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Abstract

Based on Y. Kawahara’s characterisation of the cardinality of relations we derive some fundamental properties of
cardinalities concerning vectors, points and mapping-related relations. As applications of these results we verify
some properties of linear orders and graphs in a calculational manner. These include the cardinalities of rooted trees
and some estimates concerning graph parameters. We also calculationally prove the result of D. Kőnig that in bipartite
graphs the matching number equals the vertex cover number.
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1. Introduction

Based on pioneering work of mainly G. Boole, A. De Morgan, C.S. Peirce and E. Schröder in the 19th century, the
modern axiomatic investigations of the calculus of binary relations started with the seminal paper [28] of A. Tarski
on relation algebra in the middle of the 20th century. Since the 1970s this algebraic structure has widely been used
by many mathematicians, engineers and computer scientists as a conceptual and methodological base for problem
solving in areas like graph theory, theory of orders and lattices, combinatorics, preference and scaling, social choice
theory, algorithmics, data bases, and semantics of programming languages. A lot of examples and references to
relevant literature can be found e.g., in [2, 8, 10, 11, 25, 27] and the proceedings of the conference series “Relational
and Algebraic Methods in Computer Science”.

The use of relation algebra brings many advantages: Concerning modelling, it is mainly due to the fact that
relations and many objects of discrete mathematics are essentially the same or closely related. For instance, a directed
graph is nothing else than a relation on a non-empty and finite set of vertices, and also for other classes of graphs
there are simple and elegant ways to model them with relations, as shown in [25, 27], for example. Secondly, the use
of relation algebra frequently leads to very precise proofs, where calculational transformations constitute the decisive
parts. This has the advantage of clarifying the proof structure frequently, reducing the danger of doing wrong proof
steps and to opening the possibility for proof mechanisation, for instance, by automated theorem provers or proof
assistants. See e.g., [3, 4, 7, 13, 15] for the latter. Thirdly, the set-theoretic standard model of relation algebra can
easily and efficiently be implemented. This supports prototyping and validation tasks in a significant manner, e.g., by
the BDD-based special-purpose computer algebra system RelView (see [6]).

Experience has also shown that for advanced applications the “classical” homogeneous relation algebra in the
sense of [28] (and further developed in [18, 19, 29], for example) has to be modified. To be able to treat not only rela-
tions on one universe but on different sets, in [24] types have been introduced, leading to the notion of a heterogeneous
relation algebra. Based on this and following the manner how K.C. Ng and A. Tarski added in [30] the Kleene star
as an additional operation for reflexive-transitive closures to homogeneous relation algebra, relational products, sums
and embeddings have been axiomatised to deal, for example, with n-ary functions, case distinctions and restrictions,
respectively. Set-theoretic membership relations and some variants (on function domains) have also been introduced
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in the same way, mainly for the use in relation-algebraic semantics. See [2, 25, 27, 31] for details and references to
relevant literature.

In this paper we investigate an extension of heterogeneous relation algebra. We are concerned with a cardinality
operation on relations, the axiomatisation of which originates from [16]. In this paper Y. Kawahara acknowledges
the considerable influence of [27] to the formal relation-algebraic study of graphs. But he also mentions that “the
cardinality of relations is treated rather implicitly or intuitively” [16, Page 251]. Therefore, he develops a cardinality
operation on relations and demonstrates by some applications in basic graph theory that its axiomatic specification
can be used to reason about cardinalities of relations in a purely calculational and algebraic manner. In [5] the ax-
iomatisation of [16] is applied for the formal assertion-based development and verification of relational approximation
algorithms, where cardinalities play an important role when proving the desired approximation bound.

The present paper is a continuation of [16] and [5]. We extend the stock of fundamental properties of cardinalities
of relations by several results that concern vectors, points and mapping-related relations. In this regard the point
axiom and the decomposition of relations into disjoint unions play an important role. To show the usefulness of the
properties, we present some applications. The remainder of the paper is organised as follows: In Section 2 and Section
3 we shortly recall those fundamentals of heterogeneous relation algebra we will need in the following sections; this
includes the point axiom and some important consequences. Then, in Section 4, we present Y. Kawahara’s axioma-
tisation of the cardinality operation on relations and some general properties. Specific properties of the cardinality
operation with regard to vectors and points and of relations which are related to mappings are presented in Section
5 and Section 6, respectively. Some simple applications that base on these properties are shown in Section 7, e.g.,
calculational proofs of cardinalities of rooted trees and of some estimates concerning well-known graph parameters.
In Section 8 we apply our results to a more complex example. We calculationally prove the theorem of D. Kőnig
saying that in bipartite graphs the matching number and the vertex cover number coincide. Section 9 contains some
concluding remarks.

2. Relation-Algebraic Prerequisites

In this section we recall the fundamentals of relation algebra based on the heterogeneous approach of [24] and
further developed especially in [25, 27]. Set-theoretic relations form the standard model of relation algebras. We
assume the reader to be familiar with the basic operations on them, viz. RT (transposition), R (complementation),
R ∪ S (union), R ∩ S (intersection), R;S (composition), the predicates R ⊆ S (inclusion) and R = S (equality), and
the special relations O (empty relation), L (universal relation) and I (identity relation). Relations of the same type
equipped with the Boolean operations, the inclusion and the constants O and L form complete Boolean lattices. Some
further well-known algebraic properties of relations are RT = R

T
, (R ∪ S )T = RT∪S T, (R ∩ S )T = RT∩S T, (RT)T = R,

(R;S )T = S T;RT, and the monotonicity of transposition, union, intersection and composition.
The theoretical framework for these laws (and many others) to hold is that of a (heterogeneous) relation algebra

in the sense of [24, 25, 27], with typed relations as elements. This implies that each relation has a source and a target
and we write R : X↔Y to express that R is of type X↔Y with source X and target Y . In case of set-theoretic relations
R : X↔Y means that R is a subset of the direct product X × Y and then X and Y are also called carrier sets. As
constants and operations of a relation algebra we have those of set-theoretic relations, where we frequently overload
the symbols O, L and I, i.e., avoid the binding of types to them. Only when helpful or necessary we use indices to
annotate types such as LXY for the universal relation of type X↔Y and IX for the identity relation of type X↔ X. The
axiomatisation of relation algebra we will present now follows [25, 27].

Axioms 2.1 (Relation Algebra). The following hold:

(R1) For all types X↔Y the relations of type X↔Y constitute a complete Boolean lattice under the Boolean opera-
tions, the inclusion, the empty relation and the universal relation.

(R2) Composition of relations is associative and the identity relations are neutral elements with respect to composi-
tion.

(R3) For all relations Q, R and S (with appropriate types) the three inclusions Q;R ⊆ S , QT;S ⊆ R and S ;RT ⊆ Q
are equivalent.
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(R4) For all relations R and all universal relations (with appropriate types) from R , O it follows L;R;L = L.

In [27] the equivalences of (R3) are called the Schröder rules and the implication of (R4) is called the Tarski
rule. In the relation-algebraic proofs of this paper we will mention only applications of (R3), (R4) and “non-obvious”
consequences of the axioms, like the inclusion

Q;R ∩ S ⊆ (Q ∩ S ;RT);(R ∩ QT;S ), (1)

for all relations Q : X↔Y , R : Y↔Z and S : X↔Z, in [27] called the Dedekind rule. Additionally, we use the
following rule for all relations R

RT;R;L = O , (2)

which is a consequence of the Schröder equivalences, because R;L ⊆ R;L and L = O hold. Furthermore, we will
assume that complementation and transposition bind stronger than composition, composition binds stronger than
union and intersection, and that all expressions and formulae are well-typed. The latter assumption allows to suppress
many type annotations, since types of relations can be derived from others with given types using the typing rules of
the relational operations.

In the following we recapitulate some well-known classes of relations used in the remainder of this paper and
specify them in an algebraic way. For more details on such an approach (including the relation-algebraic specification
of further important classes) see again [25, 27].

A relation R is univalent iff RT;R ⊆ I, and total iff R;L = L (for all universal relations with appropriate types),
where totality of R is equivalent to I ⊆ R;RT. A mapping is a univalent and total relation. For a univalent R we have
R;S ⊆ R;S and for a total R we have R;S ⊇ R;S , for all S . The relation R is injective iff RT is univalent and surjective
iff RT is total. Hence, if S is injective, then R;S ⊆ R;S , and if S is surjective, then R;S ⊇ R;S , for all R. Additionally,
given a univalent relation R : X↔Y and S ,T : Y↔Z, we have

R;(S ∩ T ) = R;S ∩ R;T . (3)

Note that in general only R;(S ∩ T ) ⊆ R;S ∩ R;T holds. However, composition distributes over (arbitrary) unions.
Relations of type X↔ X are homogeneous. Let R be homogeneous. Then R is reflexive iff I ⊆ R, irreflexive iff

R ⊆ I, symmetric iff R = RT, antisymmetric iff R ∩ RT ⊆ I, and transitive iff R;R ⊆ R. A reflexive, antisymmetric and
transitive relation R is a partial order relation and if additionally R ∪ RT = L holds then R is a linear order relation.
The least transitive relation containing R is its transitive closure R+ =

⋃
k≥1 Rk and the least reflexive and transitive

relation containing R is its reflexive-transitive closure R∗ =
⋃

k≥0 Rk, where R0 := I and Rk := R;Rk−1, for all k > 0.
For these constructions we have R∗ = R+ ∪ I and R+ = R;R∗ = R∗;R. If R+ is irreflexive, then R is cycle-free.

A (relational) vector is a relation v with v = v;L. Usually vectors are denoted by lower-case letters. For a set-
theoretic vector v : X↔Y the condition v = v;L means that v can be written in the form v = Z × Y with a subset Z of
X. Then we say that v models the subset Z of X. For this purpose the target of a vector is irrelevant. Therefore, we
often use the specific singleton set 1 as target. For algebraically dealing with 1, e.g., if automated theorem provers or
proof assistants are used, the following axiom proved to be sufficient.

Axiom 2.2 (Singleton Set Axioms). It holds I1 , O11 and also I1 = L11.

In the Boolean matrix model of set-theoretic relations vectors correspond to row-constant Boolean matrices, i.e.,
matrices with only 1-entries or only 0-entries in each row. Thus, a vector of type X↔1 corresponds to a Boolean
column vector. Because of Axiom 2.2 vectors of the latter type are univalent. A further consequence of Axiom 2.2 is
that, together with the Tarski rule, we get for all sets X and Y the equation

LX1;LY1
T = LX1;I1;LY1

T = LX1;I1;L1Y = LXY . (4)

A (relational) point is a vector p such that p , O and p;pT ⊆ I. It is easy to see that a set-theoretic point p : X↔Y
models a singleton subset of the set X and it corresponds in the case Y = 1 to a Boolean column vector with a single
1-entry. If { x } is modelled by p, then we say that p models the element x ∈ X. For points p and q we have p;qT , O,
and that p ⊆ q, p = q, p;qT ⊆ I and pT;q = L are equivalent. Moreover, p , q, p ∩ q = O, p;qT ⊆ I and pT;q = O are
equivalent as well. Furthermore, we have that p;qT ⊆ R if and only if p ⊆ R;q, for all R. Points are surjective and, as
a consequence, the transpose of a point p is a mapping. Finally, points constitute atoms (upper neighbors of O) in the
set of all vectors. In particular, this yields that the intersection of two different points is O.
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3. The Point Axiom and Some Consequences

In this paper we only consider set-theoretic relations. However, we do not use point-wise arguments, that is, the
notation (x, y) ∈ R. Instead, we treat set-theoretic relations in a calculational and purely algebraic manner only. This
approach is based on some fundamental properties of their operations ∪,∩, ;, and T, the predicates = and ⊆ and
the constant relations O, L and I, which are taken as axioms. So far, we have introduced the axioms (R1) to (R4) of
a relation algebra and the singleton set axiom for specifying the meaning of 1. Now we introduce a further axiom,
where, for a given vector v, we denote by P(v) the set of all points p such that p ⊆ v.

Axiom 3.1 (Point Axiom). For all sets X it holds LX1 =
⋃

p∈P(LX1) p.

In the literature different versions of the point axiom can be found. Our version stems from [14]. In words
Axiom 3.1 states that each universal vector with target 1 is the (disjoint) union of the points it contains, i.e., can be
decomposed into these points. It holds for set-theoretic relations. In the remainder of the paper we assume Axiom 3.1
as additional axiom. Besides relation-algebraic properties implied by the axioms (R1) to (R4) and the singleton set
axiom, therefore, we also are allowed to use some that assume Axiom 3.1 to be satisfied. Lemma 3.1 presents two
such properties. The first one generalises Axiom 3.1 to all vectors with target 1 and the second one says that each
identity relation can be represented as the union of compositions of points with their transposes. These compositions
are atoms in the lattice-theoretical sense, as shown in [27], and thus all elements of the union of Lemma 3.1.(ii) are
again pairwise disjoint.

Lemma 3.1. (i) For all vectors v : X↔1 we have v =
⋃

p∈P(v) p.

(ii) For all identity relations I : X↔ X we have I =
⋃

p∈P(LX1) p;pT.

The lemma is shown in [14] as part of Proposition 3.3.4. An immediate consequence of the first statement of
Lemma 3.1 is that v , O implies P(v) , ∅ and, hence, we have the following fact.

Lemma 3.2. Each non-empty vector contains a point.

