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Abstract

The main contribution of this thesis is a methodology for designing, imple-
menting and verifying realistic file systems with evidence of its effectiveness
by application to a non-trivial flash file system. The goal of this research
is to demonstrate that an implementation level machine-checked proof of
correctness of a file system can be done at reasonable cost.

Our approach leverages COGENT, a purely functional, memory- and type-
safe language we helped design, that bridges the gap between verifiable formal
model and low-level code. COGENT takes a modular file system implementation
as input and generates a C implementation and a formal proof that links it to
its corresponding generated COGENT specification. COGENT specifications
inherit the purely functional aspect of the input source code, and thus they
proved much easier to reason about than the C code directly.

In order to prove the correctness of complex file system components at
reasonable cost, we decompose the functionality into a set of components such
that the correctness of each can be proven in isolation. The component proofs
are mechanically composed into a theorem that holds on the C implementation
by refinement.

To validate our approach, we designed and implemented BilbyFs, a modular
flash file system. We formally specified BilbyFs’ file system operations in
Isabelle/HOL, and proved the functional correctness of two key operations:
sync() and iget().

BilbyFs’ design demonstrates the practicality of aggressive modular de-
composition, and its COGENT implementation highlights the benefits and
feasibility of using a linearly-typed language to implement a realistic file
system. Our verification results show that we can exploit our modular design
to reason about implementation components in isolation, and that overall our

methodology drastically reduces the effort of verifying file system code.
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1 Introduction

1.1 The problem

File systems must be trustworthy because they provide critical system functionality.
Almost all user-space applications rely on the assumption that the underlying file system
conforms to POSIX standard interfaces and is bug-free. Chen et al. [Chen et al., 2011]
showed that file systems are a significant source of security vulnerabilities in the Linux
kernel. Lu et al. [2014]’s recent study of file systems maintenance patches shows that we
regularly find bugs even in mature file systems like ext3. More importantly, their study
shows that most file systems defects are semantic bugs, i.e. they require an understanding

of file system semantics to be detected and fixed.

Projects like seL4 [Klein et al., 2009] and CompCert |Leroy, 2009] have shown that
interactive formal verification can be used to assert strong correctness guarantees on
realistic system software. For instance, the sel.4 project achieved a machine-checked
proof of functional correctness for a general-purpose microkernel. This guarantees that
every behaviour exhibited by the system has a corresponding behaviour captured by the
system’s specification. The sel.4 microkernel is 8,700 source lines of C code. However,
selL4 was a 12 person years effort, which is prohibitively expensive for many application
domains. Verification will only become a practical solution to build trustworthy systems
if it becomes more affordable. The research presented in this thesis is a step toward that

goal, focussing specifically on file systems.

File systems present an interesting verification challenge because they provide a
simple interface to user applications, yet their code base is large and convoluted with
asynchronous interfaces, a lot of low-level manipulations of on-disk data structures and

complicated code paths for error handling.
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Figure 1.1: Methodology overview

1.2 Our approach

In this research we present our methodology to design, implement and verify realistic file
systems. Our methodology to build trustworthy file systems relies on two key ideas.

First, we design and implement file systems modularly such that the implementation
can be decomposed into a set of components that interact through well defined interfaces.
The correctness of each component can be verified independently by relying solely on the
interface specifications of the components it relies on. This modular decomposition enables
incremental verification of file system functionality. By proving that each component
adheres to its interface specification, the component proofs can be composed together
mechanically to produce an overall proof of functional correctness for the entire file system
implementation.

Second, we use a purely functional, linearly typed memory safe language, called
COGENT, to co-generate firstly a modular design-level formal specification of the file
system tailored to interactive verification, and secondly an efficient C implementation
of the file system. COGENT’ compiler also generates a proof that links the COGENT
specification to the C implementation; however, that work was carried out by others and
falls outside the scope of this thesis.

Figure 1.1 shows an overview of our methodology. To maximise verification pro-
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ductivity, we design file systems following aggressive modular decomposition (1). This
decomposition is recursive: each file system component may be further decomposed into
a set of sub-components on which it relies, and each of whose correctness can be verified
separately. The modular design is then implemented (2) in COGENT and uses the COGENT
certifying compiler to generate the C implementation (3) and the design-level COGENT
specifications of the file system implementation (4), and an automatic proof establishing

that the former is a refinement of the latter.

COGENT was designed to allow verification engineers to reason about the code at the
same level of abstraction as developers. For instance, C developers rarely think about
pointer aliasing. Apart from a few corner cases, developers implicitly assume that a
pointer is the unique reference to an object. Thus developers do not need to worry about
the side-effects that memory aliasing can cause. COGENT increases the level of abstraction
for reasoning about low-level code by using a linear type system that restricts pointer
aliasing and facilitates local reasoning without resorting to cumbersome machinery like

separation logic [Reynolds, 2002|.

Code that requires pointer aliasing, such as the implementation of data structures
like doubly linked-lists or red-black trees, cannot be implemented in COGENT and must
instead be implemented directly in C (5). COGENT provides a foreign function interface
allowing such data structures to be used from within COGENT code. One must manually
specify (6) and verify their implementations in order to ensure soundness, using standard
C code verification techniques |Leroy, 2009; Tuch et al., 2007; Greenaway et al., 2014;
Leinenbach, 2008|.

The foreign function interface is mainly used to access a library of manually verified
abstract data structures (ADT) written in C, such as lists, arrays and trees. This library
provides operations to search, alter, and iterate over these structures, because COGENT

does not support arbitrary loops or recursion directly in the language.

To prove the absence of semantic bugs, we specify and verify the functional correctness
of the file system. The specification (7) is a high-level formal description of the correct
functionality of each file system operation, written manually, using the Isabelle/HOL
proof assistant. We verify the functional correctness of file system operations (8) against
their high-level functional correctness specification. We leverage the file system’s rigorous
modular decomposition to incrementally prove the correctness of file system operations.
The reasoning is performed over the COGENT specifications, and applies to the file system’s
C code implementation by virtue of the compiler-generated proofs that link the two. All
proofs are machine-checked with the Isabelle/HOL [Nipkow et al., 2002| proof assistant.
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1.3 Research contributions

The main contribution of this thesis is a methodology for designing, implementing and
verifying realistic file systems. We show that, using our implementation and verification
framework, realistic file systems can be implemented and reasoned about modularly
at reasonable cost. We use BilbyFs, a flash file system we designed, as a long running
example to demonstrate that, when used carefully, design modularity does not significantly
degrade systems performance. We present a set of design principles for building verifiable
highly modular file systems (Chapter 3), with reference to BilbyFs. Since COGENT was in
development while we were designing BilbyFs, we wrote a prototype implementation in C
that we used to evaluate the performance of BilbyFs’ initial modular design by comparing
it to existing Linux flash file systems (Chapter 3).

We demonstrate that a linearly typed language can be made sufficiently expressive to
implement efficient file systems. We present a set of design patterns for implementing
a file system in a linearly typed language like COGENT in a way that enables modular
reasoning about the implementation using a proof assistant. We evaluate and compare
the performance of BilbyFs implemented in COGENT to its prototype implementation in
C (Chapter 4).

We present a technique for compactly specifying the high-level functional correctness
of file systems. We demonstrate this technique with reference to the formal correctness
specification of BilbyFs’ functionality. This specification is, to our knowledge, the first
one to capture the semantics of asynchronous writes of a POSIX file system, a critical
performance optimisation (Chapter 5).

We present a technique for modularly verifying file systems written in COGENT,
by following their modular decomposition (Chapter 6). We exercise this technique by
formally verifying that the COGENT implementation of the operations iget() and sync()
of BilbyFs refine their high-level correctness specification. We demonstrate that purely
functional COGENT specifications allow leveraging the implementation modularity to
increase verification productivity and greatly simplify reasoning about the file system logic.
Therefore, we show that our approach is practical. Finally, we use our current verification
results to estimate the effort required to complete the full verification of BilbyFs.

All the work described in this thesis has been open sourced and is available as part of
the COGENT project on github .

Thttps://github.com /NICTA /cogent


https://github.com/NICTA/cogent

9 Related Work

In Chapter 1 we presented our overall methodology for designing, implementing and
verifying file systems. Our methodology relies upon COGENT, a purely functional language
that we co-designed. COGENT is linearly typed to assist the programmer with memory
allocation and to enable the COGENT’s certifying compiler to generate efficient C code
with in-place updates from purely functional input code. At the core of our methodology,
we design the file system modularly such that the COGENT implementation can be
decomposed into a set of components that can each be reasoned about in isolation in the
COGENT-generated specifications.

Our work thus lies at the intersection of file system verification, language-based
verification and modular verification. We address these areas separately in the next

sections.

2.1 File system verification

File system verification has been a challenge of interest for the formal methods community
for more than a decade [Joshi and Holzmann, 2007|. The first attempt to formalise a file
system interface was published in 1987 by Morgan and Sufrin [1987]. They presented
an abstract specification of a UNIX file system. The specification describes file system
operations at the level of system calls. At this time it was common for file systems to
be responsible for keeping track of user-level state such as open files, seek-pointers, etc.
Contemporary operating systems support multiple file systems running simultaneously
and abstract away this bookkeeping burden within the Virtual File system Switch layer
(VFS). Bevier et al. [1995] built upon Morgan and Suffrin’s model to specify the Synergy
file system, a custom file system that supports access control on files. BilbyFs’ correctness

specification shares similarities with Morgan and Suffrin’s specification, but we specify
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the functionality of file system operations as expected by the VFS layer.

Freitas et al. [2007] formalised the correctness of the IBM CICS [IBM] file control
interface using the Z/Eves [Saaltink, 1997] prover. The CICS file control interface is a
non-POSIX interface with no directory operations and where files are manipulated at
record (i.e. small portion of a file) granularity. The specification presented in Freitas et al.
supports the "syncpoint" operation that ensures that the result of previous updates on a
file are made persistent. Freitas et al. proved that the specification is free of undefined
expressions and they specified the pre-conditions under which the semantics of each
operation is well-defined. By contrast, we prove the functional correctness — a much
stronger property — of two operations of a POSIX compliant file system, including the
operation sync() that makes in-memory pending updates persistent. As opposed to the
one of CICS, BilbyFs’ specification captures asynchonous meta-data updates, such as file
and directory creation.

More recently, Freitas et al. [2009] refined the specification of Morgan and Sufrin
[1987] to a file system implementation based on the Java HashMap object. They used
the Z/Eves theorem prover combined with Java Modelling Language (JML) annotations
to prove that the HashMap implementation is a refinement of the abstract specification.
Z/Eves is a theorem prover supporting the Z notation [Spivey, 1992|: a specification
language based on set theory, first-order logic and lambda calculus. JML is a tool-set that
gives extra formalisation support for specifying pre/post conditions and loop invariants
for Java code. The specification represents a file as an object containing attributes (e.g
size) and a sequence of bytes. The main contribution of their work is a proof of forward
simulation showing that the HashMap implementation refines the abstract file store, but
ignores several aspects of a realistic file system implementation that we aim to cover, such
as directories, error handling and block representation of files.

In the same line of research Damchoom et al. [2008]; Damchoom and Butler [2009];
Damchoom [2010] used the specification by Hughes [1989] to formalise a hierarchical file
system in Event-B. Event-B is an evolution of B with a simpler notation and a tool chain
more suitable for low-level specifications, that can be related to an actual implementation.
Their most abstract specification supports the operations create, delete, move and copy
to manipulate files and directories. Each of these operations is shown to preserve the
properties of the file system tree, such as every node in the tree has a parent. The
specification is refined multiple times to gradually introduce the notions of file/directory,
file content, permissions and file attributes such as, creation and modification times.
However, many implementation details remain unspecified such as: error handling, block

allocation, concrete storage medium layout description, etc. Although ultimately the
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Event-B model is meant to be used for automatically generating a Java implementation of
a flash file system, in their research the Event-B model was used as a guide to write a Java
implementation manually. By contrast, our methodology removes humans intervention
from the code that runs and the model that is verified. Specifically, the COGENT certifying
compiler automatically generates a low-level C implementation that can run in the Linux
kernel, and the proofs on BilbyFs’ COGENT-generated specifications hold on the C code
by refinement.

Hesselink and Lali [2009] formalised a hierarchical file system using the PVS theorem
prover [Owre et al., 1992]. They proposed a refinement proof from an abstract model of
the VFS to an inode-based file system specification. The VFS model is a partial mapping
from path to data, where a path is a sequence of names and data is an option type storing
the file content or nothing when the path refers to a directory. The VFS model comes
with with an invariant asserting that all the prefixes of the list of names forming a path in
the mapping must also be part of the mapping. The inode-based specification is another
partial mapping from inode number to inode. An inode number uniquely identifies an
inode, which is represented as a record with a field content to store file contents and a
field dir for directory entries. Directory entries are modeled as partial mapping from
name to inode number. The main contribution of Hesselink et Lali’s work is the proof
that the inode-based specification is a refinement of their VF'S model. In order to prove
the refinement Hesselink et Lali introduced an intermediate specification between the two
that has a representation of files and directory closer to the VFS model while still being
inode-based. However, the VFS model is too abstract to capture the functionality of a
VFS layer for POSIX file systems, because it lacks the notion of user-level state such as
open files, seek-pointers, etc. Similarly, the inode-based specification is still far from an
actual file system implementation. In particular, it omits errors handling and concrete
representation of data blocks; all of which we aim to verify with our functional correctness
proofs.

Arkoudas et al. [2004] published the first data refinement proof of a file manipulated
as a sequences of bytes and stored into a set of fixed size blocks. They used Athena,
an interactive theorem prover developed by the authors. Their model describes the
implementation of read and write operations more precisely than the research above,
but the overall file system remains a simplified one that supports a single directory and
assumes infinite storage capacity.

The most realistic flash file system verification work to date is Flashix [Schierl et al.,
2009; Ernst et al., 2013; Schellhorn et al., 2014]. Flashix is a userspace flash file system
based on UBIFS [Hunter, 2008] and for which the verification is on-going. Flashix is
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implemented in the KIV [Reif et al., 1998] theorem prover, which supports a specification
language based on Abstract State Machines (ASM) [Borger and Stérk, 2012]. The Flashix
verification is organised as a total of 8 refinement layers going from the top-level POSIX
file system interface to the flash storage device interface, each layer introducing more
implementation details. Several layers of their refinement stack have already been formally
verified, including the VFS layer that goes from the top-level POSIX interface to the core
file system logic interface [Ernst et al., 2013|, the flash memory abstraction that handles
eraseblock management [Pfiahler et al., 2013| and the on-flash garbage collector [Ernst
et al., 2015]. Their earlier work [Schierl et al., 2009] proved the functional correctness
of several file system operations of a model of UBIFS, using a different verification
methodology closer to Hoare-logic style proofs with pre and post-conditions rather than
refinement. Their latest work focuses on crash-safety of the eraseblock management
system [Pfahler et al., 2014]. While their ultimate goal is to generate low-level C code, the
current code generation from the ASM specifications targets Scala running on the Java
Virtual Machine in userspace with FUSE [Szeredi et al., 2010]. Hence, their work requires
trusting the code-generation phase and the large language run-time Flashix depends on,
which also implies performance overhead. Another current limitation of their work is the
lack of support for asynchronous writes.

