner may wish to try and spot the problem themselves

before continuing to the next paragraph.

The template for the callee’s glue code, from which the above was generated, type cast the result of

seL4_GetMR to the type of the parameter being unmarshalled. In most cases this was the correct action.
However, in the above glue code, a negative input value of x causes undefined behaviour in the callee’s glue
code according to the C standard. To see this, consider the steps by which x is transmitted:

1. The low 32 bits of x are written into the caller’s IPC buffer;
2. The high 32 bits of x are shifted down and written into the caller’s IPC buffer;
3. The low 32 bits of x are read out of the callee’s IPC buffer; then
4. The high 32 bits of x are read out of the callee’s IPC buffer and shifted up.

It is this final shift that is undefined behaviour when x has a negative value. The relevant clause from the C99

standard (ISO/IEC 2005) is §6.5.7.4:

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If

E1 has an unsigned type, the value of the result is E1 * 2E2, reduced modulo one more than the

maximum value representable in the result type. If E1 has a signed type and nonnegative value,
and E1 * 2E2 is representable in the result type, then that is the resulting value; otherwise, the
behavior is undefined.

In two’s complement representation, the highest bit of a number is used to indicate its sign; 0 for positive, 1
for negative. Thus a negative value of x would result in the third word of the IPC buffer containing a 32-bit
value with the 31st bit set. After casting this to a signed 64-bit type, shifting it left by 32 bits results in a value

not representable in a signed 64-bit type, violating the last sentence of the above rule.

This problem is demonstrated for the input value, -42, in Figure 6.3. The representation of -42 in two’s
complement form is given in the uppermost row of bits. The right shift and down casts to store the value in

two words of the IPC buffer are correct.1 Similarly, reading the two words out of the IPC buffer and up casting

these values to signed 64-bit values are also defined operations. However, the left shift of the bits destined

for high word of the result is not. A single undefined subexpression causes the containing expression and the

code as a whole to have undefined behaviour.

1How the vacated bits of a signed type are filled when a negative value is right shifted is implementation defined, according to §6.5.7.5
of the C99 standard. Here we have depicted those bits as being 1-filled. The glue code’s correctness does not depend on the fill mask for
this shift.
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11111111 11111111 11111111 11111111 11111111 11111111 11111111 11010110
63 31 0

IPC buffer

00000000 00000000 00000000 00000000 11111111 11111111 11111111 11010110
63 31 0

00000000 00000000 00000000 00000000 11111111 11111111 11111111 11111111
63 31 0

11111111 11111111 11111111 11010110
31 0

11111111 11111111 11111111 11111111
31 0

11111111 11111111 11111111 11111111
31 0

11111111 11111111 11111111 11010110
31 0

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111
63 31 0

>>

-42 =

(seL4_Word)

(seL4_Word)

seL4_SetMR seL4_SetMR

seL4_GetMRseL4_GetMR

(int64_t)

(int64_t)

<<

X |

X
Figure 6.3: Marshalling and unmarshalling of a signed 64-bit value involving undefined behaviour

The fix for this issue was to perform the shift on an unsigned type where this rule is not violated:2

1 void p_echo_unmarshal(int64_t *x) {
2 unsigned int mr = 1; /* Skip over 0 that contained the method index */
3
4 /* Unmarshal the input */
5 *x = (int64_t)(((uint64_t)seL4_GetMR(mr)) |
6 (((uint64_t)seL4_GetMR(mr + 1)) << __WORDSIZE));
7 }

This bug was discovered during verification of the offending glue code and is unlikely to have been found

otherwise. Glue code is generally not inspected by users – who assume its correctness – and our C compiler

in use at the time emitted instructions that always produced the expected result, even with negative input.

However, another conformant C compiler would be within its remit to make optimisations that relied on the

value of x being positive.

The bug we have just described is subtle, but not unusual in the context of serialisation code in low level lan-

guages. The C standard deliberately specifies numerous expressions as having undefined behaviour, many

2This points to a more general wisdom that is not the subject of this thesis, but nevertheless a valuable intuition for C programmers.
In general, unsigned types are safer and more straightforward to reason about than signed types. This is largely driven by the numerous
cases of undefined behaviour in the C99 standard that apply to signed types, but not to unsigned types (for example, integer overflow).
The interested reader is referred to (Dietz et al. 2012; Greenaway 2015; Norrish 1998; Wang et al. 2012) for more details.
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of which are related to edge cases in the type system. These instances are usually poorly understood by pro-

grammers and often intimately related to typical operations performed by serialisation code (Dietz et al. 2012;

Formaggio 2015; Wang et al. 2013).

The generated proofs we detail in this chapter guarantee not only the absence of undefined behaviour in the

glue code, but also give the glue code a precise semantics. The produced proofs prevent the possibility of logic

errors, like that given at the beginning of this section, from passing unnoticed and free the system designer

from concerning themselves with the glue code’s correctness. When building or debugging a component-

based system, the designer now need only ensure the correctness of their hand written code.

6.2 Proof Generation

Our goal is to provide a collaborative proof environment where the proofs of generated code are, themselves,

generated and integrate seamlessly with hand written proofs. That is, we wish to enable the designer to pro-

vide a pervasive system correctness proof as if they had manually proven the correctness of the RPC glue

code, without requiring this laborious process. To achieve this, we take a translation validation approach, as

introduced in Section 3.4.

Alongside the RPC glue code, the CAmkES code generator produces a specification for each piece of glue code

and a proof of conformance to this specification. These specifications are given in the form of Hoare triples

in the style shown in Section 2.3.2. By using the same idioms and structures in the generated specifications

as a hand written formalism would use, reuse of the generated lemmas is made intuitive for the designer.

The generated specifications are precise, in that they describe the exact preconditions required for correctness

and the exact postcondition capturing the effect of the glue code. This is unusual for code-level proofs in an

interactive theorem prover. In general, whenmanually proving the correctness of a function, the specification

of that function and its callees are made only as precise as necessary to prove the property of interest. This

pattern is often extended to providing multiple underspecifications of a function when proving multiple cor-

rectness properties; one per property. The motivation for this is to reduce proof effort to a minimum. It is

often significantly more complicated, or even intractable, to prove a precise specification for a function.

By the same reasoning, underspecification would ease the effort required in constructing our proof generation

process, but we avoid this because we do not knowwhat property the user will want to prove. Underspecifying

a glue code function can result in the user being unable to prove their property of interest and having to

fall back on manually reasoning about glue code. To prevent this undesirable situation, we choose to give a

complete and precise specification at the expense of a more complicated proof generator.

There is amutual dependency between glue code and user-provided code, similar to that between processes in

a Rely/Guarantee framework (Jones 1983; Owicki and Gries 1976). Both pieces of code have conditions they

need the other to respect in order to guarantee their own behaviour. The proofs we are generating provide

a guarantee of the glue code – both what it does and what it does not do – and they require well-behaved

user-provided code in order to uphold this guarantee. In particular, the glue code has a set of invariants the

user-provided code must maintain and some private state that the user-provided code must not read or write.

This will be explained in more concrete terms in the following section.
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6.3 Example

To demonstrate our proof-producing process, we work through verifying an example CAmkES system. Its

specification is as follows.

1 procedure Swapper {
2 unsigned int swap(inout int a, inout int b);
3 }
4
5 component Client {
6 control;
7 uses Swapper cs;
8 }
9

10 component Service {
11 provides Swapper ss;
12 }
13
14 assembly {
15 composition {
16 component Client c;
17 component Service s;
18
19 connection seL4RPCSimple conn(from c.cs, to s.ss);
20 }
21 }

6.3.1 User-provided and Generated Code

This system has two component instances, c that needs to exchange two integers, and s that provides a service
for doing such. Recalling Section 2.2.1, observe that this will involve two pieces of user-provided code and two

pieces of glue code generated by CAmkES. The interaction between these artefacts is depicted in Figure 6.4.

sc

seL4

user code

glue code glue code

user code

Figure 6.4: Control flow between user-provided and generated code
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To understand precisely how this control flow occurs, it is informative to examine the code of this system. The

user-provided code of Client demonstrates how c initiates this exchange of integers.

1 int run(void) {
2 int x = 3;
3 int y = 5;
4
5 unsigned int i = cs_swap(&x, &y);
6
7 return 0;
8 }

Conversely, the user-provided source of Server shows how the swapping of these two integers is achieved.

While swapping the two integers, it also returns a count of how many swap operations have been performed.

1 static unsigned int counter;
2
3 unsigned int ss_swap(int *a, int *b) {
4 int temp = *a;
5 *a = *b;
6 *b = temp;
7
8 counter++;
9

10 return counter;
11 }

Obviously this example is quite artificial, but it has been chosen to demonstrate that our process can deal with

bidirectional parameters, pointers and global persistent state.

The natural correctness property of this system – that the values pointed to by two pointers are correctly

swapped by ss_swap – is straightforward to come up with in isolation from any consideration of the glue

code. We can formulate this in Isabelle/HOL and the proof of a local function invocation is straightforward.

1 "∀ s0. {|λs. s = s0 ∧ ptr_valid_s32 s x ∧ ptr_valid_s32 s y|}
2 ss_swap x y
3 {|λr s. r = counter s0 + 1 ∧ counter s = r ∧
4 heap_w32 s (ptr_coerce x) = heap_w32 s0 (ptr_coerce y) ∧
5 heap_w32 s (ptr_coerce y) = heap_w32 s0 (ptr_coerce x)|}!"

The precondition requires that x and y are valid pointers. More precisely, the expression ptr_valid_s32 st
p requires that the pointer p is a valid reference to a signed 32-bit value in state st. The postcondition states
that the value of the global counter will be updated and returned and that the values at the pointers x and y
will be swapped. The function ptr_coerce is analogous to type casting in C and the expression heap_w32
st p returns the value pointed to by p in the state st. Thus this lemma states that, given two valid pointers
to signed 32-bit integers, the function ss_swap exchanges their pointed-to values, increments counter and
returns its new value. Note that, in this lemma, we refer to inputs, outputs and the global state. We do not

constrain the expressivity the system designer has in their precondition and postcondition.

If cs_swap represented a direct call to ss_swap, a composed proof would be possible at this point. However,
recall that cs_swap is actually a call into glue code and, similarly, the call to ss_swap comes from glue code.

So to achieve a composed proof we need formal specifications for both pieces of glue code. To have context

for the generated proofs that will follow, we first look at the glue code itself. The generated code for the caller,

c, follows the same templated format from Section 6.1, but deals with both marshalling and unmarshalling.
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1 static unsigned int cs_swap_marshal(int a, int b) {
2 unsigned int index = 0;
3
4 /* Marshal the method index */
5 seL4_SetMR(index, 0);
6 index++;
7
8 /* Marshal the first input */
9 seL4_SetMR(index, (seL4_Word)a);

10 index++;
11
12 /* Marshal the second input */
13 seL4_SetMR(index, (seL4_Word)b);
14 index++;
15
16 return index;
17 }
18
19 static void cs_swap_call(unsigned int length) {
20 seL4_MessageInfo_t info = seL4_MessageInfo_new(0, 0, 0, length);
21
22 /* Call the seL4 endpoint */
23 (void)seL4_Call(6, info);
24 }
25
26 static unsigned int cs_swap_unmarshal(int *a, int *b) {
27 unsigned int index = 0;
28
29 /* Unmarshal the return value */
30 unsigned int ret = (unsigned int)seL4_GetMR(index);
31 index++;
32
33 /* Unmarshal the first output */
34 *a = (int)seL4_GetMR(index);
35 index++;
36
37 /* Unmarshal the second output */
38 *b = (int)seL4_GetMR(index);
39 index++;
40
41 return ret;
42 }
43
44 unsigned int cs_swap(int *a, int *b) {
45 unsigned int length = cs_swap_marshal(*a, *b);
46
47 cs_swap_call(length);
48
49 unsigned int ret = cs_swap_unmarshal(a, b);
50
51 return ret;
52 }
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Similarly, the glue code for the callee, s, deals with unmarshalling method inputs and then marshalling out-
puts.

1 /* User-provided implementation */
2 extern unsigned int ss_swap(int *a, int *b);
3
4 /* Per-thread globals */
5 static int swap_a_1;
6 static int swap_a_2;
7 static int swap_b_1;
8 static int swap_b_2;
9

10 static int *get_swap_a(void) {
11 switch (camkes_get_tls()->thread_index) {
12 case 1:
13 return &swap_a_1;
14 case 2:
15 return &swap_a_2;
16 default:
17 assert(!"invalid thread index");
18 abort();
19 }
20 }
21
22 static int *get_swap_b(void) {
23 switch (camkes_get_tls()->thread_index) {
24 case 1:
25 return &swap_b_1;
26 case 2:
27 return &swap_b_2;
28 default:
29 assert(!"invalid thread index");
30 abort();
31 }
32 }
33
34 static void ss_swap_unmarshal(int *a, int *b) {
35 unsigned int index = 1;
36
37 /* Unmarshal the first input */
38 *a = seL4_GetMR(index);
39 index++;
40
41 /* Unmarshal the second input */
42 *b = seL4_GetMR(index);
43 index++;
44 }
45
46 static unsigned int ss_swap_invoke(int *a, int *b) {
47 /* Call the user's implementation */
48 return ss_swap(a, b);
49 }
50
51 static unsigned int ss_swap_marshal(unsigned int ret, int a, int b) {
52 unsigned int index = 0;
53
54 /* Marshal the return value */
55 seL4_SetMR(index, (seL4_Word)ret);
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56 index++;
57
58 /* Marshal the first output */
59 seL4_SetMR(index, (seL4_Word)a);
60 index++;
61
62 /* Marshal the second output */
63 seL4_SetMR(index, (seL4_Word)b);
64 index++;
65
66 return index;
67 }
68
69 unsigned int ss_swap_internal(void) {
70 int *a = get_swap_a();
71 int *b = get_swap_b();
72
73 ss_swap_unmarshal(a, b);
74
75 unsigned int ret = ss_swap_invoke(a, b);
76
77 unsigned int length = ss_swap_marshal(ret, *a, *b);
78
79 return length;
80 }

Note that we omit the top-level entry point for this glue code, that is an event loop, and instead consider

ss_swap_internal, that is called repeatedly by the event loop, to be the outermost function. This is driven
by limitations in the control flow that can be expressed in the framework on which we build. Firstly, it is

difficult to state properties about functions that do not terminate, such as an event loop. Secondly, it is difficult

to capture the semantics of blocking system calls whose scope to affect global state is beyond what is visible

in C. That is, the postcondition of a system call is the effect of the kernel’s execution. We discuss this in

more depth in Section 9.1, but for the purposes of the current proof, we effectively implicitly axiomatise the

execution of seL4_Wait/seL4_ReplyWait in this glue code.

Recall that the control flow in the system at runtime consists of an interleaving of the user-provided and

generated code. Extending Figure 6.4 with the code of this system gives us Figure 6.5.

6.3.2 Proof Generation

The correctness property we wish to prove was introduced in Section 2.4.3. With reference to this specific

example, we wish to prove that a sequence of operations performed by the interleaving of glue code and user

code is equivalent to directly calling ss_swap. The sequence of operations we define are as follows.

1 "swap a b ≡ do cs_swap_marshal ( *a) ( *b);
2 ss_swap_internal;
3 cs_swap_unmarshal a b
4 od"

These steps are: marshalling in c (line 1), then the entire execution in s (line 2), including unmarshalling,
executing ss_swap, and marshalling results, and finally unmarshalling of the result in c again (line 3). It can
be observed that this sequence matches the control flow of the component system at runtime.
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c

int run(void) {
  int x = 3;
  int y = 5;
a

  unsigned int i = cs_swap(&x, &y);
a

  return 0;
}

s
unsigned int ss_swap(int *a, int *b) {
  int temp = *a;
  *a = *b;
  *b = temp;
a

  counter++;
a

  return counter;
}

unsigned int cs_swap(int *a, int *b) {
  unsigned int length = cs_swap_marshal(*a, *b);
a

  cs_swap_call(length);
a

  unsigned int ret = cs_swap_unmarshal(a, b);
a

  return ret;
}

unsigned int ss_swap_internal(void) {
  int *a = get_swap_a();
  int *b = get_swap_b();
a

  ss_swap_unmarshal(a, b);
a

  unsigned int ret = ss_swap_invoke(a, b);
a

  unsigned int length = ss_swap_marshal(ret, *a, *b);
a

  return length;
}

seL4

Figure 6.5: Control flow between user-provided code and glue code

It may not be immediately obvious, but the precondition and postcondition that our generated proof needs

to show must be parameters of the theorem. This is because we do not know in advance what property the

system designer wishes to prove. Stated another way, the proof generation process has no awareness of the

correctness criteria of the system. In fact, it is an explicit goal of ours to enable the designer to state correctness

criteria after these proofs have been generated.

To parameterise these proofs, we generate them inside a locale. Recall that Appendix B contains amore expan-

sive introduction to locales. For the purposes of our present discussion, the relevant aspect of locales is that

they allow us to specify the precondition and postcondition as typed parameters. By providing a precondition,

postcondition and proof that their function satisfies these locally, a system designer is delivered a proof that

their precondition and postcondition are satisfied by a remote invocation of their function. Our fundamental

aim with this mechanism is to give the designer RPC proofs with the equivalent manual effort of local proofs.

Our toolchain for translating C into Isabelle/HOL (see Section 2.3.1 and Section 2.3.2) already constructs a

locale containing the function representations it produces, so we extend this to add our own parameters and

assumptions. We introduce the generated locale definition piece-by-piece. The first block, shown below, fixes

the parameters for the user-provided precondition and postcondition. Note that the precondition accepts a

lifted_globals state parameter, in order to be able to reference the values of globals, and the initial value
of each of the function parameters. Similarly the postcondition accepts two state parameters to be able to

talk about the values of globals before and after execution. It accepts five further parameters: the return

value, the values of the two function parameters before execution and their values after execution (recall that

they are both inout parameters). In this example, conn_pruned is the locale originating from AutoCorres’

abstraction of the glue code functions.

1 locale "conn_pruned_glue" = "conn_pruned" +
2
3 fixes swap_P :: "lifted_globals ⇒ 32 sword ⇒ 32 sword ⇒ bool"
4 fixes swap_Q :: "lifted_globals ⇒ lifted_globals ⇒ 32 word ⇒ 32 sword ⇒
5 32 sword ⇒ 32 sword ⇒ 32 sword ⇒ bool"

The next block contains the assumption that the precondition and postcondition hold on the user’s imple-

mentation. This may be surprising to see, but it should be intuitively clear that a generated proof of the
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user-provided precondition and postcondition holding over an RPC invocation would not be possible if the

precondition and postcondition did not actually hold over a local invocation.

1 assumes ss_swap_wp':"∀ s0 p0_in p1_in.
2
3 {|λs. s = s0 ∧ inv s ∧
4 ptr_valid_s32 s p0 ∧ p0_in = ucast (heap_w32 s (ptr_coerce p0)) ∧
5 (p0 = Ptr (symbol_table ''swap_a_1'') ∨
6 p0 = Ptr (symbol_table ''swap_a_2'')) ∧
7 ptr_valid_s32 s p1 ∧ p1_in = ucast (heap_w32 s (ptr_coerce p1)) ∧
8 (p1 = Ptr (symbol_table ''swap_b_1'') ∨
9 p1 = Ptr (symbol_table ''swap_b_2'')) ∧

10 swap_P s p0_in p1_in|}
11
12 ss_swap p0 p1
13
14 {|λr s. inv s ∧
15 (∃ p0_out p1_out. p0_out = ucast (heap_w32 s (ptr_coerce p0)) ∧
16 p1_out = ucast (heap_w32 s (ptr_coerce p1)) ∧
17 swap_Q s0 s r p0_in p0_out p1_in p1_out)|}!"

The form of this assumption is the familiar correctness Hoare triple given previously, but there are some

additions. The predicate inv (lines 3 and 14) captures certain invariants that the glue code requires. This
ensures that the user’s function does not disrupt any state private to the glue code. This is necessary in a

language like C with no enforced scoping of memory accesses. The precondition and postcondition conjuncts

referencing p0_in, p1_in, p0_out and p1_out (lines 4, 7, 15 and 16) provide us with variables referring to
the values of the pointers at either end of execution. The precondition also contains conjuncts specifying that

the pointers passed to the user’s ss_swap are confined to a set of private glue code globals (lines 5, 6, 8 and
9). It is unlikely the user would need these assumptions directly, but they can be used to justify that the input

pointers do not alias any other data ss_swap relies upon. Finally we have the precondition and postcondition
that the user themselves provide, swap_P (line 10) and swap_Q (line 17), respectively.