This lemma allows to prove that for each non-empty relation R there exist points p and q such that p;qT ⊆ R, i.e.,
that the point axiom introduced in [26] and used in [25, 27] is satisfied. From that point axiom the intermediate point
theorem of [27] follows, saying that for all relations R and S and points p and q, if p ⊆ R;S ;q then there exists a point
r such that p ⊆ R;r and r ⊆ S ;q. Later, we will use the following specific version.

Theorem 3.1. For all relations R : X↔Y, vectors v : Y↔1 and points p : X↔1, if p ⊆ R;v, then there exists a
point r : Y↔1 with p;rT ⊆ R and r ⊆ v.

Proof. Because of the target 1 of the vector v, the assumption p ⊆ R;v is equivalent to p ⊆ R;v;I1. Axiom 2.2 imply
that I1 is a point. Hence, from the intermediate point theorem it follows the existence of a point r : Y↔1with p ⊆ R;r
and r ⊆ v;I1, that is, with p;rT ⊆ R and r ⊆ v.

Furthermore, Lemma 3.2 yields for all vectors v and points p that either p ⊆ v or p ⊆ v holds. We use this property
to prove the following result.

Lemma 3.3. For all relations R and points p we have p ⊆ R;L if and only if RT;p , O.

Proof. Using that R;L is a vector and p is a point in the first and one of the Schröder rules in the last step we have the
following equivalences:

p * R;L ⇐⇒ p ⊆ R;L ⇐⇒ R;L ⊆ p ⇐⇒ RT;p ⊆ O .

From the second statement of Lemma 3.1 we obtain the following decomposition result that will play an important
role in the remainder of the paper.

Theorem 3.2. For all relations R : X↔Y we have R =
⋃

p∈P(LY1) R;p;pT, where all relations of the union are pairwise
disjoint and univalent.
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Proof. With the help of Lemma 3.1.(ii) we get

R = R;I = R;
⋃

p∈P(LY1) p;pT =
⋃

p∈P(LY1) R;p;pT .

To show that the relations of the union are pairwise disjoint, let p, q : Y↔1 be points such that p , q holds. Using
the Dedekind rule (1) and qT;p = O we get

R;p;pT ∩ R;q;qT ⊆ (R ∩ R;q;qT;p;pT);(p;pT ∩ RT;R;q;qT) = O .

Finally, to show that all relations of the union are univalent, we calculate for an arbitrary point p : Y↔1 that

(R;p;pT)
T
;R;p;pT = p;pT;RT;R;p;pT ⊆ p;L;pT = p;pT ⊆ I ,

thereby using the vector property and the injectivity of points.

If the point p : Y↔1 models the element y ∈ Y , then in the Boolean matrix model of relations the y-column of
R;p;pT : X↔Y coincides with the y-column of R : X↔Y and all other columns of R;p;pT are empty. In the same
way the “row-oriented” version R =

⋃
p∈P(LX1) p;pT;R of Theorem 3.2 can be shown.

4. Kawahara’s Cardinality of Relations

In [16] Y. Kawahara discusses the cardinality of set-theoretic relations. The main results are a formula, called
Dedekind inequality, that allows a calculational treatment of cardinalities of compositions of relations and, based on
it, a characterisation of the usual set-theoretic cardinality of finite relations (Theorem 2 of [16]). If the properties
of this characterisation are considered as axiomatic specification of a cardinality operation that assigns to all finite
relations R a natural number |R| as the cardinality of R, then this leads to the following axioms.

Axioms 4.1 (Cardinality Axioms). For all finite relations Q,R and S with appropriate types it holds:

(C1) |R| = 0 if and only if R = O.

(C2) |R| =
∣∣∣RT

∣∣∣.
(C3) |R ∪ S | = |R| + |S | − |R ∩ S |.

(C4) If Q is univalent, then max
{ ∣∣∣R ∩ QT;S

∣∣∣ , ∣∣∣Q ∩ S ;RT
∣∣∣ } ≤ |Q;R ∩ S |.

(C5) |I1| = 1.

Axiom (C5) says that the identity relation on the singleton set 1 consists of precisely one pair. The original
version of Axiom (C4) is formulated as two separate estimates, because both can be considered in the context of
infinite relations as well. In this context, |R| ≤ |S |means that there is an injective function (in the classical sense) from
R to S , where R and S are viewed as sets. In fact, Kawahara proves that both estimates are true for arbitrary concrete
relations; see [16, Theorem 1]. However, since we deal with finite relations only, we combine the two estimates into
a single one for brevity. To simplify the presentation and to avoid additional pre-conditions in lemmas and theorems,
we assume the following convention that suffices for our applications for the remainder of the paper.

Convention 4.1. In case of an expression |R| the sets of the type of the relation R are assumed to be finite such that
|R| is defined.

From the two cardinality axioms (C1) and (C3) we get that R ⊆ S implies |R| ≤ |S |, for all R and S , i.e., that the
cardinality operation is monotonic. Even strict monotonicity holds, that is, R ⊂ S implies |R| < |S |, for all R and S . A
further consequence of (C1) and (C3) is that for all R and S it holds |S ∩ R| = |S | − |R| if R ⊆ S . Finally, these axioms
imply |

⋃
R∈R R| =

∑
R∈R |R|, for all finite sets R of pairwise disjoint relations.

Based on the cardinality axioms (C1) to (C5), in [16] many algebraic laws for the cardinality operation are derived
in a purely calculational manner. In the remainder of this paper we only need the following ones (for a proof, see [16],
Corollary 1(a) and (c)).
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Lemma 4.1. For all relations Q, R and S we have:

(i) If R and S are univalent, then |R;S ∩ Q| =
∣∣∣R ∩ Q;S T

∣∣∣.
(ii) If R is univalent and S is a mapping, then |R;S | = |R|.

A consequence of Lemma 4.1.(ii) is the following refinement of the Decomposition Theorem 3.2, that takes the
cardinality of R : X↔Y and of the relations R;p;pT for all points p : Y↔1 into account.

Theorem 4.1. For all relations R : X↔Y we have |R| =
∑

p∈P(LY1) |R;p|.

Proof. We calculate
|R| =

∣∣∣⋃p∈P(LY1) R;p;pT
∣∣∣ =

∑
p∈P(LY1)

∣∣∣R;p;pT
∣∣∣ =

∑
p∈P(LY1) |R;p|,

using Theorem 3.2, the axioms (C1) and (C3) (the relations of the union are pairwise disjoint) and that for all points
p : Y↔1 the vector R;p : X↔1 is univalent and pT : 1↔Y is a mapping, since this implies |R;p;pT| = |R;p| because
of Lemma 4.1.(ii).

Assume again that the point p : Y↔1 models the element y ∈ Y . Then in the Boolean matrix model the y-column
of R and of R;p;pT coincide and are equal to the Boolean vector model of R;p : X↔1. So, in Boolean matrix
terminology the theorem says that the cardinality of R is the sum of the cardinalities of its columns. Transposing the
relation R and using axiom (C2) we get from Theorem 4.1 that |R| = |RT| =

∑
p∈P(LX1) |RT;p|, i.e., that the cardinality of

R is also the sum of the cardinalities of its rows.
Finally, we need one particular property of the relational cardinality. The intuition behind this property is the

following one: for every concrete function f : X → Y and every A ⊆ X one has | f (A)| ≤ |A| and if f is injective,
then also | f (A)| = |A| holds. When we translate this into relational terms, then f (A) becomes f T;A, where now A is a
relation. Additionally, one can omit the totality of f and require that A is contained in the domain of f instead. This
yields the following result, which constitutes a stronger version of Y. Kawahara’s [16] Corollary 1.(g).

Theorem 4.2. For all relations F : X↔Y and A : X↔Z the following holds:

(i) If F is univalent, then
∣∣∣FT;A

∣∣∣ ≤ |A|.
(ii) If A ⊆ F;L holds and F is injective, then we have |A| ≤

∣∣∣FT;A
∣∣∣.

(iii) If A ⊆ F;L holds and F is univalent and injective, then
∣∣∣FT;A

∣∣∣ = |A|.

Proof. (i) Suppose that F is univalent. Then we get:∣∣∣FT;A
∣∣∣ =

∣∣∣FT;A ∩ FT;A
∣∣∣

≤
∣∣∣F;FT;A ∩ A

∣∣∣ by axiom (C4)

≤ |A| cardinality is monotonic .

(ii) Now suppose that A ⊆ F;L holds and that F is injective. Then we have:

|A| = |A ∩ F;L| because of A ⊆ F;L

=

∣∣∣∣∣A ∩ (
FT

)T
;L

∣∣∣∣∣
≤

∣∣∣FT;A ∩ L
∣∣∣ by axiom (C4)

=
∣∣∣FT;A

∣∣∣ .
(iii) This property is obvious from Theorem 4.2.(ii) and Theorem 4.2.(i).
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5. Cardinality Properties of Vectors and Points

In this section we investigate cardinality properties with respect to vectors and points. First, we consider the
cardinality of points with the singleton set 1 as target. Here we get the following result that is the base for many
further facts.

Lemma 5.1. For all points p : X↔1 we have |p| = 1.

Proof. The statement follows from
|p| =

∣∣∣pT
∣∣∣ =

∣∣∣I1;pT
∣∣∣ = |I1| = 1 ,

using axiom (C2), Lemma 4.1.(ii) (the identity relation I1 is univalent and the transposed point pT : 1↔ X is a
mapping) and axiom (C5).

Lemma 5.1 allows to prove that the cardinality of a vector with target 1 equals the cardinality of the set of all
points it contains. In the corresponding Lemma 5.2 the axiomatic relational cardinality and the usual set-theoretic
cardinality (also denoted by the vertical bars) are connected.

Lemma 5.2. For all vectors v : X↔1 we have |v| = |P(v)|.

Proof. Because of Lemma 3.1.(i), axiom (C1) and axiom (C3) (the points of the set P(v) are pairwise disjoint) and
Lemma 5.1 we obtain the claim by

|v| = |
⋃

p∈P(v) p| =
∑

p∈P(v) |p| =
∑

p∈P(v) 1 = |P(v)| .

The composition v;wT of two vectors v and w forms a rectangle in the relational sense of [25]. As an application
of Lemma 5.2 we now prove how to compute the cardinality of this rectangle if 1 is the vector’s target.

Theorem 5.1. For all vectors v : X↔1 and w : Y↔1 we have |v;wT| = |v|·|w|.

Proof. We calculate as follows:∣∣∣v;wT
∣∣∣ =

∣∣∣∣∣v;
(⋃

p∈P(w) p
)T

∣∣∣∣∣ by Lemma 3.1.(i)

=
∣∣∣⋃p∈P(w) v;pT

∣∣∣
=

∑
p∈P(w)

∣∣∣v;pT
∣∣∣ by axioms (C1), (C3), see below

=
∑

p∈P(w) |v| by Lemma 4.1.(ii), see below
= |v|·|P(w)|
= |v|·|w| by Lemma 5.2 .

To show that the union
⋃

p∈P(w) v;pT of the second line of the calculation is disjoint, assume p, q ∈ P(w) such that
p , q. Since vT;v : 1↔1, we have vT;v ⊆ L11 = I1 by Axiom 2.2 and thus v is univalent. Then we get

v;pT ∩ v;qT = v;(pT ∩ qT) = v;(p ∩ q)T = v;O = O ,

using the rule (3) and the fact that p ∩ q = O. Finally, Lemma 4.1.(ii) is applicable since the vector v : X↔1 is
univalent and each transposed point pT : 1↔Y is a mapping.

For each set X the two functions x 7→ { x } ×1 and p 7→ { x | p = { x } × 1 } constitute a one-to-one correspondence
between the set X and the set P(LX1) of points in the usual set-theoretic sense, such that we have |X| = |P(LX1)|. As a
consequence, Lemma 5.2 yields |X| = |P(LX1)| = |LX1|. In combination with Theorem 5.1 and Lemma 4.1.(ii), respec-
tively, this allows to describe the cardinalities of universal relations and identity relations in terms of the cardinalities
of their carrier sets, as we will show next.

Lemma 5.3. (i) For all sets X and Y we have |LXY | = |X|·|Y |.

(ii) For all sets X we have |IX | = |X|.
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Proof. (i) Using property (4) in the first and Theorem 5.1 in the second step we get

|LXY | =
∣∣∣LX1;LY1

T
∣∣∣ = |LX1|·|LY1| = |X|·|Y | .

(ii) Lemma 4.1.(ii) (the relation IX is univalent and LX1 is a mapping) yields

|IX | = |IX;LX1| = |LX1| = |X| .

If we combine axiom (C5) with Lemma 5.3.(ii), then we get that 1 is in fact a singleton set, since 1 = |I1| = |1|.
At this place it should also be noted that in case of automated theorem provers or proof assistants the equation

|LX1| = |X| (5)

can be used as an additional cardinality axiom to connect the axiomatic relational cardinality with the usual set-
theoretic cardinality. But the introduction of such an axiom (5) within a tool requires that sources and targets of
relations can no longer be taken as identifiers without any further meaning, but have to be from a type for sets with
an own cardinality operation. The relation-algebra library for the proof assistant Coq, presented in [22] and available
via the web [21], provides both possibilities for typing relations and thus allows mechanised proofs of results like
Lemma 5.2 and Lemma 5.3.

For all relations R : X↔Y we have R ∪ R = L and R ∩ R = O. From these properties, the axioms (C1), (C3) and
the first statement of Lemma 5.3 we get for the complement that |R| = |X| · |Y | − |R|. In the specific case of a point
p : X↔1 this, |1| = 1 and Lemma 5.1 yield |p| = |X|·|1| − |p| = |X| − 1.