Chen et al. [2015b] proved the functional correctness of a complete crash-safe UNIX
file system implementation called FSCQ. They present a framework for specifying and
verifying correctness properties, even in the presence of crashes. Using standard Hoare-logic
reasoning and separation logic techniques, augmented for reasoning about crash-safety,
their framework also allows them to reason about file system components in isolation.
They managed to prove a theorem saying that under any sequence of crashes followed by
reboots, FSCQ will recover the file system correctly without losing data. They implement
the file system in the Coq proof assistant |[Barras et al., 1997|, which they use to generate
a Haskell implementation that runs as a userspace file system with FUSE [Szeredi et al.,
2010]. While this work greatly advances the state-of-the-art in file system verification,
FSCQ suffers from a few important limitations that might prevent it from being used
on real systems. First, FSCQ does not support the sync() operation, hence the file
system has to wait for all disk writes to finish before each system call can return to the
user. As a result, FSCQ does not support asynchronous writes, a feature imperative for
performance!. The lack of support for sync() means that FSCQ is more than 20 times

slower than ext4 with asynchronous writes enabled when running user applications that

!Note that FSCQ does supports asynchronous disk operations within a system call, but a file
system operation must wait for all writes to commit to disk before returning to the user.
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write to the disk. Second, FSCQ’s reliance the Haskell’s run-time might prevent its use in
high-assurance systems on resource-constrained embedded devices, because it decreases
the predictability of the system. Finally, the code generation from Coq to Haskell, the
Haskell run-time and the FUSE server are all part of the trusted code base, and a single

defect in any of these may invalidate the assumptions of their proof.

Our work differ from both Flashix and FSCQ because we present a methodology for
verifying low-level file system implementations that do not require a language run-time,
and thus can run in the kernel, as a Linux module for instance. We also aim to verify

performant file system implementations that support asynchronous writes.

Provably correct crash recovery of file system has drawn a lot of attention over the
last two years [Maric and Sprenger, 2014; Pfdhler et al., 2014; Ernst et al., 2014; Gardner
et al., 2014; Chen et al., 2015b; Koskinen and Yang, 2016; Bornholt et al., 2016]. Much of
this research are complementary to ours, for instance it would be interesting to investigate
how to integrate Chen et al. [2015a]’s crash-Hoare-logic framework to our methodology
and take the verification a step further to include a crash-resilience proof for the file

system similar to theirs.

Another stream of work in the literature focuses on more automatic techniques, such as
model checking, static analysis and testing [Yang et al., 2006; Gunawi et al., 2008; Rubio-
Gonzélez and Liblit, 2011; Ridge et al., 2015; Li and Wang, 2016]. While in theory these
techniques could be used to provide similar guarantees as interactive software verification,
this has not yet been achieved in practice. Instead of providing guarantees, such analyses
are more useful as tools for efficiently finding defects in existing implementations, rather

than ruling them out altogether as we aim to.

2.2 Language-based verification

Using language-based techniques to increase the productivity of producing robust low-level
system implementations has been an active research area for several years. Muller et al.
[2000] proposed using domain-specific languages to implement robust operating system

components while fostering code re-use and extensibility.

The verified compiler CompCert [Leroy, 2009], Verisoft’s CO [Leinenbach, 2008], C-
to-Isabelle parser [Tuch et al., 2007] and AutoCorres [Greenaway et al., 2014] gives us a
formal language semantics to reason about C code using a proof assistant. All of these
provide only weak type system guarantees and force the verification engineer to reason

about low-level C intricacies when proving the functional correctness of the code.
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Cyclone [Jim et al., 2002] and CCured [Necula et al., 2005] are safe dialects of C that
ensure the absence of several common file system bugs like buffer overflows, null pointer
dereferences, and many other undefined behaviours of C. These languages, however, do
not provide a formal semantics to prove higher-level properties about the code such as
functional correctness.

Programming languages like CakeML [Kumar et al., 2014] and Dafny [Leino, 2010]
come with verified compilation, strong typing and a convenient theorem proving interface,
but they rely on a language run-time and a garbage collector whereas COGENT was
specifically designed to avoid those.

The Rust [Rust| language comes with high performance, strong type system, and
without a language run-time if used in the right subset. But Rust lacks verified compilation,
and a formal semantics, so it cannot be used as a foundation for reasoning and formal
verification.

ATS [Danish and Xi, 2014] is a ML-like functional programming language which
compiles into C. ATS has a linear type system that supports dependent types but does
not have a formal semantics, nor verified compilation.

Ivory [Pike et al., 2014| is a domain-specific language embedded in Haskell for imple-
menting programs that interact intimately with the hardware. Ivory compiles to safe C
code and is Turing-complete, but it targets the domain of programs that do not require
heap allocation of memory, and the code generation to C is unverified.

Habit [HASP project, 2010] is functional language for general system programming,
with a verified garbage collector. Although the authors aim to achieve a complete formal
description of the language, so that it can be used as a foundation for reasoning and formal
verification, in its current state, Habit lacks a formal semantics and verified compilation.

Several data description languages provide operations for converting data between
a high-level data format and a bit-level data representation. For example, Idris [Brady,
2013] is a dependent typed domain-specific language directly embedded in Haskell. Idris
compiles to C, and is implemented on top of the Ivor [Brady, 2006] theorem proving library,
providing an interface for proving functional correctness. However, Idris lacks verified
compilation and is only a data description language, thus is not suitable for implementing
file system control code. Other data description languages like PADS [Fisher et al., 2006]
and Packet Types [McCann and Chandra, 2000] have no verified compilation and no formal
semantics that can be used to reason about functional correctness of programs interfacing
with them.

The Fiat library [Delaware et al., 2015| for the Coq proof assistant supports generating

efficient, correct-by-construction abstract data types implementations in OCaml. Fiat
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targets the code synthesis of simple programming tasks found in mainstream web appli-
cations interacting with persistent data stores. By contrast, COGENT is geared towards
producing provably correct low-level file system code without a language run-time.

Linear types have sometimes proved too restrictive for general-purpose system pro-
gramming [Kobayashi, 1999; Smith et al., 2000; Walker and Morrisett, 2001; Aspinall and
Hofmann, 2002|. In COGENT, however, we only use linear types to keep track of memory
and error handling, and we use COGENT’s foreign function interface to implement loops
iterators and data structures that require escaping the restrictions of the type system. In
addition to strong typing preventing many common file system implementation errors,
COGENT’s linear type system provides support for automatically verifying the compilation
to C.

2.3 Modular verification

Feng et al. [2006] present a Hoare-style framework for modular verification of assembly
code which aims to be as general as possible. Their framework supports control operations
such as function calls/return, long jumps, stack unwinding, coroutine, context switch,
etc. The framework abstracts the control operations just mentioned in a way that allows
linking together components and proofs developed with different instantiations of these
control operations.

Vaynberg and Shao [2012] present a framework that extends from Feng et al. [2006] to
verify the functional correctness of low-level code modularly. Vaynberg and Shao applied
their framework to verify a small virtual memory manager (VMM) of about 100 lines of
C and for which the functionality is decomposed into seven components organised in five
layers of abstraction. Their framework allows specifying layers of abstraction via ASM
and custom operational semantics enabling them to change the memory model from one
abstraction to another — a feature required to verify a VMM for instance. Vaynberg and
Shao’s provides a meta-theory calculus to compose theorems developed on different levels
of abstraction, however, they report that such endeavour requires lengthy relations and
proofs|Vaynberg and Shao, 2012].

Gu et al. [2015] present a framework to reason modularly about low-level system code
implemented in potentially different languages. The framework relies on each component
functionality being described by a deep specification. A deep specification is a formal
description of the functionality of a component that captures everything we want to
know about its implementation, such that if another implementation of the component

that satisfies the deep specification is constructed, we may substitute it for the original
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component without changing the overall behaviour of the system. Similarly to Vaynberg
and Shao, Gu et al.’s deep specification framework can compose theorems developed on
different levels of abstractions and for different languages. For example, they instantiate
their framework with CLightX, a subset of the C language, and LAsm, a 32-bit x86
assembly subset similar to CompCert’s x86 machine model. Gu et al. show the practicality
of their framework by verifying three variants of the CertiKOS kernel, which is around
3,000 lines of code (C and assembly).

Much this research focus on composing proofs developed in multiple languages which
involves proving relations between different level of abstractions described by the opera-
tional semantics of each language. Since all our level of abstractions deal with the same
language and memory model, the framework we present in Chapter 6 is much simpler
than these. In addition, the methodology presented in this thesis provides a strong
theorem proving interface to reason about modularly designed file system code. Formal
reasoning about COGENT-generated specifications is done over a purely functional shallow
embedding model of the code. Such specification is much easier to read and reason about
using a proof assistant than a low-level model of the C code with a mutable memory heap
(e.g. CLightX). With purely functional specifications, producing a functional correctness
proof is greatly simplified, because we can leverage the prover’s built-in automation (e.g.

Isabelle’s rewriting engine: the simplifier) by exploiting equational reasoning.

2.4 Summary

A major part of research in file system verification relies on a language run-time and running
the file system in userspace, which implies a performance overhead, and undermines
predictability of the system, thus is not good enough for high-assurance systems on
potentially resource-constrained embedded devices. In addition, none of the research
we are aware of verified properties on a POSIX file system that supports asynchronous
writes (i.e. sync()). File systems typically buffer updates in memory, and updates are
propagated to the storage medium periodically, or explicitly via the file system sync ()
operation, meaning that they occur asynchronously. Asynchronous writes are crucial for
performance, but they complicate the file system specification and implementation.

Chen et al. [2015a] deal with an asynchronous disk interface where several disk writes
can be queued, but every file system operation has to wait for all writes to be flushed out
to disk before returning to the user.

Previous languages for writing verified code either require a garbage-collector or a run-

time, hence are not suitable for our purpose. Others do not have a formal semantics geared
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to proving higher-level properties such as functional correctness of the code implemented
in the language.

We address this by providing a language-based verification framework that does not
require a language run-time. We generated C code from COGENT as well as a COGENT
specification designed to facilitate straightforward reasoning about COGENT code, which
is an accurate model of the C code.

Previous work in modular verification of system software does not integrate easily
with existing frameworks. So we designed a verification framework to connect to COGENT-
generated specification to a high-level correctness specification. Many of these are
complementary to ours, they address the problem of linking components implemented in
different languages with potentially different memory models. Our framework is tailored
for reasoning about highly modular file system control code with simple data sharing in
cross component interfaces. Our approach is geared around equational reasoning over
purely functional shallow-embedding so that we can make the most of the prover’s built-in

automation in order to increase verification productivity as much as possible.






3 Modular Design

This chapter draws on work presented in the following papers:

o Gabriele Keller, Toby Murray, Sidney Amani, Liam O’Connor-Davis, Zilin Chen,
Leonid Ryzhyk, Gerwin Klein, and Gernot Heiser. File systems deserve verification
too! In Workshop on Programming Languages and Operating Systems (PLOS), pages
1-7, Farmington, Pennsylvania, USA, November 2013. doi:10.1145/2525528.2525530;

¢ Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam
O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, Joseph
Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Gernot Heiser. Cogent:
Verifying high-assurance file system implementations. In International Conference

on Architectural Support for Programming Languages and Operating Systems, pages
175-188, Atlanta, GA, USA, April 2016. doi:10.1145/2872362.2872404.

In Chapter 1 we presented the key ideas of our methodology to design, implement
and verify trustworthy file systems. In this chapter, we focus on the design phase of
the methodology and provide the key design ingredients required to make a file system
verifiable. We illustrate these ideas on BilbyFs, our flash file system that we use as a case
study throughout this thesis.

The complexity of modern operating systems’ storage stack makes it challenging to

specify and design a verifiable file system for several reasons:

1. File systems typically run in the context of a multiprocessor system which can

invoke operations concurrently. From a verification perspective, the complexity
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introduced by such concurrent calls is considerable. File system concurrency is hard

to specify, and even harder to verify.

2. For efficiency, file system implementations and caching mechanisms are tightly
coupled with the memory management subsystem and the Virtual File system
Switch (VFS) layer. This is not specific to one type of operating system, Windows
systems have the "File Buffering" and "File caching" layers [MSD-IO-CONCEPTS],
most unix-like systems have a buffer cache and an inode cache of some sort. Tsai
et al. [2015] note that FreeBSD, OS X, and Solaris, "all have a directory cache that

is structurally similar to Linux’s".

The interfaces through which storage stack components communicate are loosely
defined and not structured in a way that facilitates formal reasoning, as noted by
Alagappan et al. [2015]. Storage API documentation is often insufficient to formally
specify the semantics of operations, thus such specifications have to be manually

inferred from the source code with support from the developers.

3. Fully verified software is hard to produce and often imposes practicality tradeoffs
to its users. The difficulty of producing large machine-checked correctness proofs of
systems is mostly determined by the size and complexity of the implementation of
the system. In particular, it is desirable to be able to reason modularly about the

implementation by proving the correctness of each code component in isolation.

4. For file systems, we need to be very careful about not introducing performance
overhead by oversimplifying the design. The complexity of file systems is the
consequence of performance optimisations such as asynchronous writes. When
an application updates the file system, the changes are buffered in memory and
synchronised to disk later on. Synchronisation happens either when a periodic timer
is triggered or if an application directly calls sync (). Implementing asynchronous
writes is a significant source of complexity because it increases dramatically the
number of possible states that need to be considered when proving the correctness
of the code.

We make several design decisions to make file system verification tractable.

1. As explained in Section 3.1, we prevent multiple file system operations from running
concurrently by acquiring a global lock every time we invoke an entry point of the

file system.
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2. Section 3.2 shows that we can decouple the file system implementation from the
caching mechanisms so that we can focus on verifying the core file system function-
ality and leave the correctness of caching layers for future work. The resulting file
system interface is cleaner, more modular and portable. It can be easily specified
using an abstract logical representation of the file system as we demonstrate in
Chapter 5.

3. We rely on strong code modularity to manage the complexity of the implementation
by decomposing the file system functionality into a set of components each of which
can be reasoned about in isolation. We keep the verification tractable by chosing a
simple log structured design for BilbyFs where the index is only kept in memory.
Although BilbyFs’ design is simple, it supports asynchronous writes which is crucial
for the performance of the file system. We describe BilbyFs’ modular design and its

limitations in Section 3.3.

4. All our design decisions were made carefully in order to avoid introducing unaccept-
able performance overhead. We implemented a C prototype of BilbyFs modular
design. We aimed to keep the performance overhead lower than 20% compared to
other flash file systems (apart from benchmarks where fined grained concurrency

matters). We show that we achieved our objective in Section 3.4

3.1 Concurrency

Proofs about concurrent programs are much harder than proofs about sequential ones.
While there exists promising approaches to construct verifiable systems on multiprocessors,
at the moment none of them would scale to the size of a file system implementation, and
they are outside the scope of this thesis as we leave concurrency for future work.