The next block requires the user-provided code to respect the private state of the glue code, as introduced

in Section 6.2. It refers to a specification, setMR, that describes modifying a word of the IPC buffer. In a

CAmkES system, the IPC buffer is considered part of the implementation and hence private to the glue code.

These assumptions capture the requirement that neither the user’s precondition nor their postcondition can

rely on the contents of the IPC buffer. Any wellformed precondition and postcondition will trivially satisfy

these assumptions.

1 assumes swap_pre_stable_setmr[simp]:
2 "

∧
s i x. swap_P (setMR s i x) = swap_P s"

3
4 assumes swap_post_stable_setmr1[simp]:
5 "

∧
s i x. swap_Q (setMR s i x) = swap_Q s"

6
7 assumes swap_post_stable_setmr2[simp]:
8 "

∧
s s' i x. swap_Q s (setMR s' i x) = swap_Q s s'"

Similar to the requirement on the IPC buffer, the next block captures the requirement that the precondition

and postcondition cannot depend on the values of the global variables used internally by the glue code. Once

again, these are trivially satisfied by any wellformed precondition and postcondition.
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1 assumes swap_pre_stable_update_a[simp]:
2 "

∧
v s p. [[p = Ptr (symbol_table ''swap_a_1'') ∨

3 p = Ptr (symbol_table ''swap_a_2'')]]
4 =⇒ swap_P (update_s32 s p v) = swap_P s"
5
6 assumes swap_post_stable_update_a[simp]:
7 "

∧
v s p. [[p = Ptr (symbol_table ''swap_a_1'') ∨

8 p = Ptr (symbol_table ''swap_a_2'')]]
9 =⇒ swap_Q (update_s32 s p v) = swap_Q s"

10
11 assumes swap_pre_stable_update_b[simp]:
12 "

∧
v s p. [[p = Ptr (symbol_table ''swap_b_1'') ∨

13 p = Ptr (symbol_table ''swap_b_2'')]]
14 =⇒ swap_P (update_s32 s p v) = swap_P s"
15
16 assumes swap_post_stable_update_b[simp]:
17 "

∧
v s p. [[p = Ptr (symbol_table ''swap_b_1'') ∨

18 p = Ptr (symbol_table ''swap_b_2'')]]
19 =⇒ swap_Q (update_s32 s p v) = swap_Q s"

The next assumption requires that the execution of the user’s code does not modify the valid pointers in the

system. Note that this pertains to modifying the collection of pointers themselves, not their values. This

requirement is driven by the type system of the framework we are working within and no legitimate C function

provided by the user should ever violate this assumption.

1 assumes ptr_valid_s32_stable_swap:
2 "

∧
s s' r p0_in p0_out p1_in p1_out. swap_Q s s' r p0_in p0_out p1_in p1_out

3 =⇒ ptr_valid_s32 s' = ptr_valid_s32 s"

The final assumption requires that the globals used by the glue code have distinct addresses. This is always

the case for a correctly loaded C program.

1 assumes dist[simp]:
2 "distinct [symbol_table ''swap_a_1'', symbol_table ''swap_a_2'',
3 symbol_table ''swap_b_1'', symbol_table ''swap_b_2'']"

With these assumptions and locale fixes in place, we generate a series of fine-grained lemmasproving complete

specifications for the glue code on a function-by-function basis. The reason it is possible to generate the proofs

along with the statement of these lemmas is that we have knowledge of the logic that generates the glue code.

By being able to anticipate the form of a function, we can also anticipate the proof steps required to prove

its specification. We elide these individual proofs, but present the final correctness lemma that is proven by

chaining the preceding lemmas together. Note that it is once againmade possible by exploiting our knowledge

of how this sequence of functions will appear. The lemma demonstrates that the user’s precondition and

postcondition, swap_P and swap_Q respectively, are satisfied by the sequence of glue code operations that
are equivalent to a local function call.
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1 lemma cs_ss_swap_equiv_wp: "∀ s0.
2
3 {|λs. s = s0 ∧ inv s ∧ ptr_valid_s32 s p0_out ∧ ptr_valid_s32 s p1_out ∧
4 distinct [((ptr_coerce p0_out)::32 word ptr),
5 ((ptr_coerce p1_out)::32 word ptr)] ∧
6 (∀ s1 s2 v. swap_Q s1 (update_s32 s2 p0_out v) = swap_Q s1 s2) ∧
7 (∀ s1 s2 v. swap_Q s1 (update_s32 s2 p1_out v) = swap_Q s1 s2) ∧
8 swap_P s p0 p1|}
9

10 do cs_swap_marshal p0 p1;
11 ss_swap_internal;
12 cs_swap_unmarshal p0_out p1_out
13 od
14
15 {|λr s. inv s ∧ swap_Q s0 s r p0 (ucast (heap_w32 s (ptr_coerce p0_out)))
16 p1 (ucast (heap_w32 s (ptr_coerce p1_out)))|}!"

While the lemma appears more dense than the previously outlined Hoare triple, it is not significantly

more complicated. The inv s condition (lines 3 and 15) is familiar from the previous term, as are the

ptr_valid_s32 conditions (line 3). A new condition we have incurred is that the two pointers involved in

the swap operation are not equal (lines 4-5). This is not strictly required for correctness, but the generated

proofs conservatively require the absence of aliasing between any user-provided pointers. This limitation

could be lifted relatively easily, but it would require a way for the user to indicate whether pointer aliasing

was permissible in their callee implementation. That is, if we were to naively remove the requirement for

distinct pointers and the user’s callee implementation relied on pointer distinctness, the generated lemma

would no longer be strong enough to be of use to them.

The two conjuncts in the precondition that involve the user’s postcondition, swap_Q (lines 6 and 7), may
also be unexpected. These require that the user’s postcondition must not access the values of the pointer

arguments through its final state parameter. This seems counterintuitive, but we use it to allow internal glue

code variables to substitute for the user’s pointers when marshalling and unmarshalling arguments. That is,

the user’s postcondition can depend on the values of the arguments, but cannot depend on their addresses.

The final conjunct (line 8) states that the user’s precondition must hold prior to execution.

The postcondition is simpler, merely stating that the user’s postcondition holds in addition to the glue code

invariants (lines 15 and 16). Here, ucast converts an unsigned 32-bit value to a signed 32-bit value.

To reinforce what we have shown, both the lemma and its proof are generated fully automatically. The proof

relies on further generated lemmas of glue code functions, that are accomplished by exploiting the regularity

of the glue code. With knowledge of the logic that generates the glue code, we can predict its structure and

formulate the template of a proof. The proof generation process has a natural congruencewith code generation

in a component platform, andwe have designedCAmkES’ proof generation to reuse its code generation engine.

6.3.3 User Instantiation

With a generated proof in hand, it remains for the user to instantiate the locale with their specific precondition

and postcondition and to discharge the locale assumptions. The natural precondition for the swap function is

simply validity of the pointers, which is already subsumed by the generated precondition. Thus the user can

instantiate their precondition to the trivial λ s a b. True.

The natural postcondition needs to capture the property that the values have been swapped, and also that the

counter has been incremented (recall that the counter is a global variable). We provide this as follows, but note
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that we also need to claim that the validity of pointers is preserved; that is, ss_swap does not invalidate any
int pointers. This condition is relied upon by the generated proofs in assuming that internal pointers used for
marshalling and unmarshalling are not invalidated by running user code. Observe that, in this postcondition,

we are able to state properties of both inputs, outputs and the state.

1 "λs0 s r a a_out b b_out. r = counter s0 + 1 ∧ counter s = r ∧
2 is_valid_w32 s0 = is_valid_w32 s ∧
3 a_out = b ∧ b_out = a"

Discharging the assumptions of the locale is mostly trivial in this case, as it generally would be for any well-

behaved user code. In general, any user code should not touch the glue code’s internal state, and by keeping

to this guideline the only potentially challenging assumption to discharge is that the precondition and post-

condition provided actually hold over the user’s function. Note that this is the same proof obligation the user

would be facing in a system with only their local functions and no component platform. A slight complication

is introduced by having to also provide a symbol table, a mapping from strings to addresses. This is an arte-

fact of the current implementation and can be instantiated with an artificial mapping for the purposes of our

proofs. Having proven the assumptions, an instantiated variant of the previous lemma is produced.

1 lemma instantiated_final_verbose: "∀ s0.
2
3 {|λs. s = s0 ∧ inv s ∧ ptr_valid_s32 s p0_out ∧ ptr_valid_s32 s p1_out ∧
4 distinct [p0_out, p1_out] ∧
5 (∀ s1 s2 v. (λr a a_out b b_out. r = counter s1 + 1 ∧
6 counter (update_s32 s2 p0_out v) = r ∧
7 is_valid_w32 s1 = is_valid_w32 (update_s32 s2 p0_out v) ∧
8 a_out = b ∧ b_out = a) =
9 (λr a a_out b b_out. r = counter s1 + 1 ∧

10 counter s2 = r ∧
11 is_valid_w32 s1 = is_valid_w32 s2 ∧
12 a_out = b ∧ b_out = a)) ∧
13 (∀ s1 s2 v. (λr a a_out b b_out. r = counter s1 + 1 ∧
14 counter (update_s32 s2 p1_out v) = r ∧
15 is_valid_w32 s1 = is_valid_w32 (update_s32 s2 p1_out v) ∧
16 a_out = b ∧ b_out = a) =
17 (λr a a_out b b_out. r = counter s1 + 1 ∧
18 counter s2 = r ∧
19 is_valid_w32 s1 = is_valid_w32 s2 ∧
20 a_out = b ∧ b_out = a)) ∧
21 True|}
22
23 do cs_swap_marshal p0 p1;
24 ss_swap_internal;
25 cs_swap_unmarshal p0_out p1_out
26 od
27
28 {|λr s. inv s ∧ r = counter s0 + 1 ∧ counter s = r ∧
29 is_valid_w32 s0 = is_valid_w32 s ∧
30 ucast (heap_w32 s (ptr_coerce p0_out)) = p1 ∧
31 ucast (heap_w32 s (ptr_coerce p1_out)) = p0|}!"

This looks quite dense, but observe that many of the conjuncts are now trivial and can be elided. Applying

Isabelle/HOL’s automated simplification yields the following, more concise formulation. Note that this is

much simpler than the original, generic variant.
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1 lemma instantiated_final_simplified: "∀ s0.
2 {|λs. s = s0 ∧ inv s ∧ ptr_valid_s32 s p0_out ∧ ptr_valid_s32 s p1_out ∧
3 distinct [p0_out, p1_out]|}
4 do cs_swap_marshal p0 p1;
5 ss_swap_internal;
6 cs_swap_unmarshal p0_out p1_out
7 od
8 {|λr s. inv s ∧ r = counter s0 + 1 ∧ counter s = r ∧
9 is_valid_w32 s0 = is_valid_w32 s ∧

10 ucast (heap_w32 s (ptr_coerce p0_out)) = p1 ∧
11 ucast (heap_w32 s (ptr_coerce p1_out)) = p0|}!"

This lemma can now be reused in further hand written proofs. To demonstrate this, we prove that swapping

the same pointers twice returns them to their original values. The proof of the following is achieved in fifteen

straightforward steps, by utilising the instantiated version of cs_ss_swap_equiv_wp.

1 lemma swap_twice: "∀ s0.
2 {|λs. s = s0 ∧ inv s ∧ ptr_valid_s32 s x ∧ ptr_valid_s32 s y ∧ x ̸= y|}
3 do swap x y;
4 swap y x
5 od
6 {|λr s. inv s ∧ r = counter s0 + 2 ∧ counter s = r ∧
7 ucast (heap_w32 s (ptr_coerce y)) = ucast (heap_w32 s0 (ptr_coerce y)) ∧
8 ucast (heap_w32 s (ptr_coerce x)) = ucast (heap_w32 s0 (ptr_coerce x))|}!"

This final lemma shows a correctness property on code that contains interleaved calls to user code and glue

code, and eventual invocation of a remote function. Observe that the effort required on the part of the user has

been only manually proving the correctness of the code they have written, their implementation of ss_swap.
We have used an example containing a single function for simplicity, but this process is capable of handling

an arbitrary number of methods in an procedure interface, and scales linearly in the number of methods. The

automated process we have shown has reduced the manual steps required in proving an RPC invocation to

simply the manual steps for proving a local invocation.

6.4 Limitations and Future Directions

The proof generation process we have described is paired with a specific CAmkES connector, seL4RPCSimple,

that handles the primitive CAmkES data types (character, int, uint8_t, etc), but not string, arrays or
user-defined types (C structs). Dealing with these compound types would most likely require extensions in

order to marshal and unmarshal runtime-dependent data formats. That is, marshalling and unmarshalling

would need to perform strcpy- or memcpy-like operations, whose termination argument depends on values
that are not constant at generation-time. This possibility is expanded upon in Section 9.2.

The semantics of the seL4 system calls used by glue code is currently axiomatised. This leaves a vulnerable

gap with the potential for semantic mismatch between the formalisms of seL4 and CAmkES. A separate line

of ongoing work is aimed at giving a formal semantics for seL4’s system call stubs. With this established, it

would be possible to formally connect the generated proofs of this chapter with the semantics of the system

call stubs, giving a top-to-bottom guarantee of the correctness of the glue code operating on top of seL4. This

is extrapolated further in Section 9.1.

Given the assumptions we require of user-provided code, it is natural to consider the semantics of a system

wherein code deliberately violates these assumptions. To give some idea of what is possible, malicious user-

provided code could directly access the underlying endpoint capability and send malformed data. While the
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implementation of the seL4RPCSimple connector attempts to be robust against accidental ormaliciousmisuse

of its glue code, the proofs we have demonstrated only provide a semantics for well-behaved use. That is, in

the presence of malformed invocations of glue code, reasoning will be reduced to a fully manual proof of

generated code. It does not make sense to attempt to prove the “correctness” of an incorrect use of glue code,

but it may be valuable to prove that a trusted recipient of malformedmessages always detects and handles the

error safely. This would be a valuable future extension to our work.

6.5 Other Connectors

The generated proofs we have demonstrated describe only how to achieve correctness for an RPC connector.

These proofs are not applicable to CAmkES’ other two modes of communication, events and dataports. Our

focus onRPC has beenmotivated by the complexity of the RPC glue code. The logic for code generation of RPC

is far more extensive than either events or dataports and presents a greater risk for potential bugs. The same

proof strategy provides less benefit for events and dataports as these mechanisms are predominantly imple-

mented by the seL4 kernel itself, rather than CAmkES.We expand on this with respect to each communication

mode below.

6.5.1 Code Generation for Events

Emitting and consuming CAmkES events is implemented on seL4 by sending and receiving over an asyn-

chronous endpoint. The CAmkES primitives naturally correspond to the seL4 system calls for operating on

an asynchronous endpoint. To demonstrate this clearly, we consider the following simple example system.

1 component Sender {
2 emits Ev e;
3 }
4
5 component Receiver {
6 consumes Ev e;
7 }
8
9 assembly {

10 composition {
11 component Sender sender;
12 component Receiver receiver;
13
14 connection seL4AsynchNative conn(from sender.e, to receiver.e);
15 }
16 }

Code generation produces the following piece of glue code for sender.

1 void e_emit(void) {
2 seL4_Notify(5, /* ignored */ 0);
3 }
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The glue code for receiver is somewhat longer, but not sufficiently more complicated.

1 /* Badge indicating that a message was pending */
2 #define PENDING 195894762
3
4 int e_poll(void) {
5 seL4_Word badge = seL4_Poll(6);
6 return badge == PENDING;
7 }
8
9 void e_wait(void) {

10 seL4_Wait(6, NULL);
11 }

It is clear from these listings that the glue code functions, e_emit, e_wait and e_poll, are simply shallow
wrappers around the seL4 API. A generated proof of their correctness in the style of those shown previously

in this chapter would consist of nothing substantial beyond an axiomatisation of the corresponding system

call’s semantics and then a trivial proof by unfolding. The value of such a proof without connection to a formal

semantics of the seL4 system calls is negligible, which is why we have not pursued this avenue.

6.5.2 Code Generation for Dataports

Recalling Section 2.2.1, dataports are CAmkES’ abstraction of sharedmemory. Where the code generation for

events was minimal, the code generation for dataports is essentially nil. The glue code for both component

instances with a common dataport is a single global with the name and size of the dataport. In this scenario

a proof of “correct code” has no useful meaning. The real correctness criteria for dataports is that the two

regions of memory in separate address spaces map to the same region of physical memory at runtime. The

most promising way to achieve a guarantee of this is through the formalism introduced in Chapter 7, but we

quantify in Section 9.3 why we have left this for future work.

6.6 Summary

This chapter has demonstrated a novel technique that improves the state of the art in component platform

verification. By providing generated proofs for generated code, we both increase the assurance of the CAmkES

component platform and also decrease the manual effort required in guaranteeing whole system correctness

properties. The process removes pre-existing assumptions on the correctness of CAmkES glue code. The

generated correctness proofs free the system designer from having to trust the RPC glue code, and thus allow

them to focus their efforts on other key parts of their system.
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Chapter 7

Correct Architecture Implementation

The process of starting a CAmkES system is analogous to booting a conventional operating system, complete

with a number of potential pitfalls and attack vectors. The correctness of a component architecture and com-

ponent code can be easily undermined by an initialisation process that fails to ensure that the system at run-

time is a faithful representation of the artefacts that are visible at design time. A correctness guarantee of

the initialisation process cements the relationship between what is verified and what is ultimately executed,

providing proof that the component boundaries are in place and cannot change at runtime. This chapter de-

tails CAmkES’ initialisation mechanism, the possible problems that can occur and the formal guarantees we

provide that these problems do not manifest. We go on to generate an access control policy and demonstrate

how to reason about information flow properties using this policy.

7.1 Initialisation Process

The required initial configuration of aCAmkES system is completely described by the architectural description.

That is, the architecture of a given CAmkES system provides sufficient information in isolation to determine

how the system should appear in its initial state. The required kernel objects and capabilities to them can be

inferred directly from the architecture, with the exception of virtual address space dimensions and memory

contents. Leveraging this property, CAmkES systems are initialisedwith a generic seL4 root task (described in

Section 2.2.1.6) that is parameterised with an initialisation specification derived directly from the architecture

description. This initialisation specification is provided to the root task by compiling a representation of the

specification into its data section at build time.

After initialising the hardware, seL4 transfers control to this root task. The task iterates over its provided

specification, creating kernel objects and capabilities as necessary. The task is single threaded and, on com-

pletion, suspends itself. It also runs at seL4’s highest priority level, a level that is unavailable to CAmkES

component instances. The task never provides its subordinates with capabilities to either its CSpace or its

TCB. This scenario allows us to guarantee, by design, that the task runs uninterrupted until it is complete

and then permanently removes itself from the kernel’s run queue. From this point onwards, though its ob-

jects and capabilities still exist, they are effectively inert and cannot influence the running system as they are

unreachable from the remaining operational threads.

The state of the system after the root task has suspended itself is intended to correspond to the architecture

description. Because all authority in seL4 is conferred by capabilities, any connection between two compo-
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nent instances in a CAmkES specification results in a corresponding capability path1 between those instances,

either direct or indirect. For the standard seL4 connectors, this results in shared objects, that is objects to

which more than one component instance has a capability. In particular:

• a synchronous endpoint shared between two component instances connected by a seL4RPCSimple con-

nection;

• an asynchronous endpoint shared between two component instances connected by a seL4AsynchNative

connection; and

• page capabilities to the same frame installed into the page tables of two component instances connected

by a seL4SharedData connection.