Given a relation R : X↔Y , the vector dom(R) := R;LY1 : X↔1 denotes the domain of R and the vector ran(R) :=
RT;LX1 : Y↔1 denotes the range of R. Since the vector LX1 is univalent, the axiom (C4), property (4) and the
monotonicity of the cardinality operation yield the estimate

|dom(R)| =
∣∣∣∣∣LX1 ∩ R;

(
LY1

T
)T

∣∣∣∣∣ ≤ ∣∣∣LX1;LY1
T ∩ R

∣∣∣ = |L ∩ R| = |R| . (6)

Similar to (6) the estimate |ran(R)| ≤ |R| can be shown. The following result presents an estimate of the cardinality of
a composition of relations by the cardinalities of domain and range, respectively.

Theorem 5.2. For all relations R and S we have |R;S | ≤ |dom(R)|·|ran(S )|.

Proof. Assuming Y as target of R, the claim follows from

|R;S | ≤ |R;L;S | =
∣∣∣∣R;LY1;(S T;LY1)

T
∣∣∣∣ = |R;LY1|·

∣∣∣S T;LY1

∣∣∣ = |dom(R)|·|ran(S )|

by means of the monotonicity of the cardinality operation, property (4), Theorem 5.1 and the definition of dom(R)
and ran(S ).

Taking both R and S as the same homogeneous universal relation implies that the estimate of Theorem 5.2 is
sharp.

When sets are modelled by subrelations of identity relations instead of vectors, then for a relation R : X↔Y the
relations I ∩ R;RT : X↔ X and I ∩ RT;R : Y↔Y take over the role of dom(R) and ran(R), respectively. In view of
cardinalities there is no difference between these specifications as we show in the following.

Theorem 5.3. For all relations R : X↔Y we have |dom(R)| = |I ∩ R;RT| and |ran(R)| = |I ∩ RT;R|.

Proof. For a proof of the first equation we start with the auxiliary calculation that uses the Dedekind rule (1) in the
second step

I ∩ R;L = R;L ∩ I ∩ I ⊆ (R ∩ I;LT);(L ∩ RT;I) ∩ I ⊆ R;RT ∩ I ⊆ I ∩ R;L .

This shows I ∩ R;L = I ∩ R;RT. Now the desired equation is proved by the calculation

|dom(R)| = |R;LY1|

= |I;LX1 ∩ R;LY1| identity relations are total
=

∣∣∣I ∩ R;LY1;LX1
T
∣∣∣ by Lemma 4.1.(i) (I and LX1 univalent)

= |I ∩ R;L|
=

∣∣∣I ∩ R;RT
∣∣∣ see above .

If we replace in this equation R with RT, then |ran(R)| = |dom(RT)| =
∣∣∣I ∩ RT;R

∣∣∣ follows.
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6. Cardinality Properties of Mapping-Related Relations

Theorem 3.2 shows that each relation R : X↔Y can be decomposed into the disjoint union of |Y | univalent
subrelations. In this section we first prove a similar result that depends on cardinalities. In Boolean matrix terminology
it states that R can be represented as the union of k pairwise disjoint univalent subrelations if and only if R has at most
k 1-entries in a row. If X equals Y and R is the adjacency relation of a (finite) directed graph g = (X,R), then k is
the maximum outdegree of g and usually much smaller than the number |X| of vertices. In the proof of the following
Theorem 6.1 we apply the fact that each relation contains a maximal univalent subrelation with respect to inclusion
or, in other words, that the following relational variant of the set-theoretic axiom of choice holds.

Axiom 6.1 (Relational Axiom of Choice). For all relations R there exists a univalent relation F such that F ⊆ R and
dom(F) = dom(R).

This variant of the set-theoretic axiom of choice can be found as property AC 4 in [23], withD(S ) as notation for
the set-theoretical domain of a relation S instead of our vector description dom(S ). As we only deal with set-theoretic
relations, besides the axioms (R1) to (R4) of a relation algebra, the singleton set axiom, the point axiom and the
cardinality axioms (C1) to (C5) we are allowed to assume Axiom 6.1. This completes the list of the twelve axioms
that are used in the present paper.

The proof of direction “(ii) =⇒ (i)” of the subsequent Theorem 6.1 is by induction on k and, in principle, describes
an algorithm for the computation of the set of k univalent subrelations of R. Since in (2) a cardinality is used, by
Convention 4.1 the carrier sets of R are assumed as finite and, hence, the univalent subrelation F of Axiom 6.1 can
easily be computed by a relational program, for instance, formulated in the programming language of the RelView
tool.

Theorem 6.1. For all k ∈ N and relations R : X↔Y the following facts are equivalent:

(i) There exists a set { F1, . . . , Fk } of k pairwise disjoint and univalent relations with R =
⋃k

i=1 Fi.

(ii) For all points p : X↔1 it holds |RT;p| ≤ k.

Proof. “(i) =⇒ (ii)”: Let R : X↔Y be an arbitrary relation and { F1, . . . , Fk } be a set of k univalent relations with
R =

⋃k
i=1 Fi. Then the following calculation that proves the claim:∣∣∣RT;p

∣∣∣ =
∣∣∣∣(⋃k

i=1 Fi)
T
;p

∣∣∣∣ as R =
⋃k

i=1 Fi

=
∣∣∣⋃k

i=1 Fi
T;p

∣∣∣
≤

∑k
i=1

∣∣∣Fi
T;p

∣∣∣ by axiom (C3)
≤

∑k
i=1 |p| Theorem 4.2.(i), since Fi is univalent

= k·|p|
= k by Lemma 5.1 .

“(ii) =⇒ (i)”: As we have already mentioned, the proof of this direction is by induction. We show for all k ∈ N that
for all R : X↔Y if |RT;p| ≤ k, for all points p : X↔1, then there exists a set { F1, . . . , Fk } of k pairwise disjoint and
univalent relations such that R =

⋃k
i=1 Fi.

For the induction base k = 0 let R : X↔Y be a relation such that |RT;p| ≤ 0, for all points p : X↔1. Then axiom
(C1) yields RT;p = O, for all points p : X↔1. Due to the equation O =

⋃
∅ (and since all relations from an empty

set of relations are pairwise disjoint), it suffices to show R = O. Using Lemma 3.1.(ii) in the second step, this is done
by

RT = RT;I = RT;
⋃

p∈P(LX1) p;pT =
⋃

p∈P(LX1) RT;p;pT = O .

For the induction step, let k , 0 and assume again an arbitrary R : X↔Y such that |RT;p| ≤ k, for all points
p : X↔1. Due to Axiom 6.1 there exists F : X↔Y such that FT;F ⊆ I, F ⊆ R and dom(F) = dom(R).

We want to apply the induction hypothesis to R ∩ F. So, we first have to show show |(R ∩ F)
T
;p| ≤ k − 1, for all

points p : X↔1. For the proof let p : X↔1 be an arbitrary point. We consider two cases. If |RT;p| ≤ k − 1, then the
monotonicity of the cardinality operation yields∣∣∣∣(R ∩ F)

T
;p

∣∣∣∣ ≤ ∣∣∣RT;p
∣∣∣ ≤ k − 1 .
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Now let |RT;p| = k. Since k , 0 we get RT;p , O with axiom (C1) and, moreover, p ⊆ dom(R) with Lemma 3.3. From
dom(F) = dom(R) we obtain p ⊆ dom(F). Furthermore, F ⊆ R implies FT;p ⊆ RT;p. Next, we verify the auxiliary
fact RT;p∩F

T
;p ⊂ RT;p. It suffices to show that RT;p∩F

T
;p , RT;p holds. We have FT;p ⊆ RT;p, which by Boolean

algebra rules is equivalent to FT;p∩ RT;p = O. Since p ⊆ dom(F) = F;L, Lemma 3.3 yields FT;p , O. Thus we find

O , FT;p = FT;p ∩ L = FT;p ∩
(
RT;p ∪ RT;p

)
=

(
FT;p ∩ RT;p

)
∪

(
FT;p ∩ RT;p

)
= FT;p ∩ RT;p ,

The above is equivalent to RT;p * FT;p. Since p is a point, we have FT;p = FT;p = F
T
;p, which yields:

RT;p , RT;p ∩ FT;p = RT;p ∩ F
T
;p .

Using the auxiliary fact and the strict monotonicity of the cardinality operation we get |(R ∩ F)
T
;p| ≤ k − 1 from

|(R ∩ F)
T
;p| ≤ |RT;p ∩ F

T
;p| < |RT;p| = k .

The just shown result allows to apply the induction hypothesis to R ∩ F. Hence, there exists a set { F1, . . . , Fk−1 }

of k − 1 pairwise disjoint univalent relations such that R ∩ F =
⋃k−1

i=1 Fi. Since F is univalent and

R = F ∪ (R ∩ F) = F ∪
⋃k−1

i=1 Fi ,

we get R as union of the k univalent relations of the set { F, F1, . . . , Fk−1 }. The fact that these relations are pairwise
disjoint follows from F ∩ Fi ⊆ F ∩ R ∩ F = O, for all i ∈ { 1, . . . , k − 1 }, and the induction hypothesis, which states
that the elements of the set { Fi | i ∈ { 1, . . . , k − 1 } } are pairwise disjoint.

By transposing the relation in question we get from this theorem that R : X↔Y is the disjoint union of k injective
relations if and only if |R;p| ≤ k, for all points p : Y↔1, i.e., if and only if in Boolean matrix terminology R has at
most k 1-entries in a column.

In the remainder of the section we investigate cardinality properties with respect to univalence and totality, and,
by combining them, with respect to the mapping property. By transposing the relation in question and using axiom
(C2) the results we will prove immediately lead to cardinality properties with respect to injectivity and surjectivity
and, hence, to bijective mappings in the relational sense. We start with the following characterisation of univalent
relations.

Theorem 6.2. For all relations R : X↔Y the following facts are equivalent:

(i) R is univalent.

(ii) For all points p : X↔1 it holds
∣∣∣RT;p

∣∣∣ ≤ 1.

(iii) |dom(R)| = |R|.

Proof. “(i) =⇒ (ii)”: Suppose that R is univalent. Let p : X↔1 to be a point. Since R is univalent, Theorem 4.2.(i)
and Lemma 5.1 yield

∣∣∣RT;p
∣∣∣ ≤ |p| = 1.

“(ii) =⇒ (i)”: This direction immediately follows from the same direction of Theorem 6.1, taking k as 1.

“(ii) =⇒ (iii)”: Because of property (6) we have the estimate |dom(R)| ≤ |R| and it suffices to show |R| ≤ |dom(R)|. To
reach this goal, we calculate as follows:

|R| =
∑

p∈P(LX1)

∣∣∣RT;p
∣∣∣ row-variant of Theorem 4.1

=
∑

p∈P(dom(R))

∣∣∣RT;p
∣∣∣ see below

≤
∑

p∈P(dom(R)) 1 assumption
= |P(dom(R))|
= |dom(R)| by Lemma 5.2 .
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Here the second step uses that for all points p : X↔1 from p < P(dom(R)) it follows
∣∣∣RT;p

∣∣∣ = 0 because of
Lemma 3.3 and axiom (C1).

“(iii) =⇒ (ii)”: We start with the calculation

|P(dom(R))| = |dom(R)| = |R| =
∑

p∈P(dom(R))

∣∣∣RT;p
∣∣∣ ,

where we use Lemma 5.2, then the assumption and, finally, the first two steps of the above calculation. Lemma 3.3
and axiom (C1) imply

∣∣∣RT;p
∣∣∣ , 0, for all p ∈ P(dom(R)) and so the above equation yields

∣∣∣RT;p
∣∣∣ = 1, for all

p ∈ P(dom(R)). For all points p : X↔1 with p < P(dom(R)) the inclusion p ⊆ dom(R) is false and in this case
Lemma 3.3 and axiom (C1) yield

∣∣∣RT;p
∣∣∣ = 0 ≤ 1.

In case of total relations we have the following result. In contrast with Theorem 6.2 it seems not to exist a
characterisation of the totality of a relation R by relating |dom(R)| and |R| in a simple manner. But there is one if
|dom(R)| is compared with the cardinality of the source of R.

Theorem 6.3. For all relations R : X↔Y the following facts are equivalent:

(i) R is total.

(ii) For all points p : X↔1 it holds
∣∣∣RT;p

∣∣∣ ≥ 1.

(iii) |dom(R)| = |X|.

Proof. “(i) =⇒ (ii)”: Let p : X↔1 be a point. Then we obtain∣∣∣RT;p
∣∣∣ =

∣∣∣pT;R
∣∣∣ =

∣∣∣pT;R ∩ L1X

∣∣∣ ≥ ∣∣∣pT ∩ L1X;RT
∣∣∣ = |p ∩ R;LX1| = |p ∩ LX1| = |p| = 1 ,

where we use Axiom (C2) in the first and fourth step, Axiom (C4) in the third step (since pT is univalent), the totality
of R in the fifth step, and Lemma 5.1 in the last step.

“(ii) =⇒ (i)”: For every point p : X↔1 we have the following equivalences, where the last one is due to Lemma 3.3:

true ⇐⇒
∣∣∣RT;p

∣∣∣ ≥ 1 ⇐⇒ RT;p , O ⇐⇒ p ⊆ R;LX1 .

We thus get LX1 =
⋃

p∈P(LX1) p ⊆ R;LX1 ⊆ LX1 by Axiom 3.1 and a property of the supremum. Thus R;LX1 = LX1 and
since R;LXY = R;LX1;L1Y = LX1;L1Y = LXY by Equation (4), we obtain the totality of R.
“(i) =⇒ (iii)”: The totality of R implies R;LY1 = LX1 and from this equation we get

|dom(R)| = |R;LY1| = |LX1| = |X| .