In order to ensure sequential execution of file system code without enforcing sequential
execution of the entire operating system kernel, we write a small wrapper around each
file system operation that acquires a global lock before invoking the operation.

We put a semaphore in the file system state and invoke file system operations fsop ()

as follows:

down(&bi—wd. lock );
fsop (bi);
up(&bi—wd. lock );
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Figure 3.1: Overview of file system interactions with caches in the Linux kernel

This way, the invocation of file system operations (e.g. fsop()) is guaranteed to
be serialised. In this example, bi is BilbyFs’ state containing the semaphore used to
implement our concurrency policy.

However, some data structures like Virtual File system Switch inodes (VFS inodes;
described in Section 3.2) may be updated by other parts of the kernel (that are unaware
of the bi semaphore), concurrently to file system operations. Certain updates to these
structures must be performed with kernel preemption disabled to ensure maintenance
of VFS invariants. A good example is modifications to the i_size field, which must
be updated with kernel preemption disabled, so that it always remains consistent with
another field used internally by VFS, namely i_size_seqcount.

To avoid reasoning about synchronisation primitives in file system code, we implement
small write accessors to update inode fields that require locking or disabling kernel
preemption. We axiomatize the behaviour of these write accessors when we verify the

code.

3.2 Isolating caching mechanisms

The file systems interface is tightly coupled with the memory management subsystem and
the wirtual file system switch (VFS), which is Linux’s layer that combines the functionality
shared by all the file systems available in the kernel. For instance in Linux, file systems
must implement an interface cluttered with interactions with the inode cache, the directory
entry cache and the page cache.

Figure 3.1 gives an overview of the current architecture of part of the Linux storage
stack. The diagram is merely an attempt to define some logical boundaries between
different layers of the stack and associate a name to them. In practice, all these components
are strongly interconnected (denoted by the dotted box). For example, directory entries
located in the Directory Entry Cache contain C pointers to the inodes in the Inode cache,

which in turn reference memory in the Page cache that holds memory pages of data
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Figure 3.2: Reorganisation of caching layers for verifiability

blocks that belong to files and directories. We describe the functionality of each of these

caches in the rest of this section.

The VFS invokes the Fs Implementation (file system implementation) component
to perform operations such as reading and writing files and directories. The file system
implementation must handle all the surrounding caches directly; there is no separation

between the core file system logic and cache interactions.

In this section, we describe how we decouple file system core logic from the interactions
with Linux cache mechanisms. Figure 3.2 shows how we isolate cache interactions in
a well confined component called Cache Manager. The Core File system logic is only
invoked when the cache does not satisfy the requests made by the VF'S component. Beside
handling cache interactions, the Cache Manager also implements the global locking policy
described in Section 3.1. By contrast to Figure 3.1, in Figure 3.2 the core file system logic
is now completely oblivious to caching mechanisms; it has no direct interaction with any

of the caching components. The separation achieves three objectives:

Firstly, the core file system logic that reads and writes on-disk data structures is
now separate from cache interactions. Thus we can now reason about the former while
assuming the correctness of the latter. In this thesis, we focus on proving that the
file system core functionality is correctly implemented, leaving the verification of cache

interactions for future work.

Secondly, by decoupling the file system logic from the operating system storage stack, it
is easier then to plug our file system into another operating system with a different storage
stack, possibly based on sel4 [Klein et al., 2014], a micro-kernel with a mathematical
machine-checked proof of functional correctness. This would remove the need to trust
the Linux kernel and provide a pathway to truly dependable storage stack. Our design
produces a file system interface independent from the operating system, thus not tightly

connected to the specifics of cache mechanisms exposed by the Linux kernel.
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Finally, our restructuring of file system interfaces avoids the introduction of high
performance overhead: it does not reduce the cache hit rates, which would otherwise

unnecessarily cause more disk operations.

The Virtual File system Switch (VFS) In this paragraph, we give a quick overview of
the VFS functionality and discuss the challenges of isolating cache mechanisms from the
core file system logic.

Since the VFS interacts with a wide range of file systems, each of which has its
own custom inode format, the VFS provides a common inode abstraction that we call a
VFS inode. Once the file system core logic reads an inode from disk, it converts it to a
VFS inode which is kept in memory in the inode cache. The purpose of the inode cache
is to speed up further accesses to inodes.

As VFS inodes are shared by all file systems in Linux, it is hard to isolate Linux
specific inode manipulations from the file system logic. However, as we show in the rest
of this section, it is possible to provide an abstraction for VFS inodes much simpler than
the one directly exposed by the Linux kernel.

VEFS inodes are much more complex than their corresponding on-disk data structure;
they have their own slab allocator for efficient memory allocation; they have five different
locks to prevent concurrent access to some fields and they have a reference counter to
ensure the inode is not destroyed by one thread while another thread holds a reference for
it. VFS inodes also contain several function pointers to be filled with file system callbacks
so that the VFS code can deal with VFS inodes from several different file systems in a
uniform way. Hence, when we allocate a new VFS inode, we need to make sure that its
callbacks are consistently initialised with its type. For instance, the VFS expects directory
inodes to have the function pointer iterate () initialised with the file system readdir ()
operation, whereas for a file inode, the VFS’ expectations differ.

For the most part, the file system core logic (see Figure 3.2) treats VFS inodes as
simple data structures that match their counter-part stored on-disk. It only needs to
manage reference counters and locking primitives in a few places, typically not far from
the entry points of file system operations. This last point suggests that isolating inode

caching from the core file system logic is feasible.

Inode cache Every time an inode is read off disk, it is converted to a VFS inode and
cached in memory; until it gets evicted from the cache. Inodes can only be evicted from
the cache when the inode reference counter is zero, i.e. all user applications have closed

the file. However, it is up to the cache policy to decide when to evict the inode from
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1 static int bilbyfs create(struct inode xdir, struct dentry xdentry,
2 umode t mode, bool excl)

3

4 struct bilbyfs info xbi = dir—i sb—>s fs info;

5 struct inode xinode;

6 int err;

7

8 inode = bilbyfs new inode(dir—>i_ sb, dir, S _IFREG | mode);
9 if (IS_ERR(inode))

10 return PTR _ERR(inode);

11 down(&bi—>wd. lock );

12 err = fsop create(bi, dir, dentry—>d name.name, mode, excl, inode);
13 up(&bi—wd. lock );

14 if (lerr) {

15 insert inode hash (inode);

16 d instantiate(dentry, inode);

17 return 0;

18

19 make bad inode(inode);

20 iput (inode);

21 return err;

22 }

Figure 3.3: BilbyFs Cache Manager for the create() operation

the cache and recycle the memory it occupies. When the file system no longer needs a
VFS inode, it cannot simply free it, instead the inode needs to be marked as "bad" which
schedules it for recycling. The Linux kernel function iput() is used to decrement the

reference counter of a VFS inode and potentially free it.

The inode cache interface is very specific to Linux, so our intent is to isolate handling
of VFS inodes outside the core file system operations so that our implementation can be
verified independently of Linux. To this end, we pre-allocate VFS inodes in the Cache
Manager when they might be needed by the core file system logic, and we handle the

reference counting in our Cache Manager (see Figure 3.2).

Figure 3.3 shows the Cache Manager implementation for the create() operation.
When the VFS invokes the Cache Manager operation to create a file, it calls the function
bilbyfs_create(). bilbyfs_create() takes four arguments: the directory inode dir, a
directory entry dentry holding the name of the file to create, mode specifying a set of flags
for the file to create and a boolean value excl that can be safely ignored. The create ()
operation has to allocate an inode for the new file it creates, thus our Cache Manager

pre-allocates an inode by calling bilbyfs_new_inode(). bilbyfs_new_inode() allocates
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an inode from the slab allocator and initialises it with the right set of callbacks for the
inode according to its type. On lines 9-10, we check whether a memory allocation error
occurred, if so we propagate the error code. Lines 11 and 13 implement the global locking
policy described in Section 3.1. On line 12, we invoke the core file system logic operation
create(), that is oblivious to caching, with a reference to the newly allocated VFS inode
variable inode. fsop_create() updates inode with the values that match the on-disk
inode created by the operation.

If fsop_create() succeeds, we call insert_inode_hash() to add inode to the inode
cache. On line 16, d_instantiate() links our new inode to dentry, the cached directory
entry for the file we just created. This link is useful to tell the directory entry cache that
the directory entry is connected to the inode. We discuss the directory entry cache in the
next paragraph. The next line returns zero to indicate success. Note that because the
directory entry is now linked to inode, we need to keep the reference number incremented
so that the inode does not get evicted from the cache. When fsop_create () returns an
error, we mark the inode as "bad" on line 19, and we decrement the reference counter on
the next line, before propagating the error code.

This example shows how we isolate inode cache interactions from the core file system
logic for create(). The same principle can be applied to all operations that allocate
inodes except for lookup(), that is: 1ink(), mkdir(), symlink(). We address lookup()
shortly.

However, by pushing inode allocation into an external component, we modified the
behaviour of the file system slightly. Normally, when a file system implementation detects
an error early (e.g. invalid name for the file), it does not allocate the inode at all. By
contrast, we allocate before any check can occur. If the core file system operation returns
an error, the inode is not needed. There is little semantic difference between the two
implementations but, by allocating inodes unconditionally, our design causes a small
performance degradation. However, we only impose extra CPU cycles when an error
occurs, in which case performance rarely matters. One notable exception is lookup ()
because checking whether a file exists is a very frequent operation. We address lookup ()

next.

Directory cache and lookup() The lookup() operation is used internally by the VFS
to implement the open() system call, which provides a way to open files and directories
to user applications. The lookup() operation reads the contents of a directory to find
the inode number matching a given name and then reads the corresponding inode data

structure from disk. An inode number uniquely identifies an inode, and is used by file
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static struct dentry *bilbyfs lookup (struct inode xdir,
struct dentry =xdentry,
unsigned int flags)

{
struct bilbyfs info xbi = dir—i sb—>s fs info;
struct inode xinode;
ino_t inum;
int err;
down(&bi—>wd. lock );
err = fsop lookup ino(bi, dir, dentry—>d name.name, &inum);
up(&bi—wd. lock );
if (err = —ENOENT) {
return NULL;
}
if (lerr) {
inode = bilbyfs iget(bi, inum);
if (!IS_ERR(inode)) {
d_add(dentry, inode);
return NULL;
}
err = PTR_ERR(inode );
}
return ERR_PTR(err );
}

Figure 3.4: BilbyFs Cache Manager for the lookup() operation

systems to logically link file system objects together on the medium! (e.g. link a directory
entry to an inode).

In most file systems the lookup() operation is very costly, because it requires at least
one disk read operation to locate the name in the directory and another to read the
inode itself. Thus, it is essential to cache directory entries and inodes to speed up name
lookups. The directory entry cache is largely handled by the VFS and the file system
implementation is mostly oblivious to it. For example, when a directory entry exists in
cache for a file, the VFS does not call the file system operation lookup() at all. The VFS
caches the result of lookup() operations in the directory entry cache even if they return
an error indicating the file does not exist. Such entries, called negative directory entries,
record the fact that a file was not found by lookup() in order to speed up upcoming

identical requests |Tsai et al., 2015].

IThroughout this thesis, we use the term medium to refer to the storage medium that could
be a disk or a flash device.
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As explained earlier, the first step of a lookup() request is to find if there exists a
directory entry that matches the name passed as argument and extract the inode number
it points to. Once the inode number is known, file systems look up the inode cache to
check whether there is already a copy of the inode in memory. If not, an inode is allocated
in memory and initialised with the values stored in the inode read from disk. The fact
that lookup() has to probe the inode cache after reading from the disk and possibly
allocate a new VFS inode, makes it difficult to isolate interactions with the inode cache.

Our solution to completely isolate inode cache mechanisms is to break up the Linux
lookup () operation into two sub-operations: iget() and lookup_ino(). Both operations
provide core file system functionality. lookup_ino() finds the matching directory entry
on-disk, and returns the inode number associated with the entry or an error if it does not
exist. iget () merely reads an inode from disk given an inode number as argument.

Figure 3.4 shows the Cache Manager code for lookup(). bilbyfs_lookup() is invoked
when an application attempts to open a file or a directory. The operation takes three
arguments: dir the directory inode; dentry a directory entry holding the name of the file

2. dentry is "negative", meaning

to look-up and flags that can be safely ignored here
it is not linked to an inode. For historical reasons, file systems can allocate their own
directory entry and discard the one passed as argument. If a file system decides to do so,
it simply returns the newly allocated directory entry. In our case, unless an error occurs,
lookup () always returns NULL to indicate that the file system did not allocate its own
directory entry. VFS detects whether the file was found or, not by checking whether the
directory entry is still negative i.e. is not linked to a VFS inode. On line 11, we call the
core file system logic function fsop_lookup_ino (), which takes four arguments: bi the file
system state; dir the directory inode; the name of the file to lookup; and &inum a reference
to a local variable to be filled with the inode number, if the operation is successful. If
fsop_lookup_ino () returns an error code, we use ENOENT (no entry found) to indicate that
the name was not found in the directory. On lines 13-14, we return NULL instead of ENOENT
because, as mentioned earlier, we want the VFS to cache the fact that no file with such
name exists. The condition on line 16 is true if Iookup_ino () was successful. In this case
we call a helper function bilbyfs_iget () that will return the inode with inum as inode
number, either by fetching it from the inode cache or by reading it from the disk. If the
iget () operation is successful, we link the directory entry to the returned inode using
d_add and we return NULL. On line 18, we use Linux’s macro IS_ERR to detect whether the

2The flags indicate what part of the Linux VFS is calling lookup allowing 1ookup () to behave
differently when it is called from the open(), create () or rename () system calls. The only file
system that uses these flags in the Linux kernel is NFS.
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static struct inode xbilbyfs iget(struct bilbyfs info xbi,
unsigned long inum)
{

struct inode xinode;
int err = 0;

inode = iget locked (bi—>vfs sb, inum);
if (!inode)
return ERR_PTR(—ENOMEM) ;
if (!(inode—>i state & I NEW))
return inode;
down(&bi—wd. lock );
err = fsop iget(bi, inum, inode);
up(&bi—wd. lock ) ;
if (lerr) {
init inode by type(bi—>vfs sb—>s bdi, inode);
unlock new inode(inode);
return inode;

}
iget failed (inode)
r

return ERR PTR(err);

}

Figure 3.5: BilbyFs helper function Cache Manager lookup ()

inode pointer is used to encode an error. If it is we convert the error code to an integer

on line 22 and convert it back to a pointer of different type on line 24.