We aim to show that these are the only connections that exist between components and that they match the

ADL specification of the system. The initialisation specification that describes these kernel objects and ca-

pabilities is generated at build time from the architecture description by the CAmkES code generator. The

correctness of the generic root task is the subject of other work (Boyton 2014; Boyton et al. 2013) and is out

of scope for the present discussion. However, a faithful translation of the architecture description into an

initialisation specification is a guarantee that the work in this chapter attempts to establish, by providing the

system designer with an environment to verify that the expected properties of their architecture hold. The

next section examines the potential problems that can occur in the architecture translation and thus what the

formalism of this chapter is guarding against.

7.2 Possible Problems

To guarantee that a running system matches a pre-defined architecture description, it is essential to under-

stand the ways in which it could differ if the initialisation process was incorrect. It is also relevant to under-

stand the potential sources of this incorrectness. In this discussion, we only consider faults stemming from

the CAmkES code generator, as faults in the seL4 kernel or the root task are out of scope as outlined previously

and addressed in previous work.

Consider a system that contains three component instances: a, b and c. In this system, a has an RPC connec-
tion to b and an event connection to c.

1 assembly {
2 composition {
3 component A a;
4 component B b;
5 component C c;
6
7 connection seL4RPCSimple conn1(from a.rpc, to b.rpc);
8 connection seL4AsynchNative conn2(from a.ev, to c.ev);
9 }

10 }

This system is depicted in Figure 7.1.

Given this description, the initialisation specification should contain three CSpaces, one for each component

instance. Component instance a should have capabilities to a synchronous endpoint and an asynchronous
1The kernel objects and capabilities to them form a directed graph. Furthermore, influence of one object over another is observable

in this graph as a path from one to the other. For a more extensive discussion of capability graphs, the reader is referred to the seL4
reference manual (Trustworthy Systems Team 2014a).
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Figure 7.1: A system of three component instances

endpoint, corresponding to its interfaces rpc and ev, respectively. Component instance b should have a
capability to this same synchronous endpoint and component instance c should have a capability to the asyn-
chronous endpoint.

This configuration has some relevant security properties that the system designer may wish to leverage. The

connector, seL4AsynchNative, provides one way information flow; that is, the sender cannot learn anything

from the receiver. In the system we’ve described, this means the execution of c should not be able to affect
the execution of a. By extension, c should also be unable to affect the execution of b.

Now suppose the generation of this initialisation specification was incorrect and it granted an extra capability

to the synchronous endpoint to c. This variation is depicted in Figure 7.2. This would result in an unintended
information leakage from c to the other two component instances. While the extra capability is observable in

the initialisation specification, it may be difficult to notice in a more complicated system. Moreover, because

the initialisation specification is an intermediate build artefact to the system designer, it may not be manually

inspected.

All problems with the initialisation specification manifest as inaccurate capability graphs, but there are more

subtle examples than the one just discussed. For example, a capability to one of the code pages of component

instance a may be incorrectly mapped into one of the page tables of component instance c, allowing c to
tamper with a’s code at runtime, again effecting an information leakage.2

While there are more complicated examples than this, it suffices to say that all possible incorrect translations

are observable as incorrect implied authoritywithin the capability graph. This is a specific property thatmakes

a capability-based microkernel like seL4 a well-suited target for component platform proofs. One category

of unfaithful translation that is not detected by the work described in this chapter is missing capabilities or

objects. Such a situation can only ever lead to more constrained authority, and is thus not a security violation.

Missing capabilities or objects are detectable as unexpectedly absent runtime functionality, and can easily be

caught by testing.

2Recall that paging structures in seL4 are completely described by kernel objects and capabilities to them. That is, a page mapping is
represented as a capability to a frame object that is hosted within a page table object. Hence, this incorrect mapping is still observable in
the initialisation specification.
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Figure 7.2: A system with an incorrect extra capability

7.3 Approach

Section 2.2.1.6 described how a system designer’s architecture is interpreted into a running system by

CAmkES. The CapDL specification produced by CAmkES can be translated into a series of Isabelle/HOL def-

initions by an existing tool (Lewis et al. 2014). This automatic translation gives a formalised representation

of the initial system state. Previous work gives a semantics to such definitions and provides a framework

for reasoning about information flow and authority confinement in a seL4-based system (Kuz et al. 2010;

Murray et al. 2012; Sewell et al. 2011). The maturity and expressivity of this framework make it an ideal

environment for reasoning about information flow within a CAmkES system. The system designer can use

this to validate that their architecture has the safety and security properties they expect. Thus our task

becomes closing the gap between the designer’s original architecture description and the translated CapDL

specification.

We take a hybrid approach, building on ideas from translation validation (Pnueli, Siegel, and Singerman 1998),

in verifying the correspondence of the two artefacts: a CAmkES architecture and a CapDL specification. We

represent the former of these in the formalism described in Chapter 4. This model gives a precise definition

of the architecture and is also produced automatically by the CAmkES code generator. Firstly we have man-

ually written an Isabelle/HOL definition of CAmkES’ CapDL-generation logic. This is a function that takes a

CAmkES architecture and auxiliary information as input and produces a CapDL specification and an access

control policy as output. We expand on the precise type definition of this function in the next section.

To guarantee that the output of the Isabelle/HOL function we have written is consistent with the CapDL speci-

fication that the implementation produces, we havemodified the CAmkES code generator to produce another

output, an Isabelle/HOL theory containing generated lemmas. These lemmas prove the equivalence of the

output of our Isabelle/HOL function with the concrete output of the implementation.

The advantage of, and primary motivation for, this design is scalability and expressiveness for the designer.

The concrete specification is a large Isabelle/HOL term that is cumbersome to reason about. However, prop-

erties that generalise can be proven on a universally quantified output of the generator function. To this end,

we have proven that the specification produced by the generator always refines the access control policy pro-
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duced. For a system designer, this means they are spared of proving this complex property on their large,

concrete specification and can simply instantiate this general lemma. We describe the specifics of how this

can be achieved later in this chapter.

7.4 CapDL Generator Function

Our Isabelle/HOL function that generates a CapDL specification and access control policy takes three inputs:

a CAmkES architecture, a collection of address space objects and a collection of unassigned interrupt nodes.

The latter two may be surprising, and they are only necessary due to implementation details.

The need for an auxiliary collection of address space objects is driven by the way in which CAmkES defines

a component instance’s virtual address space. Rather than manually specifying address space regions or at-

tempting to predict a component instance’s requirements, CAmkES allows the compiler and linker full control

over address space layout. This gives the compilermuch greater scope for optimisation and instrumentation.3

CAmkES then derives the frames, page tables and page directory required by a component instance post hoc

by inspecting its compiler-produced binary. Naturally, we do not wish to encode the address space layout

algorithm of a full compiler in our generator function, so we instead phrase it as accepting an input that fully

describes the frames, page tables and page directories. As a consequence, there are some necessary conditions

on this auxiliary collection for it to be wellformed, that we will discuss later in this chapter.

The collection of unassigned interrupt nodes is motivated by a much more mundane reason. CAmkES infers

an interrupt node for every hardware interrupt defined by the target platform. These can be assigned to

an asynchronous endpoint for delivery of the interrupt if the system makes use of them. However, for the

purposes of this verification effort we limit ourselves to systems that do not use interrupts and hence we

require all the inferred interrupt nodes to be unassigned. This is not a fundamental limitation, but merely a

proof convenience that could be lifted in future. All objects in a CapDL specification have a numeric identifier,

represented as a 32-bit word. Their identifiers are incremented linearly as CAmkES defines objects, with the

interrupt nodes defined last. This means that the identifiers of the interrupt nodes follow the address space

objects, that are defined by the second input parameter. While it would be possible to have the generator

function derive the interrupt node identifiers given only its first two inputs, we simplify it by requiring a third

input that completely describes these interrupt nodes. Again, this necessitates conditions for this collection to

be wellformed, but the requirements are significantly simpler than for the collection of address space objects.

The output of the generator function is an option type of a pair of CapDL specification and access control policy.

The function produces None if one of its inputs is not wellformed. Conversely, given a wellformed CAmkES
architecture with accurately described address space objects and interrupt nodes that fits our assumptions,

this function always produces a CapDL specification and an access control policy. The specification, as dis-

cussed previously, completely describes the kernel objects and capabilities to them in the initial state of the

system. This initial state is actually persistent, as the limitations of CAmkES make it immutable at runtime

by design.4 The policy describes a series of information domain labels (one per component instance and one

per connection) and an upper bound on the effect any label can have on any other label.

3This may seem like a trivial motivation, but modern embedded C code typically relies heavily on the compiler’s ability to per-
form optimisations like dead code elimination and function inlining. Some systems rely on more esoteric optimisations like GCC’s
-ffunction-sections. By not attempting to control the address space layout of a component instance, CAmkES can effectively “stay
out of the compiler’s way” and give it the greatest chance of producing efficient code.

4Though itmay seem like a complex property, it is actually trivial to observe that a CAmkES-derived CapDL specification is immutable.
Any modification to a capability or the essential state of a kernel object must happen by operating on a containing CNode capability, by
virtue of the seL4 API design. No CNode capabilities are addressable by CAmkES component instances. This is an intentional outcome
motivated by our target use case of static component-based systems. Formore extensive justification of these claims, the reader is referred
to the proofs of separation kernel bisimilarity in the seL4 proofs (Trustworthy Systems Team 2014b).
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In full, the type signature of the generator function appears as follows.

1 extended_generate :: "camkes_state ⇒ cdl_heap ⇒ irqs
2 ⇒ (cdl_state × label PAS set) option"

In this context, camkes_state is a type synonym for assembly from Chapter 4, cdl_heap is a mapping
from CapDL object identifiers to objects and irqs is a record type capturing the collection of interrupt nodes.
The output types cdl_state and PAS are the types of a CapDL specification and an access control policy,
respectively. We expand on the PAS type later in this chapter.

7.5 Assumptions

In defining the Isabelle/HOL function that represents CAmkES’ CapDL generation logic, we have made sev-

eral assumptions that are encoded into the conditions for the inputs being wellformed. That is, the predicates

that encode these checks contain some properties that should be true of all correctly described CAmkES sys-

tems and some properties that constrain the systems to which this formalism can be applied. The constraints

are, in part, driven by the necessary conditions for a CapDL specification to refine an access control policy,

formalised in the relation pcs_refined that we will return to later. Further details on the requirements for
this refinement are available in previous work (Klein et al. 2014).

In this section, we give an overview of the restrictions we place on input artefacts by dealing with each of the

validity predicates in turn. When reading the following, it is important to note that all inputs to these pred-

icates are generated. That is, these predicates never need to be referenced manually by the system designer

and they are automatically proven to hold over a valid CAmkES specification.

7.5.1 Validity of CAmkES Specification

The first property we require is that the CAmkES specification itself is valid.

1 definition
2 valid_spec :: "camkes_state ⇒ bool"
3 where
4 "valid_spec spec ≡ ({garbage, irq_label, idle_label} ∩
5 set (map fst (components (composition spec)) @
6 map fst (connections (composition spec))) = {}) ∧
7 length (components (composition spec)) < unat maxDomain ∧
8 wellformed_assembly spec ∧
9 (∀ (inst, comp) ∈ set (components (composition spec)).

10 ∀ i ≤ length (provides comp) + length (consumes comp).
11 ∃ f. ipc_buffer inst i = Some f) ∧
12 (∀ (inst, _) ∈ set (components (composition spec)). mangle_pd inst ∈ dom id_of)"

There are three special information domain labels, garbage, irq_label and idle_label. These three
labels are applied to numeric identifiers that map to, respectively, no valid object, unassigned interrupt nodes

and the idle thread.5. Lines 4-6 capture that no component instance name or connection name can collide

5The “idle thread” is, conceptually, the action that is taken when the kernel scheduler’s run queue is empty; that is, when no threads
are schedulable. In most operating systems, the idle thread is an abstract concept, not directly visible in the implementation. In contrast,
seL4 represents the idle thread as an explicit, schedulable entity. An advantage of this approach is that confidentiality and integrity proofs
can explicitly describe and restrict communication channels involving the scheduler (Murray et al. 2012; Murray et al. 2013). A side
effect is that the idle thread is visible in CapDL specifications and must be explicitly dealt with. This is all automatic and transparent to
the designer working on top of our formalism, as we assume no component system’s correctness relies on interacting with the idle thread.
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with these. This is purely for convenience, as component instance names and connection names are used as

labels. The garbage, irq_label and idle_label labels are entirely arbitrary and can be set to any value,
providing they themselves are distinct.

Line 7 specifies that the number of component instances in the systemmust be less than the number of sched-

uler domains.6 This is because each component instance runs in a separate domain, with one domain reserved

for the idle thread. The predicate from Chapter 4 for a CAmkES specification to be wellformed appears on

line 8. Lines 9-11 refer to an automatically generated function, ipc_buffer. This function takes a compo-
nent instance name and an index as inputs, and returns the frame hosting the IPC buffer of the thread of the

given index in the given component instance. This conjunct states that each thread in the system must have

an IPC buffer.7 Finally, the last conjunct on line 12 requires that the name of each component instance’s page

directory must be associated with a valid object.

7.5.2 Validity of Address Space Objects’ Collection

The auxiliary collection of address space objects provided to the generator function as its second input has

three separate predicates that describe what it means for it to be valid. These three are separated, rather

than defined as a single predicate, due to definition and locale scoping within the contained theory. The

amalgamated validity requirement can be thought of as the conjunction of these three. The first two take as

their first parameter an initial collection of objects that is produced by the generator prior to appending the

address space objects. The third takes the system architecture specification. The reason for these additional

parameters becomes clear when enumerating the conjuncts that make up these predicates.

First, we discuss the predicate, valid_extra. The collection of address space objects is provided as a map-
ping from object identifier, cdl_object_id, to CapDL object, cdl_object. This type is abbreviated to
cdl_heap, as seen with reference to the address space objects parameter, extra.

1 definition
2 valid_extra :: "cdl_state ⇒ cdl_heap ⇒ bool"
3 where
4 "valid_extra initial extra ≡
5 (∀ obj ∈ ran extra. isPageDirectory obj ∨ isPageTable obj ∨ isFrame obj) ∧
6 dom (cdl_objects initial) ∩ dom extra = {} ∧
7 (∀ obj ∈ ran extra. case obj of
8 PageDirectory pd ⇒ (∀ cap ∈ ran (cdl_page_directory_caps pd).
9 case cap of

10 PageTableCap i _ None ⇒
11 isSomePageTable (extra i) ∧ one_cap extra i
12 | FrameCap i _ _ _ None ⇒
13 isSomeFrame (extra i) ∧ one_cap extra i
14 | _ ⇒ False)
15 | PageTable pt ⇒ (∀ cap ∈ ran (cdl_page_table_caps pt).
16 case cap of
17 FrameCap i _ _ _ None ⇒
18 isSomeFrame (extra i) ∧ one_cap extra i
19 | _ ⇒ False)
20 | _ ⇒ True) ∧

6Note that the scheduler domains referred to here are the mechanism by which seL4 isolates threads in the manner of a separation
kernel. This concept of domains is distinct from the information domains we discuss, though CAmkES systems are configured with one
scheduler domain per information domain, so in practice they are always one-to-one for the purposes of this work.

7It might seem peculiar to have such an assumption, but it is possible to configure a thread on seL4 that does not have an IPC buffer.
Such a thread can run indefinitely, provided it does not attempt system calls or interprocess communication. In CAmkES, we disallow
this as the glue code assumes the existence of a valid IPC buffer. Regardless, it should be clear that a thread without an IPC buffer is of
limited value as it can perform computation but no I/O.
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21 (∀ obj_id ∈ dom extra. case extra obj_id of
22 Some (PageTable _) ⇒ one_cap extra obj_id
23 | Some (Frame _) ⇒ one_cap extra obj_id
24 | _ ⇒ True) ∧
25 (∀ obj_id ∈ dom extra. obj_id ̸= idle_thread_ptr) ∧
26 inj (extra_filter_out_frames extra)"

This definition uses the functions dom and ran that extract the domain and range of a function, respectively.
Injectivity of a function is expressed by the predicate inj. Line 5 captures that all objects in this collection
must be either page directories, page tables or frames, which is to be expected. Line 6 expresses that none

of the object identifiers of these address space objects should collide with any object identifiers already used

by the generator function. The next conjunct that spans lines 7-20 appears formidable, but actually captures

a very simple property; namely, that each contained capability references an object of consistent type and is

the only capability to that object in the collection. This property becomes necessary later when expressing

the disjoint nature of address spaces. Lines 21-24 state that there is a single capability to each page table

and frame. That is, there are no orphaned page tables or frames in this collection. The penultimate conjunct

on line 25 states that no address space object has the identifier of the idle thread. The final conjunct on line

26 states that removing the frames from this collection yields a resulting injective function. Again, this is

necessary later for expressing the disjointness of address spaces.

The second validity predicate, with identical type signature, contains a separate series of conjuncts.

1 definition
2 valid_extra' :: "cdl_state ⇒ cdl_heap ⇒ bool"
3 where
4 "valid_extra' initial extra ≡
5 (∀ n i f. ipc_buffer n i = Some f −→ f ∈ dom extra ∧
6 (∃ frame. extra f = Some (Frame frame)) ∧
7 label_frame extra f = Some n) ∧
8 (∀ obj_id ∈ dom extra. case extra obj_id of
9 Some (PageDirectory _) ⇒

10 ∃ name. id_of (mangle_pd name) = Some obj_id
11 | _ ⇒ True)"

The first conjunct on lines 5-7 states that the frames backing the IPC buffers of all threads are in this collection,

are indeed frames and are labelled with the information domain label of the component instance to which they

relate. The second on lines 8-11 states that each page directory in the collection is the designated page directory

of one of the component instances.

The final predicate claims two properties of the address space objects.

1 definition
2 valid_extra'' :: "camkes_state ⇒ cdl_heap ⇒ bool"
3 where
4 "valid_extra'' spec extra ≡
5 (∀ (name, _) ∈ set (components (composition spec)).
6 ∃ pd. extra (the_id_of (mangle_pd name)) = Some (PageDirectory pd)) ∧
7 (∀ obj_id∈dom extra.
8 case extra obj_id of
9 None ⇒ True

10 | Some (cdl_object.PageDirectory x) ⇒
11 ∃ name ∈ fst ` set (components (composition spec)).
12 id_of (mangle_pd name) = Some obj_id
13 | Some _ ⇒ True)"
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Firstly, it states that for each component instance in the system, the collection must contain a corresponding

page directory (lines 5-6). Secondly, it states that each page directory in the collection has a corresponding

component instance (lines 7-13). Taken together, they form a requirement for a one-to-one correspondence

between component instances and page directories.

There is some redundancy in these three predicates. However, thus far we have not attempted to prune super-

fluous clauses or optimise expressions because the predicates are only ever used in generated proofs. Their

verbosity does not impede the system designer because they are never unfolded in hand written proofs.

Note that the majority of the conjuncts we have detailed for these three predicates are not constraints of the

systems we support, but rather type system constraints. The type definitions of cdl_heap and cdl_object
are not strong enough to prevent the definition of terms that are internally inconsistent. This is driven by the

need for mutually recursive references in the foundation of these types (objects contain capabilities, which in

turn refer to objects), and is not accidental.

The only emergent constraint from these three predicates that represents a limitation on the category of sys-

tems we can handle is that capabilities to the same frame cannot appear in two page tables.8 By implication,

this formalism does not support systems that involve shared memory (dataports in CAmkES parlance). This

is not a fundamental limitation, and the decision to make this compromise was partially motivated by proof

convenience. However, lifting this restriction requires more substantial considerations that we elaborate on

in Section 9.3.

7.5.3 Validity of Interrupt Nodes’ Collection

In contrast to the CAmkES specification and address space objects, defining the concept of validity for the col-

lection of interrupt nodes is simpler. The reason for this is that there is very little variability in this collection.

We require all the nodes to be unassigned and the platform we target has a fixed number of interrupts, 256.

As noted in Section 7.3, this collection is sufficiently regular that it could be derived from the preceding two

inputs, to avoid supplying it entirely. However, there would be little value in making this modification as the

generator function’s inputs and its invocation are all automatic, so the existing structure does not impede the

system designer.

Building on the previous two inputs, the predicate for validity of the interrupt nodes’ collection takes the initial

collection of objects produced by the generator prior to appending the address space objects and the collection

of address space objects as its first two parameters.