“(iii) =⇒ (i)”: If |dom(R)| = |X|, then we have |R;LY1| = |LX1|. This equation leads to R;LY1 = LX1, since from the
assumption R;LY1 ⊂ LX1 we would obtain the contradiction |dom(R)| = |R;LY1| < |LX1| = |X| because of the strict
monotonicity of the cardinality operation. But R;LY1 = LX1 leads to R;L = L, for all universal relations L : Y↔Z,
which is the totality of the relation R.

Theorem 6.2 and Theorem 6.3 show together that a relation R : X↔Y is a mapping if and only if
∣∣∣RT;p

∣∣∣ = 1,
for all points p : X↔1, or, in Boolean matrix terminology, if and only if each row possesses exactly one 1-entry.
Furthermore, Theorem 6.2 and axiom (C2) show that R is univalent and injective (that is, a matching in the relational
sense; see e.g., [16]) if and only if |dom(R)| = |R| = |ran(R)|. This result is a strengthening of Corollary 1(e) of [16].

7. Some Simple Applications

Before presenting a more complex application in Section 8, in this section we present some simple examples that
use the results we have obtained so far. First, we compute the cardinality of linear order relations in terms of the
cardinalities of their carrier sets.
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Theorem 7.1. For all linear order relations R : X↔ X we have |R| = |X|2+|X|
2 .

Proof. The equation immediately follows from the calculation

|X|2 = |LXX | =
∣∣∣R ∪ RT

∣∣∣ = |R| +
∣∣∣RT

∣∣∣ − |IX | = |R| + |R| − |X| ,
that uses Lemma 5.3.(i), axiom (C3) (reflexivity and antisymmetry of R imply I = R ∩ RT), axiom (C2) and Lemma
5.3.(ii).

As a motivation for the next application we assume g = (X, E) to be an undirected (loop-free) graph with (finite)
vertex set X and edge set E, where edges are two-element subsets of X. As shown for instance in [27], in many
applications the incidence relation R : E↔ X is adequate to model g. It relates an edge e ∈ E and a vertex x ∈ X
if and only if x ∈ e. In an undirected graph each edge is incident to precisely two vertices, or, in Boolean matrix
terminology each row of the incidence relation contains precisely two 1-entries. Via the cardinality operation this can
be specified by demanding |RT;p| = 2, for all points p : E↔1. The next theorem presents an equivalent specification.
We formulate it for general relations and not for incidence relations of undirected graphs only.

Theorem 7.2. For all relations R : X↔Y the following facts are equivalent:

(i)
∣∣∣RT;p

∣∣∣ = 2, for all points p : X↔1.

(ii) There exist mappings F,G : X↔Y such that F ∩G = O and F ∪G = R.

Proof. “(i) =⇒ (ii)”: From Theorem 6.1 we obtain that there exist disjoint univalent relations F,G : X↔Y such that
F ∪G = R. It remains to show their totality. We want to apply Theorem 6.3 and, therefore, have to verify

∣∣∣FT;p
∣∣∣ ≥ 1

and
∣∣∣GT;p

∣∣∣ ≥ 1, for all points p : X↔1. So, let p : X↔1 be an arbitrary point. Using the assumption, F ∪ G = R,
the axioms (C1) and (C3), where FT;p ∩ GT;p = O is again a consequence of F ∩G = O, we calculate as follows:

2 =
∣∣∣RT;p

∣∣∣ =
∣∣∣(F ∪G)T;p

∣∣∣ =
∣∣∣FT;p ∪GT;p

∣∣∣ =
∣∣∣FT;p

∣∣∣ +
∣∣∣GT;p

∣∣∣ . (7)

Since F and G are univalent, Theorem 6.2 shows
∣∣∣FT;p

∣∣∣ ≤ 1 and
∣∣∣GT;p

∣∣∣ ≤ 1 and the Equation (7) yields
∣∣∣FT;p

∣∣∣ = 1
and

∣∣∣GT;p
∣∣∣ = 1.

“(ii) =⇒ (i)”: Suppose that F and G are mappings with the required properties and let p : X↔1 to be a point. Since
p is injective and F ∩G = O we get

pT;F ∩ pT;G = pT;(F ∩G) = O

by Equation (3). This allows to conclude the proof as follows:∣∣∣RT;p
∣∣∣ =

∣∣∣pT;R
∣∣∣ by axiom (C2)

=
∣∣∣pT;(F ∪G)

∣∣∣ assumption
=

∣∣∣pT;F ∪ pT;G
∣∣∣

=
∣∣∣pT;F

∣∣∣ +
∣∣∣pT;G

∣∣∣ by axioms (C1), (C3) and above result
=

∣∣∣pT
∣∣∣ +

∣∣∣pT
∣∣∣ by Lemma 4.1.(ii) (pT univalent, F,G mappings)

= 2·|p| by axiom (C2)
= 2 by Lemma 5.1 .

The proof of Proposition 9.1.6 of [27] is an example of an application of the fact that the incidence relation of
an undirected graph is the union of two mappings. Other proofs of this textbook, which deal with undirected graphs
g = (X, E) allowing loops, i.e., the restriction |e| = 2, for all e ∈ E, is weakened to 1 ≤ |e| ≤ 2, use that the incidence
relation of g is the union of two univalent relations. Examples are the proofs of Proposition 5.4.5 and Proposition
9.2.2. However, as in the case of cardinalities, in [27] these facts are treated rather intuitively and not formally proved
as we do in Theorem 7.2 and Theorem 6.1, respectively.

Theorem 7.2 can be generalised as follows: For all relations R : X↔Y and all k ∈ N we have that |RT;p| = k,
for all points p : X↔1, if and only if there exists a set { F1, . . . , Fk } of k pairwise disjoint mappings such that
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R =
⋃k

i=1 Fi. For Theorem 7.2 and its generalisation there are also “column-oriented” versions with injective and
surjective relations instead of mappings.

As continuation of [16], in [17] Y. Kawahara and M. Winter investigate the cardinality of relations in the context
of allegories. In the introduction of [17] they mention as a possible application the characterisation of finite trees as
those connected undirected graphs for which m = n − 1 holds, with m as the number of edges and n as the number of
vertices. To keep the corresponding equation for relations, we have to consider adjacency relations of directed trees
g = (X,R). In [27] such relations R are specified by injectivity R;RT ⊆ I, cycle-freeness R+ ⊆ I and the existence of a
root, i.e., of a point r such that r;L ⊆ R∗ (or, in words, such that each vertex of g is reachable from the vertex modelled
by r). If we call a relation with these properties a rooted tree relation with root r, then we are able to prove the desired
equation and also that it characterises the rooted tree relations among the relations that possess a root. Note, that the
latter fact corresponds to the notion “connected” in case of undirected graphs. The proof of the following lemma and
parts of the proof of Theorem 7.3 stem from W. Guttmann and have been developed while discussing the cardinality
of relations with the first author during the RAMiCS 2015 conference.

Lemma 7.1. For all injective relations R we have R∗;(R+ ∩ I);L ⊆ RT;L.

Proof. First, we apply induction to prove Rk;(R+∩ I);L ⊆ (R∗∩RT);L, for all k ∈ N. The induction base k = 0 is shown
as follows:

R0;(R+ ∩ I);L = I;(R+ ∩ I);L definition powers
= (R∗;R ∩ I);L property of closures
⊆ (R∗ ∩ I;RT);(R ∩ (R∗)T;I);L Dedekind rule (1)
⊆ (R∗ ∩ RT);L .

For the induction step, let k , 0. Then we get:

Rk;(R+ ∩ I);L = R;Rk−1;(R+ ∩ I);L definition powers
⊆ R;(R∗ ∩ RT);L by induction hypothesis
⊆ (R;R∗ ∩ R;RT);L
⊆ (R∗;R ∩ I);L R injective,R;R∗ = R∗;R
⊆ (R∗ ∩ RT);L see induction base .

Now the following calculation yields the desired result:

R∗;(R+ ∩ I);L = (
⋃

k≥0 Rk);(R+ ∩ I);L
=

⋃
k≥0 Rk;(R+ ∩ I);L

⊆ (R∗ ∩ RT);L above result
⊆ RT;L .

If R : X↔ X is the adjacency relation of a directed graph g = (X,R), then the vector R∗;(R+ ∩ I);L : X↔1 models
the set of vertices of g from which a cycle of g can be reached. So, in graph-theoretic terminology the lemma says
that in a directed graph with no backward-branchings each such vertex has a predecessor, i.e., lies on the reachable
cycle. After this preparation we now can show the desired characterisation of the rooted tree relations by means of
their cardinalities. Note, that in the following theorem the point property of r implies r , O which, in turn, implies
X , ∅ such that |X| − 1 is defined.

Theorem 7.3. For all relations R : X↔ X with root r : X↔1 the following facts are equivalent:

(i) R is injective and cycle-free (i.e., a rooted tree relation).

(ii) |R| = |X| − 1.

Proof. We prepare the proof of the claimed equivalence by first showing that the existence of the root r implies
|R;p| ≥ 1, for all p ∈ P(r). Due to axiom (C1) it suffices to show R;p , O, for all p ∈ P(r). We use contraposition and
show that for all points p ∈ P(LX1) the equality R;p = O implies that p = r and thus p < P(r), because p is a point.
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Let p ∈ P(LX1) such that R;p = O holds. Then we calculate R+;p = (
⋃

k>0 Rk);p =
⋃

k>0 Rk;p = O (using induction).
Since r;L ⊆ R∗, we have that r;pT ⊆ r;L ⊆ R∗, which is equivalent to r ⊆ R∗;p, because r, p are points. Now we get

r ⊆ R∗;p = (R+ ∪ I);p = R+;p ∪ I;p = p

which, in turn, yields r = p as p and r are points.
Having shown |R;p| ≥ 1, for all p ∈ P(r), now we start the proof of the equivalence of (i) and (ii).

“(i) =⇒ (ii)”: We first show that R;r = O holds. Using the Dedekind rule in the first, the root property in the third, and
the injectivity of r in the second to last step, we obtain

RT;L ∩ r =
(
RT ∩ r;L

)
;(L ∩ R;r) =

(
RT ∩ r;L

)
;R;r ⊆

(
RT ∩ R∗

)
;R;r ⊆ R∗;R;r = R+;r ⊆ I;r ⊆ I;r = r .

We also have RT;L ∩ r ⊆ r and thus RT;L ∩ r ⊆ r ∩ r = O. By Boolean algebra rules we get that RT;L ⊆ r, which by a
Schröder equivalence is equivalent to R;r ⊆ O. Thus R;r = O holds. As a consequence, axiom (C1) yields |R;r| = 0.
Next, we prove |R;p| ≤ 1 for all p ∈ P(r). Let p ∈ P(r). Since R is injective, RT is univalent and thus Theorem 4.2.(i)
and Lemma 5.1 imply

|R;p| =
∣∣∣∣RTT

;p
∣∣∣∣ ≤ |p| = 1 .

Together with the result at the beginning of the proof this implies |R;p| = 1, for all p ∈ P(r). Now the following
calculation shows equation (ii):

|R| =
∑

p∈P(LX1) |R;p| by Theorem 4.1
= |R;r| +

∑
p∈P(r) |R;p| as P(LX1) = { r } ∪ P(r)

=
∑

p∈P(r) 1 auxiliary results
= |P(r)|
= |r| by Lemma 5.2
= |X| − 1 see Section 5 .

“(ii) =⇒ (i)”: First, we verify that R is an injective relation. To this end, we start with the equation

|P(r)| = |r| = |X| − 1 = |R| =
∑

p∈P(LX1) |R;p| = |R;r| +
∑

p∈P(r) |R;p|

where we use Lemma 5.2, equation (ii) and Theorem 4.1. At the beginning of the proof we have shown |R;p| ≥ 1, for
all p ∈ P(r). Hence the equation and Lemma 5.2 yield |R;p| = 1, for all p ∈ P(r), and |R;r| = O. So, Theorem 6.2
implies that RT is univalent, i.e., R is injective.

It remains to verify that R is cycle-free. Above we have shown that |R;r| = 0 holds, which by (C1) yields R;r = O.
Using the point property rT;r = L11 = I1 in the first, the root property of r in the second, Lemma 7.1 in the third,
R;r = O (as well as OT = O and O;S = O) in the second to last, and Axiom 2.2 in the last step we get

L1X;
(
R+ ∩ I

)
;LX1 = rT;r;L1X;

(
R+ ∩ I

)
;LX1 ⊆ rT;R∗;

(
R+ ∩ I

)
;LX1 ⊆ rT;RT;LX1 = (R;r)T;LX1 = O11 , L11 .

The Tarski rule implies that R+ ∩ I = O holds, which by Boolean algebra rules is equivalent to R+ ⊆ I.

In the remainder of this section we apply the hitherto results for proving some estimates for relational variants
of certain graph parameters. The original graph-theoretic versions are well-known, see e.g., [12]. In the context of
relations some of the following results are presented in [27]. However, as already mentioned in the introduction, in
[27] the cardinality of relations is treated rather informally and intuitively only. Therefore, the proofs of [27] are not
given in the purely calculational and algebraic way as we will do in the following.