Figure 3.5 presents bilbyfs_iget (). Its purpose is to return a VFS inode given the
inode number inum passed as argument. If the inode is in the inode cache, we fetch it
from the cache, otherwise we read from disk. The VFS provides iget_locked () to retrieve
an inode from the inode cache. When the inode is missing in the cache iget_locked ()
allocates a new inode and returns it. Thus, the only reason iget_locked() might return
an error, i.e. NULL, is when a memory allocation error occurred. We handle this case on
lines 8-9. To distinguish between a cache miss and a cache hit, we need to check the
I_NEW flag in the i_state field which is only set for newly allocated inode. If we hit the
inode cache, we can return the inode directly from the cache (lines 10-11). Otherwise,
we read the inode from disk by calling the file system core logic function fsop_iget ()
on line 13. When successful, fsop_iget () returns zero. Before returning the inode to
the VFS, we need to initialise the set of callbacks according to the type of the inode.
We do so on line 16 by calling init_inode_by_type. On the next line, the VFS function

unlock_new_inode () clears the I_NEW flag while following the appropriate locking rules.
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The fully initialised inode is returned on line 18. When fsop_iget () returns an error, we
simply invoke VFS’ iget_failed() function to mark the inode as bad and we release it

so that it gets recycled by the cache.

Page cache The last obstacle to completely isolate cache mechanisms from the file
system logic is the page cache. The page cache speeds up accesses to disk blocks that
have been read or written to in the past. It works by mapping blocks to memory pages
and bookkeeping these in memory so that they can be accessed quickly given an index in
a file.

Similarly to the directory entry cache, the VFS checks whether a block is available
in the page cache before invoking a file system operation to read it. Hence, file system
implementations do not need to fetch a page from the cache in order to satisfy a request.
However, they need to populate the page cache.

Due to the proximity of the page cache with the virtual memory manager, handling
page cache interactions in file system code is a very hazardous task. The file system must
make several memory manager API calls in order to put a page in the page cache. The
semantics of many of these API functions are undocumented. As reported by Gorman
[2007]: "Virtual Memory is fully understood only by a small number of core developers".

Figure 3.6 shows how the Cache Manager deals with the page cache for the readpage ()
operation. When an application reads a file, it passes a buffer that must be filled with
data read from disk. The VFS handles the read() system call by calling readpage () as
many time as needed to read the file in page-size chunks.

The readpage () function is implemented by bilbyfs_readpage() which takes two
arguments: filep, a pointer to a VFS structure representing files, and page, a pointer to a
memory page. The function is expected to return zero when successful and an error code
otherwise. In order to access the data referenced by page, we need to map the page in the
current address space. We do so by calling the function kmap (), which returns the address
at which the page was mapped. On line 10, we call the core file system logic function
fsop_readpage () to read the data blocks of inode at index page->index. page->index is
the index of the page if we were to divide the data stored in the file in chunks of the size
of a page. fsop_readpage () stores the blocks read in the memory page referenced by page.
Our core file system logic interface is designed such that when fsop_readpage () does not
find any data block at the index passed as argument, it returns ENOENT. However, the
VF'S expects readpage () to return zero even when no data block was found, so we convert
the ENOENT error to the value zero. This choice is purposeful to allow fsop_readpage() to

better support verification, by more precisely constraining its behaviour for each error
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static int bilbyfs readpage(struct file xfilep , struct page =*page)
{

struct inode xinode = page—>mapping—>host ;

struct bilbyfs info xbi = inode—>i sb—>s fs info;

void xaddr;

int err;

addr = kmap(page);

down(&bi—wd. lock );

err = fsop readpage(bi, inode, page—>index, addr);

up(&bi—wd. lock );

if (err = —ENOENT)
err = 0;

if (err) {
ClearPageUptodate (page);
SetPageError (page);
flush dcache page(page);
kunmap (page ) ;
unlock page(page);
return err;

}

SetPageUptodate (page);
ClearPageError (page);
flush dcache page(page);
kunmap (page ) ;

unlock page(page);
return 0;

}

Figure 3.6: BilbyFs Cache Manager readpage () operation that interacts with the page-
cache

code. By returning a specific error code, we can easily differentiate between an improper

request for reading a non-existing block and a successful one.

When fsop_readpage () returns an error, we need to carefully update flags to indicate
to the page cache what to do with the page. On line 15, we indicate that the page
is not up-to-date, meaning that the page cache still needs our support to retrieve its
contents from disk. On the next line we set the self-explanatory error flag to the page.
flush_dcache_page () flushes the CPU data cache line for page. We unmap page on line
18, and we unlock the page so that it can be used elsewhere and finally we propagate the
error code. The success case is very similar except that instead of clearing the up-to-date

flag, we set it, and we do the opposite for the page error flag.

By doing all the page cache handling in bilbyfs_readpage () and only passing a pointer
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to the actual memory page to be filled in to fsop_readpage (), we removed all interactions
with the page cache from the core file system logic.

The same idea is applied to isolate page cache mechanisms from the VFS operations
write_begin(), write_end() and write_page(). The rest of file system operations do not
interact with any VFS caches, so their Cache Manager wrapper only implements the

concurrency policy described in Section 3.1.

Portability An earlier version of BilbyFs was successfully ported to a proof-of-concept
VFS implementation running on CAmkES [Kuz et al., 2007], the component platform
for micro-kernel based operating systems. Of course, we had to use compatible data
structure interfaces for both platforms in order to compile with no source code change.
In particular, VFS inodes of both platforms must have the fields accessed by the core file
system logic. The VFS implementation on CAmKES is significantly simpler than Linux’s.
There is no directory entry cache and the inode cache is greatly simplified. Yet we were
able to run the file system with very little modification. In fact the only modifications we
had to make were to fix bugs uncovered by the difference between Linux and CAmkES
environments. For instance, BilbyFs was not initialising all the fields of a VFS inode
and it turned out not to cause any problem on Linux since its VF'S implementation was
initialising these fields by default. The fix consisted of fixing BilbyFs to initialise the field
to the right value.

Although our focus in this thesis is on BilbyFs and the storage stack for raw flash file
systems, all the ideas presented so far can be applied to the storage stack for block file

systems too.

3.3 Design Modularity

We might reasonably expect that the benefits of software engineering principles like
separation of concerns |Dijkstra, 1982] and information hiding [Parnas, 1972] to also apply
to verification. If a developer can decompose file system functionality into components that
can be specified and implemented in isolation, proving the correctness of each component
can in principle also be done in isolation.

An examination of Linux file systems suggests that their C code is naturally amenable
to modular decomposition. File systems typically manipulate a large state which is passed
around as a pointer to a C structure with several fields. Functions that only operate on

a few fields of the state, often take the whole state as pointer. By contrast, a carefully
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designed file system could be decomposed modularly, such that each component of the

decomposition only takes the part of the state it needs to provide its functionality.

Design modularity is a key aspect of our approach. As we demonstrate in Chapter 6,
it allows us to reason about components of the file system in isolation which is highly
desirable for managing the proof effort and increasing verification productivity. We
decompose the implementation into a set of (logical) components that communicate
through well defined interfaces specified by simple abstractions. When designing verifiable
components we often have to manage a trade-off between simplicity and efficiency of the
implementation. By structuring the system this way, we aim to obtain a design that
enforces strong separation of concerns between components and facilitates both formal
and informal reasoning, without sacrificing performance. In the rest of this section we
describe the modular decomposition of BilbyFs and we discuss design decisions we made
to facilitate modular reasoning about the file system functionality. In Section 3.4 we
evaluate the performance of our modular design by showing that BilbyFs performance is

within 20% when compared to the most similar existing Linux flash file systems.

BilbyFs introduction

BilbyFs targets small safety critical embedded systems that require strong reliability
guarantees on the storage. BilbyFs is a highly modular flash file system that combines
the design simplicity of JFFS2 |Woodhouse, 2003] with the runtime performance of
UBIFS [Hunter, 2008]. Many of the design decisions we made when designing BilbyFs
were informed by a careful examination of the strengths and weaknesses of these two file
systems. BilbyFs is built on top of the flash abstraction layer UBI [Gleixner et al., 2006]
and is designed to live underneath the virtual file system switch (VFS) layer described in
Section 3.2. When BilbyFs is plugged into the Linux kernel, user applications can use it
via the standard POSIX file system interface. BilbyFs supports all operations specified by
the POSIX standard, including symbolic links and hard links. The current implementation
of BilbyFs does not support extended attributes, but this decision was made in order
to reduce implementation effort. There is no fundamental limitation preventing us from

implementing such a feature.

To facilitate compositional verification, we make sure that components communicate
through well-defined interfaces. Whenever it can be done without unacceptably sacrificing
performance, we trade design flexibility for verification simplicity, by avoiding complex

component interactions involving callbacks.
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Figure 3.7: Internal structure of a NAND flash device, pages in eraseblocks must be
written sequentially

Flash file systems

Raw flash devices, which are mostly found in embedded devices, provide a different
interface to file systems than the more commonly used rotational disks or solid state
drives (SSDs). Rotational disks and SSDs are block devices that provide an interface
exposing an array of blocks; typically of size 4 K each. Blocks are the minimum data unit
that a disk file system can read or write. Each block can be randomly accessed via its
block number.

By contrast, raw flash devices provide a more restrictive interface. There are two types
of such flash devices: NAND and NOR. Since NAND flash devices are a lot more common
than NOR ones, we focus on NAND flash. Nevertheless, BilbyFs should transparently
support NOR devices thanks to the UBI [Gleixner et al., 2006] flash abstraction.

The internal structure of NAND Flash devices is more complicated than disks. They
are made of an array of eraseblocks; typically of size 512 K each, i.e. much larger than
disk blocks. An eraseblock is itself an array of pages that must be written in sequential
order. The minimum unit for reading or writing data to the flash is a page, typically of
size 4K, i.e. similar to a disk block. Some NAND flash devices have a small spare area in
every page, called the out of band area. The out of band area is typically 1/32 of the
page-size and it can sometimes be used by file systems [STLinux].

Figure 3.7 shows the internal structure of a NAND flash with the separation between
eraseblocks and flash pages. The key difference between disks and flash devices is that
the latter’s interface to write to the device is more restrictive. Pages in eraseblocks
can be read randomly but, as mentioned earlier, they have to be written in sequential
order. Another limitation of the NAND flash interface, is that it forbids the file system
to overwrite a page until the entire eraseblock has been erased.

Erasing damages an eraseblock permanently and the operation is two orders of

magnitude slower than writing a page [Hunter, 2008|. An eraseblock can typically be
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Figure 3.8: Log representation with file system objects and the index

erased about 100,000 times, before the wear begins to deteriorate its integrity.

To circumvent these restrictions flash file systems write data out-of-place and spread
writes over the entire flash device as much as possible, in order to level the wear of the
flash across all eraseblocks and minimise the number of erasures. This concept, named
wear levelling, is transparently implemented by UBI, which we describe later in this

section.

Log-structured flash file systems

BilbyFs is a log-structured [Rosenblum and Ousterhout, 1992| flash file system. The
log-structured file system design is a natural fit for raw flash devices, because it naturally
accommodates out-of-place updates imposed by the flash interface.

The basic idea of log-structured file systems is simple: the entire medium is treated as
a sequential circular log. Every update of the file system appends a record to the log. A
record can consist of file system objects such as data blocks, inodes and directories, or any
meta data managed by the file system. In order to be able to retrieve information from
the log, the file system maintains indexing information in a structure called the indexz.
When stored on medium, file systems objects link to each other using logical addresses.
The index maps the logical address of each object to its on-medium physical address.

Figure 3.8 shows the log with file system objects and the logical links between them.
For now, we can assume that the log is not circular, later in this section we explain how
flash file systems implement a circular log. Every time an object is appended to the log,
its address is recorded in the index. Links between objects in the log go via the index.
For instance, the inode labelled "a" at physical address 3 is referenced by the directory
entry located at physical address 4. When stored on medium, the directory entry and
inode "a" are linked with logical addresses. The file system needs to look up the index in

order to find that the physical address of inode "a" is 3.
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Figure 3.9: Update file system object in the log and the index

When a file system object (e.g. an inode) is updated, a new instance of the object
that supersedes the previous one is appended to the log. As a result, the index is updated
with the new physical address of the object. Figure 3.9 shows the modifications incurred
by updating the inode "a" in the log, with updated parts of the diagram colored red. The
address of inode "a" stored in the index is updated to 5.

Notice that the old version of the object remains in the log even though it is not
referenced by any file system object anymore. We call such objects obsolete, and we
color them in grey in our diagrams. Since the file system keeps adding objects to the log,
eventually the log will be full, and a large part of it will be occupied by obsolete objects.
We call the space wasted by obsolete objects dirty space. Log-structured file systems need
to recycle dirty space by implementing garbage collection. In order to garbage collect
efficiently, the file system needs to keep track of how much free space is available on
medium, and how much dirty space is occupied by obsolete objects.

Before we explain garbage collection, we describe the log more precisely and we explain
how it is made circular. The log is made of segments, and a segment is typically an
eraseblock for a flash file system. The file system keeps track of a list of free segments
and when the log is full, it allocates the next segment to use for the log from this list. A
segment is also the unit of garbage collection. When a segment contains a lot of dirty
space, it is recycled by appending the few live objects it contains to the end of the log, so
that they supersede their previous version. This process creates a segment full of dirty
space (i.e. all its objects are obsolete), which can safely be removed from the log, erased
and added to the list of free segments.

Figure 3.10 shows the log with one segment containing a lot of dirty space (i.e. grey
objects). When the garbage collector decides to clean this segment, it copies its live
objects at the end of the log (segment 2), it updates the index so that all the logical
links remain valid and do not reference segment 0 anymore. Finally, the garbage collector

removes the segment from the log.
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Figure 3.10: Garbage collection workflow

Note that the segments are not necessarily consecutive eraseblocks on flash. Since
garbage collection can shuffle segments around by removing dirty segments and allocating
empty ones, the file system needs to store some metadata in each segment to indicate
its position in the log. A common technique used in flash file systems, and taken on by
BilbyFs, is to store an increasing sequence number (64 bit machine word) in each log
entry. Then, by reading the first log entry of each segment we can reconstruct the order

in which they were allocated.

Memory vs on-flash index

One of the main sources of complexity in UBIFS is to keep the index synchronized in
memory and on flash [Hunter, 2008|. Storing the index on flash is hard, because just
like any other metadata, it must be updated out-of-place. We examined the source code
of UBIFS and found that a large fraction of its code (UBIFS full source code is 22 K
source lines of C code) is devoted to updating the index on flash. By contrast, in BilbyFs
we opted for simplicity: we only keep the index in memory, which allows us to keep of
BilbyFs under 4 K source lines of C code. One obvious disadvantage to this is that the
index has to be reconstructed at mount time by scanning the flash. We describe how
we speed up BilbyFs” mount time with summaries later in this section, and we evaluate

mount time performance in Section 3.4.

BilbyFs Modular decomposition

Figure 3.11 shows the design of BilbyFs. The FsOperations component implements the
interface expected by the Cache Manager wrapper code, as described earlier in Section 3.2.

The FsOperations component is a client of the ObjectStore component. ObjectStore
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Figure 3.11: BilbyFs modular decomposition

provides a uniform API for storing generic objects on flash, which FsOperations uses
to implement file system objects such as inodes, directory entries and data blocks.
This decomposition confines the key file system logic to FsOperations, and makes that
component independent of the on-medium representation of file system objects.