1 definition
2 valid_irqs :: "cdl_state ⇒ cdl_heap ⇒ irqs ⇒ bool"
3 where
4 "valid_irqs initial extra irqs ≡
5 range (irqs_map irqs) = dom (irqs_objects irqs) ∧
6 dom (cdl_objects initial) ∩ dom (irqs_objects irqs) = {} ∧
7 dom extra ∩ dom (irqs_objects irqs) = {} ∧
8 (∀ x ∈ ran (irqs_objects irqs). case x of
9 CNode c ⇒ c = (|cdl_cnode_caps = empty, cdl_cnode_size_bits = 0|)

10 | _ ⇒ False) ∧
11 idle_thread_ptr /∈ range (irqs_map irqs)"

The first property on line 5 states an internal consistency property of irqs, that itmust reference the interrupt
nodes that it itself defines. Lines 6 and 7 state that the identifiers of the interrupt nodes must not collide with

8More precisely, a capability to the same frame cannot appear in any two places; two page tables, two page directories, or a page table
and a page directory. Recall that, on ARM, the largest page sizes are mapped directly into page directories.
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the identifiers in use by the initial objects produced by the generator or the address space objects. Lines 8-10

state that every interrupt nodemust be empty (unassigned). Finally, line 11 states that no interrupt nodemust

have the identifier of the idle thread.

The only constraint within this predicate that represents a system limitation – that is, not a type system con-

sistency property – is that the interrupt nodes must all be unassigned. This prevents use of this formalism

with systems that make use of hardware interrupts. This is purely a simplification made to ease proofs in

this experimental prototype. This limitation could be removed with relatively low effort, but by retaining it

we enable the possibility of using previous information flow work that contains this assumption (Murray et

al. 2012). This is not a restriction of other seL4 security results (Sewell et al. 2011), so it may be desirable to

make this constraint optional in future.

7.6 CapDL Correspondence

Section 7.4 described an Isabelle/HOL function for producing a CapDL specification of a component-based

system. However, a system is initialised by a specification that is produced by the CAmkES code generator.

To have confidence that properties proven on the output of the Isabelle/HOL function are applicable to the

running system, we need a guarantee that the output matches the specification produced by the code genera-

tor.

As in previous chapters, we take an approach of translation validation. Firstly, an Isabelle/HOL representa-

tion of the code generator’s output is produced by an existing tool (Lewis et al. 2014). Secondly, we have

modified CAmkES’ code generator to produce another Isabelle/HOL theory proving equality between the two

concrete artefacts: its own CapDL specification output and the output of the generator function when operat-

ing on the current system’s architecture description.

The lemmas proven in this generated theory are straightforward. They first demonstrate that the generated

specification satisfies the assumptions of the generator function (valid_spec, valid_extra, etc.). Their
proofs operate via automated tactics and, where unavoidable, exhaustive enumeration. It is possible for a

system designer to prove these lemmas manually, but this involves numerous tedious steps. The final lemma

guarantees the generator function produces a result (not None) and its output corresponds to the code gener-
ator’s output, here named final.

1 lemma final:"∃ pases. extended_generate spec extra irqs = Some (final, pases)"

The second output of the generator function, pases, is the subject of the following section.
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7.7 Policy Refinement

The definitions we have described in this chapter formalise the logic by which CAmkES generates a CapDL

specification. However, it is the second output of the generator function, the access control policy, that is of

most interest to the system designer. It is the policy that provides an intuitive definition of the upper bound

of information flow within a CAmkES system. One of its fields contains a set of information domain labels

(one per component instance and one per connection) and labelled, directed edges between them. Together,

these form an authority graph.

The type of this policy is formalised in an Isabelle/HOL record, PAS (policy, abstraction, subject).

1 record 'a PAS =
2 pasObjectAbs :: "'a agent_map"
3 pasASIDAbs :: "'a agent_asid_map"
4 pasIRQAbs :: "'a agent_irq_map"
5 pasPolicy :: "'a auth_graph"
6 pasSubject :: "'a"
7 pasMayActivate :: "bool"
8 pasMayEditReadyQueues :: "bool"
9 pasMaySendIrqs :: "bool"

10 pasDomainAbs :: "domain ⇒ 'a"

This record is parameterised by a type, 'a, for the labels in the system. The four fields, pasObjectAbs,
pasASIDAbs, pasIRQAbs and pasDomainAbs, assign labels to the CapDL objects, address space identifiers,
interrupts and scheduler domains, respectively. The pasPolicy field contains the aforementioned authority
graph. The pasSubject field indicates the currently active label (the label of the currently running thread).
Finally, the fields pasMayActivate, pasMayEditReadyQueues and pasMaySendIrqs describe the abili-
ties of the currently active label. This record captures the full set of information required for reasoning about

confidentiality and integrity. A deeper explanation of this type and associated mechanisms is available in

prior work (Klein et al. 2014; Sewell et al. 2011).

The policy we produce is a set of this record type.

1 definition
2 pas_of :: "camkes_state ⇒ cdl_heap ⇒ irqs ⇒ label PAS set"
3 where
4 "pas_of spec extra irqs ≡ {pas.
5 pasObjectAbs pas = poa_of spec extra irqs ∧
6 (∀ asid. pasASIDAbs pas asid = garbage) ∧
7 (∀ irq. pasIRQAbs pas irq = irq_label) ∧
8 pasPolicy pas = policy_of spec extra irqs ∧
9 pasSubject pas ∈ {idle_label} ∪ fst ` set (components (composition spec)) ∧

10 ¬ pasMayActivate pas ∧
11 ¬ pasMayEditReadyQueues pas ∧
12 ¬ pasMaySendIrqs pas ∧
13 pasDomainAbs pas = domain_of spec
14 }"

It may be surprising that we produce a set, rather than a single, definitive policy. Our motivation is that we

wish to allow variance in certain fields of the record. For example, we permit the active label (the pasSubject
field) to be any label associated with a component instance or the idle thread (line 9). The authority graph

(the pasPolicy field) is defined in full as follows.
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1 definition
2 policy_of :: "camkes_state ⇒ cdl_heap ⇒ irqs ⇒ label auth_graph"
3 where
4 "policy_of spec extra irqs ≡
5
6 (* Every component instance label, the idle label and the interrupt label
7 * have every authority over themselves
8 *)
9 {edge. edge_subject edge ∈ {idle_label, irq_label} ∪

10 fst ` set (components (composition spec)) ∧
11 edge_subject edge = edge_object edge} ∪
12
13 (* Senders on seL4RPCSimple connections *)
14 {edge. ∃ (name, conn) ∈ set (connections (composition spec)).
15 conn_type conn = seL4RPCSimple ∧
16 edge_object edge = name ∧
17 edge_subject edge = fst (conn_from conn) ∧
18 edge_auth edge ∈ {Reset, SyncSend}} ∪
19
20 (* Receivers on seL4RPCSimple connections *)
21 {edge. ∃ (name, conn) ∈ set (connections (composition spec)).
22 conn_type conn = seL4RPCSimple ∧
23 edge_object edge = name ∧
24 edge_subject edge = fst (conn_to conn) ∧
25 edge_auth edge ∈ {Receive, Reset, SyncSend}} ∪
26
27 (* Senders on seL4AsynchNative connections *)
28 {edge. ∃ (name, conn) ∈ set (connections (composition spec)).
29 conn_type conn = seL4AsynchNative ∧
30 edge_object edge = name ∧
31 edge_subject edge = fst (conn_from conn) ∧
32 edge_auth edge ∈ {AsyncSend, Reset}} ∪
33
34 (* Receivers on seL4AsynchNative connections *)
35 {edge. ∃ (name, conn) ∈ set (connections (composition spec)).
36 conn_type conn = seL4AsynchNative ∧
37 edge_object edge = name ∧
38 edge_subject edge = fst (conn_to conn) ∧
39 edge_auth edge ∈ {Receive, Reset}}"

It is observable from this definition how the authority between labels is derived from the same intuition the

system designer has about the relationship between their component instances. The result is a generated

authority graph that feels very familiar to the system designer, which is an invaluable trait when it comes

to reasoning about their system. To demonstrate this, the authority graph of the system from Figure 7.1 is

visualised in Figure 7.3.

A side effect of producing a set rather than a single policy is that the output of the generator function represents

the most fine-grained desirable policy. It is possible that the system designer does not need this level of detail.

For example, the system may contain two component instances whose isolation from each other is irrelevant.

In such cases, it is straightforward for the designer to define a more coarse policy by merging certain labels

and providing a mapping from one label set to the other. This new policy can be trivially proved valid by

showing its authority graph is a superset of the original’s authority graph.

We have explained how the policy for a CAmkES system is generated, but not why the above generation logic is

correct. For this, we have manually proven a further lemma that, if the generator function produces a CapDL

specification and a policy, the specification always refines the policy.



7.8. EXAMPLE 121

b

a

c

*

*

*

conn1

conn2

irq

idle

*

*

Re
se
t

Sy
nc
Se
nd

Re
se
t

Sy
nc
Se
nd

Re
ce
ive

AsyncSend
Reset

ReceiveReset

Figure 7.3: Authority graph for an example system involving three components

1 lemma generated_pcs_refined:
2 "[[extended_generate spec extra irqs = Some (capdl, pases); pas ∈ pases]]
3 =⇒ pcs_refined pas capdl"

In this lemma statement, pcs_refined is a relation defined in other work (Klein et al. 2014) describing
refinement between an arbitrary CapDL specification and a policy. The effect of this lemma is to guarantee

consistency in the outputs of the generator function. Moreover, it obviates the need for the system designer

to construct their own policy or verify its correctness.

To emphasise this, the foundation we have defined allows a system designer to input only their component

architecture, and have a guaranteed-accurate information flow policy generated for them. This significantly

reduces impediments to reasoning about information flow in a component-based system, and even opens the

possibility for proving simple properties automatically.

7.8 Example

To demonstrate the utility of this formalism, we recapitulate our familiar example of a system with two con-

nected component instances.

1 procedure Simple {
2 int echo_int(in int i);
3 int echo_parameter(in int pin, out int pout);
4 }
5
6 component Client {
7 control;
8 uses Simple s;
9 }

10
11 component Echo {
12 provides Simple s;
13 }
14
15 assembly {
16 composition {
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17 component Echo echo;
18 component Client client;
19
20 connection seL4RPCSimple simple(from client.s, to echo.s);
21 }
22 }

Recall that this system is depicted in Figure 5.4.

Translation into the static architecture model is automatic, as is generation of the corresponding CapDL spec-

ification and proof of its correspondence to the output of the Isabelle/HOL function we described previously.

The resulting policy delivered to the designer contains the following authority graph.

1 definition
2 authgraph :: "(label × auth × label) set"
3 where
4 "authgraph ≡
5 {edge. edge_subject edge = edge_object edge ∧
6 edge_subject edge ∈ {''client'', ''echo'', idle_label, irq_label}} ∪
7 {(''client'', Reset, ''simple''),
8 (''client'', SyncSend, ''simple''),
9 (''echo'', Receive, ''simple''),

10 (''echo'', Reset, ''simple''),
11 (''echo'', SyncSend, ''simple'')}"

This generated graph shows a set of edges that should match the designer’s intuition for the system they have

built. In this case, the graph contains a self-reflexive edge from every component instance label to itself, as

well as the same for the idle thread and interrupt labels (lines 5-6). The remaining set shows the authorities for

resetting the state of an object (Reset) and synchronous sending (SyncSend) from client to the connection
label simple (lines 7-8) and authorities for the same and additionally receiving (Receive) from echo to
simple (lines 9-11). This authority graph is depicted in Figure 7.4.

client echoSyncSend

Reset
* *simpleSyncSend

Reset
Receive

idle irq* *

Figure 7.4: Authority graph of a simple component system

From here, it is possible to prove properties of the architecture. For example, it can be proven that simple
has no authority over client.

1 lemma no_back_channel: "(''simple'', auth, ''client'') /∈ authgraph"
2 by (simp add:authgraph_def)

Note that the proof of this lemma is trivial and many other safety and security properties will be similarly

simple. This is due to the simple set type of the authority graph. For a constrained class of such lemmas,

it is possible to automate such proofs. We have not attempted to do so, as it would require classifying and



7.9. TRUST 123

constraining the class of lemmas users would be expected to want, but it would be a natural extension to this

line of work.

This section has summarised the expected work flow for proving information flow properties about a CAmkES

system. The formalism of this chapter can similarly be used as a basis for proving integrity properties and for

guaranteeing memory separation, the latter being necessary for future work to further cement the connection

between the model of Chapter 6 and seL4.

The brevity of the steps involved in going from a system architecture to the proven property of this section

reflect the extensive automation. The details and internal structure of generated proofs are not a concern of

the designer. In the next section, we elaborate on the motivation for trusting these unseen artefacts.

7.9 Trust

The process we have demonstrated allows the designer to prove information flow properties about their com-

ponent systems. Having proven such properties, it is desirable to have a guarantee that the model on which

they were proven matches the running system.

With the exception of the initial translation from textual architecture description to an Isabelle/HOL term

built on the formalism from Chapter 4, all steps are taken within the theorem prover. In particular, the proof

of correspondence between the output of the Isabelle/HOL generator function and the concrete CapDL spec-

ification of a given system is replayed within the theorem prover. Thus we do not need to trust the logic that

generates this proof, as it will simply fail when replayed if incorrect. The only element included in our trusted

computing base here is the theorem prover itself.

The initial architecture translation that occurs outside the theorem prover can be trusted to be correct or its

output can be inspected. The correspondence between input and output formats is close enough that amanual

validation is possible. An alternate approach would be to perform this translation in the opposite direction.

Defining an Isabelle/HOL function that accepted a term describing the architecture and produced a textual

representation suitable for consumption by CAmkES’ code generator would permit this. The Isabelle/HOL

function could then be proven to preserve some given semantics during this translation. We have not taken

this approach, but we present it here as an alternative means of gaining confidence in the correctness of the

translation. In practice, infidelities in the existing translation mechanism were always immediately apparent

to users when their expected properties could not be proven.

An alternate perspective with regard to trusting the architecture translation is that the ADL description of

a component system is no longer a critical component of system correctness. Returning to Figure 2.10 and

depicting the generated artefacts discussed in this chapter separately, we have Figure 7.5. By viewing the gen-

erated architecture definition as the canonical representation of the system, the lack of a formal connection

between the original ADL description and this generated definition becomes irrelevant. As discussed previ-

ously, the correspondence between this generated architecture definition and the initialisation specification is

proven entirely within the theorem prover. This removes the need to trust the translation process altogether.

7.10 Scalability

The example we demonstrated in Section 7.8 involved only two component instances, and it is natural to ask

how this process scales to larger component systems. The generated proof for the example given takes around

20minutes to replay on an Intel Core i7-4770with 32GB of RAM, running Linux 3.13.0 and Isabelle 2015. The
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Figure 7.5: Informal and formal correspondence between architecture artefacts

proof has not been heavily optimised and could easily be sped up by a factor of two. Its current runtime is

dominated by proofs about capabilities to address space objects; specifically, that there is a single capability

to each frame and page table.

A weakness of our current implementation is that the address space objects are represented in a collection as

a single Isabelle/HOL term, leading this proof to be quadratic in the number of component instances in the

system. However, this is not a fundamental bound. By requiring a single capability to each frame and page

table, we implicitly constrain the address space objects to be partitioned into disjoint directed acyclic capability

graphs, one for each component instance. Representing these disjoint graphs as separate Isabelle/HOL terms

would diminish the proof goal to demonstrating that they are indeed disjoint and that each form a tree, rooted

at a page directory.

By grouping address space objects by component instance at the time of their creation, it is possible to assign

them numerically contiguous identifiers. It is then possible to prove collections of objects disjoint by way of

numeric ranges. This design admits an alternate proof strategy that scales linearly in the number of compo-

nent instances. While this is not the approach in our current implementation, we note this possibility here

as a justification that a theoretical upper bound on the scalability of our technique is linear in the number of

component instances.
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7.11 Summary

This chapter has demonstrated a technique for automatically deriving an access control policy for a

component-based system. The derived policy is automatically proven to correspond to a fine-grained specifi-

cation of kernel objects and their capabilities. By treating information flow at the granularity of component

instances and connections, the generated policy matches the system designer’s intuitions and forms a natural

environment for proving safety and security properties.

The automation we provide allows a system designer to seamlessly transition from describing a component

system architecture to proving properties about that architecture. In bridging these environments, we en-

able iteration on an initial design while prototyping desired safety and security properties and observing how

architecture changes affect the formal properties of a system. In doing so, system designers gain a better

understanding of the implications of their architectural patterns.
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Chapter 8

Example System Verification

Thus far we have introduced four separate formal models for reasoning about component based systems: a

static architecturemodel (Chapter 4), a dynamic behaviouralmodel (Chapter 5), code-level correctness proofs

(Chapter 6) and access control policy generation (Chapter 7). In this chapter, we demonstrate how to apply

these four in concert to a realistic prototype system and highlight the benefits each deliver for the system

designer. In doing so, we aim to clarify the utility and application of our work and indicate its effectiveness

for generalised component-based systems.

8.1 Multi-level Terminal

To demonstrate our techniques, we have built a prototype of a multi-level terminal. A multi-level terminal is

a single software system that is designed to be used for handling information with differing security require-

ments. Data at different levels of secrecy or security are handled by separate, isolated domains. Information

flow between the domains is restricted and driven by the system’s security policy. The concept of a multi-level

terminal stems from ideas that originated in the design of separation kernels (Alves-Foss et al. 2006; Rushby

1981; Rushby 1984).

The prototype we have implemented contains four component instances: a trusted source of input, a trusted

display and two instances handling separate security levels. We designate the security levels “low” and “high,”

with information flow permitted from low to high, but not vice versa. It is common for multi-level terminals

to have more than two domains and even a lattice-based security policy (Denning 1976). However, a pair

of domains are sufficient for demonstrating the application of our formalisms, and it should be clear how

to generalise the forthcoming steps to a greater number of domains. The system architecture is depicted in

Figure 8.1.

The input component instance feeds character data to either low or high. When it receives a designated

keyboard input, the tab character, it switches from sending keystrokes from one of these to the other. The

low and high instances process their received keystrokes by either outputting data to the gui component
instance or making changes to their local state. The local state of high is considered secret, in that low
should not be able to infer it. The gui component instance receives screen painting directives from both low
and high and represents these on dedicated regions of a display, one for each source domain. Synchronous
endpoints imply bidirectional information flow (Murray et al. 2012), so we need to trust input and gui.
If we do not trust these component instances, they could maliciously leak information from one domain to

another. The design we have described thus far prevents information flow between low and high. However,
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Figure 8.1: Multi-level terminal prototype

we additionally allow high to observe when low is receiving data via an event emitted by low. The final
architecture permits unidirectional information flow; from low to high, but not in the opposite direction. An
unlabelled, coarse graph of the intended information flow within this system is depicted in Figure 8.2.

gui

highlow

input

Figure 8.2: Information flow in the multi-level terminal prototype
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The full specification of this system is as follows.

1 procedure Paint {
2 /* Write a character at the current cursor position in caller's region */
3 int put_char(in char c);
4
5 /* Delete all characters from the caller's region */
6 void clear(void);
7
8 /* Move the caller's cursor to the given position */
9 int move(in unsigned int x, in unsigned int y);

10 }
11
12 procedure Data {
13 /* Send a key stoke */
14 void send_key(in char c);
15 }
16
17 component Input {
18 control;
19 uses Data low_output;
20 uses Data high_output;
21 }
22
23 component Low {
24 provides Data low_input;
25 uses Paint low_display;
26 emits Keypress key_out;
27 }
28
29 component High {
30 control;
31 consumes Keypress key_in;
32 provides Data high_input;
33 uses Paint high_display;
34 }
35
36 component GUI {
37 control;
38 provides Paint low_data;
39 provides Paint high_data;
40 }
41
42 assembly {
43 composition {
44 component Input input;
45 component Low low;
46 component High high;
47 component GUI gui;
48
49 connection seL4RPCSimple a(from input.low_output, to low.low_input);
50 connection seL4RPCSimple b(from input.high_output, to high.high_input);
51 connection seL4AsynchNative d(from low.key_out, to high.key_in);
52 connection seL4RPCSimple e(from low.low_display, to gui.low_data);
53 connection seL4RPCSimple f(from high.high_display, to gui.high_data);
54 }
55 }
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When running, the multi-level terminal appears as in Figure 8.3. The two display domains for low and high

information sit side-by-side in separate windows. A cursor indicates which window is currently receiving

character input. The status bar at the bottom of each window shows the currently active input mode, in the

style of the Vim editor, in that window. Additionally the status bar of the high window has an upper case “X”

that blinks to indicate when the low window is receiving character input.