We start with the stability number, in the context of undirected graphs also known as independence number.
Assume g = (X,R) to be a directed graph and S ⊆ X. Then S is stable in g if (x, y) < R, for all x, y ∈ S . A little
point-wise reasoning shows that a vector s : X↔1models a stable set of g if and only if R;s ⊆ s. Therefore, following
[27] we call for a given relation R : X↔ X a vector s : X↔1 R-stable if R;s ⊆ s. Furthermore, by

αR := max { |s| | s is R-stable }

we define the stability number of R. The next theorem presents an upper bound for this number in terms of the
relational cardinality operation.
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Theorem 7.4. For all relations R : X↔ X and R-stable vectors s : X↔1 we have |s| ≤
√∣∣∣R∣∣∣, hence αR ≤

√∣∣∣R∣∣∣.
Proof. The first claim follows from the subsequent calculation:

R;s ⊆ s ⇐⇒ s;sT ⊆ R by a Schröder rule
=⇒

∣∣∣s;sT
∣∣∣ ≤ ∣∣∣R∣∣∣ monotonicity of cardinality operation

⇐⇒ |s|2 ≤
∣∣∣R∣∣∣ by Theorem 5.1

⇐⇒ |s| ≤
√∣∣∣R∣∣∣ .

The second claim is an immediate consequence of the first one by taking an R-stable vector s : X↔1 with |s| = αR,
i.e., a maximum one.

For symmetric and irreflexive relations, especially for adjacency relations of undirected graphs, it is also possible
to prove a lower bound for the stability number αR that depends on the graph’s vertex number and maximum degree.

Theorem 7.5. For all symmetric and irreflexive relations R : X↔ X we have |X|
∆R+1 ≤ αR, where the natural number

∆R is defined by ∆R := max { | R;p| | p ∈ P(LX1) }.

Proof. We take an R-stable vector s : X↔1 such that |s| = αR, i.e., a maximum one. Then s is also a maximal R-stable
vector, since the existence of an R-stable vector t : X↔1 with s ⊂ t would lead to the contradiction αR = |s| < |t| ≤ αR

(because of the strict monotonicity of the cardinality operation).
In [27], Proposition 8.1.3, it is shown that for a symmetric and irreflexive relation R the maximality of s leads to

R;s = s. The desired result is now an immediate consequence of the following estimate:

|X| = |LX1|

= |s ∪ s|
= |s| + |s| by axioms (C1), (C3)
= |s| + |R;s| see above

= |s| +
∣∣∣R;

⋃
p∈P(s) p

∣∣∣ by Lemma 3.1.(i)

= |s| +
∣∣∣⋃p∈P(s) R;p

∣∣∣
≤ |s| +

∑
p∈P(s) |R;p| by axiom (C3)

≤ |s| +
∑

p∈P(s) ∆R definition ∆R

= |s| + |P(s)|·∆R

= |s| + |s|·∆R by Lemma 5.2
= αR ·(∆R + 1) as |s| = αR .

If g = (X,R) is a directed graph, then for each vector v : X↔1 we have that v models a kernel of g (i.e., a set K
of vertices that is stable and from each vertex outside of K there leads an edge into K) if and only if R;v = v; see [27].
So, from the proof of Theorem 7.5 we get that |X|

∆R+1 is a lower bound for the cardinality of each kernel of g, where ∆R

is the maximum in-degree of g.
Now we assume g = (X, E) to be an undirected graph. We model g by the symmetric and irreflexive adjacency

relation R : X↔ X, such that (x, y) ∈ R if and only if { x, y } ∈ E, for all x, y ∈ X. Then a (vertex) colouring of g is a
function (in the usual mathematical sense) F : X → N such that F(x) = F(y) implies (x, y) < R, for all x, y ∈ X. The
latter condition is called the colouring property. Colourings also can be defined for directed graphs, provided they
are loop-free. Based on this observation, we define for a given irreflexive relation R : X↔ X a relation F : X↔ X to
be an R-colouring if F is a mapping in the relational sense of Section 2 and R;F ⊆ F. The inclusion R;F ⊆ F is the
relation-algebraic specification of the colouring property. From R ⊆ I we get that the chromatic number

χR := min { |ran(F)| | F : X↔ X is an R-colouring }

of R is well-defined, since the identity relation I : X↔ X is an R-colouring. At this place it should be remarked that we
use vertices as colours. This model avoids set-theoretic anomalies and allows purely relational reasoning. Instead of
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the powerset 2X of X each powerset can be taken as universe where the targets of colourings have to be from, provided
it is large enough to ensure the existence of at least one colouring.

The connection between the stability number αR and the chromatic number χR, that is shown in the following
theorem, is again the relational version of a well-known estimate in graph theory.

Theorem 7.6. For all relations R : X↔ X and all total relations F : X↔ X with the colouring property we have
|X| ≤ |ran(F)|·αR. In particular, for all irreflexive R : X↔ X we have |X| ≤ χR ·αR.

Proof. Let R, F : X↔ X such that F is total. Applying (2) to FT and using the definition of ran(F) we obtain

O = F;FT;LX1 = F;ran(F) (8)

To show the first claim, we calculate as follows:

|X| = |LX1|

= |F;LX1| F is total
=

∣∣∣∣F;
(
ran(F) ∪ ran(F)

)∣∣∣∣
=

∣∣∣F;ran(F) ∪ F;ran(F)
∣∣∣

= |F;ran(F)| above auxiliary result (8)
=

∣∣∣∣F;
(⋃

p∈P(ran(F)) p
)∣∣∣∣ by Axiom 3.1

=
∣∣∣⋃p∈P(ran(F)) F;p

∣∣∣
≤

∑
p∈P(ran(F)) |F;p| by axiom (C3)

≤
∑

p∈P(ran(F)) αR as R;F;p ⊆ F;p = F;p, definition αR

= |P(ran(F))|·αR

= |ran(F)|·αR by Lemma 5.2 .

Now suppose that R is irreflexive. Then there exists an R-colouring G : X↔ X such that |ran(G)| = χR, i.e. a colouring
with a minimum number of colours. We thus get |X| ≤ |ran(G)|·αR = χR ·αR, which proves the second claim.

A vertex cover of a directed graph g = (X,R) is a subset C of the set X of vertices such that (x, y) ∈ R implies x ∈ C
or y ∈ C, for all x, y ∈ X. Again a little point-wise reasoning shows that a vector c : X↔1 models a vertex cover of
g if and only if R;c ⊆ c. As in [27] we call, for a given relation R : X↔ X a vector c : X↔1 an R-vertex-cover if
R;c ⊆ c and define the vertex cover number of R as

τR := min { |c| | c is an R-vertex-cover } .

From the above definitions we immediately get that for a given relation R : X↔ X a vector v : X↔1 is an R-vertex-
cover if and only if its complement v is R-stable. This allows to prove the following connection between the stability
number αR and the vertex cover number τR.

Theorem 7.7. For all relations R : X↔ X we have αR + τR = |X|.

Proof. Let c : X↔1 be a minimum R-vertex-cover. We claim that c is a maximum R-stable vector. We have already
mentioned that it is R-stable. To show that it is maximum R-stable, let s : X↔1 be an arbitrary R-stable vector. Then
s is an R-vertex-cover. Since c is a minimum R-vertex-cover, we have |c| ≤ |s|. This yields

|s| = |X| − |s| ≤ |X| − |c| = |c| ,

which shows that c is a maximum R-stable vector. Thus we have |c| = τR and |c| = αR, which immediately yields

|X| = |LX1| = |c ∪ c| = |c| + |c| = τR + αR

due to axioms (C1) and (C3).

16



In Section 6 we have introduced relational matchings as univalent and injective relations. For a given relation
R : X↔Y we call a matching S : X↔Y an R-matching if S ⊆ R and define the matching number of R as

νR := max { |S | | S is an R-matching } .

Relational matchings may be heterogeneous. To be able to compare their cardinalities with the numbers we have
introduced so far, we have to assume that they are included in homogeneous relations. In such cases there are simple
connections between the cardinalities of vertex covers and matchings, which we show next.

Theorem 7.8. For all relations R : X↔ X, R-vertex-covers c : X↔1 and R-matchings S : X↔ X we have |S | ≤ 2·|c|,
hence νR ≤ 2·τR.

Proof. The following calculation shows the first claim:

|S | = |S ;(c ∪ c)| by Lemma 4.1.(ii) (S univalent, c ∪ c mapping)
= |S ;c ∪ S ;c|
≤ |S ;c| + |S ;c| by axiom (C3)
≤ |S ;c| + |R;c| as S ⊆ R,monotonicity of cardinality operation
≤ |S ;c| + |c| as R;c ⊆ c,monotonicity of cardinality operation
≤ |c| + |c| S ;c = S TT;c, S T is univalent and Theorem 4.2.(i) .

Again, the second claim is an immediate consequence of the first one by taking an R-vertex-cover c : X↔1 with
|c| = τR (a minimum one) and an R-matching S : X↔ X with |S | = νR (a maximum one).

Having estimated the matching number νR by the vertex cover number τR, we now show how to estimate the vertex
cover number by the matching number. Here the maximality of matchings with respect to inclusion plays a decisive
role.

Theorem 7.9. For all relations R : X↔ X and maximal R-matchings S : X↔ X the vector (S ∪ S T);L : X↔1 is an
R-vertex-cover and τR ≤ 2·νR.

Proof. Let R, S : X↔ X such that S is an R-matching. We use contraposition and show that if (S ∪S T);L is not a vertex
cover, then S is not a maximal R-matching. Suppose that R;(S ∪ S T);L ∩ (S ∪ S T);L , O. Then, from Lemma 3.2, it
follows that there exists a point p : X↔1 such that p ⊆ R;(S ∪ S T);L ⊆ R;S T;L and p ⊆ (S ∪ S T);L ⊆ S ;L. We now
apply Theorem 3.1 to p ⊆ R;S T;L and get that there exists a point q : X↔1 with p;qT ⊆ R and q ⊆ S T;L.

By (2) we have S ;S T;L = O. This shows p;qT * S , since p;qT ⊆ S would lead to the contradiction

p ⊆ S ;q ⊆ S ;S T;L = O .

As p;qT * S is equivalent to S , S ∪ p;qT, we have S ⊂ S ∪ p;qT. To complete the proof, we now show that S ∪ p;qT

is an R-matching. From S ⊆ R and p;qT ⊆ R we get S ∪ p;qT ⊆ R. Next, the univalence of S ∪ p;qT is shown by the
subsequent calculation:

(S ∪ p;qT)T;(S ∪ p;qT) = S T;S ∪ S T;p;qT ∪ q;pT;S ∪ q;pT;p;qT

⊆ I ∪ S T;p;qT ∪ (S T;p;qT)T
∪ q;pT;p;qT S is R-matching

= I ∪ S T;p;qT ∪ (S T;p;qT)T as q;pT;p;qT = q;L;qT = q;qT ⊆ I
= I as S T;p;qT ⊆ S T;S ;L;qT = O .

Similarly, the injectivity of S ∪ p;qT can be shown in a using S ;q;pT ⊆ S ;S T;L;pT = O in the last step. Thus S is not
a maximal R-matching.

To prove the remaining property, we take an arbitrary maximal R-matching S : X↔ X and get then the desired
result as follows:

τR ≤
∣∣∣(S ∪ S T);LX1

∣∣∣ ≤ |S ;LX1| +
∣∣∣S T;LX1

∣∣∣ = |dom(S )| + |ran(S )| ≤ 2·|S | ≤ 2·νR .

This calculation uses the first claim, axiom (C3) and results of Section 5 concerning domain and range, viz. estimate
(6) and its analogon for the range.
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The estimates of the last two theorems have well-known graph-theoretic analogons. If R : X↔ X is the symmetric
and irreflexive adjacency relation of an undirected graph g = (X, E) and we call a subset M of the edge set E a
(graph-theoretic) matching of g if e ∩ f = ∅, for all e, f ∈ M, then the two functions M 7→ { (x, y) | { x, y } ∈ M } and
S 7→ { { x, y } | (x, y) ∈ S } constitute a one-to-one correspondence between the set of matchings of g and the set of
symmetric R-matchings. Since the step from the graph-theoretic matching to the associated symmetric R-matching
doubles the cardinality, we get in the case of Theorem 7.8 that 2·νg = νR ≤ 2·τR, where νg denotes the cardinality of
a maximum matching of g, hence νg ≤ τR. In case of Theorem 7.9 we use that the associated relational matching is
symmetric. Then a maximal symmetric R-matching S : X↔ X leads to the R-vertex-cover S ;L : X↔1 and the last
calculation of the proof becomes τR ≤ |S ;LX1| = |dom(S )| = |S | ≤ νR = 2·νg.

As the last graph parameter we consider the clique number. In an undirected graph g = (X, E) a clique C is a
subset of the set X of vertices such that for all x, y ∈ C with x , y it follows { x, y } ∈ E. Translating this specification
into the language of relation algebra, we define for a given symmetric and irreflexive relation R : X↔ X a vector
c : X↔1 to be an R-clique iff c;cT ∩ I ⊆ R. Furthermore, we define the clique number of R as

ωR := max { |c| | c is an R-clique } .

In the last theorem of this section we show an estimate concerning the clique numberωR and the chromatic number χR.

Theorem 7.10. For all symmetric and irreflexive relations R : X↔ X, R-colourings F : X↔ X and R-cliques
c : X↔1 we have |c| ≤ |ran(F)| and ωR ≤ χR.