ObjectStore is used to store file system objects where each object has a unique identifier
that can be used to retrieve, modify or delete the object. ObjectStore enables grouping
several object updates in a transaction to ensure atomicity of file system updates when
a crash happens. In order to increase throughput and meta-data packing, ObjectStore
provides an asynchronous interface to write objects, i.e. updates are buffered in memory
and synchronised to flash later on, either when a periodic timer is triggered, or when
the client calls the sync() operation to flush the buffer to flash. ObjectStore relies on
two components: the Index, which stores the on-medium address of each object and
FreeSpaceManager (free space manager). FreeSpaceManager keeps track of how much
dirty space is present in each eraseblock. As explained earlier in this section, the dirty
space is the amount of obsolete data resulting from overwriting or deleting objects out-of-
place. FreeSpaceManager also serves as a bookkeeper for unused eraseblocks and deleted
objects in the store.

ObjectStore’s implementation itself relies on the Serial component to serialise and de-
serialise file system object to and from a buffer, and the UBI layer to read, write and erase
flash blocks. Finally, the garbage collector which in turn depends on FreeSpaceManager,
maximises the space available for the ObjectStore component by recycling eraseblocks
with a lot of dirty space. Ideally, the garbage collector would run whenever the system
is idle and stop when file system operations are invoked concurrently. But since our
verification technology does not support reasoning about concurrency, the current design

calls the garbage collector when the file system runs out of free eraseblocks. This design is
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Figure 3.12: Create operation on-top of ObjectStore

similar to UBIFS, which also starts garbage collecting when it runs out of free eraseblocks.

FsOperations: File System Operations

ObjectStore provides a convenient abstraction to implement file system operations that
manipulate files and directories. The logic of these operations can be described concisely
by a succession of updates on inodes, directory entries and data blocks. For the file system
to remain consistent when a crash occurs, these updates are grouped into a transaction
and the implementation of ObjectStore must ensure transactional semantics when writing
to the flash. By transactional we mean two properties of database transactions: atomicity,
that is no transaction is partially applied; and durability, meaning that once committed,

a transaction is guaranteed to persist.

FsOperations’s create implementation We present the create operation as a worked
example of the use of the ObjectStore abstraction to implement file system operations.
Figure 3.12 shows a diagram depicting the modification applied to the ObjectStore to
create a file. In this example, the file system contains two directories, /tmp and /etc.
/etc/passwd is a file composed of three data blocks of file contents. Red colored objects
are those that are added or modified by the create operation. Circles, arrows and squares
respectively represent inode, directory entries and data blocks. In Figure 3.12, we create
a new file clams in /tmp. The operation involves adding a new directory entry clams
pointing from the parent inode (inode number 27) to our new inode (inode number 28).
The parent inode is red, because when creating a file, the time-stamp and the size of
the parent directory inode gets updated. Thus the create operation implemented on top

of the ObjectStore simply writes a transaction touching three file system objects. The
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transaction combines three modifications: it updates the parent inode, it adds a new
inode and a new directory entry.

The code of the create operation from our C implementation of BilbyFs is shown in
Figure 3.13. Our object store abstraction greatly facilitates the implementation of file
system operations. As a result, the source code for the core logic of the create operation
create() is only 50 source lines of C code.

Recall from Section 3.2 that file system operations, like create(), are invoked by
our Cache Manager, which is itself called by the VFS. VFS inodes have the C type
struct inode. Top-level file system operations can update VFS inodes by dereferencing
the pointers passed as arguments. They also return a negative error code to indicate that
an error occurred. Much of the complexity of create() comes from error handling and
manipulating VFS inodes. The rest is implementing the logic of file creation.

The operation takes five arguments: the file system state (bi), the directory VFS
inode (dir), the name of the file to create (name), the mode indicating permissions and
other flags for the file (mode) and a newly allocated VFS inode to be used for the file to be
created (vnode). The file system state is of type struct bilbyfs_info which combines the
state of BilbyFs top-level components depicted in Figure 3.11: FsOperations, ObjectStore
and GC. In turn ObjectStore’s state combines the states of the sub-components it relies
upon. The VFS expects that the value of all parameters except for vnode and bi remain
unchanged, when the operation returns an error. For instance, it is incorrect for create ()
to modify a field of the directory inode dir, if the operation returns an error. By contrast,
vnode’s value is irrelevant as the VFS discards it, when an error occurs. We present a
formal specification of such behaviours in Chapter 5.

create() returns the appropriate error code if the file system is in read-only mode on
line 12-13. On line 15, inode_init () initialises vnode passed as argument with a newly
allocated inode number and other inode parameters, some of which are copied from dir.
The binary "or" with S_IFREG ensures that the type of vnode is a regular file. inode_init ()
returns an error code when the file system fails to allocate a new inode number for the
file, which is propagated on lines 16-17.

On lines 18-21, we store the new directory entry that links the parent inode to the
file inode in the ObjectStore. For reasons we explain in the next sub-section, we do not
directly store directory entries in the ObjectStore, but instead we store dentarrs (directory
entry arrays). Conceptually, BilbyFs directories comprise a collection of dentarrs, where a
dentarr is analogous to a directory entry in traditional file systems. In order to provide
quick lookup of an entry in a directory, each BilbyFs directory entry is indexed by the hash

of the name stored in entries. A dentarr can store multiple directory entries that happen to
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int fsop create(struct bilbyfs info xbi, struct inode xdir,

{

}

const char xname, umode t mode,
struct inode xvnode)

struct timespec mtime, ctime;
struct obj dentarr xdentarr;
obj id id;

int sz change;

int err;

void xobjarr [3];

if (bi—is ro)
return —EROFS;

err = init inode(bi, dir, vnode, S IFREG | mode);

if (err)

return err;
id = dentarr id_init(dir—>i_ ino, name);
dentarr = dentarr read or_ create(bi, id);

if (IS_ERR(dentarr))
return PTR_ERR(dentarr);

sz _change = dentarr_ﬁadd*dentry(bi, dentarr , vnode, name);
if (sz_change < 0) {
err = sz_change;

} else if (dir—>i_size > BILBYFS MAX FILESIZE — sz _change) {
err = —HEOVERFLOW;

} else {
objarr [0] = dentarr;
mtime = dir—>i_ mtime;
ctime = dir—>i_ ctime;
dir—>i size += sz_change;
dir—>i mtime = vnode—>i ctime;
dir—>i ctime = vnode—>i ctime;

pack obj inode(bi—>inode obj, vnode);
objarr [1] = bi—>inode obj;

pack obj inode(bi—>dir obj, dir);
objarr [2] = bi—>dir_obj;

err = ostore write(bi, objarr, 3, OSW _NONE);

if (err) {
dir—>i size —= sz _change;
dir—>i mtime = mtime;
dir—>i ctime = ctime;

}
}
kfree(dentarr);
return err;

Figure 3.13: BilbyFs implementation of create
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give the same hash for different names, i.e. they handle hash collisions. dentarr_id_init ()
makes an object identifier (id) to access the dentarr that will contain our new directory
entry establishing a link from the parent inode to the new one. The directory entry carries
the name of the newly added file. If there exists a dentarr with the same hashed name
already, dentarr_read_or_create() reads it from the object store. Otherwise the function
allocates a new dentarr with this identifier. dentarr_read_or_create() returns a pointer
to the dentarr object when the function is successful. Otherwise, it returns an error code
when a memory allocation error occurs. The C macro IS_ERR allows detecting whether

the value returned by the function is a valid pointer or an error code.

On line 22, dentarr_add_dentry() checks whether the name is valid (e.g. not too
long). If it is, we append a new entry and we return the number of bytes occupied by the
new entry in the directory. Otherwise, an appropriate error code is returned. On lines
25-26, we check that the new size of the directory does not exceed the maximum size of
file in BilbyFs. From lines 27 to 42 we create an array of file system objects objarr that
will form a transaction, i.e. either all objects will be updated or none despite possible
failures, such as a crash or a memory allocation error. The first object of objarr is the

updated dentarr that we initialise on line 28.

On lines 30-34, we update the size and timestamps of the directory VFS inode and
keep a copy of the previous value. That copy will be used to undo the in-memory changes,
if an error occurs when updating the object store (lines 43-47). On lines 36-40, we convert
the directory and file VFS inodes to file system objects that can be passed to the object

store.

Finally on line 42, we invoke the operation ostore_write() to update the object store.
The function takes the file system state bi, the array of objects forming the transactional
update, its length, and a flag that can be used to specify options (e.g. force a synchronous
update). 0OSW_NONE indicates that no option is enabled. Finally, we free dentarr, the only

allocated object on line 49.

This completes the implementation of create (). We apply the same ideas to implement
all file systems operations on top of the ObjectStore, namely: unlink, mkdir, rmdir,
symlink, readdir, link, readlink, read, write. BilbyFs symbolic links are merely a restricted
kind of file: they can only have a single data block attached to them and the I_LNK must
be set in their mode attribute to indicate that they are symbolic links. The operation

sync () is trivially implemented by calling ostore_sync() presented in the next section.
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Figure 3.14: High-level description of transaction atomicity.

ObjectStore: Object store

The goal of the ObjectStore is to provide an asynchronous, transactional interface to store
file system objects to the flash. The interface allows retrieving, updating and deleting
objects from the store. File system objects are uniquely identified with an object identifier
that we use to access the store. When the client updates the object store, the changes
are written to a buffer in memory called the write buffer. The changes stored in the write
buffer get applied to the flash when the client of the interface calls ostore_sync(). The
write buffer is a log-structured segment, i.e. it is formatted as a sequence of transactions,

where a transaction is an array of objects.

Figure 3.14 depicts the mapping between the abstract representation of the file system
and the write buffer containing the updated objects packed in a transaction. We reuse
the example presented earlier in this section where the file "/tmp/clams" is created by
updating the parent inode (inode 27), and by adding a directory entry and a new inode
(inode 28). All three objects, coloured red, are combined into a transaction serialised
into the write buffer. The write buffer is flushed to flash using the UBI operation to
write a buffer into an eraseblock. Although such writes are not atomic, the atomicity of

transactions is guaranteed by the BilbyFs crash recovery process.

When a crash occurs, BilbyFs checks the integrity of all the transactions in the log



40 CHAPTER 3. MODULAR DESIGN

segment that was used to store the write-buffer contents before the crash. We discard all
the transactions after the first transaction that fails the integrity check, by only keeping
the valid part of the log segment. The segment is cleared of the invalid transactions
using the UBI operation that replaces the contents of an eraseblock atomically. This also
ensures that the file system is able to recover from crashes that occur during the crash

recovery process.

Object identifiers and Dentarrs Object identifiers uniquely identify file system objects
to be accessed in the store. We use the ObjectStore to access three types of objects: inode,
data blocks and dentarrs (directory entry arrays). We can easily build a small unique
identifier (e.g. 64 bit integer) for both inodes and data blocks, by encoding a combination
of block offset and inode number. But directory entries are harder to uniquely identify,
because their uniqueness depends on the name they carry, and the name does not fit in a
small fixed size identifier. One way to circumvent this issue is to use a hash of the name
as identifier, however, this requires us to handle hash collisions. In BilbyFs we handle
such hash collisions by storing an array of directory entry (dentarr) instead of a single
directory entry. The array stores all directory entries that belong to the same directory
whose hashed names collide.

Object identifier
64 0

/32 bits | | 29 bits ]
7
inode number ‘

dentarr hash name

data block offset
3 bits, object type: inode, dentarr, data block

Figure 3.15: File system objects identifier encoding

Figure 3.15 depicts the bit format for file system object identifiers, which is similar to
that of UBIFS node identifiers [Hunter, 2008]. The first 32 bits (the most significant bits)
are used to store the inode number. Depending on next the three bits that determine the
type of the object, the last 29 bits are used to store either the hash of the name if the
type is dentarr, or a data block offset if the type is data block. For dentarr identifiers,
the inode number in the first 32 bits corresponds to the inode number of the directory
the entries belong to. When the object type is an inode, the last 29 bits are zeroed. The
values for the inode, data and dentarr types are respectively: 0, 1, 2. Note that with
three bits, we can encode eight different types of objects, which is more than what we

need for BilbyFs. The extra bit enables us to add other types of objects such as extended
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attributes, while preserving backward compatibility.

Ordered Object identifiers
type

0 .inode number extra bits
26 2| 0x0000000
26 5| 0x0000000
26 5| 0x0000001
26 S| 0x0000002
27 2| 0x0000000
= 5 hash("clams")
27 g Oxdala6100
28 2| 0x0000000
OXFFFFFfrere

Figure 3.16: Ordered object identifiers matching a subset of Figure 3.12 objects

One of the key properties of the identifier format is that an identifier for an inode
always has a lower value than the identifiers for objects that belong to it. For instance,
for a file inode, all the identifiers of data blocks belonging to that file will be between
the inode identifier and the next inode identifier. The same holds for directory inodes as
shown in Figure 3.16. This ordering is important for enabling efficient object deletion.
BilbyFs also relies on this ordering to list directories: we begin with the directory inode
identifier and we iterate through the dentarr identifiers until we have exhausted all the
dentarrs in the directory. We now describe the interface exposed by the ObjectStore to

access file system objects, using their identifiers.

ObjectStore’s interface ObjectStore provides the following interface:

e ostore read: takes an object identifier as argument and returns a pointer to the

requested object. If the object does not exist, ostore_read() returns an error code.

e ostore write: takes an array of objects (a transaction) as argument and for each
object it adds it (if it does not already exist) or overwrites the existing one with the
same identifier. ostore_write() also supports writing deletion objects that can be

used to delete other objects. Although all the changes are made visible to a client
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of the interface as soon as ostore_write () returns, they are only made persistent

once ostore_sync() is invoked, or when the buffer is full and needs to be emptied.

e ostore sync: writes the write-buffer, i.e. the in-memory buffer storing pending
transactions, to the flash. This operation waits for the changes to be committed to

flash before returning.

e ostore next oid: takes an object identifier as argument and returns the next
identifier in the index. If the argument is the last identifier in the index, nil0bjId
(-1) is returned. This operation is used to iterate over directory entries when listing

a directory.

e ostore erase: erase the eraseblock given the eraseblock number passed as argument.
This operation is only used by the garbage collector when recycling obsolete data
from the log. The garbage collector must ensure that there are no live objects in

the eraseblock passed as argument before calling this function.

e ostore scan objs: takes an eraseblock number and reads all the objects stored in
the eraseblock. This function is used internally by ObjectStore when recovering

from a crash and by the garbage collector.

Deletion objects One of the main challenges in designing the ObjectStore abstraction
was to provide an efficient way to delete objects. A naive design would be to provide
an operation that deletes an object given an object identifier. This design works, but
would lead to poor performance in practice, because some operations need to delete
several file system objects at once. This means that they would have to iterate on objects
using ostore_next_oid, hence repeatedly searching the index at each call. For instance,
when a file gets truncated at offset 0, all the data blocks that belong to the file inode
should be deleted from the ObjectStore. Asking the client of the ObjectStore interface to
repeatedly delete file system objects is highly inefficient, since each inter-component call
will unnecessarily have to repeat a lot of the processing that could be batched together if
the appropriate interface was provided.