Figure 8.3: Multi-level terminal running

This system has some intuitive desirable correctness properties. For instance, information should not be able

to flow from high to low. That is, low should not be able to learn anything about high. To believe what is
shown to us, we would also like to know that low and high are only able to affect their respective regions of
the display, not each other’s. With these intentions in mind, we now consider how the formalisms of our work

aid us in providing formal guarantees that we have achieved our goals.

8.2 Architectural Correctness

The specification from Section 8.1 is translated automatically by CAmkES into an Isabelle/HOL theory built

on the model introduced in Chapter 4. The definition of the composition matches its textual equivalent in the

original specification.

1 definition
2 composition' :: composition
3 where
4 "composition' ≡ (|
5 components = [(''input'', input), (''low'', low), (''high'', high),
6 (''gui'', gui)],
7 connections = [(''a'', a), (''b'', b), (''d'', d), (''e'', e), (''f'', f)] |)"
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The rest of the translated specification has been elided, but is reproduced in full in Appendix C. Proving that

this system is wellformed is, as expected, fully automatic.

1 lemma wf_assembly': "wellformed_assembly assembly'"
2 by code_simp

This lemma validates the consistency of the specification we have provided, and we now know that this system

can be instantiated correctly by CAmkES.1 From this representation, we could prove some architectural prop-

erties. However, in such a tightly connected system, the properties we can prove are limited without assuming

information flow properties of the connections. Instead, we look to our other formalisms for showing such

properties in a more rigorous manner.

8.3 Dynamic Behaviour

To obtain a representation of the system’s behaviour at runtime, we can turn to the formalism of Chapter 5.

Again, CAmkES generates the Isabelle/HOL definitions for this system automatically. The connections and

component instances are enumerated in two data types.

1 datatype channel
2 = a
3 | b
4 | d
5 | e
6 | f
7
8 datatype inst
9 = input

10 | low
11 | high
12 | gui
13 | "de"

Note that we have an artificial component instance, de, representing the event connection in the system. Com-
ponent interface elements are emitted as generated definitions. For example, the put_char method of the
low_display interface of Low appears as follows.

1 definition
2 Call_Low_low_display_put_char :: "(Low_channel ⇒ channel) ⇒
3 ('cs local_state ⇒ char) ⇒ ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
4 (channel, 'cs) comp"
5 where
6 "Call_Low_low_display_put_char ch10' cP embed_ret ≡
7 Request (λs11'. {(| q_channel = ch10' Low_low_display,
8 q_data = Call 0 [Char (cP s11')] |)}) discard ;;
9 Response (λs12' s13'. case q_data s12' of

10 Return s14' ⇒ {(embed_ret s13' (case hd s14' of Integer s15' ⇒ s15'),
11 (| a_channel = ch10' Low_low_display,
12 a_data = Void |))}
13 | _ ⇒ {})"

1It is tempting to conclude that, as the systemboots and runs as expected, we already had this guarantee. However, recall fromChapter
4 that we permit CAmkES to generate faulty code in the case of an input that is not wellformed. By proving the system’s specification
wellformed, we guarantee that the system we witness running has well-founded semantics and has been instantiated in conformance
with its specification.
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This definition takes a parameter ch10', indicating the channel (connection) to send on, cP, a projection
function to retrieve the character to send from the local state, and embed_ret, an embedding function to
insert the return value back into the local state. The character to send is extracted and transmitted in the

Request invocation (lines 7-8). The return value is received and inserted in the Response invocation (lines
9-13).

The initial state of the system – also generated by CAmkES – contains each of the component instances and

their untrusted definitions. Recall that these can be overridden by trusted definitions post hoc if desired.

1 (* Global initial state *)
2 definition
3 "gs0" :: "(inst, channel, 'cs) global_state"
4 where
5 "gs0 p124' ≡ case trusted p124' of Some s125' ⇒
6 Some s125'
7 | _ ⇒ (case p124' of
8 input ⇒ Some (input_untrusted, Component init_component_state)
9 | low ⇒ Some (low_untrusted, Component init_component_state)

10 | high ⇒ Some (high_untrusted, Component init_component_state)
11 | gui ⇒ Some (gui_untrusted, Component init_component_state)
12 | de ⇒ Some (de_instance, init_event_state))"

We elide the remainder of this generated theory, but it is included in full in Appendix D. As with the untrusted

example we demonstrated in Chapter 5, there are only limited properties we can show in the absence of more

precise component instance definitions. Reusing the predicates introduced in Chapter 5, it is possible, for

example, to prove that input and gui cannot directly communicate.

1 lemma
2 "¬ (∃ c. communicates_on c input_untrusted ∧ communicates_on c gui_untrusted)"
3 by (auto simp:communicates_on_def input_untrusted_def
4 Input_untrusted_def gui_untrusted_def
5 GUI_untrusted_def UserStep_def ArbitraryRequest_def
6 ArbitraryResponse_def)

We cannot prove that high cannot directly communicate information to low on the generalised untrusted
definitions. To achieve this, we need to give trusted definitions of the component types, High and Low, that
indicate a more precise semantics of the seL4AsynchNative connector. We replicate their untrusted defini-

tions, but replace the ArbitraryRequest and ArbitraryResponse corresponding to connection d with
the possible event actions.

1 definition
2 High_trusted :: "(High_channel ⇒ channel) ⇒
3 (channel answer, channel question, unit local_state) com"
4 where
5 "High_trusted ch ≡ LOOP (
6 UserStep
7 ⊔ ArbitraryRequest (ch High_high_display)
8 ⊔ ArbitraryResponse (ch High_high_display)
9 ⊔ ArbitraryRequest (ch High_high_input)

10 ⊔ ArbitraryResponse (ch High_high_input)
11 ⊔ EventPoll (ch High_key_in) (λs _. s)
12 ⊔ EventWait (ch High_key_in) (λs _. s))"
13
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14 definition
15 Low_trusted :: "(Low_channel ⇒ channel) ⇒
16 (channel answer, channel question, unit local_state) com"
17 where
18 "Low_trusted ch ≡ LOOP (
19 UserStep
20 ⊔ ArbitraryRequest (ch Low_low_display)
21 ⊔ ArbitraryResponse (ch Low_low_display)
22 ⊔ ArbitraryRequest (ch Low_low_input)
23 ⊔ ArbitraryResponse (ch Low_low_input)
24 ⊔ EventEmit (ch Low_key_out))"

Note that our trusted behaviour definitions may still over-approximate both components’ behaviour with re-

spect to this connection. We only narrow the components’ behaviour to the actions seL4AsynchNative allows,

not further to only the actions they take. In general, this limited narrowing – only constraining behaviourmin-

imally to prove the required property – is good practice. By being conservative in our constraints we reduce

the risk of over-constraining components to the point at which their definition is no longer a valid abstraction.

That is, we minimise the likelihood of removing an abstract behaviour that the implementation does exhibit.

We can now recapitulate the untrusted definitions of the instances, high and low, referencing these new
trusted component definitions.

1 definition
2 high_trusted :: "(channel answer, channel question, unit local_state) com"
3 where
4 "high_trusted ≡ High_trusted (λs. case s of
5 High_high_display ⇒ f | High_high_input ⇒ b | High_key_in ⇒ d)"
6
7 definition
8 low_trusted :: "(channel answer, channel question, unit local_state) com"
9 where

10 "low_trusted ≡ Low_trusted (λs. case s of
11 Low_low_display ⇒ e | Low_low_input ⇒ a | Low_key_out ⇒ d)"

Overriding the untrusted definitionswith these alternativesmakes it possible to prove that highnever directly
sends to low.

1 lemma "¬ (∃ c. receives_on c low_trusted ∧ sends_on c high_trusted)"
2 by (auto simp:low_trusted_def Low_trusted_def high_trusted_def
3 High_trusted_def UserStep_def ArbitraryRequest_def
4 ArbitraryResponse_def
5 EventPoll_def EventWait_def EventEmit_def)

Note that, in accomplishing this, we have assigned semantics to the connection between low and high that
are intended, but for which we do not have a formal justification. That is, the proof assumes the correctness

of generated code and initialisation specification. These two assumptions are addressed by our formalisms

from Chapter 6 and Chapter 7, which we now go on to leverage.

8.4 Code Generation

Amongst the properties of interest in this system, is that low can only ever write to its dedicated region of
the display. Whilst this is intended to be enforced by the gui component instance, cursor positioning and
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character writes are directed via the incoming low_data interface of gui. This correctness property relies
on the behaviour of both the glue code and component code. We can show this in a code-level proof using the

formalism from Chapter 6.

The gui component instance writes character data to the screen using an external function.

1 /* Display the character, c, on the screen at location (x, y) */
2 extern void putch(char c, const char *style, unsigned int x, unsigned int y);

To write data to the low region of the display, this is invoked by the implementation of the incoming interface

method, low_data_put_char.

1 int low_data_put_char(char c) {
2 putch(c, low_y >= LOW_Y + LOW_HEIGHT - 2 ? A_FG_K A_BOLD : A_RESET,
3 low_x, low_y);
4 return 0;
5 }

It can be observed that this function always writes character data at the location given by a pair of global

variables, low_x and low_y. These globals and another set that track the cursor position outside the status
bars are used to store the state of the gui component instance.

1 /* The last position of the cursor in either domain excluding status bars */
2 static unsigned int last_x;
3 static unsigned int last_y;
4
5 /* The current position of the low cursor */
6 static unsigned int low_x = LOW_X + 1;
7 static unsigned int low_y = LOW_Y + 3;

The position of the low cursor, given by low_x and low_y is updated via the low_data_move interface

method.

1 int low_data_move(unsigned int x, unsigned int y) {
2
3 /* Bounds check the coordinates */
4 if (x <= LOW_X || x >= LOW_X + LOW_WIDTH - 1)
5 return -1;
6 if (y <= LOW_Y + 2 || y >= LOW_Y + LOW_HEIGHT - 1)
7 return -1;
8
9 low_x = x;

10 low_y = y;
11
12 /* If the cursor was moved somewhere outside the status bar,
13 * update the last position data
14 */
15 if (!(y >= LOW_Y + LOW_HEIGHT - 3)) {
16 last_x = x;
17 last_y = y;
18 }
19
20 return 0;
21 }
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Recall this function is invoked by glue code in the gui component instance. This glue code is, in turn, invoked
by glue code in the low component instance that is itself called by hand written code in low.

Thus, to prove our desired property, wemust show that an invocation of low_display_move in low can only
ever result in the low cursor being positioned within the low region of the display.2 Recall from Chapter 6 that

achieving a proof over such heterogeneous code requires manually proving a desired precondition and post-

condition of the callee’s implementation. In this case, we define them identically, as a predicate constraining

valid low cursor coordinates.

1 definition
2 valid_coordinates :: "lifted_globals ⇒ bool"
3 where
4 "valid_coordinates s ≡
5 low_x s ≥ scast LOW_X ∧ low_x s ≤ scast (LOW_X + LOW_WIDTH - 1) ∧
6 low_y s ≥ scast LOW_Y ∧ low_y s ≤ scast (LOW_Y + LOW_HEIGHT - 1)"

The extraneous scast applications in this definition are simply to convert signed integer values to unsigned
integer values. We take an inductive approach in this verification, proving a base case, followedby an inductive

step on system states. To show that the system begins in a valid state, we are able to prove the initial, statically

assigned values of low_x and low_y satisfy this predicate.

1 lemma valid0:
2 "[[low_x s = scast (LOW_X + 1); low_y s = scast (LOW_Y + 3)]]
3 =⇒ valid_coordinates s"

The inductive step case to be proven is local correctness of low_data_move. Namely, if the predicate holds
over the current state, it then holds over the resulting state from running low_data_move. Using the predi-
cate, valid_coordinates, we have defined, this can be accomplished using standard techniques.

1 lemma valid: "{|valid_coordinates|} low_data_move x y {|λ_. valid_coordinates|}!"

Note that, in this lemma, we do not claim the function returns 0 (the return value is ignored in the postcondi-
tion). We want to ensure all paths of execution, success or otherwise, result in valid low coordinates.

The correctness lemma we need to lift an arbitrary precondition and postcondition over a remote invocation

of the method move for the connection e is generated automatically.

1 lemma low_display_low_data_move_equiv_wp:
2 "∀ s0. {|λs. s = s0 ∧ inv s ∧ move_P s p0 p1|}
3 do low_display_move_marshal p0 p1;
4 low_data_move_internal;
5 low_display_move_unmarshal
6 od
7 {|λr s. inv s ∧ move_Q s0 s r p0 p1|}!"

Recall fromChapter 6 that, in order to use this lemma, wemust interpret the localewithinwhich it is contained.

To do soweneed to provide seven parameters: a symbol tablemapping strings to addresses and a precondition

and postcondition for eachmethod of connection e. The symbol table is required only for proving distinctness
2A more thorough proof of this property would also involve demonstrating that there are no additional ways to affect low_x and

low_y, either through other methods of low’s low_display interface, or through other connections. Such a proof is possible within
our framework, but the proof consists of an extensive enumeration of trivial cases and is uninteresting. For this reason, we exclude it
from our example.
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of global variables, a property that is guaranteed by the linker and program loader, and is not something our

work is attempting to address. So, for now, we define an artificial symbol table that gives each relevant global

a distinct address. In future the correctness of the linker and loader could be addressed by techniques from

other ongoing work (Sewell, Myreen, and Klein 2013).

1 definition
2 symtab :: "string ⇒ 32 word"
3 where
4 "symtab s ≡ if s = ''put_char_c_1'' then 0x1000
5 else if s = ''put_char_c_2'' then 0x1001
6 else if s = ''put_char_c_3'' then 0x1002
7 else if s = ''move_x_1'' then 0x1004
8 else if s = ''move_x_2'' then 0x1008
9 else if s = ''move_x_3'' then 0x100c

10 else if s = ''move_y_1'' then 0x1010
11 else if s = ''move_y_2'' then 0x1014
12 else if s = ''move_y_3'' then 0x1018
13 else 0"

We can now go on to interpret the locale by providing the preconditions and postconditions. We use trivial

predicates for the methods that are not relevant to our current aim.

1 interpretation e_pruned_glue symtab
2 "λ_ _. True" "λ_ _ _ _. True" "λ_. True" "λ_ _. True"
3 "λs _ _. valid_coordinates s" "λs s' _ _ _. valid_coordinates s'"

The proof of the locale interpretation is straightforward and yields a final lemma that guarantees our supplied

precondition and postcondition hold over a remote invocation of the movemethod.

1 lemma correct:
2 "∀ s0. {|λs. s = s0 ∧ inv s ∧ valid_coordinates s|}
3 do low_display_move_marshal x y;
4 low_data_move_internal;
5 low_display_move_unmarshal
6 od
7 {|λr s. inv s ∧ valid_coordinates s|}!"

In this section we have selectively chosen a property of one method to verify, but it is possible to repeat the

stepswehave taken to prove properties of othermethods or,more sensibly, to provemultiple propertieswithin

the same interpretation step. This approach scales linearly in the number of methods within an interface and

across the number of connections in the system.

8.5 Policy Generation

What remains to demonstrate on this system is that the initial configuration of the system is correct and that

it has the security properties intended. In the case of this system, the property we would like to show is that

high does not send information to low. This can be proven within the formalism we introduced in Chapter

7.

As for the system shown in Chapter 7, a proof that the output of our Isabelle/HOL function corresponds to

the CapDL specification produced for this system is generated automatically.
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1 lemma final:"∃ pases. extended_generate spec extra irqs = Some (final, pases)"

The authority graph contained within the policy produced by this function appears as follows. Recall that we

previously proved that any policy produced by this function is refined by the CapDL specification produced

by the function.

1 definition
2 authgraph :: "(label × auth × label) set"
3 where
4 "authgraph ≡
5 {edge. edge_subject edge = edge_object edge ∧
6 edge_subject edge ∈ {''gui'', ''high'', ''input'', ''low'',
7 irq_label, idle_label}} ∪
8 {(''input'', Reset, ''a''), (''input'', SyncSend, ''a''),
9 (''input'', Reset, ''b''), (''input'', SyncSend, ''b''),

10 (''low'', Receive, ''a''), (''low'', Reset, ''a''),
11 (''low'', SyncSend, ''a''), (''low'', Reset, ''e''),
12 (''low'', SyncSend, ''e''), (''low'', Reset, ''d''),
13 (''low'', AsyncSend, ''d''), (''high'', Receive, ''b''),
14 (''high'', Reset, ''b''), (''high'', SyncSend, ''b''),
15 (''high'', Reset, ''f''), (''high'', SyncSend, ''f''),
16 (''high'', Receive, ''d''), (''high'', Reset, ''d''),
17 (''gui'', Receive, ''e''), (''gui'', Reset, ''e''),
18 (''gui'', SyncSend, ''e''), (''gui'', Receive, ''f''),
19 (''gui'', Reset, ''f''), (''gui'', SyncSend, ''f'')}"
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Figure 8.4: Fine-grained authority graph of multi-level terminal prototype

This graph is depicted in Figure 8.4. Though it is significantly more dense than the authority graphs we have

seen thus far, it is still composed of simple data types and thus reasoning about this term is still straightforward.

For example, we can prove that high does not directly transmit information to low.

1 lemma no_send_high_low: "¬ (∃ edge ∈ authgraph.
2 edge_subject edge = ''high'' ∧ edge_object edge = ''low'')"
3 by (clarsimp simp:authgraph_def)
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We could prove a stronger, transitive information flow property about high and low, but it would require as-
suming behaviour of gui andinput. This is because synchronous endpoints permit bidirectional information
flow, allowing high to send information to low via a cooperating gui or input implementation. A transitive
information flow property without assumptions would require a modified architecture that avoided the use

of synchronous endpoints at trust boundaries. Instead, we have used a more permissive system architecture

in this example to ease explanation and understanding.

While the proof of this property was uncomplicated, in general the complexity of proofs within this formalism

will depend heavily on the complexity of the component system architecture. However, the correspondence

between the generated authority graph and the system designer’s intuition ensures this is controllable. That

is, thoughtful design of a system architecture can help manage verification complexity. This is a pleasant side

effect of the precision with which we model information flow within a CAmkES system.

8.6 Summary

Prior to this chapter, we have independently introduced four formalisms for reasoning about component-

based systems. In this chapter, we have shown how to leverage the combination of these four in pursuit of

component systemcorrectness. Wehave emphasised how closely the generated formal artefacts correspond to

the system designer’s intuition and stressed the ease with which eventual manual proofs can be accomplished.

The construction of the example system and its verification took approximately half a day, indicative of the

general effort-to-outcome ratio. The assurance guarantees we have achieved for this system, though not deep,

are relatively powerful for the effort invested. With further effort it is possible to achieve comprehensive,

code-level verification of a component-based system. Overall this discussion highlights the functionality and

practical utility of the verification techniques that are the subject of this work.



Chapter 9

Limitations and Future Work

This thesis discusses work aimed at guaranteeing a particular form of correctness in component-based sys-

tems. While individual chapters have noted specific technical limitations, this chapter outlines the high level

boundaries of our work. In making these limitations explicit, we also provide a discussion of how these could

be addressed in future.

9.1 Connection to seL4

The functional correctness properties we demonstrate of the CAmkES component platform are predicated on

the correctness of seL4. In particular, we currently axiomatise the semantics of seL4 system calls that are

invoked through a low level wrapper to the kernel’s API known as “libsel4.” While the abstract specification

of seL4 precisely describes the behaviour of each system call, these definitions lie within a dense, generalised

definition of the kernel’s behaviour during an arbitrary invocation. Knowing the precise state of the system

and exact parameters to any system call we invoke, it is possible to form specialised definitions of kernel

behaviour for each invocation. These can be much more concise and manageable by, for example, eliding

error handling logic guarded by a condition that we know will be false.