Proof. First, we prove that all relations of the union
⋃

p∈P(c) FT;p are pairwise disjoint. To this end, assume p, q :
X↔1 to be arbitrary points such that p ⊆ c, q ⊆ c and p , q. Then we have

FT;p = FT;p;qT;q point property qT;q = L11 = I1

= FT;
(
p;qT ∩ I

)
;q point property p , q ⇐⇒ p;qT ⊆ I

⊆ FT;
(
c;cT ∩ I

)
;q since p ⊆ c, q ⊆ c

⊆ FT;R;q c is an R-clique

= (R;F)T;q R is symmetric

⊆ F
T
;q colouring property, transposition is monotonic

= FT;q property of the transposition

⊆ FT;q q is injective .

Thus we have FT;p ∩ FT;q = O. Based on this preparatory result, the following calculation, yields first claim:

|c| =
∑

p∈P(c) 1 by Lemma 5.2
=

∑
p∈P(c)

∣∣∣FT;p
∣∣∣ F mapping, Theorems 6.2 and 6.3

=
∣∣∣⋃p∈P(c) FT;p

∣∣∣ by axioms (C1), (C3), preparatory result

=
∣∣∣FT;

⋃
p∈P(c) p

∣∣∣
=

∣∣∣FT;c
∣∣∣ by Lemma 3.1.(i)

≤
∣∣∣FT;L

∣∣∣ monotonicity of cardinality operation
= |ran(F)| .

Again, the second claim immediately follows from the first one by taking an R-colouring F : X↔ X with |ran(F)| = χR

(with a minimum number of colours) and an R-clique c : X↔1 with |c| = ωR (a maximum one).

In words, the equation |c| = |FT;c| of this proof means that the number of colours for colouring a clique is equal to
the cardinality of the clique, and this is the main argument in the “traditional” informal proof that the clique number
of a graph is less or equal its chromatic number.
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8. A Calculational, Algebraic Proof of a Theorem of D. Kőnig

It is a well-known theorem of graph theory, published by D. Kőnig in [20], that for bipartite (undirected) graphs
the matching number and the vertex cover number coincide. Relation-algebraically a bipartite (undirected) graph
g = (X, E) can be modelled by an (irreflexive) symmetric and bipartite relation, namely the adjacency relation of the
graph. Thereby, a relation R : X↔ X is called bipartite if there exists a vector v : X↔1 such that

(R;v ∩ v) ∪ (R;v ∩ v) = O . (9)

The set { v, v } of vectors is a partition of the universal vector LX1 : X↔1. Since LX1 models the entire set X, the subset
V of X that is modelled by v : X↔1, and the complement of the set X \ V constitute a partition of X in the traditional
sense. In graph-theoretic terminology the above equation (9) specifies that V and X \V are stable sets, that is, all edges
of the graph g connect only vertices from two different sets of the particular partition of X. The sets modelled by v
and v thus constitute a bipartition of the graph g in the classical sense.

In Theorem 7.8 we proved that νR ≤ 2 ·τR, for all relations R : X↔ X, thus also for symmetric and irreflexive
ones. The proof of the theorem reveals that this estimate remains valid if νR denotes the cardinality of a maximum
symmetric R-matching in case of a symmetric and irreflexive relation R. A modified specification of the matching
number for symmetric and irreflexive relations R is given by

ν∗R := max { |S | | S = S T and S is an R-matching } .

As discussed above we have ν∗R ≤ νR ≤ 2 ·τR. In this section we show that for a bipartite, symmetric relation R we
have ν∗R = 2 ·τR. This result constitutes a relation-algebraic version of D. Kőnig’s theorem; cf. the connection of
graph-theoretic and symmetric relational matchings described in Section 7.

Convention 8.1. For the remainder of this section we assume R : X↔ X to be a symmetric relation and v : X↔1

to be a vector such that (9) holds, that is, v specifies a bipartition of R. Furthermore, we assume S : X↔ X to be a
symmetric R-matching.

Note, that the prerequisite on R and v yields that both R;v∩ v = O and R;v∩ v = O hold, which by Boolean lattice
rules yield the two inclusions R;v ⊆ v and R;v ⊆ v, saying that v and v are R-stable vectors. Based on the relations R
and S and the vector v, we now introduce some auxiliary relations for our proof.

Definition 8.1. Given the relations R : X↔ X and S : X↔ X and the vector v : X↔1 of Convention 8.1, we define
a subrelation T : X↔ X of R and three vectors u : X↔1, r : X↔1 and c : X↔1 as follows:

T := R ∩ S u := S ;L r := (I ∪ T );(S ;T )∗ ;(u ∩ v) c := (v ∩ r) ∪ (v ∩ r) .

The relation T is the relative complement of S in R. The vector u models the set of those vertices that are not
contained in any matching edge (since S is symmetric), which are called “uncovered” or “unmatched” in graph theory.
Using again graph-theoretic terminology and the subset V of X to be modelled by v, the vertex set that is modelled by
the vector r is the set of all those vertices that are reachable from an uncovered vertex of V along an T -S -alternating
path, which is a path that traverses edges from T and S in alternating sequence. This vector is of utmost importance in
the construction of a vertex cover, which is modelled by c. The above definitions are essentially the formal relation-
algebraic descriptions of the informal specifications given in the textbook [12] when proving D. Kőnig’s theorem.
This entire construction originates from the work by D. Kőnig in [20]. However, both proofs are done in the usual
“informal” mathematical manner, especially in a non-calculational and non-algebraic one.

Assuming R, S and v as introduced in Convention 8.1 and using T , u, r and c as introduced in Definition 8.1, in
the remainder of this section we prove with calculational and algebraic means (including the cardinality axioms) that
the vector c is an R-vertex-cover and, if S is a maximum symmetric R-matching, i.e., if additionally to the demands
of Convention 8.1 the equation |S | = ν∗R is satisfied, then |S | = 2 · |c| holds. Note that the second statement yields the
estimate 2·τR ≤ 2·|c| = |S | = ν∗R, which proves, together with ν∗R ≤ 2·τR, the desired result ν∗R = 2·τR.

At this point it should be mentioned that the equality ν∗R = 2·τR can be obtained from a combination of some results
presented in [16], but without the construction of an actual vertex cover as in the original version of Kőnig’s theorem.
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In [16], first Hall’s theorem is shown (Theorem 3). Hall’s theorem is used to prove a statement (Theorem 4), denoted
as Kőnig’s theorem and saying that for all relations R : X↔Y with δ(R) > 0 there exists a maximum relational
matching S : X↔Y (in the original sense of Section 6) such that S ⊆ R and |S | = |X| · |Y | − δ(R). Here δ(R) is
defined by δ(R) := max { |RT;p| − |p| | p : X↔1 point }. That means that in Kawahara’s version of Kőnig’s theorem
the graph-theoretic notion of a bipartition is not explicitly used, but modelled by the type of R, and nothing is said
about the vertex cover number. Furthermore, it should be remarked that the equality of the matching number and the
vertex cover number in case of bipartite relations is proved in a constructive fashion in [27], but, if cardinalities come
into play, again with rather informal and non-algebraic means. Additionally, in [27] a different and more complicated
definition of the concrete vertex cover is used.

We begin our proof with the following auxiliary statements. Each of the relation-algebraic formulae describes a
graph-theoretic fact that is used in the informal graph-theoretic proof of D. Kőnig’s theorem in [12].

Lemma 8.1. For the relations R, S , T and the vectors r, u, v from Convention 8.1 and Definition 8.1 we have:

(i) S ;(S ;T )∗;(u ∩ v) ⊆ T ;(S ;T )∗;(u ∩ v).

(ii) R;(S ;T )∗;(u ∩ v) = T ;(S ;T )∗;(u ∩ v).

(iii) v ∩ r = (S ;T )∗;(u ∩ v).

(iv) v ∩ r = T ;(S ;T )∗;(u ∩ v).

Proof. (i) Using (2) and the symmetry of S we obtain O = S T;S ;L = S ;S ;L. Thus we get:

S ;(S ;T )∗;(u ∩ v) = S ;(I ∪ S ;T ;(S ;T )∗) ;(u ∩ v) closure property
= (S ∪ S ;S ;T ;(S ;T )∗) ;(u ∩ v)
⊆ (S ∪ T ;(S ;T )∗) ;(u ∩ v) S ;S = S ;S T ⊆ I
= S ;(u ∩ v) ∪ T ;(S ;T )∗;(u ∩ v)
= T ;(S ;T )∗;(u ∩ v) as S ;(u ∩ v) ⊆ S ;u = S ;S ;L = O .

(ii) We calculate as follows to show the desired result:

R;(S ;T )∗;(u ∩ v) = (T ∪ S );(S ;T )∗;(u ∩ v) T = R ∩ S by definition of T and S ⊆ R
= T ;(S ;T )∗;(u ∩ v) ∪ S ;(S ;T )∗;(u ∩ v)
⊆ T ;(S ;T )∗;(u ∩ v) ∪ T ;(S ;T )∗;(u ∩ v) by Lemma 8.1.(i)
= T ;(S ;T )∗;(u ∩ v)
⊆ R;(S ;T )∗;(u ∩ v) since T ⊆ R .

(iii) The R-stability of v and v yields R;R;v ⊆ R;v ⊆ v. By induction, we get (R;R)k ;v ⊆ v, for all k ∈ N, which yields
(R;R)∗;v ⊆ v. In particular, we obtain

T ;(S ;T )∗;(u ∩ v) ⊆ T ;(S ;T )∗;v ⊆ R;(R;R)∗;v ⊆ R;v ⊆ v (10)

and thus T ;(S ;T )∗;(u ∩ v) ∩ v = O. Also, we get:

(S ;T )∗;(u ∩ v) ⊆ (R;R)∗;v ⊆ v (11)

This allows to prove the claim as follows:

v ∩ r = v ∩ (I ∪ T );(S ;T )∗;(u ∩ v) definition of r
= v ∩

(
(S ;T )∗;(u ∩ v) ∪ T ;(S ;T )∗;(u ∩ v)

)
= (v ∩ (S ;T )∗;(u ∩ v)) ∪ (v ∩ T ;(S ;T )∗;(u ∩ v))
= v ∩ (S ;T )∗;(u ∩ v) second intersection is O
= (S ;T )∗;(u ∩ v) by (11) .
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(iv) Using the inclusion (11) we get (S ;T )∗;(u ∩ v) ∩ v = O. With this equality we now conclude the proof by the
subsequent calculation:

v ∩ r = v ∩ (I ∪ T );(S ;T )∗;(u ∩ v) definition of r
= v ∩

(
(S ;T )∗;(u ∩ v) ∪ T ;(S ;T )∗;(u ∩ v)

)
= (v ∩ (S ;T )∗;(u ∩ v)) ∪ (v ∩ T ;(S ;T )∗;(u ∩ v))
= v ∩ T ;(S ;T )∗;(u ∩ v) first intersection is O
= T ;(S ;T )∗;(u ∩ v) by (10) .

Using the definition of the vector c in the first step, we have

c = (v ∩ r) ∪ (v ∩ r) = (v ∪ r) ∩ (v ∪ r) = (v ∩ v) ∪ (v ∩ r) ∪ (r ∩ v) ∪ (r ∩ r) = (v ∩ r) ∪ (v ∩ r) . (12)

With these prerequisites we can now show that the vector c is in fact an R-vertex-cover. The first two results of the
following lemma are auxiliary statements, which are needed in the proof of the third result, the statement we are
actually interested in.

Lemma 8.2. For the relation R and the vectors c, r, v from Convention 8.1 and Definition 8.1 we have:

(i) R;(v ∩ r) = v ∩ r.

(ii) R;(v ∩ r) ⊆ v ∩ r.

(iii) c is an R-vertex-cover, i.e., R;c ⊆ c.

Proof. (i) This statement can be shown as follows:

R;(v ∩ r) = R;(S ;T )∗;(u ∩ v) by Lemma 8.1.(iii)
= T ;(S ;T )∗;(u ∩ v) by Lemma 8.1.(ii)
= v ∩ r . by Lemma 8.1.(iv)

(ii) We first observe that the following equivalences hold due to a Schröder rule and R = RT:

R;(v ∩ r) ⊆ v ∩ r ⇐⇒ RT;v ∩ r ⊆ v ∩ r ⇐⇒ R;(v ∪ r) ⊆ v ∪ r .

Now we show that R;(v ∪ r) ⊆ v ∪ r holds, which completes the proof. To reach the goal, we calculate as follows:

R;(v ∪ r) = R;v ∪ R;r
⊆ v ∪ R;r as v is R-stable
= v ∪ R;((v ∩ r) ∪ (v ∩ r)) as (v ∩ r) ∪ (v ∩ r) = r
= v ∪ R;(v ∩ r) ∪ R;(v ∩ r)
⊆ v ∪ (v ∩ r) ∪ R;(v ∩ r) by Lemma 8.2.(i)
⊆ v ∪ (v ∩ r) ∪ v R;(v ∩ r) ⊆ R;v ⊆ v as v is R-stable
= v ∪ (v ∩ r)
= (v ∪ v) ∩ (v ∪ r)
= v ∪ r .

(iii) Because of the first two results, this is now simple. We get

R;c = R;((v ∩ r) ∪ (v ∩ r)) = R;(v ∩ r) ∪ R;(v ∩ r) ⊆ (v ∩ r) ∪ (v ∩ r) = c

using property (12), then Lemma 8.2.(i) and Lemma 8.2.(ii) and, finally, the definition of c.

Having shown that the vector c is an R-vertex cover, we now prove two facts concerning the relation S and the
vectors r and c. Again the first result of the following lemma constitutes an auxiliary result for the second one, the
statement we are actually interested in, viz. the S -stability of the R-vertex-cover c.
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Lemma 8.3. For the relation S and the vectors r, c from Convention 8.1 and Definition 8.1 we have:

(i) S ;r ⊆ r.