To solve this problem we add deletion objects — an idea analogous to UBIFS’s
truncation nodes [Hunter, 2008]. When written to the ObjectStore via ostore_write,
deletion objects cause all objects with identifiers in a specific range to be deleted. As
explained earlier in this section, BilbyFs selects object identifiers in a way that objects

that must be deleted together have adjacent identifiers.
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The range is specified by pattern-matching on the object identifier of the deletion
object itself. To describe the pattern matching mechanism, we need to look at the different
cases where the file system needs to delete objects from the store. There are three cases:
(1) a file gets deleted, so the inode and all the data blocks must be deleted; (2) a directory
entry must be removed, so the dentarr must be deleted if it is empty; (3) a file gets
truncated, so all data blocks beyond the truncation offset must be deleted. Deletion
objects carry a pattern to specify the range, which is stored in the deletion object’s
identifier. Note that deletion objects are not referenced by any file system object on flash,

thus they do not need to be in the index, nor do they need a conventional object id.

Ordered Object identifiers Key
. type ) [« [gowesoo |Object identifier
0
inode number extra bits f < [s[oesno |Deletion pattern
26 2| 0x0000000
deletes
26 3| 0x0000000 =
E 26 2| 0x0000000 | (1)
26 3| 0x0000001 -
26 5| 0x0000001 | (3)
26 | 0x0000002 Jeletes
27 2| 0x0000000
27 §|oxdata100|deletes E 27 G |oxda1a6100| (2)
28 2| 0x0000000
Uit

Figure 3.17: Specifying ranges of object identifiers with deletion patterns

To interpret the range from a deletion object’s identifier, we pattern match on the
type field (see Figure 3.17). If the type is inode (1), all the object identifiers that have
the same inode number get deleted. For dentarr patterns (2), only the dentarr object
with the exact identifier is deleted. When the pattern is of type data block (3), we use
the identifier to delete all data blocks with identifiers with an offset greater or equal to
the block offset stored in the pattern and with the same inode number.

The deletion mechanism iterates through the index (a red-black tree) and removes the
entries that match the pattern. One slight complication is that FreeSpaceManager needs
to keep track of the number of objects that become obsolete because of each deletion
object. The reason we need to keep track of this number is to know when it is safe for
the garbage collector to remove a deletion object from the log. It is only safe to do so,

when all the objects that match the pattern have been completely erased from the log.
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Otherwise, objects that have been deleted might reappear the next time the file system is
mounted. This problem seems to be fundamental to deleting objects in a log-structured
file system, Rumble et al. [2014] had to deal with similar issues when handling their
tombstone objects. Tombstones are analogous to BilbyFs’ deletion objects, and Rumble’s
solution to safely remove tombstones from the log is to store the address of the object
being deleted inside the tombstone. When removing a tombstone, they need to check
whether the object still exists in order to prevent its resurrection.

It seems unlikely that such a design would work better for us, since it would convert
the bookkeeping memory overhead of our technique into a more complex on-medium
representation of deletion objects. And garbage collection would have to read deletion

objects off the flash to check whether they are obsolete or not.

ObjectStore’s implementation When reading an object from the ObjectStore, we first
inspect the index to find the address of the object in the log. If the object was recently
written to the write buffer, we simply read it from the buffer, i.e. the write buffer behaves
as a cache. Otherwise, the object is read from the flash by invoking a UBI operation to
read flash pages.

As mentioned previously, the write buffer is structured as a log of transactions. When
ostore_write is invoked, we first check whether the transaction passed as argument fits
in the write buffer. If it does not, we synchronise the buffer using ostore_sync and we
allocate a new eraseblock, i.e. the next segment of the log. Otherwise, the transaction is
added to the write buffer.

We assign a unique number to each transaction (we increment a 64-bit integer),
which serves two purposes. First, it is used to reorder transactions at mount time.
Transactions numbers are always increasing within a segment, hence by comparing the
first transaction numbers between segments, BilbyFs reconstructs the order in which
segments were appended to the log. Second, transaction numbers are crucial for the
deletion mechanism: a deletion object can only delete objects with a lower transaction
number.

ostore_write serialises the transaction to the write buffer and updates the index with
the address of new or modified objects. ostore_write also accounts for the additional
dirty space by updating the FreeSpaceManager.

The index is implemented using a red-black tree that maps object identifiers to object
addresses, where an address is a structure holding the eraseblock number, the offset and
the length of the object. The FreeSpaceManager keeps a table where each entry records

the amount of dirty space the corresponding eraseblock has, and a bitmap indicating
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which eraseblocks are in used. Unused eraseblocks are in the erased state on flash, and in
that sense they are "empty" and free to use.

The ObjectStore maintains the write buffer, which is of the size of an eraseblock, in
memory. The write buffer is synchronised to flash as soon as a user application invokes
the file system operation sync or fsync3. In BilbyFs, sync and fsync perform the same
operation, they both flush to flash the contents of the write buffer. When ostore_sync
is called and the write buffer is full, it is synchronised to flash and a new eraseblock is
allocated to form the next segment. The number of the eraseblock used to store the
contents of the write buffer on flash is recorded in the ObjectStore’s state, we call it the
current eraseblock number. When the write buffer is synchronised, it is a perfect image
of the on-flash contents of the current eraseblock?. When it is not yet synchronised, the
write buffer is ahead of the current eraseblock on flash.

The ObjectStore needs to allocate a new eraseblock when the write buffer is full and
completely synchronised to flash. The ObjectStore does so by searching the FreeSpaceM-
anager’s bitmap for unused eraseblocks and updating the ObjectStore’s state to record
the new current eraseblock number.

Some extra care is taken when updating in-memory data structures to ensure that
no error happens part way through the update that may otherwise leave the in-memory
state inconsistent and prevent further use of the file system. In order to avoid memory
allocation errors, BilbyFs ensures it pre-allocates all memory required when updating the
Index and the FreeSpaceManager. But some errors are unavoidable, for example: UBI
operations to write and erase the flash device can return an error and BilbyFs can not
prevent this from occurring. Thus, BilbyFs orders updates in a way that these operations
are either invoked when the in-memory changes can be undone, or are benign for the
correct behaviour of further file system operations. In Chapter 6, we prove that the
operations sync() and iget() maintain the file system invariant, regardless of whether
an error occurred or not. This guarantees that the ObjectStore state remains consistent

when any of these two operations is invoked.

Serialisation and de-serialisation

BilbyFs manipulates on-medium data by reading flash blocks into a buffer in memory,

de-serialising a file system object from the buffer, modifying it, and serialising the object

3 1t is fairly easy to add a periodic timer to synchronise BilbyFs’ write buffer, ensuring that
transactions in the buffer are automatically made persistent after a long enough period of system
inactivity.

4 Assuming no silent data corruption.
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again. This is done by the Serial component (see Figure 3.11), which was designed to
be verified in isolation. Although BilbyFs only updates data out-of-place, for the sake of
simplicity the serialisation functions do not take advantage of this pattern.

The role of serialisation functions is to pack an in-memory data structure into a
sequence of bytes (i.e. a buffer). De-serialisation functions do the opposite: they interpret
a portion of a buffer and create an data structure that the file system can easily manipulate.
The interface of this component satisfies a contract that describes how a serialisation
function modifies a buffer, and how a de-serialisation function constructs an object from
a buffer. The formal description of the behaviour and the correctness proof of these
functions is presented in Appendix A.1l.

On-medium data manipulation is a common source of file system implementation er-
rors [Bangert and Zeldovich, 2014]. A method commonly used to avoid these errors consist
of writing a formal description of the data format in a data description language [Bangert
and Zeldovich, 2014; Fisher et al., 2006] to generate code automatically for serialising
and de-serialising objects. In principle, this approach can provide strong guarantees that
the serialisation and de-serialisation functions are consistent with each other. We chose
not to use a data description language and to manually write and prove correct BilbyFs’
serialisation and de-serialisation functions, leaving investigation of an appropriate data
description language for future work. As explained in Chapter 6, using a data description

language could also help improving the productivity verifying of file system code.

UBI abstraction

Unsorted Block Images (UBI) is a volume management system for raw flash memories
that supports NAND and NOR flash. UBI maps logical eraseblocks to physical ones,
and transparently implements a wear levelling algorithm to maximise the lifetime of
the flash by spreading out eraseblock erasure on the entire device. A logical eraseblock
automatically gets mapped when the file system writes data to it, and it gets unmapped
when it is erased. This means that the file system can continuously write and erase the
same logical eraseblock of a UBI volume. UBI will map a different eraseblock every time
it remaps the eraseblock until all the physical eraseblocks have been erased at least once.
UBI provides an interface to read and write flash pages, and to erase eraseblocks. UBI’s
interface is as restrictive as the NAND flash one: the file system has to write pages in
an eraseblock in sequential order, and it cannot overwrite a page until the whole logical
erase block is erased. In other words, UBI only deals with wear levelling. The file system

running on top still has to perform out-of-place updates and implement garbage collection.
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UBI detects and handles bad eraseblocks (a common defect in NAND flash) by
checksumming UBI’s metadata. When a bad eraseblock is detected, UBI allocates another
one from its pool of reserved physical eraseblock, and it automatically copies the valid
data to the new eraseblock. As a result, flash file systems implemented on top of a UBI
volume do not notice I/O errors that are automatically handled by UBI. However, UBI
does not protect against silent data corruptions such as bit flips that might occur when
storing data in eraseblocks. A file system implemented on top of UBI has to check the
integrity of the data it stores on flash manually. BilbyFs handles this by doing a cyclic
redundancy check (CRC) on each object it stores and reads on flash.

Since UBI provides an operation to check whether a logical eraseblock is mapped or
not, BilbyFs can build a bitmap for free eraseblocks, that it uses to keep track of the list

of free log segments.

BilbyFs fault assumptions

As indicated earlier in this section, the UBI abstraction does not detect potential silent
data corruptions affecting the data stored in eraseblocks. Hence, since such errors are
common on flash media [Tseng et al., 2011], file systems implemented on top of UBI must
manually ensure data integrity.

BilbyFs was designed to be robust against a realistic set of failures, including fail
stop failures and crash corruptions. In particular, BilbyFs is able to recover from a crash,
so long as the failure does not cause retroactive data corruption. When a crash occurs
and interrupts a write operation, chances are the data written is corrupted. It has been
observed [Tseng et al., 2011] that power failures can also cause the corruption of previously
written adjacent flash pages. This is what we call retroactive data corruption and BilbyFs
design does not handle such failures.

However, BilbyFs is designed to cope with (non-retroactive) crash failures even if such
failures happens during the recovery process. BilbyFs’ design for crash recovery is similar
to UBIFS’ [Hunter, 2008], and its implementation is greatly facilitated by the use of the
UBI operation that replaces the contents of an eraseblock atomically. BilbyFs detects a
crash by merely checking for a summary in each eraseblock. If an eraseblock contains
data but no summary, the file system has not been unmounted cleanly and the recovery
process must start.

BilbyFs detects data corruption by storing a cyclic redundancy check (CRC) for every
object written to flash. CRCs ensure that each object in a transaction is intact, i.e. the

checksum stored is the same as the one calculated on the data of the object. When
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BilbyFs finds an invalid CRC, it signifies we encountered a corrupted object. When such
an error occurs, the file system switches to read-only mode and must be remounted once
the flash has been checked via an interactive off-line file system checker [McKusick et al.,
1986]. File system checkers attempts to fix a corruption, either by looking for redundant
copy of an object in the log or by asking the user for input via its interactive interface.
Although it is certainly possible to do, we have not yet implemented such a tool for
BilbyFs.

Not all the failure assumptions described in this section apply to our verification work,
which relies on stronger assumptions of the UBI interface that do not specify potential
data corruption and would require further work to be made fully realistic. Hence, we

defer the formal treatment of the key concepts of file systems to Chapter 5 and Chapter 6.

The garbage collector

The garbage collector’s purpose is to recycle obsolete data in the log caused by out-of-
place updates that are characteristic to log-structured file systems. When an operation
overwrites an object, the ObjectStore merely writes the new object to the log, and the
new object’s higher transaction number ensures that it supersedes the old one. The same
principle applies to deletion objects: they can only delete objects with a lower transaction
number.

The garbage collector has to make sure that live objects do not get removed from the
log. Live objects are non-obsolete ones, i.e. objects that have not been superseded or
deleted by a deletion object.

The main complexity of the garbage collector comes from deletion objects. When
the garbage collector removes a deletion object from the log, it needs to ensure that no
obsolete objects covered by the deletion object will resurrect. The FreeSpaceManager
stores enough information to know the number of objects in the log covered by each
deletion object. The garbage collector makes use of this information to only remove
deletion objects that no longer cover objects in the log.

The garbage collector relies on the ObjectStore’s interface to read and write objects,
and erase flash blocks. The garbage collector reads information from the FreeSpaceManager
to find the log segment that has the most dirty space. It obtains a list of transactions
using ostore_scan_objs(), and then writes a single transaction containing all the (live)
objects that could not be recycled during the garbage collection run. This design makes
our garbage collection algorithm relatively easy to implement as all the functions to

manipulate objects are exported by the ObjectStore’s interface. In particular, we reuse
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ostore_scan_objs () which is used by the ObjectStore at mount time to parse transactions
from an eraseblock when recovering from a crash. Our prototype C implementation of

the garbage collector is about 70 source lines of C code.

FreeSpaceManager: Free Space Manager

The FreeSpaceManager’s functionality is straightforward. Its purpose is to keep track the
following information: the amount of dirty space in each segment; which eraseblocks are
in use; and the number of deleted objects still in the log, per deletion object.

To store the amount of dirty space in each eraseblock, the FreeSpaceManager keep
an array of 16-bit unsigned integers in memory where each entry records the number of
bytes occupied by obsolete object in the eraseblock. The array is indexed by eraseblock
numbers, and is updated every time a deletion object is written to the ObjectStore.

We use an in-memory bitmap to keep track of whether an eraseblock is in use. Similarly
to the dirty space, each bit corresponds to an eraseblock.

In order to keep track of the number of deleted objects remaining in the log for each
deletion object, we use a red-black tree. The tree uses deletion patterns for keys, and
values are stored in a structure with two fields: a 64-bit transaction number; and a 16-bit
unsigned integer counter storing the number of objects that must be erased from the log
before it is safe to erase the deletion object. Every time the garbage collector deletes an
object from the log, it informs the FreeSpaceManager of the object identifier, and the
FreeSpaceManager decrements the count of the deletion objects that match the object
identifier. When the count is zero, the deletion object is obsolete and it is safe to remove

the deletion object from the log.

Eraseblock summaries

BilbyFs’ in-memory index has the advantage of simplicity. For comparison storing the
index out-of-place on flash is the main source of complexity in UBIFS. One obvious
disadvantage is that the index has to be reconstructed at mount time by scanning the
contents of the flash, and scanning each eraseblock is costly. To minimize the cost, BilbyFs
borrows a technique from JFFS2 called eraseblock summaries |[JFFS2-EBS; Ferenc|.