Extracting these latent, specialised system call semantics is not straightforward.1 In addition, the control flow

of a system call cannot precisely bemodelled as a function call. After completing the action requested by a sys-

tem call, the context switch back to userspace is preceded by seL4’s scheduler choosing a thread to run. Thus

in-between a system call invocation and its successful return, other userspace threads may execute, changing

the global state of the system. CAmkES systems are sufficiently constrained that we know a priori that the ac-

tions of these intermediate threads cannot affect the caller, but a semantics must still capture these actions to

be precise. The cooperative requirements of threads on each other would fit elegantly with a Rely/Guarantee

style of reasoning (Jones 1983; Owicki and Gries 1976). However, rather than attempting to form a further

complex, constrained semantics, we observe that this class of concurrency is a subset of a more general prob-

lem that we believe is better dealt with by other orthogonal ongoing work (Andronick, Lewis, and Morgan

2015).

For now, we axiomatise the system call stubs from libsel4, that present a natural cut point. These functions are

responsible formediating between the C calling convention and seL4’s ABI. They are called fromCAmkES glue

code and are implemented in libsel4 by platform-specific assembly instructions. As an example, the definition

of seL4_Call on the ARM platform is as follows.

1To gain a more accurate picture of the complexity involved and what such a specification would look like, the reader is referred to
Section 7.4 of prior work on initialisation verification (Boyton 2014).
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1 seL4_MessageInfo_t seL4_Call(seL4_CPtr dest, seL4_MessageInfo_t msgInfo) {
2 register seL4_Word destptr asm("r0") = (seL4_Word)dest;
3 register seL4_MessageInfo_t info asm("r1") = msgInfo;
4
5 /* Load beginning of the message into registers */
6 register seL4_Word msg0 asm("r2") = seL4_GetMR(0);
7 register seL4_Word msg1 asm("r3") = seL4_GetMR(1);
8 register seL4_Word msg2 asm("r4") = seL4_GetMR(2);
9 register seL4_Word msg3 asm("r5") = seL4_GetMR(3);

10
11 /* Perform the system call */
12 register seL4_Word scno asm("r7") = seL4_SysCall;
13 asm volatile ("swi %[swi_num]"
14 : "+r" (msg0), "+r" (msg1), "+r" (msg2), "+r" (msg3),
15 "+r" (info), "+r" (destptr)
16 : [swi_num] "i" __SWINUM(seL4_SysCall), "r"(scno)
17 : "memory");
18
19 /* Write out the data back to memory */
20 seL4_SetMR(0, msg0);
21 seL4_SetMR(1, msg1);
22 seL4_SetMR(2, msg2);
23 seL4_SetMR(3, msg3);
24
25 return (seL4_MessageInfo_t) {
26 .words = {info.words[0]}
27 };
28 }

It can be observed that the semantics of this function fall outside the C99 standard, due to its use of non-

portable inline assembly and named register hints. It also implicitly relies on operating system support; the

swi assembly instruction triggers a hardware interrupt that is intended to be handled by the operating sys-
tem. Currently, we do not attempt to directly interpret these system call stubs, or to represent their precise

behaviour. Instead we treat the invocation of a stub as if it itself were the entry point to the kernel.

The semantics we assign to the system calls are implicit, because our model of C currently lacks the expres-

siveness to describe the effect of the system calls implementing IPC. Specifically, it is not currently possible

to directly express the notion of separate virtual address spaces and a function call modifying data in a dif-

ferent address space to that of the caller. Informally, the semantics we assign to the synchronous endpoint

invocations that we axiomatise are:

• seL4_Call sends the contents of the calling thread’s entire IPC buffer, blocks waiting for a correspond-
ing seL4_Reply and then receives into the calling thread’s IPC buffer;

• seL4_Reply unblocks a blocked seL4_Call caller and transfers the contents of the IPC buffer of the
seL4_Reply caller to this receiver; and

• seL4_Wait when called on a synchronous endpoint, blocks waiting for a corresponding seL4_Call
and then receives into the calling thread’s IPC buffer.
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We axiomatise seL4_ReplyWait as merely a shorthand for seL4_Reply followed by seL4_Wait. That is,
we assume its implementation is as follows.

1 seL4_MessageInfo_t seL4_ReplyWait(seL4_CPtr src, seL4_MessageInfo_t msgInfo,
2 seL4_Word *sender) {
3 seL4_Reply(msgInfo);
4 return seL4_Wait(src, sender);
5 }

This definition is faithful to the behaviour of seL4_ReplyWait, though this batching actually occurs within
the kernel itself.

For the asynchronous endpoint invocations that we axiomatise, we assign the following semantics:

• seL4_Notify sets the pending bit in an asynchronous endpoint;
• seL4_Poll checks the pending bit in an asynchronous endpoint and clears it; and
• seL4_Wait when called on an asynchronous endpoint, blocks until the pending bit of the endpoint is
set and then clears it.

While there is little room for the implementation to deviate from these assumed semantics for the asyn-

chronous endpoint invocations, the semantics we have provided of the synchronous endpoint invocations

permit known unfaithful functionality. Our C model cannot currently express distinct virtual memory ad-

dress spaces, and we do not constrain the extent of the IPC buffer transferred by a system call (usually indi-

cated by the msgInfo parameter). These two properties lead to some unsound possibilities in our formalism.
Contrived glue code that accesses regions of the IPC buffer beyond what is transferred can be constructed

and proven correct. This is possible because our model represents cooperating threads’ IPC buffers as if they

were persistent aliases for the same memory. This is a weakness in our formalism, though it is unlikely any

user-provided or generated code could exploit this by accident.

Ultimately, it is desirable to show a formal connection between specifications of CAmkES’ generated code and

a specification of libsel4’s code. However, the latter does not currently exist. There have been some previous

efforts towards this (Andronick, Klein, and Murray 2012; Boyton 2014) and it seems inevitable that a rich

version of such a specification will eventually be created. We have designed our formalism being mindful of

this, taking steps to ease a future integration of these two artefacts. However, for now we consider this future

work out of the scope of this thesis.

9.2 Verification of More Connector Code

In Chapter 6 we demonstrated generated proofs for the glue code of a specific CAmkES connector,

seL4RPCSimple. While the templated proofs we have implemented do not apply to other connectors, it is

possible to achieve the same result for another connector by constructing a matching set of templated proofs

for its glue code. The seL4RPCSimple connector has been designed with the goal of verification, so we expect

verification of another connector that has not had this goal from outset to be more challenging, but still

feasible.

Choosing another standard connector, seL4RPCCall, as an example, this connector has similar control flow

to seL4RPCSimple but uses calls to memcpy rather than direct variable writes to perform marshalling and

unmarshalling. The advantage of this approach is simpler glue code template logic. For example a scalar

variable, x, can be marshalled without directly inspecting its type:



142 CHAPTER 9. LIMITATIONS AND FUTUREWORK

1 memcpy(buffer, &x, sizeof(x));

However, this simplicity becomes a disadvantage when reasoning about the correctness of the resulting mem-

ory operations. Reasoning about memcpy requires dropping to a lower level memorymodel in the AutoCorres
environment where memory is addressable as a byte array in contrast to the higher level strongly-typed heap.

Connecting proofs in one environment to proofs in the other (for example, when dealing with a strongly-

typed function that calls memcpy) requires explicit embedding and projection functions to be supplied. We

have proven a generic correctness lemma of memcpy and some lemmas of small functions that call memcpy
that confirm this approach is feasible. However, we have not attempted to extend this line of work to a full

templated proof of the seL4RPCCall connector.

In addition to considering future verification of the standard connectors, we have been mindful of future

work to verify user-supplied connectors. There is nothing in our approach that prevents its application to

further connectors supplied by the systemdesigner and, in fact, the current CAmkES implementation supports

providing templated correctness proofs alongside glue code templates for such connectors. Naturally, the

onus is on the supplier of the connector to construct these templated proofs. If the connector is instantiated

many times, the proof effort saved by this approach can be significant.

Faced with the prospect of distinct templated proofs for each connector, it is natural to consider whether this

can be generalised into a higher level “meta templated” proof. We consider this an open problem, as it is not

clear how to abstract over the arbitrary control flow and data manipulation that may be present in glue code.

While there are some immediately apparent necessary conditions for wellformed glue code, it is not clear what

set of constraints is sufficient to guarantee arbitrary glue code correct. If a solution is found to this problem,

such a generalisation would be a valuable extension to our work.

9.3 Shared Memory

CAmkES provides an abstraction, dataports, for sharing memory between two component instances. The in-

formation flow relationship implied by sharingmemory is captured in the seL4 kernel object capability graph,

but it is not something we currently handle within the initialisation formalism in Chapter 7. Constructing a

CAmkES system that uses shared memory induces an extra relationship in the capability graph that we do

not express in the generated access control policy. Thus the resulting generated lemmas that state the com-

ponent instances cannot affect each other by way of their virtual address space mappings are false, and their

generated proofs fail.

The rationale for this limitation ismore than simply a proof convenience. TheCapDLmodel does not represent

the contents of physicalmemory. Thiswas a deliberate design decision, as its purpose is to reason purely about

kernel objects and capabilities, not data. However, a fundamental consequence of this is that we cannot draw

a relationship between CapDL frame objects and a program’s code and data. This effectively hampers any

reasoning about component instances that share memory.

To understand why this is, consider two component instances with a dataport connection between them.

When translated to CapDL, this architecture presents as a collection of objects for each component instance,

where capabilities to the same frame object are present in two page tables, one belonging to each component

instance. This scenario is depicted in Figure 9.1, where two page tables contain capabilities to frame2. This
induces an authority graph where the objects of the two component instances are connected by paths involv-

ing this frame. Because we cannot, within CapDL, determine the contents of this frame, it is as if these two

component instances can affect any aspect of each other’s execution. This includes modifying each other’s

code.



9.4. RELAXING CODE REQUIREMENTS 143

frame1 frame2 frame3

pd1 pd2

pt2pt1
RRWRW R

Figure 9.1: Shared memory as represented in CapDL

It is possible to determine a stronger upper bound on the abilities conveyed by shared memory by inspect-

ing component instances’ address spaces. All paging configuration, including the offset at which a frame is

mapped into a given address space is derivable from a CapDL specification. Thus by combining this knowl-

edgewith the regions of each component instance’s address space assigned for code and data (extractable from

their binaries), it is possible to conclude that a shared page only contains data. This requires the assumption

that component instances do not expect to execute code inside a dataport, but this is generally an acceptable

limitation.

The primary reason we have not extended our work in this direction is that prior work on correct initialisation

of seL4 systems to which we connect does not support allocating shared memory (Boyton 2014). Support for

reasoning about a CAmkES system with dataports would require introducing an extra assumption on the way

in which systems involving shared memory are initialised. Rather than weaken our existing formalism, we

defer this work to a future point at which it can be formally connected to an initialisation guarantee without

further assumptions.

9.4 Relaxing Code Requirements

Our approach mandates a specific, rigorous subset of the C language, and some translation steps are deliber-

ately designed to be conservative. A direct consequence of this is that it is possible to write correct code that

is not provably correct with our toolchain. This more “risky” code transitively thwarts attempts to prove the

correctness of its callers and requires an axiomatised specification to make progress. For example, consider

the following contrived function:

1 int two(void) {
2 int x = 0;
3 return (++x&&x++,x++);
4 }

Though this is valid C99 code, it is not accepted by our toolchain. It is clear how to rephrase this trivial function

into returning a literal value, but not all unsupported code constructs can be so easily adapted. However, it

should be obvious that this example does not represent clear and concise code. It is our position that the

majority of unsupported code can be characterised this way.
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We claim that many of the constructs used to write such code are inherently unsafe for use in high-assurance

environments. Constructs that are not supported by our toolchain have not been arbitrarily excluded. Rather,

deliberate decisions were made to avoid language features that are unnecessary and increase the probability

of incorrect code. The remaining subset has been shown sufficient to implement both an operating system

kernel and a fully functional component platform, demonstrating that these limitations do not prevent the

implementation of complex systems. To put the argument against the use of unprovable constructs in simple

terms, if you can’t formally prove the correctness of your code, why would you entrust it with your life?

9.5 Concurrency

It is well known that writing correct concurrent code is challenging and techniques for verifying concurrent

code are still relatively primitive. Driven by implicit assumptions in our toolchain, our present work assumes

that all component instance code executes in a single threaded environment. This assumption holds true in

many complex CAmkES systems, and high-assurance systems are generally designed to be single-threaded

where possible. From here, it is possible to rely on the isolation properties of seL4 to prevent interference

between component instances.

However, this guarantee relies on informal arguments and, moreover, performance concerns often motivate

the development of multithreaded components. A partial roadmap for extending our work to concurrent

settings emerges by observing that it is not merely coincident, but actually required that CAmkES’ generated

code runs without interference. The glue code operates on state that, for correctness, must be thread-local.

This relationship is informally observable statically in the current implementation. That is, the data accesses

performed by glue code are observably safe, if we assume all hand written component code avoids accessing

the glue code’s private state. Thus it should be possible to extend our work to a concurrent setting by way

of an additional assumption that the user-provided code only interacts with the glue code in a wellformed

manner. However, our current C semantics are lacking the expressiveness to capture this property and this

would require a more rich concept of execution. Therefore, we leave this for future work.

9.6 Incremental Verification

The work of this thesis is primarily targeted at systems that are already componentised. While CBSE is a

widely deployed system framework in high-assurance software, it is not ubiquitous. Leveraging our approach

requires the use of CAmkES, or another component platform with equivalent guarantees, and therefore any

existing monolithic system would need to be first decomposed into components and connections prior to

verification. For large systems, it is desirable to do this incrementally to smooth the transition.

From an engineering perspective, a natural way to transition a monolithic (often Linux-based) system to a

componentised, microkernel-based environment is to first virtualise the existing system as a component (An-

dronick, Greenaway, and Elphinstone 2010; Heiser et al. 2013). From there, selected functionality can be

extracted into native components, step-by-step. At any point in this process, the verification techniques we

have shown would provide guarantees on only the native components and their connections. That is, func-

tionality still inside the monolithic virtualised system would remain opaque from a system reasoning stand-

point. This is both a blessing and a curse. Verifying such a system that relies on critical functionality inside

this monolithic system is most likely intractable. However, conversely, the only functionality that need be

extracted from the monolithic system is the minimal set required to prove correctness. That is, non-critical

system functionality can be safely incorporated into a component whose code is never analysed. By leveraging
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the isolation implied by the system architecture, this code need not be an input to verification. Consequently,

this can enable verification to scale to larger code bases, and increases the utility of CBSE aside from purely

engineering motivations.

We are aware of no fundamental limitation that would prevent the applicability of the approach described, but

currently such a translation would be entirely manual. There exists no tooling or automation for migrating

monolithic systems to a CAmkES- and seL4-based environment. While this would be a natural extension to

our work, we have not pursued this as it has little novelty from a research standpoint.

9.7 Architectural Patterns

Treating component-based systems from a higher level perspective, correctness criteria for a particular sys-

tem may involve conformance to a particular safety or security pattern (Yoder and Barcalow 1997; Yoshioka,

Washizaki, and Maruyama 2008). With the fine-grained access control policy obtainable from the formalism

in Chapter 7, it is possible to show how a component-based system implements a particular pattern. This

approach can be extended to characterising the feature set of capability descriptions that satisfy a particular

pattern (Rimba 2013; Rimba et al. 2015).

Such work constitutes a next “level” of reasoning about the correctness of a component-based system. An

important precondition for demonstrating the correct implementation of a pattern, is the correctness of the

underlying mechanisms on which a system is built; the target of our present work. We see our efforts as

freeing designers from thinking about the low level details of their system and allowing them to reason at a

more intuitive level. Much like a higher level language serves as a productivity multiplier for a programmer,

we view our work as extending the power and scope of verification efforts. This higher reasoning is a logical

next step for verification of component-based systems.

9.8 Beyond Functional Correctness

The work presented provides support for proving functional correctness of a component-based system. In

certain domains, functional correctness is only part of the correctness criteria. For example, realtime sys-

tems require, in addition to functional correctness, guarantees about the timely execution of code. An aircraft

collision avoidance system is considered incorrect if it delivers suitable guidance to avoid an impact, but the

guidance is only provided after the impact has occurred. We do not attempt to solve such problems with

our current work, though our approach does not preclude any future integration with techniques for showing

properties beyond functional correctness. Our work has been conductedmindful of other ongoing seL4-based

assurance efforts (Cock et al. 2014; Lyons and Heiser 2014; Sewell, Myreen, and Klein 2013) such that inte-

gration with orthogonal techniques should prove straightforward.

9.9 Erroneous Specifications

There is a fundamental limitation in software verification that it is only ever possible to prove the property you

state. In much the same way as a correct program can only ever do the things its code instructs, a verification

effort is inherently bounded by the specification provided. An unavoidable consequence is that an incorrect

system can be proven “correct” according to an incorrect specification. Put another way, a proven system is

only ever as correct as its specification.
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Specification errors, while not the most prevalent cause of software faults, do occur in real world high-

assurance systems. The Ariane 5 rocket suffered a catastrophic failure moments after its launch, due to a

fault later partially attributed to an error in the specification of its Inertial Reference System (SRI) (Lions

1996):

The specification of the exception-handling mechanism also contributed to the failure. In the

event of any kind of exception, the system specification stated that: the failure should be indicated

on the databus, the failure context should be stored in anEEPROMmemory (whichwas recovered

and read out for Ariane 501), and finally, the SRI processor should be shut down.

It was the decision to cease the processor operation which finally proved fatal.

In this system, it was specified behaviour that the SRI processor should shut down on exception, though

it became clear after this incident that this was incorrect behaviour. A verification effort intended to show

correspondence to a specification can never detect errors of this nature.

Our work was not intended to target this problem and it does not help safeguard the system designer against

this class of errors. However, it is important to acknowledge that this issue exists. While we have improved

upon the available techniques for designers to prove the correctness of their system, our approach still ad-

mits a correctness proof against a faulty specification. We provide you with a more expressive language for

correctness, but you still need to know what you want to say.

9.10 Summary

The techniques we have introduced in this thesis have real world applicability and utility and advance the

state of the art in specific areas, but they are imperfect. In this chapter, we have detailed the bounds to our

current work and how it could be extended in future. In the process of performing this research, we have

come to recognise the potential for verification techniques to revolutionise the way software is built. While

our work represents a step forward in software verification for high-assurance systems, we see it as one of

many necessary advances on the path to truly reliable correct software.
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Conclusion

No one sets out to build an incorrect program. Errors in software systems and the behaviours we refer to

as “bugs” are inevitably the result of mistakes, whether through ignorance, carelessness or simply accident.

Finding bugs through testing and attributing their root causes is challenging and often relies more on luck

than a reliable process. As the scale and scope of software increases, so too does the impact of its bugs. In

safety- and security-critical software, the consequences of errors are often unacceptable, yet these systems are

still constructed using approaches that only provide weak guarantees.

It is our position that it is impossible to repeatedly build truly reliable software systems without a process

that assigns a rigorous semantics to programs and provides strong correctness guarantees. The strongest

machinery we have for building correct, safe and secure software is formal verification. Yet it has proven

challenging for large engineering projects to apply.

In this thesis, we have demonstrated how to decrease the barriers to formal verification by architectural de-

composition and pervasive automation. By providing techniques well aligned with the componentisation of

a system, we give a system designer significant control over the form and complexity of proof obligations

through their architectural description. The parallels between system architecture and verification efforts aid

the intuition of the system designer, and bring formal verification closer to the engineering domain they are

most likely more familiar with.

10.1 Summary of Formalisms

We have presented three techniques for verification of a system of components, each situated at a different

point on a spectrum between automation and expressiveness:

• A static architecturemodel, capable of describing a system’s component instances and their connections

as they exist at design time (Chapter 4);

• A dynamic behavioural model, allowing expression of the runtime execution effects of a set of compo-

nent instances and connections (Chapter 5); and

• A code-level model for functional correctness, enabling partially-automated interactive verification of

component instance code (Chapter 6).