(ii) S ;c ∩ c = O.

Proof. (i) To show the claim we calculate as follows:

S ;r = S ;(I ∪ T );(S ;T )∗ ;(u ∩ v) definition of r
= S ;(S ;T )∗ ;(u ∩ v) ∪ S ;T ;(S ;T )∗ ;(u ∩ v)
⊆ T ;(S ;T )∗ ;(u ∩ v) ∪ S ;T ;(S ;T )∗ ;(u ∩ v) by Lemma 8.1.(i)
⊆ T ;(S ;T )∗ ;(u ∩ v) ∪ (S ;T )∗ ;(u ∩ v) closure property
= (T ∪ I);(S ;T )∗ ;(u ∩ v)
= r definition of r .

(ii) We show the S -stability S ;c ⊆ c of c, which is equivalent to the desired equality by Boolean lattice rules. The
inclusion is shown by the following calculation:

S ;c = S ;((v ∩ r) ∪ (v ∩ r))) definition of c
= S ;(v ∩ r) ∪ S ;(v ∩ r)
⊆ (S ;v ∩ S ;r) ∪ (S ;v ∩ S ;r)
⊆ (v ∩ S ;r) ∪ (v ∩ S ;r) as v and v are R-stable, S ⊆ R
⊆ (v ∩ r) ∪ (v ∩ r) see below
= c by (12) .

Because of Lemma 8.3.(i) we have S ;r ⊆ r, which by a Schröder rule and S = S T is equivalent to S ;r ⊆ r.

For the remainder of this section we assume that S is a maximum symmetric R-matching. This pre-condition
is important for the cardinality calculation: while a non-maximum matching yields a vertex cover, this vertex cover
may not have minimum cardinality. The key idea in the calculation of the cardinality of c is to show that u is the
disjoint union of the vectors c and S ;c. One important step in this calculation is the following property of maximum
matchings.

Theorem 8.1. If the relation S from Convention 8.1 is a maximum symmetric R-matching, then for the relation T and
the vector u from Definition 8.1 we have T ;(S ;T )∗;u ⊆ u.

In [9] this theorem is shown with non-algebraic means. A relation-algebraic proof that follows this idea is tedious.
Therefore, we have transferred it into an appendix. Theorem 8.1 can be seen as relation-algebraic version of one direc-
tion of C. Berge’s well-known characterisation of maximum graph-theoretic matchings given in [1]. Note, however,
that the inclusion T ;(S ;T )∗;u ⊆ u of the theorem means that there exists no T -S -alternating path between uncovered
vertices, where in such paths multiple occurrences of vertices are possible, whereas in [1] multiple occurrences of
vertices in alternating paths are forbidden. After these preparations we next prove the desired decomposition of u. As
in the case of Lemma 8.1 each of the relation-algebraic formulae again describes a graph-theoretic fact that is used in
the proof of [12].

Lemma 8.4. If the relation S from Convention 8.1 is a maximum symmetric R-matching, then for the vectors c, u from
Definition 8.1 we have:

(i) c ⊆ u = S ;L.

(ii) S ;c ∪ c = S ;L.

Proof. (i) Using that reflexive-transitive closures are reflexive and the definition of the vector r we get

u ∩ v = I;(u ∩ v) ⊆ I;(S ;T )∗;(u ∩ v) ⊆ (I ∪ T );(S ;T )∗;(u ∩ v) = r
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for the vectors r, u and v which, in turn, is equivalent to the inclusion v ∩ r ⊆ u by a well-known Boolean lattice rule.
With this auxiliary result we obtain the desired inclusion as follows:

c = (v ∩ r) ∪ (v ∩ r) definition of c
⊆ u ∪ (v ∩ r) as v ∩ r ⊆ u
= u ∪ T ;(S ;T )∗;(u ∩ v) by Lemma 8.1.(iv)
⊆ u ∪ T ;(S ;T )∗;u
⊆ u ∪ u by Theorem 8.1 (S maximum matching)
= S ;L definition of u .

(ii) Here we calculate as follows to prove the claim:

S ;L = S ;(c ∪ c)
= S ;c ∪ S ;c
⊆ S ;c ∪ R;c since S ⊆ R
⊆ S ;c ∪ c c is an R-vertex-cover by Lemma 8.2.(iii)
⊆ S ;c ∪ S ;L by Lemma 8.4.(i)
= S ;L since c ⊆ L .

We are now in the position to prove that 2·|c| = |S | holds for the symmetric R-matching S and the vector c if S is a
maximum symmetric R-matching, from which, as shown at the beginning of this section, the desired result ν∗R = 2·τR

follows. This is the place where two cardinality axioms and two former results of Section 6 on the cardinality of
mapping-related relations come into play.

Theorem 8.2. If the relation S of Convention 8.1 is a maximum symmetric R-matching, then we have 2 · |c| = |S |,
where c is the vector from Definition 8.1.

Proof. The following calculation shows the claim:

|S | = |S ;LX1| by Lemma 4.1.(ii) (S univalent, LX1 mapping)
= |S ;c ∪ c| by Lemma 8.4.(ii)
= |S ;c| + |c| − |S ;c ∩ c| by axiom (C3)
= |S ;c| + |c| − |O| by Lemma 8.3.(ii)
= |S ;c| + |c| by axiom (C1)
=

∣∣∣S T;c
∣∣∣ + |c| S is symmetric

= |c| + |c| by Theorem 4.2.(iii) (S univalent, injective, c ⊆ S ;L by Lemma 8.4.(i)) .

9. Concluding Remarks

As we have mentioned in the introduction, the present paper is a continuation of [16] and [5]. We have extended
the stock of fundamental properties of cardinalities of relations by results that concern vectors, points and mapping-
related relations. As applications of these results we have verified properties of linear orders and graphs in a very
precise and calculational manner. The latter include the cardinalities of rooted trees, well-known estimates of graph
parameters and a proof of the fact that in bipartite graphs the matching number equals the vertex cover number.

Concerning the last result, the reader may wonder whether there is any merit of having a somewhat long and
technical relation-algebraic proof of a well-known graph-theoretic statement. Especially the proof of the statement
that the existence of an augmenting path yields a larger matching is usually much shorter in literature. Note, however,
that this is due to a large degree of informality. In the above example, one usually simply states that a certain set is a
larger matching, without a (formal) mathematical proof. Providing all missing arguments in such cases in detail would
also lead to longer and more precise proofs. Additionally, the restriction to a fixed set of axioms and a calculational
approach provide less room for errors and open, as we have mentioned in the introduction, the possibility for proof
mechanisation that enhances reliability once again. In cooperation with D. Pous we have extended the relation-algebra
library of [21] for the proof assistant Coq by the singleton set axioms, the point axiom, Kawahara’s cardinality axioms
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and the relational axiom of choice and some decision procedures concerning cardinalities and have already verified
many of the results of Section 4 to 6 by means of Coq. Our goal is a complete verification of the results of the present
paper via this tool.

For the future we also plan to extend the presented results about cardinalities to further important classes of
relations and also to relation-algebraic constructions that frequently appear in practical applications. Examples for the
first are certain types of orders used in decision theory and preference modeling, examples for the latter are residuals
and symmetric quotients. We also plan applications in the development and verification of such relational programs
where cardinalities play a fundamental role. Following the lines of [5] this includes further approximation algorithms.
We also think of randomised algorithms, since such algorithms typically use random bits as an auxiliary input and
these can be seen as a random relational vector of a certain cardinality. Experience has shown that RelView supports
the development of relational algorithms in a significant manner. But in the programming language of the present
Version 8.2 of the tool there are only operations available which compare cardinalities of relations, e.g., cardeq(R, S )
for testing |R| = |S |. There exists no cardinality operation in the sense of the present paper. To extend the usability of
the tool we, therefore, plan the inclusion of such an operation.
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Appendix A. Proof of Theorem 8.1

Let us rephrase the statement we wish to prove. Assume R : X↔ X to be symmetric, S ⊆ R to be a maximum
symmetric R-matching and T and u to be defined as T := R ∩ S and u := S ;LX1. Then we have T ;(S ;T )∗;u ⊆ u.

The following relation-algebraic proof is based upon the original proof of [1]. In particular, we use essentially the
same construction and prove the same auxiliary statements. We use contraposition. So, assume T ;(S ;T )∗;u ∩ u , O.
Then by Lemma 3.2 this vector contains a point p : X↔1. Since p ⊆ T ;(S ;T )∗;u, by Theorem 3.1 there exists a
point q : X↔1 such that p;qT ⊆ T ;(S ;T )∗, i.e., p ⊆ T ;(S ;T )∗;q, and q ⊆ u. Using Lemma 3.2 again, we get a point
z : X↔1, such that p ⊆ T ;z and z ⊆ (S ;T )∗;q, i.e., p;zT ⊆ T and similarly z;qT ⊆ (S ;T )∗. Since z;qT is an atom among
the relations of type X↔ X and (S ;T )∗ =

⋃
i∈N(S ;T )i, there exists a minimal n ∈ N such that z;qT ⊆ (S ;T )n. In [27] it

is shown that this yields a sequence of points (w0, . . . ,wn) such that w0 = z, wn = q and wi ⊆ S ;T ;wi+1, for all i ∈ N<n.
For all i ∈ N<n the intermediate point theorem (which we have discussed after Lemma 3.2) yields a point xi : X↔1

such that wi ⊆ S ;xi and xi ⊆ T ;wi+1, i.e., wi;xi
T ⊆ S and xi;wi+1

T ⊆ T . We now define a sequence α := (α0, . . . , α2n+1)
by

αi :=


p : i = 0
w i−1

2
: i , 0 ∧ i odd

x i
2−1 : i , 0 ∧ i even

for all i ∈ N<2n+2, i.e., the sequence (p,w0, x0, . . . ,wn−1, xn−1,wn). The intuition behind this sequence is that we have
unfolded a path in the graph with relation S ;T .

Lemma A.1. (i) For all i ∈ N<2n+1 we have αi;αi+1
T ⊆ T if i is even and αi;αi+1

T ⊆ S if i is odd.

(ii) For all j, k ∈ N<2n+2 we have that α j = αk implies j = k.

Proof. (i) Let i ∈ N<2n+1. If i = 0, we obtain the desired inclusion

αi;αi+1
T = α0;α1

T = p;w0
T = p;zT ⊆ T

by the choice of the intermediate points discussed above. If i > 0 and i is odd, we get

αi;αi+1
T = w i−1

2
;x i+1

2 −1
T = w i−1

2
;x i−1

2

T ⊆ S ,

and if i > 0 and i is even, we obtain the claim in a similar fashion.

(ii) Let j, k ∈ N<2n+2 such that α j = αk. W.l.o.g. we may assume j ≤ k and α j ⊆ v. From (i) we get α j;αk
T ⊆ Rk− j

and thus α j ⊆ Rk− j;αk. A simple induction shows R2m;v ⊆ v and R2m+1;v ⊆ v, for all m ∈ N, as { v, v } is a bipartition
of R. If k − j was odd, we would obtain α j ⊆ v ∩ Rk− j;αk ⊆ v ∩ Rk− j;v ⊆ v ∩ v = O, which contradicts the fact that α j

is a point. So, k − j is even and thus either both j, k are odd or both are even. If j, k are odd, we get:

z;qT = α1;α j
T;α j;α2n+1

T as α j
T;α j = L11 = I1 by point property and Axiom 2.2

=
(∏ j−1

l=1 αl;αl+1
T
)

;
(∏2n

l=k αl;αl+1
T
)

recursive application of the previous argument

⊆ (S ;T )
j−1
2 ;(S ;T )

2n−k+1
2 αl;αl+1

T ⊆ S if l odd, αl;αl+1
T ⊆ T if l even, j − 1 and 2n even

= (S ;T )n− k− j
2 .
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Since n is minimal such that z;qT ⊆ (S ;T )n, we get k− j
2 = 0, hence k = j. If j, k are both even, then we obtain:

z;qT =
(∏ j−1

l=1 αl;αl+1
T
)

;
(∏2n

l=k αl;αl+1
T
)

see first case

⊆ (S ;T )
j
2−1 ;S ;T ;(S ;T )

2n−k
2 αl;αl+1

T ⊆ S if l odd, αl;αl+1
T ⊆ T if l even, j − 1 odd, k even

= (S ;T )
2n−k+ j

2 .

Due to 2n−k+ j
2 = n − k− j

2 , once again the minimality of n yields that k = j.

Using classical graph-theoretic terminology, the sequence α models an S -augmenting path, which is to say that it
can be used to construct another matching with a strictly larger cardinality. We now prove this very statement using
purely algebraic means. To this end, we define the following auxiliary relations:

C :=
⋃

i∈N<2n+1
αi;αi+1

T D := C ∪CT S + := (S ∩ D) ∪ (D ∩ S ) . (A.1)

In the classical sense D can be considered the set of all edges along the augmenting path modeled by α and the
symmetric difference S + of S and D constitutes a symmetric R-matching that contains one edge more than S (which
in our terminology states that the new matching contains two more elements than S ). To prove the latter fact in the
remainder of this section, first, we show that the two relations whose union is S + have very convenient representations.

Lemma A.2.
(i) S ∩ D = S ∩

(⋃
i∈N<n

α2i+1;α2i+2
T
)
∪

(⋃
i∈N<n

α2i+2;α2i+1
T
)

= S ∩
⋃

i∈N<n
α2i+1;α2i+2

T ∪ α2i+2;α2i+1
T.