In this technique, the end of each eraseblock stores a small amount of data that
describes how to update the index and the FreeSpaceManager. Summaries contain enough
information such that rebuilding the index can be done solely by reading summaries.
More specifically, a summary is an array of summary entries, where each entry stores

the following: an object identifier; an offset indicating where the object is located in the
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segment; the length of the object; and bit indicating whether it is a deletion object. When
the entry refers to a deletion object, the offset is used to store the number of objects it
deletes, which are still present in the log. As explained earlier in this section, the garbage

collector needs that information.

Reading a summary is much faster than reading the entire contents of an eraseblock,
speeding up the mount operation of BilbyFs. This change makes BilbyFs suitable for flash
devices of at least 1 GB.

The ObjectStore abstraction

In this sub-section, we discuss the benefits of our ObjectStore abstraction. The ObjectStore
provides a simple interface to read and write objects identified by object identifiers as
input. The interface can easily be formally specified using a partial map from object
identifier to object. This highlights one of the key modular design improvements in
BilbyFs compared to UBIFS. Although UBIFS is much more complicated than BilbyFs
because it stores its index on flash, our analysis suggests that its structural organisation
could be made more modular without sacrificing performance. For instance, UBIFS’ index
interface is significantly more complicated than BilbyFs’ because it allows multiple file

system objects to share the same object identifier.

As seen in the previous section, directory entry identifiers cannot be unique due to the
limited amount of information we can store in a fixed size identifier. As a result, UBIFS’
index interface does not assume uniqueness of identifiers, which leads to a convoluted
interface. The function to retrieve elements from the index is no longer uniform for any
object in the index. For instance, a directory entry lookup in the index requires calling a
specific function for directory entries that takes the name of the entry as argument to

resolve potential hash collisions.

BilbyFs has a more modular design that does not allow multiple objects to share the
same identifier. Instead the client has to resolve collisions on top of the abstraction, and

BilbyFs’ dentarr objects serve this purpose.

In BilbyFs the key file system logic is confined to the components running on top of
the ObjectStore abstraction, which allows us to reason about it without having to worry
about how objects are stored on flash. Similarly, the ObjectStore can be verified without

having to worry about file system semantics.
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3.4 Modular Design Evaluation

In this section we evaluate the performance of BilbyFs against UBIFS and JFFS2 in
order to show that BilbyFs’ modular design does not introduce unacceptable performance
overhead. UBIFS and JFFS2 are the two most popular flash file systems available in the
mainline Linux kernel tree. JFFS2 is older than UBIFS, and was designed for low capacity
flash devices of type NAND and NOR. The main difference between JFFS2 and UBIFS
is that the former keeps the index in memory, whereas UBIFS stores it on medium. As a
result, UBIFS scales to larger flash devices and has a much faster mount time because, as
opposed to JFFS2, it does not need to scan the medium to rebuild the index.

JFFS2’s mount time was recently improved with eraseblock summaries [JEFS2-EBS].
As explained in the previous section, this feature consists of storing some data at the end
of each eraseblock that summarises the index information of the log. Another limitation
of JFFS2 is that it does not support write-back, i.e. writes are not buffered, they are
issued synchronously to the flash device. An application using JFFS2 must wait for the
flash device to acknowledge write commands every time it invokes a system call.

BilbyFs has the simplicity of JFFS2’s design, with runtime performance on par with
UBIFS and a mount time in between the two. Similarly to JFFS2, BilbyFs keeps the
index in memory and it supports eraseblock summaries. However, as opposed to JFFS2,
BilbyFs supports write-back. As a result it shows much better performance than JFFS2
on any workload that writes to the flash.

Our evaluation aims to demonstrate that BilbyFs’ verifiable modular design does not
inhibit performance when compared to mainstream flash file systems. BilbyFs code base
is much simpler than UBIFS’, for example we do not need to update the index on flash.
This is an obvious limitation that needs to be addressed in future work for BilbyFs to be
used comfortably with flash devices of several GB in size.

We ran our benchmarks on the MiraBox |Global-Scale-Technology| development board,
which features a Marvell Armada 370 single-core 1.2 GHz ARMv7 processor and 1 GB of
DDR3 memory. The NAND flash we used to run the benchmark has a capacity of 1 GB
with 512 KB eraseblocks and 4 KB flash pages. We use Debian 6a distribution running
Linux kernel 3.17 which is installed on a separate SD-card; the NAND flash is solely used
for benchmarking the flash file systems. All benchmarks are run with the default size for
the page cache which is maximum 20% of total memory. The Linux kernel starts flushing
pages to the flash when the memory consumed by the page cache reaches 10% of the
total memory. In order to achieve reproducible results and compare fairly between all file

systems, each experiment starts from a freshly formatted medium and with cold caches.
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To this end, we ran the command "echo 3 > /proc/sys/vm/drop_caches". This means
that the benchmarks do not stimulate the file systems’ garbage collector. File systems
performance becomes less predictable when they start running out of space, especially
because garbage collection can be delayed due to external events. Thus, in this evaluation
we focus on workloads that do not trigger garbage collection. We also make sure that file
system compression is disabled. Results show the average of a minimum three samples of

data, and error bars show the standard deviation of the measurements.
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Figure 3.18: 10Zone throughput benchmark, 4 KiB writes, 64 MB file

We use I0Zone [Norcott and Capps| to measure data access throughput. We configured
10Zone to work on a single file and with a record size of 4KiB.

To get an overview of the throughput comparison between Linux flash file systems,
Figure 3.18 shows the results when running [OZone with maximum file size of 64MiB
and the automatic configuration option ~A’ which measures throughput in the following
scenarios: sequential write, rewrite, read, reread, random read and write, backward

read, record rewrite (rewriting a particular offset within a file), strided read (reading
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sequentially non adjacent blocks), as well as access through the standard library functions
fwrite and fread. In this benchmark, for each test IOZone measures the throughput in
KiB per second by counting the time lapse between the first system call and the last,
without calling sync(). As expected, we can see that JFFS2 is much slower on all write
intensive benchmarks because it lacks write-back support. For read intensive tests, most
file systems exhibit the same performance as the tests are I/O bound.

BilbyFs is faster or equivalent to UBIFS on all write tests. The throughput advantage
of BilbyFs is due to two reasons. First, BilbyFs in-memory index reduces the number
of metadata updates that need to be written to the flash device. UBIFS on-flash index
must be updated out-of-place which incurs some extra flash operations when compared
to BilbyFs. Second BilbyFs has a larger internal buffer where writes get batched in,
whereas UBIFS uses the maximum unit of write supported by the flash device as size
for its internal buffer. BilbyFs uses a larger buffer of the size of an eraseblock, thus
achieving better metadata packing and more updates get buffered in memory. Because
measurements do not include sync(), the last few writes of the benchmark are likely
not flushed out to flash. This is true for UBIFS and more so for BilbyFs because its
buffer is larger. We confirm this explanation with the next two diagrams which compare

measurements that do not include the sync() call with the ones that do.
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Figure 3.19: Sequential write performance, 4KiB writes

Figure 3.19 shows the throughput for sequential writes as we progressively increase
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the size of the file to write from 64 KiB to 64 MiB. Again here 10Zone measures the
throughput by timing the write() system call, and when write back caching is enabled
this does not necessarily mean that data was written to medium.

We observe that BilbyFs is faster than both UBIFS and JFFS2 all along the line. The
difference of throughput is the lowest for 64 KiB files with BilbyFs showing a 55% increase
in throughput. The highest throughput difference is shown for files of 2 MiB with 123%
throughput increase. This difference is explained by the same reasons presented when
describing Figure 3.18. When kernel profiling [Levon| the CPU load we find 25% =+ 5 pp.
(percentage point) of CPU usage for both BilbyFs and UBIFS, whereas JFFS2, which
exhibits lower throughput also has a lower CPU usage.

Sequential write performance, 4 KiB writes
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Figure 3.20: Sequential write performance, 4KiB writes with sync

To confirm that BilbyFs performance is comparable to other flash file systems when
writing the flash, we run the same IO0Zone benchmark but with the extra option ’-¢’
which forces sync() to be included in the throughput measurements. Figure 3.20 shows
the results. The overhead of UBIFS index metadata updates is still visible, but BilbyFs
only exhibits slightly more than 5% throughput increase compared to UBIFS on average.
JFFS2 results fluctuate a lot more than the other two file systems and we have not
been able to precisely identify the cause of this variation. When sync () is called, JFFS2
interacts with the page cache to flush the page mapping associated to the inode of the file

sync () was called on. This process seems to sporadically trigger writes to the medium.
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Realistic workloads
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Figure 3.21: Filebench workloads

We use Filebench [Filebench| to evaluate BilbyFs against some of the pre-defined
workload personalities that come with Filebench 1.4.9.1. Each experiment runs for two
minutes and executes as many file system operations as it can during that time.

We first run Filebench with the file server workload (fileserver) where a (configurable)
number of threads create files of 128 KiB. Each thread of the workload reads and writes
data sequentially, and requests file’s metadata using the stat () system call, before deleting
the created files. The second workload is an email server (varmail) that has threads
creating files and writing 16 KiB chunks of data, and flush the writes to medium by
calling sync (). This workload stimulates the sync() code when dealing with small files.
The third benchmark emulates a web server (webserver) and is a more read-intensive
workload. The web server workload makes each thread read 10 files of 128 KiB, followed
by appending 16 KiB of data to one file. The file append emulates the web page access
logging mechanism as implemented by most web servers. Finally, the forth workload is

read-write-concur, that we constructed in order to exhibit the limitations of our global
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lock.

In order to better understand the limitations of BilbyFs’ global lock we design a
Filebench test read-write-concur that benefits from fine-grained concurrency in the file
system. For instance, when the file system is blocked by an operation that reads from the
flash while another thread attempts to perform several write operations, chances are the
writes will be buffered in memory and will not require waiting for the flash device. In
such scenario, the global lock will force the writer thread to wait for the currently running
read operation to terminate, before starting to process the in-memory write operation.

We constructed such scenario using Filebench where a process creates 2 threads, one
that consecutively reads several files, while the other simultaneously appends small chunks
of data to a large file.

The results of our experiments are shown in Figure 3.21. The Y-axis is the number
of file system operations executed per second (higher is better). We ran the experiment
with 1, 5 and 10 threads running concurrently. The name of the workload is hyphened
with number of threads each workload was configured with.

The results of BilbyFs and UBIFS are within 5% of each other for all workloads except
for varmail-1 and read-write-concur. We notice that the lack of fine grained concurrency
in BilbyFs does not make a significant difference in these settings: a single core machine
and workloads that do not intensively read and write concurrently.

For the varmail-1 workload, BilbyFs performs approximately 200 operations per second
more than UBIFS. This is explained by the same reasons we described previously.

The results of the read-write-concur workload on Figure 3.21 shows that indeed, in
such setting BilbyFs suffers from its coarse grained locking implementation. BilbyFs
performs 1,000 operations per second less than UBIFS, which accounts for around 30%
less than UBIFS. However, as shown by JFFS2 performance with all write intensive
benchmarks, the lack of asynchronous writes is a much more important performance
bottleneck.

We analyse the CPU usage of the file systems while running Filebench with webserver
workload with 1 thread using the OProfile [Levon| kernel profiler version 0.9.6. Figure 3.22
shows the CPU usage for all file systems. The diagram shows that UBIFS and BilbyFs
spend about 30% of CPU time in memcpy and 13% in the standard library (libc). 11%
and 4% of the samples collected for BilbyFs and UBIFS respectively were in the idling
function arch_cpu_idle. By contrast, JFFS2 shows 65% of idle samples and a lot less
operations per seconds as shown by the diagram on the right. The rest of the CPU is
spent on other parts of the Linux kernel each of which accounts for less than 3% of CPU.

Finally, we run postmark [Katcher, 1997|, a benchmark that emulates a busy mail
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Figure 3.22: CPU usage for webserver workload, 1 thread

server by creating and deleting many small files. We configure the benchmark for 50,000
sets of size 10,000. Figure 3.23 shows that UBIFS outperforms BilbyFs by about 70
create operations per seconds, that is around 20% more. By contrast, the number of
read operations per seconds for both UBIFS and BilbyFs is the same. However, the left
hand side diagram shows that BilbyFs’ function sum_obj () is a bottleneck. Almost 8% of
the CPU is spent in this function. sum_obj () is the function that collects the indexing
information to add to the summary. BilbyFs’ summary, which is an unordered array
of indexing entries, is kept in-memory, and is committed to flash when the write buffer
is full. The present implementation of sum_obj() is quite naive, because every time a
file system object is written to the ObjectStore, BilbyFs iterates through the array of
summary entries to find and replace an existing entry. If no entry is found, sum_ojb()
appends an entry at the end. The lookup algorithm is linear time in the size of the array.
We could improve the performance of BilbyFs by choosing a data structure that provides

faster lookups (e.g. a red-black tree) for the summary in memory.

Overall, this evaluation shows that BilbyFs performance is on par with UBIFS and,

unsurprisingly, BilbyFs is much faster than JFFS2 on workloads that are write intensive.
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Mount time

FS image Files | Directories Size
archlinux 24470 1857 | 486MB
raspbmc 27734 4522 | 786MB
bodhi 28059 3620 | 852MB

Figure 3.24: Mount time measurement results

BilbyFs main weakness is its mount time. We pay for the simplicity of our design
with an increase in mount time compared to UBIFS. Since the index is not stored on
flash, it needs to be rebuilt at mount time. As explained earlier, BilbyFs borrows JFFS2’s
eraseblock summaries idea to reduce the mount time and scale to larger devices.

In order to evaluate BilbyFs’ mount time, we selected a few pre-packaged file system
images for the Raspberry Pi [Upton et al.|. We use them to populate the flash device
under test. The list of packages and the number of files and directories they contain is

presented in Figure 3.24.
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Figure 3.25: Mount time measurement results

Our experiment consists of copying the contents of each image to the flash, unmounting
the file system, flushing all caches and timing the mount operation. The results are shown
in Figure 3.25, the X-axis is the size in MB of the file system image being mounted. The
Y-axis is the time (real time) it took to mount the file system in seconds (smaller is
better). As expected UBIFS is much faster to mount than both BilbyFs and JFFS2.

Surprisingly, as the size of the file system image increases, JFFS2 mount time decreases.
Our analysis revealed that JFFS2 has to read the out-of-band area of the first page of
every eraseblock regardless of whether the eraseblock is empty or not. The out-of-band
area is located at the beginning of each page of the flash and can be used to store file
system metadata. This area is ignored by UBI since some NAND flash devices do not
support it. When out-of-band area is available and summaries are enabled, JFFS2 mount
implementation reads the out-of-band area of empty eraseblocks twice. Once to check
whether the eraseblock is empty, this time JFFS2 reads the smallest I/O unit possible. If
the eraseblock is empty, JFFS2 needs to read it again, but this time in its entirety to
ensure that the area is completely clean. If it is not clean, JEFS2 schedules the eraseblock
for erasure. As a consequence, JFFS2, which was designed for small flash devices, is faster
to mount when the file system image produces fewer empty eraseblocks, and is slower the

emptier the flagh is.
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3.5 Summary

Designing a verifiable file system demands several pragmatic trade-offs. In this chapter,
we presented the key ingredients to make a file system verifiable, and illustrated them
on BilbyFs design. To manage the complexity of verifying a file system, we restrict file
system concurrency at the level of the VFS interface, and we decouple the core file system
logic from Linux caching mechanisms. We designed BilbyFs modularly such that each
component can be specified and reasoned about in isolation; we demonstrate this in
Chapter 6. We evaluated the performance of BilbyFs’ modular design, and we compared
it against existing Linux flash file systems. Our evaluation shows that BilbyFs’ modular
design does not significantly degrade systems performance. Even though BilbyFs’ design is
quite simple, its C implementation is about 3,400 lines of code. Previous work showed that
verifying such a code base is a labour-intensive task. For example, the sel.4 project [Klein
et al., 2014] verified 8,700 lines of C code with 12 person years of effort. In the next
chapter, we present our approach to implementing the BilbyFs design in a way that makes

verification more affordable.