For each of these, we have implemented automatic generation of base definitions from the architectural de-

scription of any given component-based system. We also automate all representations of code generated by
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the component platform itself, and proof obligations relating to the correctness of this code. The final envi-

ronment we achieve provides the system designer with the ability to reason in their chosenmodel, having only

to deal with the hand written code and behaviour of their component instances.

To verify higher level abstract properties of a component-based system, we provide the designer with a single

formalism:

• A generated capability specification and access control policy for reasoning about information flow at

the granularity of component instances and connections (Chapter 7).

Finally, to obviate the need for the designer to trust the component platform itself, we verify its correctness

in two complementary efforts:

• Automatic generation of code-level proofs for the generated code of an RPC connector (Chapter 6); and

• A formal definition of the component platform’s logic for generating kernel objects and capabilities, and

a proof that the accompanying generated access control policy abstracts this capability specification

(Chapter 7).

The practical outcomes of these efforts for the system designer, are less effort and a lower cognitive load.

Rather than concerning themselves with the correctness of all the code within their system, they need only

consider the code for their component instances.

10.2 Contributions

Our over-arching aim in this research has been enabling formal verification at greater scale and pursuing

generated proofs for generated code. To that end, our contributions in this thesis have been fourfold:

• Component platform correctness. The automated proofs we have demonstrated provide a strong guar-

antee of the correctness of the CAmkES component platform. To our knowledge, CAmkES is currently

the only code-level verified component platform in existence. Our techniques generalise and our ap-

proach could be applied to another static component platform in the future.

• Automated verification of generated code. We have demonstrated this for a specific CAmkES RPC con-

nector and detailed how this work could be extended to the verification of further connector code. This

work is exemplary of a broader approach for automated verification of generated code by exploiting

properties of its known regularity.

• A methodology for scaling software verification. The techniques we have introduced provide a frame-

work formanaging complexity andpartitioning verification. By doing so, we enable verification of larger

code bases than was previously possible and reduce the manual effort required.

• A path to whole system assurance. The verification of large systems has previously been impeded by

difficulty in reasoning across systemmodule boundaries. Our work demonstrates how to overcome this

challenge and how to verify a cooperative system of hand written and generated code.

With these contributions, we aim to further the reach of formal verification and increase its attractiveness to

high-assurance system practitioners.
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10.3 The Road Ahead

When a software system is put in charge of our secrets, our safety or our health, it should earn the right to do so.

Formal verification can significantly lower defect rates in high-assurance software, and is the best technique

we have available to validate a system’s worthiness in this respect. On the path to ubiquitous, formally verified,

high-assurance software we see our work as a small but significant step. We optimistically look forward to a

world in which you never have to wonder, “is it correct?”
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Appendix A

Composite Components as Syntactic

Sugar

CAmkES provides the ability to define “composite components” that are components that contain other com-

ponents. The utility of this feature, which is present in several component platforms, is to ease coarser gran-

ularity reuse of components. For example, a portable component that describes a complex piece of hardware

can be defined as a component containing a subcomponent for each functional unit of the hardware device.

Composite components are not dealt with directly by the formalisms in this thesis, but we claim this is not a

weakness as composite components are a form of syntactic sugar. In the following, we demonstrate how to

desugar a composite component definition.

Consider the specification on the following page as an example of an architecture description using composite

components. In this specification, the component Composite is a composite component type containing
two component instances, p1 and p2, of the same type. The composition block of a composite component
definition can contain instantiations of components and connectors (similar to the composition block of
an assembly block), as well as export statements that give internal interfaces, externally visible names. In
this specification, the export statements make Composite’s interfaces, i and o, aliases for its contained
components’ interfaces, p1.i and p2.o, respectively. Observe that the composite component type can have
its own, distinct interfaces (lines 20-21) and can be instantiated multiple times (lines 41-42), just like any

other component type. This architecture is depicted in Figure A.1.

To redefine this specification without using composite components, we would merge its composition block
into the assembly block’s composition, and expand its statements. The modified specification appears on
page 165. Note that the component instances that were defined within Composite’s definition now appear in
the final composition (lines 33-37). Similarly, the connection that was defined with Composite’s definition
is now expanded in the final composition (lines 45-47). This expanded architecture is depicted in Figure
A.2.

Comparing this desugared specification to the original specification, the utility of composite components be-

comes clear. The original specification is much more concise and consolidates the repeated definitional pat-

tern. However, the expansion of composite components is an entirely mechanical process and could easily

be automated.1 For this reason, we claim that our omitted semantics for compositional components does not

limit the applicability of our formalisms.

1In fact, this automated expansion of composite components is exactly what a simplifying pass of the code generator’s parser already
does. The resulting abstract syntax tree is only ever present in memory, but it would be a trivial modification to dump this to text as an
equivalent, expanded specification.
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1 /* System specification involving composite components */
2
3 procedure Processor {
4 int process(in int input);
5 }
6
7 component Filter {
8 provides Processor f;
9 }

10
11 component Pipe {
12 provides Processor i;
13 uses Processor o;
14 }
15
16 component Composite {
17 provides Processor i;
18 uses Processor o;
19
20 provides Processor i2;
21 uses Processor o2;
22
23 composition {
24 component Pipe p1;
25 component Pipe p2;
26
27 connection seL4RPCSimple conn(from p1.o, to p2.i);
28
29 export p1.i -> i;
30 export p2.o -> o;
31 }
32 }
33
34 component Client {
35 control;
36 uses Processor inf;
37 }
38
39 assembly {
40 composition {
41 component Composite c1;
42 component Composite c2;
43 component Client client;
44 component Filter filter;
45
46 connection seL4RPCSimple conn1(from client.inf, to c1.i);
47 connection seL4RPCSimple conn2(from c1.o, to c1.i2);
48 connection seL4RPCSimple conn3(from c1.o2, to c2.i);
49 connection seL4RPCSimple conn4(from c2.o, to c2.i2);
50 connection seL4RPCSimple conn5(from c2.o2, to filter.f);
51 }
52 }
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1 /* System specification with composite components expanded */
2
3 procedure Processor {
4 int process(in int input);
5 }
6
7 component Filter {
8 provides Processor f;
9 }

10
11 component Pipe {
12 provides Processor i;
13 uses Processor o;
14 }
15
16 component Composite {
17 provides Processor i2;
18 uses Processor o2;
19 }
20
21 component Client {
22 control;
23 uses Processor inf;
24 }
25
26 assembly {
27 composition {
28 component Composite c1;
29 component Composite c2;
30 component Client client;
31 component Filter filter;
32
33 /* expanded from `Composite`'s definition */
34 component Pipe c1_p1;
35 component Pipe c1_p2;
36 component Pipe c2_p1;
37 component Pipe c2_p2;
38
39 connection seL4RPCSimple conn1(from client.inf, to c1_p1.i);
40 connection seL4RPCSimple conn2(from c1_p2.o, to c1.i2);
41 connection seL4RPCSimple conn3(from c1.o2, to c2_p1.i);
42 connection seL4RPCSimple conn4(from c2_p2.o, to c2.i2);
43 connection seL4RPCSimple conn5(from c2.o2, to filter.f);
44
45 /* expanded from `Composite`'s definition */
46 connection seL4RPCSimple conn6(from c1_p1.o, to c1_p2.i);
47 connection seL4RPCSimple conn7(from c2_p1.o, to c2_p2.i);
48 }
49 }
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Appendix B

Isabelle/HOL Locales

This appendix gives a brief introduction to an Isabelle/HOL feature called locales, by way of a simple example.

The focus is on conveying the utility of locales as they are used in this work. For a more general and thorough

treatment of locales, the interested reader is referred to the “Locales” section of the Isabelle/HOL reference

manual (Wenzel 2014) and a dedicated tutorial (Ballarin 2010).

A locale allows you to define a context that carries a set of fixed, typed parameters and assumptions. It is

introduced with the keyword, locale, and the fixed parameters and assumptions are given in the locale
header.

1 locale foo =
2 fixes is_even :: "nat ⇒ bool"
3 assumes factor:"

∧
x. is_even x =⇒ (∃ y. 2 * y = x)"

4 begin

This locale fixes a single parameter, is_even, and assumes that this predicate implies that we can find a factor
which, when doubled, equals the predicate argument. Inside the locale, we can prove lemmas that implicitly

carry the assumptions of the locale. The assumptions themselves are available for use as if they were proven

lemmas.

1 lemma even_imp_dvd:"is_even x =⇒ 2 dvd x"
2 apply (drule factor)
3 apply clarsimp
4 done

Though not stated, this lemma has the additional assumption, factor. In this sense, locales can be seen as
shorthand to avoid repeating a set of common assumptions in every proof.

Having defined a locale, it can be interpreted to export instances of the contained lemmas. The process of

interpretation requires that we provide terms to fit the “holes” of the fixed parameters and prove the assump-

tions of the locale. We can define the following function as a definition of even numbers.

1 primrec
2 g :: "nat ⇒ bool"
3 where
4 "g 0 = True"
5 | "g (Suc n) = (¬ g n)"
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Now we go on to interpret the locale by proving that this function indeed satisfies the assumption, factor.

1 interpretation foo g
2 apply unfold_locales
3 apply (subst (asm) g_even_translate)
4 apply (erule even_ex)
5 done

We now have the lemma of the locale available for use, as instantiated with our g function.

1 lemma even_imp_dvd:"g x =⇒ 2 dvd x"

A key point to note is that the interpretation of the locale required a proof of factor, but not of
even_imp_dvd. A user of the locale essentially gets the contained lemmas for the relatively low cost

of discharging the locale assumptions.

Locales may be interpreted multiple times, independently. Thus they can be used for proof abstraction over

common structures or types. For simplicity, our example has shown a locale containing a single fixed param-

eter, a single assumption and a single contained lemma, but it is possible to have an arbitrary number of all

these three elements.



Appendix C

Multi-level Terminal Architecture

Specification

What follows is the complete translated architectural specification of the multi-level terminal prototype from

Chapter 8.

1 theory "MlsArch" imports
2 "~~/../l4v/camkes/adl-spec/Types_CAMKES"
3 "~~/../l4v/camkes/adl-spec/Library_CAMKES"
4 "~~/../l4v/camkes/adl-spec/Wellformed_CAMKES"
5 begin
6
7 (* Procedure interfaces *)
8
9 definition

10 Data :: procedure
11 where
12 "Data ≡ [(| m_return_type = None,
13 m_name = ''send_key'',
14 m_parameters = [(| p_type = Primitive (Textual char),
15 p_direction = InParameter,
16 p_name = ''c'' |)] |)]"
17
18 lemma wf_Data: "wellformed_procedure Data"
19 by code_simp
20
21 definition
22 Paint :: procedure
23 where
24 "Paint ≡ [(| m_return_type = Some (Primitive (Numerical Integer)),
25 m_name = ''put_char'',
26 m_parameters = [(| p_type = Primitive (Textual char),
27 p_direction = InParameter,
28 p_name = ''c'' |)] |),
29 (| m_return_type = None,
30 m_name = ''clear'',
31 m_parameters = [] |),
32 (| m_return_type = Some (Primitive (Numerical Integer)),
33 m_name = ''move'',
34 m_parameters = [(| p_type = Primitive (Numerical UnsignedInteger),
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35 p_direction = InParameter,
36 p_name = ''x'' |),
37 (| p_type = Primitive (Numerical UnsignedInteger),
38 p_direction = InParameter,
39 p_name = ''y'' |)] |)]"
40
41 lemma wf_Paint: "wellformed_procedure Paint"
42 by code_simp
43
44 (* Event interfaces *)
45
46 definition
47 Keypress :: event
48 where
49 "Keypress ≡ 0"
50
51 lemma wf_Keypress: "wellformed_event Keypress"
52 by code_simp
53
54 (* Dataport interfaces *)
55
56 definition
57 Input :: component
58 where
59 "Input ≡ (| control = True,
60 requires = [(''low_output'', Data),
61 (''high_output'', Data)],
62 provides = [],
63 dataports = [],
64 emits = [],
65 consumes = [],
66 attributes = [] |)"
67
68 lemma wf_Input: "wellformed_component Input"
69 by code_simp
70
71 definition
72 Low :: component
73 where
74 "Low ≡ (| control = False,
75 requires = [(''low_display'', Paint)],
76 provides = [(''low_input'', Data)],
77 dataports = [],
78 emits = [(''key_out'', Keypress)],
79 consumes = [],
80 attributes = [] |)"
81
82 lemma wf_Low: "wellformed_component Low"
83 by code_simp
84
85 definition
86 High :: component
87 where
88 "High ≡ (| control = True,
89 requires = [(''high_display'', Paint)],
90 provides = [(''high_input'', Data)],
91 dataports = [],
92 emits = [],
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93 consumes = [(''key_in'', Keypress)],
94 attributes = [] |)"
95
96 lemma wf_High: "wellformed_component High"
97 by code_simp
98
99 definition

100 GUI :: component
101 where
102 "GUI ≡ (| control = True,
103 requires = [],
104 provides = [(''low_data'', Paint),
105 (''high_data'', Paint)],
106 dataports = [],
107 emits = [],
108 consumes = [],
109 attributes = [] |)"
110
111 lemma wf_GUI: "wellformed_component GUI"
112 by code_simp
113
114 definition
115 input :: component
116 where
117 "input ≡ Input"
118
119 lemma wf_input: "wellformed_component input"
120 by code_simp
121
122 definition
123 low :: component
124 where
125 "low ≡ Low"
126
127 lemma wf_low: "wellformed_component low"
128 by code_simp
129
130 definition
131 high :: component
132 where
133 "high ≡ High"
134
135 lemma wf_high: "wellformed_component high"
136 by code_simp
137
138 definition
139 gui :: component
140 where
141 "gui ≡ GUI"
142
143 lemma wf_gui: "wellformed_component gui"
144 by code_simp
145
146 definition
147 a :: connection
148 where
149 "a ≡ (| conn_type = seL4RPCSimple,
150 conn_from = (''input'', ''low_output''),
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151 conn_to = (''low'', ''low_input'') |)"
152
153 lemma wf_a: "wellformed_connection a"
154 by code_simp
155
156 definition
157 b :: connection
158 where
159 "b ≡ (| conn_type = seL4RPCSimple,
160 conn_from = (''input'', ''high_output''),
161 conn_to = (''high'', ''high_input'') |)"
162
163 lemma wf_b: "wellformed_connection b"
164 by code_simp
165
166 definition
167 d :: connection
168 where
169 "d ≡ (| conn_type = seL4AsynchNative,
170 conn_from = (''low'', ''key_out''),
171 conn_to = (''high'', ''key_in'') |)"
172
173 lemma wf_d: "wellformed_connection d"
174 by code_simp
175
176 definition
177 e :: connection
178 where
179 "e ≡ (| conn_type = seL4RPCSimple,
180 conn_from = (''low'', ''low_display''),
181 conn_to = (''gui'', ''low_data'') |)"
182
183 lemma wf_e: "wellformed_connection e"
184 by code_simp
185
186 definition
187 f :: connection
188 where
189 "f ≡ (| conn_type = seL4RPCSimple,
190 conn_from = (''high'', ''high_display''),
191 conn_to = (''gui'', ''high_data'') |)"
192
193 lemma wf_f: "wellformed_connection f"
194 by code_simp
195
196 definition
197 composition' :: composition
198 where
199 "composition' ≡ (|
200 components = [(''input'', input), (''low'', low), (''high'', high),
201 (''gui'', gui)],
202 connections = [(''a'', a), (''b'', b), (''d'', d), (''e'', e), (''f'', f)] |)"
203
204 lemma wf_composition': "wellformed_composition composition'"
205 by code_simp
206
207 definition
208 configuration' :: "configuration option"
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209 where
210 "configuration' ≡ Some [(''input'', ''_domain'', ''1''),
211 (''low'', ''_domain'', ''2''),
212 (''low'', ''low_input_domain'', ''2''),
213 (''high'', ''_domain'', ''3''),
214 (''high'', ''high_input_domain'', ''3''),
215 (''high'', ''key_in_domain'', ''3''),
216 (''gui'', ''_domain'', ''4''),
217 (''gui'', ''low_data_domain'', ''4''),
218 (''gui'', ''high_data_domain'', ''4'')]"
219
220 lemma wf_configuration': "wellformed_configuration (the configuration')"
221 by code_simp
222
223 definition
224 assembly' :: assembly
225 where
226 "assembly' ≡ (| composition = composition',
227 configuration = configuration' |)"
228
229 lemma wf_assembly': "wellformed_assembly assembly'"
230 by code_simp
231
232 end
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Appendix D

Multi-level Terminal Behavioural

Specification

Included below is the full generated behavioural specification of themulti-level terminal prototype fromChap-

ter 8.

1 theory MlsCimp imports
2 "~~/../l4v/camkes/glue-spec/Types"
3 "~~/../l4v/camkes/glue-spec/Abbreviations"
4 "~~/../l4v/camkes/glue-spec/Connector"
5 begin
6
7 datatype channel
8 = a
9 | b

10 | d
11 | e
12 | f
13
14 datatype inst
15 = input
16 | low
17 | high
18 | gui
19 | "de"
20
21 (* Input's interfaces *)
22 datatype Input_channel
23 = Input_low_output
24 | Input_high_output
25
26 definition
27 Call_Input_low_output_send_key :: "(Input_channel ⇒ channel) ⇒
28 ('cs local_state ⇒ char) ⇒ (channel, 'cs) comp"
29 where
30 "Call_Input_low_output_send_key ch0' cP ≡
31 Request (λs1'. {(| q_channel = ch0' Input_low_output,
32 q_data = Call 0 [Char (cP s1')] |)}) discard ;;
33 Response (λs2' s3'. case q_data s2' of
34 Return s4' ⇒ {(s3', (| a_channel = ch0' Input_low_output,
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35 a_data = Void |))}
36 | _ ⇒ {})"
37
38 definition
39 Call_Input_high_output_send_key :: "(Input_channel ⇒ channel) ⇒
40 ('cs local_state ⇒ char) ⇒ (channel, 'cs) comp"
41 where
42 "Call_Input_high_output_send_key ch5' cP ≡
43 Request (λs6'. {(| q_channel = ch5' Input_high_output,
44 q_data = Call 0 [Char (cP s6')] |)}) discard ;;
45 Response (λs7' s8'. case q_data s7' of
46 Return s9' ⇒ {(s8', (| a_channel = ch5' Input_high_output,
47 a_data = Void |))}
48 | _ ⇒ {})"
49
50 (* Low's interfaces *)
51 datatype Low_channel
52 = Low_low_display
53 | Low_low_input
54 | Low_key_out
55
56 definition
57 Call_Low_low_display_put_char :: "(Low_channel ⇒ channel) ⇒
58 ('cs local_state ⇒ char) ⇒ ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
59 (channel, 'cs) comp"
60 where
61 "Call_Low_low_display_put_char ch10' cP embed_ret ≡
62 Request (λs11'. {(| q_channel = ch10' Low_low_display,
63 q_data = Call 0 [Char (cP s11')] |)}) discard ;;
64 Response (λs12' s13'. case q_data s12' of
65 Return s14' ⇒ {(embed_ret s13' (case hd s14' of Integer s15' ⇒ s15'),
66 (| a_channel = ch10' Low_low_display,
67 a_data = Void |))}
68 | _ ⇒ {})"
69
70 definition
71 Call_Low_low_display_clear :: "(Low_channel ⇒ channel) ⇒ (channel, 'cs) comp"
72 where
73 "Call_Low_low_display_clear ch16' ≡
74 Request (λs17'. {(| q_channel = ch16' Low_low_display,
75 q_data = Call 1 [] |)}) discard ;;
76 Response (λs18' s19'. case q_data s18' of
77 Return s20' ⇒ {(s19', (| a_channel = ch16' Low_low_display,
78 a_data = Void |))}
79 | _ ⇒ {})"
80
81 definition
82 Call_Low_low_display_move :: "(Low_channel ⇒ channel) ⇒
83 ('cs local_state ⇒ nat) ⇒ ('cs local_state ⇒ nat) ⇒
84 ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
85 where
86 "Call_Low_low_display_move ch21' xP yP embed_ret ≡
87 Request (λs22'. {(| q_channel = ch21' Low_low_display,
88 q_data = Call 2 [Number (xP s22'),
89 Number (yP s22')] |)}) discard ;;
90 Response (λs23' s24'. case q_data s23' of
91 Return s25' ⇒ {(embed_ret s24' (case hd s25' of Integer s26' ⇒ s26'),
92 (| a_channel = ch21' Low_low_display,
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93 a_data = Void |))}
94 | _ ⇒ {})"
95
96 definition
97 Recv_Low_low_input :: "(Low_channel ⇒ channel) ⇒
98 ('cs local_state ⇒ char ⇒ 'cs local_state) ⇒ (channel, 'cs) comp ⇒
99 (channel, 'cs) comp"