(ii) D ∩ S =
(⋃

i∈N<n+1
α2i;α2i+1

T
)
∪

(⋃
i∈N<n+1

α2i+1;α2i
T
)

=
⋃

i∈N<n+1
α2i;α2i+1

T ∪ α2i+1;α2i
T.

Proof. (i) For all i ∈ N<n we have α2i;α2i+1
T ⊆ T by Lemma A.1.(i). This yields

⋃
i∈N<n

α2i;α2i+1
T ⊆ S and thus

S ⊆
⋃

i∈N<n
α2i;α2i+1

T. Now we calculate as follows:

S ∩C = S ∩
⋃

i∈N<2n+1
αi;αi+1

T definition of C by (A.1)

= S ∩
(⋃

i∈N<n+1
α2i;α2i+1

T
)
∪

(⋃
i∈N<n

α2i+1;α2i+2
T
)

splitting into even and odd indices

= S ∩
⋃

i∈N<n+1
α2i;α2i+1

T ∩
⋃

i∈N<n
α2i+1;α2i+2

T

= S ∩
⋃

i∈N<n
α2i+1;α2i+2

T see above .

With the above calculation we get:

S ∩ D = S ∩C ∪CT definition of D by (A.1)

=
(
S ∩C

)
∩

(
S ∩C

)T
S is symmetric

=
(
S ∩

⋃
i∈N<n

α2i+1;α2i+2
T
)
∩

(
S ∩

⋃
i∈N<n

α2i+1;α2i+2
T
)T

see above

= S ∩
⋃

i∈N<n
α2i+1;α2i+2

T ∩ S ∩
⋃

i∈N<n
α2i+2;α2i+1

T S is symmetric

= S ∩
(⋃

i∈N<n
α2i+1;α2i+2

T
)
∪

(⋃
i∈N<n

α2i+2;α2i+1
T
)

= S ∩
⋃

i∈N<n
α2i+1;α2i+2

T ∪ α2i+2;α2i+1
T .

(ii) For all i ∈ N<n+1 we have α2i;α2i+1
T ⊆ T ⊆ S and α2i+1;α2i+2

T ⊆ S by Lemma A.1.(i). As a consequence we
get the inclusions

⋃
i∈N<n+1

α2i;α2i+1
T ⊆ S and

⋃
i∈N<n

α2i+1;α2i+2
T ⊆ S . Next, we calculate as follows:

C ∩ S =
(⋃

i∈N<2n+1
αi;αi+1

T
)
∩ S definition of C by (A.1)

=
((⋃

i∈N<n+1
α2i;α2i+1

T
)
∪

(⋃
i∈N<n

α2i+1;α2i+2
T
))
∩ S splitting into even and odd indices
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=
((⋃

i∈N<n+1
α2i;α2i+1

T
)
∩ S

)
∪

((⋃
i∈N<n

α2i+1;α2i+2
T
)
∩ S

)
=

⋃
i∈N<n+1

α2i;α2i+1
T see above .

Now we are able to conclude the proof as follows:

D ∩ S =
(
C ∪CT

)
∩ S definition of D by (A.1)

=
(
C ∩ S

)
∪

(
C ∩ S

)T
S is symmetric

=
(⋃

i∈N<n+1
α2i;α2i+1

T
)
∪

(⋃
i∈N<n+1

α2i;α2i+1
T
)T

see above

=
(⋃

i∈N<n+1
α2i;α2i+1

T
)
∪

(⋃
i∈N<n+1

α2i+1;α2i
T
)

=
⋃

i∈N<n+1
α2i;α2i+1

T ∪ α2i+1;α2i
T .

To show that S + is a symmetric R-matching and larger than S , we we need two further auxiliary results.

Lemma A.3.
(i) For all i ∈ N<2n+2 we have

(
S ∩ D

)
;αi = O

(ii) We have
(
S ∩ D

)
;
(
D ∩ S

)
= O.

Proof. (i) We use contradiction and assume to the contrary that there exists i ∈ N<2n+2 with S ;αi∩D;αi , O. Then
Lemma 3.2 yields a point x : X↔1 such that x ⊆ S ;αi and x ⊆ D;αi. Thus, we get x;αi

T ⊆ S and x;αi
T ⊆ D. If i

is odd, we have αi;αi+1
T ⊆ S by Lemma A.1.(i). As a consequence, x;αi+1

T = x;αi
T;αi;αi+1

T ⊆ S ;S ⊆ I. The point
property yields that x ⊆ I;αi+1 = αi+1 and thus x = αi+1. Now we have αi;αi+1

T ⊆ D by (A.1), but at the same time

αi;αi+1
T = αi;xT = (x;αi

T)
T
⊆ D

T
= D .

This is a contradiction, because αi;αi+1
T is an atom. If i is even, we get αi;xT = (x;αT

i )T
⊆ S T ⊆ S , since S is

symmetric. The point property yields αi ⊆ S ;x ⊆ S ;L and thus αi , α0, because α0 = p ⊆ u = S ;L by construction
of α and Definition 8.1. Lemma A.1.(ii) implies i , 0 and that i − 1 is odd. By Lemma A.1.(i) we get αi−1;αi

T ⊆ S
and, since S is symmetric, also αi;αi−1

T ⊆ S . So, we have p;αi−1
T = p;αi

T;αi;αi−1
T ⊆ S ;S ⊆ I, which yields

p ⊆ I;αi−1 = αi−1 and, hence, p = αi−1, since both are points. Finally, we get αi−1;αi ⊆ D by (A.1), but also
αi−1;αi

T = p;αi
T ⊆ D. This contradicts the fact that αi−1;αi

T is an atom.

(ii) Using the symmetry of S and D and a Schröder rule we get for all i ∈ N<2n+2 that

(S ∩ D);αi ⊆ O ⇐⇒ αi
T;(S ∪ D) ⊆ O ⇐⇒ αi;L ⊆ S ∪ D ,

and Lemma A.3.(i) shows that αi;L ⊆ S ∪ D. This yields
⋃

j∈N<2n+2
α j;L ⊆ S ∪ D. We thus obtain:

LXX;
(
D ∩ S

)
= LXX;

(⋃
i∈N<n+1

α2i;α2i+1
T ∪ α2i+1;α2i

T
)

by Lemma A.2.(ii)

=
⋃

i∈N<n+1
LXX;α2i;α2i+1

T ∪ LXX;α2i+1;α2i
T

=
⋃

i∈N<n+1
LX1;α2i+1

T ∪ LX1;α2i
T points are surjective

=
⋃

i∈N<2n+2
LX1;αi

T combining indices

=
(⋃

i∈N<2n+2
αi;L1X

)T
as LX1

T = L11;LX1
T = L1X by (4)

⊆ S ∪ D see above, S and D are symmetric .

We can now apply a Schröder rule and obtain (S ∩ D);(D ∩ S ) = (S ∪ D);(D ∩ S )
T
⊆ O, where we also use a de

Morgan rule and the fact that D, S are symmetric.
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After these preparations we can now prove the main result of this section. It concludes the proof of Theorem 8.1,
since it implies that S is not a maximum symmetric R-matching.

Theorem A.1.
(i) S + is a symmetric R-matching.

(ii) |S +| = 2 + |S |.

Proof. (i) The symmetry of S + follows from the symmetry of S and D. The inclusion S + ⊆ R is shown as follows:

S + = (S ∩ D) ∪ (D ∩ S ) definition of S + by (A.1)

⊆ R ∪ (D ∩ S ) S ∩ D ⊆ S ⊆ R

= R ∪
⋃

i∈N<n+1
α2i;α2i+1

T ∪ α2i+1;α2i
T by Lemma A.2.(ii)

⊆ R ∪ T α2i;α2i+1
T ∪ α2i+1;α2i

T ⊆ T by Lemma A.1.(i) and T = T T

= R since T ⊆ R .

It remains to show the matching property, i.e., S +;S + ⊆ I. The symmetry of S and D, as well as Lemma A.3.(ii) yield

(D ∩ S );(S ∩ D) = ((S ∩ D)
T
;(D ∩ S )

T
)
T

= ((S ∩ D);(D ∩ S ))
T

= O . (A.2)

We also get the following inclusion using the fact that α2i+1
T;α2 j = α2i

T;α2 j+1 = O, for all i, j ∈ N<n+1,

(D ∩ S );(D ∩ S ) =
(⋃

i∈N<n+1
α2i;α2i+1

T ∪ α2i+1;α2i
T
)

;
(⋃

i∈N<n+1
α2i;α2i+1

T ∪ α2i+1;α2i
T
)

=
⋃

i, j∈N<n+1
α2i;α2i+1

T;α2 j;α2 j+1
T ∪ α2i;α2i+1

T;α2 j+1;α2 j
T ∪ α2i+1;α2i

T;α2 j;α2 j+1
T ∪ α2i+1;α2i

T;α2 j+1;α2 j
T

=
⋃

i, j∈N<n+1
α2i;α2i+1

T;α2 j+1;α2 j
T ∪ α2i+1;α2i

T;α2 j;α2 j+1
T see above

=
⋃

i∈N<n+1
α2i;α2i+1

T;α2 j+1;α2 j
T ∪ α2i+1;α2i

T;α2 j;α2 j+1
T point property, Lemma A.1.(ii)

⊆
⋃

i∈N<n+1
α2i;α2i

T ∪ α2i+1;α2i+1
T point property, Lemma A.1.(ii)

⊆ I . since points are injective

Now the following calculation shows the claim:

S +;S + = ((S ∩ D) ∪ (D ∩ S ));((S ∩ D) ∪ (D ∩ S )) definition of S + by (A.1)
⊆ (S ∩ D);(S ∩ D) ∪ (D ∩ S );(D ∩ S ) by Lemma A.3.(ii) and (A.2)
⊆ I see above, (S ∩ D);(S ∩ D) ⊆ S ;S ⊆ I .

(ii) We have
⋃

i∈N<n
α2i;α2i+1

T ⊆ S by Lemma A.1.(i) and
⋃

i∈N<n
α2i+1;α2i

T = (
⋃

i∈N<n
α2i;α2i+1

T)T
⊆ S T = S , since

S is symmetric, hence (
⋃

i∈N<n
α2i;α2i+1

T) ∪ (
⋃

i∈N<n
α2i+1;α2i

T) ⊆ S . Based on this inclusion, we calculate∣∣∣S ∩ D
∣∣∣ =

∣∣∣∣∣S ∩ (⋃
i∈N<n

α2i;α2i+1
T
)
∪

(⋃
i∈N<n

α2i+1;α2i
T
)∣∣∣∣∣

= |S | −
∣∣∣∣(⋃i∈N<n

α2i;α2i+1
T
)
∪

(⋃
i∈N<n

α2i+1;α2i
T
)∣∣∣∣

= |S | −
∣∣∣⋃i∈N<n

α2i;α2i+1
T
∣∣∣ − ∣∣∣⋃i∈N<n

α2i+1;α2i
T
∣∣∣ +

∣∣∣∣(⋃i∈N<n
α2i;α2i+1

T
)
∩

(⋃
i∈N<n

α2i+1;α2i
T
)∣∣∣∣ ,

using Lemma A.2.(i), then that the union is contained in S and, finally, axiom (C3). The points of the sequence α
are pairwise different due to Lemma A.1.(ii) and, thus the Dedekind rule together with the point property imply that
α2i;α2i+1

T ∩ α2 j+1;α2 j
T = O for all i, j ∈ N<n. So, axiom (C1) yields for the fourth expression∣∣∣∣(⋃i∈N<n
α2i;α2i+1

T
)
∩

(⋃
i∈N<n

α2i+1;α2i
T
)∣∣∣∣ =

∣∣∣⋃i, j∈N<n
α2i;α2i+1

T ∩ α2 j+1;α2 j
T
∣∣∣ = |O| = 0 .
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This shows:∣∣∣S ∩ D
∣∣∣ = |S | −

∣∣∣⋃i∈N<n
α2i;α2i+1

T
∣∣∣ − ∣∣∣⋃i∈N<n

α2i+1;α2i
T
∣∣∣

= |S | −
(∑

i∈N<n

∣∣∣α2i;α2i+1
T
∣∣∣) − (∑

i∈N<n

∣∣∣α2i+1;α2i
T
∣∣∣) by (C3) and (C1) as above

= |S | −
(∑

i∈N<n
|α2i| · |α2i+1|

)
−

(∑
i∈N<n
|α2i+1| · |α2i|

)
by Theorem 5.1

= |S | −
(∑

i∈N<n
1
)
−

(∑
i∈N<n

1
)

by Lemma 5.1

= |S | − 2n .

Similarly, we compute:∣∣∣D ∩ S
∣∣∣ =

∣∣∣∣(⋃i∈N<n+1
α2i;α2i+1

T
)
∪

(⋃
i∈N<n+1

α2i+1;α2i
T
)∣∣∣∣ by Lemma A.2.(ii)

=
∣∣∣⋃i∈N<n+1

α2i;α2i+1
T
∣∣∣ +

∣∣∣⋃i∈N<n+1
α2i+1;α2i

T
∣∣∣ same arguments as above

=
(∑

i∈N<n+1
1
)

+
(∑

i∈N<n+1
1
)

same arguments as above

= 2(n + 1) .

These auxiliary computations, finally, yield:

|S +| = |(S ∩ D) ∪ (D ∩ S )| definition of S + by (A.1)
= |S ∩ D| + |D ∩ S | − |S ∩ D ∩ D ∩ S | by axiom (C3)
= |S ∩ D| + |D ∩ S | by axiom (C1), as S ∩ D ∩ D ∩ S = O
= |S | − 2n + 2(n + 1)
= |S | + 2 .
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