100 where
101 "Recv_Low_low_input ch27' send_keyE Low_low_input_send_key ≡
102 Response (λs28' s29'. case q_data s28' of
103 Call s30' s31' ⇒
104 (if s30' = 0
105 then {(send_keyE s29' (case s31' ! 0 of Char s32' ⇒ s32'),
106 (| a_channel = ch27' Low_low_input,
107 a_data = Void |))}
108 else {})
109 | _ ⇒ {}) ;;
110 Low_low_input_send_key ;;
111 Request (λs33'. {(| q_channel = ch27' Low_low_input,
112 q_data = Return [] |)}) discard"
113
114 definition
115 Emit_Low_key_out :: "(Low_channel ⇒ channel) ⇒ (channel, 'cs) comp"
116 where
117 "Emit_Low_key_out ch34' ≡ EventEmit (ch34' Low_key_out)"
118
119 (* High's interfaces *)
120 datatype High_channel
121 = High_high_display
122 | High_high_input
123 | High_key_in
124
125 definition
126 Call_High_high_display_put_char :: "(High_channel ⇒ channel) ⇒
127 ('cs local_state ⇒ char) ⇒ ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
128 (channel, 'cs) comp"
129 where
130 "Call_High_high_display_put_char ch35' cP embed_ret ≡
131 Request (λs36'. {(| q_channel = ch35' High_high_display,
132 q_data = Call 0 [Char (cP s36')] |)}) discard ;;
133 Response (λs37' s38'. case q_data s37' of
134 Return s39' ⇒ {(embed_ret s38' (case hd s39' of Integer s40' ⇒ s40'),
135 (| a_channel = ch35' High_high_display,
136 a_data = Void |))}
137 | _ ⇒ {})"
138
139 definition
140 Call_High_high_display_clear :: "(High_channel ⇒ channel) ⇒
141 (channel, 'cs) comp"
142 where
143 "Call_High_high_display_clear ch41' ≡
144 Request (λs42'. {(| q_channel = ch41' High_high_display,
145 q_data = Call 1 [] |)}) discard ;;
146 Response (λs43' s44'. case q_data s43' of
147 Return s45' ⇒ {(s44', (| a_channel = ch41' High_high_display,
148 a_data = Void |))}
149 | _ ⇒ {})"
150
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151 definition
152 Call_High_high_display_move :: "(High_channel ⇒ channel) ⇒
153 ('cs local_state ⇒ nat) ⇒ ('cs local_state ⇒ nat) ⇒
154 ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
155 where
156 "Call_High_high_display_move ch46' xP yP embed_ret ≡
157 Request (λs47'. {(| q_channel = ch46' High_high_display,
158 q_data = Call 2 [Number (xP s47'),
159 Number (yP s47')] |)}) discard ;;
160 Response (λs48' s49'. case q_data s48' of
161 Return s50' ⇒ {(embed_ret s49' (case hd s50' of Integer s51' ⇒ s51'),
162 (| a_channel = ch46' High_high_display,
163 a_data = Void |))}
164 | _ ⇒ {})"
165
166 definition
167 Recv_High_high_input :: "(High_channel ⇒ channel) ⇒
168 ('cs local_state ⇒ char ⇒ 'cs local_state) ⇒ (channel, 'cs) comp ⇒
169 (channel, 'cs) comp"
170 where
171 "Recv_High_high_input ch52' send_keyE High_high_input_send_key ≡
172 Response (λs53' s54'. case q_data s53' of
173 Call s55' s56' ⇒
174 (if s55' = 0
175 then {(send_keyE s54' (case s56' ! 0 of Char s57' ⇒ s57'),
176 (| a_channel = ch52' High_high_input,
177 a_data = Void |))}
178 else {})
179 | _ ⇒ {}) ;;
180 High_high_input_send_key ;;
181 Request (λs58'. {(| q_channel = ch52' High_high_input,
182 q_data = Return [] |)}) discard"
183
184 definition
185 Poll_High_key_in :: "(High_channel ⇒ channel) ⇒ ('cs local_state ⇒ bool ⇒
186 'cs local_state) ⇒ (channel, 'cs) comp"
187 where
188 "Poll_High_key_in ch59' embed60' ≡ EventPoll (ch59' High_key_in) embed60'"
189
190 definition
191 Wait_High_key_in :: "(High_channel ⇒ channel) ⇒ ('cs local_state ⇒ bool ⇒
192 'cs local_state) ⇒ (channel, 'cs) comp"
193 where
194 "Wait_High_key_in ch59' embed61' ≡ EventWait (ch59' High_key_in) embed61'"
195
196 (* GUI's interfaces *)
197 datatype GUI_channel
198 = GUI_low_data
199 | GUI_high_data
200
201 definition
202 Recv_GUI_low_data :: "(GUI_channel ⇒ channel) ⇒
203 ('cs local_state ⇒ char ⇒ 'cs local_state) ⇒ (channel, 'cs) comp ⇒
204 ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp ⇒
205 ('cs local_state ⇒ nat ⇒ nat ⇒ 'cs local_state) ⇒ (channel, 'cs) comp ⇒
206 ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp"
207 where
208 "Recv_GUI_low_data ch62' put_charE GUI_low_data_put_char
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209 put_char_returnP GUI_low_data_clear moveE GUI_low_data_move move_returnP ≡
210 (Response (λs63' s64'. case q_data s63' of
211 Call s65' s66' ⇒
212 (if s65' = 0
213 then {(put_charE s64' (case s66' ! 0 of Char s67' ⇒ s67'),
214 (| a_channel = ch62' GUI_low_data,
215 a_data = Void |))}
216 else {})
217 | _ ⇒ {}) ;;
218 GUI_low_data_put_char ;;
219 Request (λs68'. {(| q_channel = ch62' GUI_low_data,
220 q_data = Return [Integer (put_char_returnP s68')] |)})
221 discard)
222 ⊔
223 (Response (λs69' s70'. case q_data s69' of
224 Call s71' s72' ⇒
225 (if s71' = 1
226 then {(s70', (| a_channel = ch62' GUI_low_data,
227 a_data = Void |))}
228 else {})
229 | _ ⇒ {}) ;;
230 GUI_low_data_clear ;;
231 Request (λs73'. {(| q_channel = ch62' GUI_low_data,
232 q_data = Return [] |)}) discard)
233 ⊔
234 (Response (λs74' s75'. case q_data s74' of
235 Call s76' s77' ⇒
236 (if s76' = 2
237 then {(moveE s75' (case s77' ! 0 of Number s78' ⇒ s78')
238 (case s77' ! 1 of Number s79' ⇒ s79'),
239 (| a_channel = ch62' GUI_low_data,
240 a_data = Void |))}
241 else {})
242 | _ ⇒ {}) ;;
243 GUI_low_data_move ;;
244 Request (λs80'. {(| q_channel = ch62' GUI_low_data,
245 q_data = Return [Integer (move_returnP s80')] |)})
246 discard)"
247
248 definition
249 Recv_GUI_high_data :: "(GUI_channel ⇒ channel) ⇒
250 ('cs local_state ⇒ char ⇒ 'cs local_state) ⇒ (channel, 'cs) comp ⇒
251 ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp ⇒
252 ('cs local_state ⇒ nat ⇒ nat ⇒ 'cs local_state) ⇒ (channel, 'cs) comp ⇒
253 ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp"
254 where
255 "Recv_GUI_high_data ch81' put_charE GUI_high_data_put_char put_char_returnP
256 GUI_high_data_clear moveE GUI_high_data_move move_returnP ≡
257 (Response (λs82' s83'. case q_data s82' of
258 Call s84' s85' ⇒
259 (if s84' = 0
260 then {(put_charE s83' (case s85' ! 0 of Char s86' ⇒ s86'),
261 (| a_channel = ch81' GUI_high_data,
262 a_data = Void |))}
263 else {})
264 | _ ⇒ {}) ;;
265 GUI_high_data_put_char ;;
266 Request (λs87'. {(| q_channel = ch81' GUI_high_data,
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267 q_data = Return [Integer (put_char_returnP s87')] |)})
268 discard)
269 ⊔
270 (Response (λs88' s89'. case q_data s88' of
271 Call s90' s91' ⇒
272 (if s90' = 1
273 then {(s89', (| a_channel = ch81' GUI_high_data,
274 a_data = Void |))}
275 else {})
276 | _ ⇒ {}) ;;
277 GUI_high_data_clear ;;
278 Request (λs92'. {(| q_channel = ch81' GUI_high_data,
279 q_data = Return [] |)}) discard)
280 ⊔
281 (Response (λs93' s94'. case q_data s93' of
282 Call s95' s96' ⇒
283 (if s95' = 2
284 then {(moveE s94' (case s96' ! 0 of Number s97' ⇒ s97')
285 (case s96' ! 1 of Number s98' ⇒ s98'),
286 (| a_channel = ch81' GUI_high_data,
287 a_data = Void |))}
288 else {})
289 | _ ⇒ {}) ;;
290 GUI_high_data_move ;;
291 Request (λs99'. {(| q_channel = ch81' GUI_high_data,
292 q_data = Return [Integer (move_returnP s99')] |)})
293 discard)"
294
295 (* Component instantiations *)
296
297 definition
298 Call_input_low_output_send_key :: "('cs local_state ⇒ char) ⇒
299 (channel, 'cs) comp"
300 where
301 "Call_input_low_output_send_key ≡
302 Call_Input_low_output_send_key (λs100'. case s100' of
303 Input_low_output ⇒ a
304 | Input_high_output ⇒ b)"
305
306 definition
307 Call_input_high_output_send_key :: "('cs local_state ⇒ char) ⇒
308 (channel, 'cs) comp"
309 where
310 "Call_input_high_output_send_key ≡
311 Call_Input_high_output_send_key (λs101'. case s101' of
312 Input_low_output ⇒ a
313 | Input_high_output ⇒ b)"
314
315 definition
316 Call_low_low_display_put_char :: "('cs local_state ⇒ char) ⇒
317 ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
318 where
319 "Call_low_low_display_put_char ≡
320 Call_Low_low_display_put_char (λs102'. case s102' of
321 Low_low_input ⇒ a
322 | Low_key_out ⇒ d
323 | Low_low_display ⇒ e)"
324
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325 definition
326 Call_low_low_display_clear :: "(channel, 'cs) comp"
327 where
328 "Call_low_low_display_clear ≡
329 Call_Low_low_display_clear (λs103'. case s103' of
330 Low_low_input ⇒ a
331 | Low_key_out ⇒ d
332 | Low_low_display ⇒ e)"
333
334 definition
335 Call_low_low_display_move :: "('cs local_state ⇒ nat) ⇒
336 ('cs local_state ⇒ nat) ⇒ ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
337 (channel, 'cs) comp"
338 where
339 "Call_low_low_display_move ≡
340 Call_Low_low_display_move (λs104'. case s104' of
341 Low_low_input ⇒ a
342 | Low_key_out ⇒ d
343 | Low_low_display ⇒ e)"
344
345 definition
346 Recv_low_low_input :: "('cs local_state ⇒ char ⇒ 'cs local_state) ⇒
347 (channel, 'cs) comp ⇒ (channel, 'cs) comp"
348 where
349 "Recv_low_low_input ≡
350 Recv_Low_low_input (λs105'. case s105' of
351 Low_low_input ⇒ a
352 | Low_key_out ⇒ d
353 | Low_low_display ⇒ e)"
354
355 definition
356 Emit_low_key_out :: "(channel, 'cs) comp"
357 where
358 "Emit_low_key_out ≡
359 Emit_Low_key_out (λs106'. case s106' of
360 Low_low_input ⇒ a
361 | Low_key_out ⇒ d
362 | Low_low_display ⇒ e)"
363
364 definition
365 Call_high_high_display_put_char :: "('cs local_state ⇒ char) ⇒
366 ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒ (channel, 'cs) comp"
367 where
368 "Call_high_high_display_put_char ≡
369 Call_High_high_display_put_char (λs107'. case s107' of
370 High_high_input ⇒ b
371 | High_key_in ⇒ d
372 | High_high_display ⇒ f)"
373
374 definition
375 Call_high_high_display_clear :: "(channel, 'cs) comp"
376 where
377 "Call_high_high_display_clear ≡
378 Call_High_high_display_clear (λs108'. case s108' of
379 High_high_input ⇒ b
380 | High_key_in ⇒ d
381 | High_high_display ⇒ f)"
382
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383 definition
384 Call_high_high_display_move :: "('cs local_state ⇒ nat) ⇒
385 ('cs local_state ⇒ nat) ⇒ ('cs local_state ⇒ int ⇒ 'cs local_state) ⇒
386 (channel, 'cs) comp"
387 where
388 "Call_high_high_display_move ≡
389 Call_High_high_display_move (λs109'. case s109' of
390 High_high_input ⇒ b
391 | High_key_in ⇒ d
392 | High_high_display ⇒ f)"
393
394 definition
395 Recv_high_high_input :: "('cs local_state ⇒ char ⇒ 'cs local_state) ⇒
396 (channel, 'cs) comp ⇒ (channel, 'cs) comp"
397 where
398 "Recv_high_high_input ≡
399 Recv_High_high_input (λs110'. case s110' of
400 High_high_input ⇒ b
401 | High_key_in ⇒ d
402 | High_high_display ⇒ f)"
403
404 definition
405 Poll_high_key_in :: "('cs local_state ⇒ bool ⇒ 'cs local_state) ⇒
406 (channel, 'cs) comp"
407 where
408 "Poll_high_key_in ≡
409 Poll_High_key_in (λs111'. case s111' of
410 High_high_input ⇒ b
411 | High_key_in ⇒ d
412 | High_high_display ⇒ f)"
413
414 definition
415 Wait_high_key_in :: "('cs local_state ⇒ bool ⇒ 'cs local_state) ⇒
416 (channel, 'cs) comp"
417 where
418 "Wait_high_key_in ≡
419 Wait_High_key_in (λs112'. case s112' of
420 High_high_input ⇒ b
421 | High_key_in ⇒ d
422 | High_high_display ⇒ f)"
423
424 definition
425 Recv_gui_low_data :: "('cs local_state ⇒ char ⇒ 'cs local_state) ⇒
426 (channel, 'cs) comp ⇒ ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp ⇒
427 ('cs local_state ⇒ nat ⇒ nat ⇒ 'cs local_state) ⇒ (channel, 'cs) comp ⇒
428 ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp"
429 where
430 "Recv_gui_low_data ≡
431 Recv_GUI_low_data (λs113'. case s113' of
432 GUI_low_data ⇒ e
433 | GUI_high_data ⇒ f)"
434
435 definition
436 Recv_gui_high_data :: "('cs local_state ⇒ char ⇒ 'cs local_state) ⇒
437 (channel, 'cs) comp ⇒ ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp ⇒
438 ('cs local_state ⇒ nat ⇒ nat ⇒ 'cs local_state) ⇒ (channel, 'cs) comp ⇒
439 ('cs local_state ⇒ int) ⇒ (channel, 'cs) comp"
440 where
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441 "Recv_gui_high_data ≡
442 Recv_GUI_high_data (λs114'. case s114' of
443 GUI_low_data ⇒ e
444 | GUI_high_data ⇒ f)"
445
446 locale system_state =
447 fixes init_component_state :: 'cs
448 fixes trusted :: "(inst, ((channel, 'cs) comp × 'cs local_state)) map"
449 begin
450
451 definition
452 Input_untrusted :: "(Input_channel ⇒ channel) ⇒ (channel, 'cs) comp"
453 where
454 "Input_untrusted ch115' ≡
455 LOOP (
456 UserStep
457 ⊔ ArbitraryRequest (ch115' Input_low_output)
458 ⊔ ArbitraryResponse (ch115' Input_low_output)
459 ⊔ ArbitraryRequest (ch115' Input_high_output)
460 ⊔ ArbitraryResponse (ch115' Input_high_output))"
461
462 definition
463 Low_untrusted :: "(Low_channel ⇒ channel) ⇒ (channel, 'cs) comp"
464 where
465 "Low_untrusted ch116' ≡
466 LOOP (
467 UserStep
468 ⊔ ArbitraryRequest (ch116' Low_low_display)
469 ⊔ ArbitraryResponse (ch116' Low_low_display)
470 ⊔ ArbitraryRequest (ch116' Low_low_input)
471 ⊔ ArbitraryResponse (ch116' Low_low_input)
472 ⊔ ArbitraryRequest (ch116' Low_key_out)
473 ⊔ ArbitraryResponse (ch116' Low_key_out))"
474
475 definition
476 High_untrusted :: "(High_channel ⇒ channel) ⇒ (channel, 'cs) comp"
477 where
478 "High_untrusted ch117' ≡
479 LOOP (
480 UserStep
481 ⊔ ArbitraryRequest (ch117' High_high_display)
482 ⊔ ArbitraryResponse (ch117' High_high_display)
483 ⊔ ArbitraryRequest (ch117' High_high_input)
484 ⊔ ArbitraryResponse (ch117' High_high_input)
485 ⊔ ArbitraryRequest (ch117' High_key_in)
486 ⊔ ArbitraryResponse (ch117' High_key_in))"
487
488 definition
489 GUI_untrusted :: "(GUI_channel ⇒ channel) ⇒ (channel, 'cs) comp"
490 where
491 "GUI_untrusted ch118' ≡
492 LOOP (
493 UserStep
494 ⊔ ArbitraryRequest (ch118' GUI_low_data)
495 ⊔ ArbitraryResponse (ch118' GUI_low_data)
496 ⊔ ArbitraryRequest (ch118' GUI_high_data)
497 ⊔ ArbitraryResponse (ch118' GUI_high_data))"
498
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499 (* Simulated component for event Keypress. *)
500 type_synonym Keypress_channel = unit
501
502 definition
503 Keypress :: "(Keypress_channel ⇒ channel) ⇒ (channel, 'cs) comp"
504 where
505 "Keypress ch119' ≡ event (ch119' ())"
506
507 (* Component instantiations *)
508
509 definition
510 input_untrusted :: "(channel, 'cs) comp"
511 where
512 "input_untrusted ≡
513 Input_untrusted (λs120'. case s120' of
514 Input_low_output ⇒ a
515 | Input_high_output ⇒ b)"
516
517 definition
518 low_untrusted :: "(channel, 'cs) comp"
519 where
520 "low_untrusted ≡
521 Low_untrusted (λs121'. case s121' of
522 Low_low_input ⇒ a
523 | Low_key_out ⇒ d
524 | Low_low_display ⇒ e)"
525
526 definition
527 high_untrusted :: "(channel, 'cs) comp"
528 where
529 "high_untrusted ≡
530 High_untrusted (λs122'. case s122' of
531 High_high_input ⇒ b
532 | High_key_in ⇒ d
533 | High_high_display ⇒ f)"
534
535 definition
536 gui_untrusted :: "(channel, 'cs) comp"
537 where
538 "gui_untrusted ≡
539 GUI_untrusted (λs123'. case s123' of
540 GUI_low_data ⇒ e
541 | GUI_high_data ⇒ f)"
542
543 definition
544 "de_instance" :: "(channel, 'cs) comp"
545 where
546 "de_instance ≡ Keypress (λ_. d)"
547
548 (* Global initial state *)
549 definition
550 "gs0" :: "(inst, channel, 'cs) global_state"
551 where
552 "gs0 p124' ≡ case trusted p124' of Some s125' ⇒
553 Some s125'
554 | _ ⇒ (case p124' of
555 input ⇒ Some (input_untrusted, Component init_component_state)
556 | low ⇒ Some (low_untrusted, Component init_component_state)
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557 | high ⇒ Some (high_untrusted, Component init_component_state)
558 | gui ⇒ Some (gui_untrusted, Component init_component_state)
559 | de ⇒ Some (de_instance, init_event_state))"
560
561 end
562
563 end
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