A Implementation

This chapter draws on work presented in the following papers:

¢ Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam
O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, Joseph
Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Gernot Heiser. Cogent:
Verifying high-assurance file system implementations. In International Conference

on Architectural Support for Programming Languages and Operating Systems, pages
175-188, Atlanta, GA, USA, April 2016. doi:10.1145/2872362.2872404;

¢ Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim, Toby
Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin Klein. Refinement through
restraint: Bringing down the cost of verification. In International Conference on

Functional Programming, Nara, Japan, September 2016.

In Chapter 3, we explained how to design a file system modularly to facilitate reasoning
about the implementation while achieving performance on par with existing Linux flash
file systems. In this chapter, we present the domain specific language at the core of our
methodology: COGENT. We implement file systems in COGENT, and COGENT’s certifying
compiler generates an efficient C implementation as well as a COGENT specification.
The COGENT specification is a purely functional formal model of the source code in
Isabelle/HOL [Nipkow et al., 2002]. The compiler also generates a mathematical machine-
checked proof that the generated C code formally refines [de Roever and Engelhardt,
1998] the generated COGENT specification. This proof ensures memory and type-safety of
the C code, which guarantees the absence of all memory bugs and which also rules out

many error-handling bugs (e.g. memory leaks, use-after-free etc.). The study by Lu et al.
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[2014] of 1800 file system bugs revealed that memory and error code defects account for
about 20% of file system bugs. Many of these bugs are provably eliminated by COGENT’s
certifying compiler.

The syntax of the COGENT compiler’s input program is very close to the gener-
ated COGENT specification in Isabelle/HOL. COGENT imposes a set of restrictions on
programmers to ensure that it can generate efficient C code without the need for a
language run-time and a garbage collector. Properties proved on COGENT specifications
hold on the generated C code by the compiler-produced refinement theorem. Because
COGENT is purely functional, reasoning about COGENT specifications in Isabelle/HOL
is relatively straightforward, especially compared to reasoning about imperative code
which actually requires cumbersome machinery like separation logic or the use of memory
heaps [Reynolds, 2002; Tuch et al., 2007; Greenaway et al., 2012, 2014|. By implementing
modular file systems in a purely functional language under these restrictions, we make
them far easier to verify, increasing their verification productivity. The contribution of
this chapter is to present a set of worked design patterns for implementing file systems in
a linearly typed language such as COGENT and to show how we use these design patterns
to implement BilbyFs.

COGENT avoids a garbage collector, unlike most existing high-level languages such
as Java, Haskell and OCaml, by implementing a linear type system [Wadler, 1990)].
Essentially, variables that are linearly typed must be used exactly once, and all non-
linearly-typed values must be read-only. This ensures that aliases can exist only on
read-only variables, which ensures that each linearly typed object is used exactly once and
allows for destructive updates in the implementation. COGENT is domain specific in the
sense that it is restricted to the domain of programs that do not require a lot of sharing
(i.e. pointer aliasing). COGENT is not Turing-complete; it does not support loops, instead
loops are implemented directly in C via the FFI as iterators over ADTs. COGENT relies
on an external library of abstract data types (ADTSs) implemented in C and accessed via
its foreign function interface (FFI) to implement file system code that requires sharing.

I helped to design COGENT in collaboration with Liam O’Connor, Gabriele Keller,
Zilin Chen, Alex Hixon and Toby Murray [O’Connor et al., 2016]. The original idea
of using linear types to allow reasoning over purely functional specifications was mine,
and was ultimately brought to fruition by Liam O’Connor who designed COGENT’s
type system and Zilin Chen who implemented its compiler. The automatic generation
of theorems that shows that COGENT specifications are an accurate model of the the
generated C code is the work of Christine Rizkallah, Japheth Lim, Yutaka Nagashima,
Thomas Sewell, Zilin Chen, Liam O’Connor, Toby Murray, Gabriele Keller and Gerwin
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Klein [Rizkallah et al., 2016].
We provided the file system expertise to the team by specifying the requirements for

the language to enable implementing verifiable yet efficient file system code. We designed
COGENT to leverage our observation that file system code does not require a lot of sharing
aside from reusable ADTs such as red-black trees, linked lists, etc. By implementing
BilbyFs in COGENT we confirmed that observation: sharing was only required in a few

places that could easily be isolated and implemented using COGENT’s FFI.

Linear type systems have sometimes proved too restrictive for general systems pro-
gramming in the past [Smith et al., 2000; Walker and Morrisett, 2001; Aspinall and
Hofmann, 2002|. In COGENT, however, the trade-off is different. We keep the linear
types where they are most useful: for tracking memory allocation, error-handling, and
higher-level control code. ADTs provide a safety-hatch for escaping the confines of the
linear type system when necessary. In this chapter, we show that we can implement the
core logic of a carefully designed file system with a linearly typed language, that the
language enables design modularity, and that it greatly simplifies verification (as shown
in Chapter 6).

In Section 4.1, we introduce COGENT, followed by an explanation of its FFI in
Section 4.2. In Section 4.3, we present a few ADTs and their interfaces, and we distill
a set of design pattern for designing ADTs in a linearly typed language. In Section 4.4,
we present a function of BilbyFs to show how COGENT allows us to implement recurrent
code idioms in file systems designed modularly. Finally, in Section 4.5 we evaluate
the performance overhead of implementing BilbyFs in COGENT by comparing our C
prototype implementation of BilbyFs to its COGENT counterpart. While the current
COGENT compiler is a prototype, this evaluation sheds the light on practical utility of
implementing file systems in purely functional language like COGENT. We also analyse
the bugs we found when testing COGENT code, most of which can be provably eliminated
with a functional correctness proof over the compiler-generated COGENT specifications,

as presented in Chapter 5 and Chapter 6.

4.1 Cogent: language introduction

Our objective with COGENT was to design a language tailored for modular verification
of file system code. We observed that file system code is composed of a lot of low-level
data structure manipulations to parse and update data on storage. It is common for

file systems to rely on a library of reusable data structures to implement file system
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functionality [Lu et al., 2014], e.g. Linux’s file systems share implementation for red-black
trees and doubly linked lists.

COGENT allows direct manipulation of primitive types such as U8 (8 bit machine
words), U16, U32, U64, Bool and Unit (denoted (), analogous to the C type void) as well
as composite types like records, tuples and tagged unions. Tuples and records provide
similar functionality; tuples are merely syntactic sugar for records with anonymous fields.
Due to the restrictions of COGENT’s linear type system, ADTs like arrays, trees and lists
cannot be implemented directly in COGENT. As explained in Section 4.2, they have to be
implemented in C via COGENT’s FFI.

COGENT’s main strength rests upon its linear type system which restricts pointer
aliasing and provides memory and type safety. The basic idea behind linear types is not
complicated: any object of linear type has to be used exactly once. This rule is statically
checked at compile time, and programs that do not comply with the rule are rejected
by the compiler. As a consequence, any linear value passed as argument to a function
written in COGENT must be returned, unless the function internally frees it. We show
an example demonstrating this in the next sub-section. In addition, a COGENT function
that allocates a new value of linear type and returns it, will have an extra linear return
type showing in its type signature. This way we guarantee the absence of memory leaks

and use-after-free errors at compile time.

Cogent example

Figure 4.1 shows a fragment of COGENT code that we use to familiarise the reader with
the language and its linear type system. The first line declares the type 0bj, a record
with two fields: id of type unsigned 64-bit word (U64) and data of type WordArray U8, a
type from our ADT library. By default COGENT records are boxed, meaning they are
allocated on the heap with an explicit call to the memory allocator and are passed by
reference (i.e. via a pointer). Hence, they must eventually be freed, and the linear type
system ensures that this happens; code which may result in a memory leak triggers a
type error. COGENT also supports unbozed records (passed by value) that by default are
not linear, which means they may be accessed freely without the restrictions imposed
on linear variables. Unboxed records are linear when one of their fields contains a linear
value. Unboxed record declarations are prefixed by the symbol #.

Functions that are declared but not defined in COGENT are automatically assumed
to be foreign functions, thus must be implemented in C. On line 2, we prototype a

foreign function newObj that takes an ExState as argument, which is a reference to an
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type Obj = {id:U64, data:WordArray U8}
newObj: ExState —> (ExState, <Success Obj| Error ()>)
freeObj: (ExState, Obj) —> ExState

bar: Obj — (Obj, <Success () | Error ()>)

foo: (ExState, Obj) —> (ExState, <Success Obj | Error ()>)
foo (ex0, obj0) =
let (objl,res) = bar obj0
in res
| Error () —
let exl = freeObj (ex0, objl)
in (exl, Error ())
| Success () —>
(ex0, Success objl)

Figure 4.1: COGENT’s Linear type system by example.

ADT embodying the external environment of the file system, and returns a tuple of a
new ExState and a tagged union with two possibilities, either Success with a variable
of type Obj or Error. From the type signature, we can deduce that newObj allocates an
object of type Obj. Since 0bj is boxed and must be allocated on the heap, for newObj to
be implementable in C, the type must allow the function to return an error when the
memory allocation fails. On line 3, we prototype another foreign function free0bj which
takes two arguments: an ExState; and an 0bj, a reference to a COGENT record. freeObj
only returns an ExState, which means the operation must free the object to satisfy the

linearity requirements of the type-system.

ExState is necessary to enable us to model events external to the file system when we
verify COGENT code. For instance, we use ExState to model memory allocation or the
system’s current time. Purely functional languages such as COGENT allows no side-effect,
hence the external environment of the file system has to be passed explicitly. Without
ExState, the Isabelle model of a function that allocates an object like newObj would either
always return an error, or never do so. By contrast, with ExState, depending on the
state of the external environment, a function like newObj will either return an error or an
allocated object and a new external environment. By updating the external environment
every time we call a function that depends on it, we allow the next call to return a

different result.

Back to our code fragment in Figure 4.1, line 5 declares a function prototype bar
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defined elsewhere that takes a variable of type 0Obj as parameter. The function returns a
tuple of two values: 0bj and a tagged union with two possible tags Success or Error. In
either case, only the value () is returned.

Note that COGENT’s structural typing allows us to interchangeably refer to a type via
its name or its structure. This means that the COGENT compiler identifies the type Obj
and {id: U64, data:WordArray U8} as being equal because they have identical structure!.

On line 8, we define the function foo. From the definition of the type 0bj on line 1,
we can infer that the argument obj0 is boxed, and thus linear. foo returns a tagged union
with two possibilities, either Success with a variable of type 0bj or Error. From the type
signature of foo, we deduce that the function frees objo when it returns an error, since
the Error return value does not include an 0bj.

On line 9, we use let to bind the tuple returned by the bar function to two variables:
obj1 and res. While bar is not implemented here, suppose it updates its argument (obj0)
in-place, so that the linear variable of type 0bj that it returns always refers to the same
memory as the argument 0bj it was passed. Thus obj1 and objo refer to the same object
in memory. While we used different names for the two variables in this example to aid
explanation, as a convention in future we will reuse the same name when referring to
linear values that denote the same in-memory object. The linear type system ensures
that at any given point in time at most one name can be used to refer to a particular
object in memory, i.e. it ensures that aliases cannot exist to linear objects.

On line 9, the function bar returns a new reference obj1 to the object and a tagged
union res indicating whether it succeeded. On line 10, we use pattern matching to make a
case distinction on res, to determine whether it was Success or Error. In order to ensure
that all COGENT programs are total, all COGENT pattern matching must be exhaustive.

On line 11 and 14 we pattern match on the tagged union res: if bar returned an error,
we have to free the object before constructing foo’s return value on line 13. In case of

success, foo returns Success with reference to the object.

Controlled sharing: let!

Linear types are effective at restricting memory aliasing, however, they can also be overly
restrictive in certain circumstances. Consider a function sizeof0Obj, which returns some
information about a linear object. It would have to return a new reference to the argument
object it was passed and be of type: sizeofObj: Obj —> (U32, Obj) in order to allow

1Structural typing simplifies some aspects of the language but also makes generating COGENT
specifications in Isabelle/HOL more involved, since Isabelle/HOL’s type system is not structural.
We explain how we bridge this difference in Section 6.2.
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referring to the object again once sizeof0Obj has returned. To eliminate this overhead

COGENT has a second binding form borrowed from Wadler [1990].
let w = exprl !v in expr2

This binding is called let! due to the presence of the "!" preceding v. Here, the value
of expri1 is bound to win expr2, as in a regular let-expression, except that inside expr1 we
may mention v multiple times as if it were non-linear provided that v is not modified (i.e.
is only ever read inside expr1). We say that, inside expri, v is shareable and read-only.
We denote shareable types by using the ! type modifier; therefore, we can write a function

that takes a shareable 0bj as argument like this:
sizeofObj :: Obj! —> U32
and call it as follows:

baz: Obj —>

let size = sizeofObj obj !obj

in baz obj

sizeofObj expects its argument to be shareable and read-only, i.e. a value obtained
using let!. In this example, obj remains in scope after the let! expression because
sizeofObj only reads from obj. baz, however, takes a linear Obj as indicated by its
function signature fragment.

The expressiveness of COGENT’s type system allows specifying that a function does
not modify a linear variable and, as we will show in Section 4.5, the COGENT framework
leverages the type information to prove that such variables are only read from. This
feature is particularly useful for code that interacts with the storage layer, for instance the

ubi_leb_read operation that reads part of a flash eraseblock in a buffer has the following
type:

ubi_leb read : #{ex:ExState, ubi_ vol:UbiVol!,
ebnum : EbNum, buf: Buffer ,
buf offs:BufOffs, nb_ bytes:U32} —>
((ExState, Buffer), <Success (), Error ErrCode>)

The function takes six arguments packed in an unboxed record: ex the external
environment of the file system; ubi_vol is a reference to the UBI volume the file system is
reads from and writes data to; ebnum is the eraseblock number indicating which eraseblock

to read; buf is the buffer we want to read into; buf_offs is a byte offset in the buffer; and
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nb_bytes is the number of bytes to be read. The key idea is that we can use the type
system to show that ubi_leb_read does not modify the UBI volume ubi_vol. ubi_vol is
passed as a shareable argument, thus it does not need to be returned and the function
only needs to return the linear arguments, namely: ex and buf. When reasoning about
COGENT code in Isabelle, it follows trivially that the UBI volume that ubi_vol refers to
is unmodified; Isabelle infers this from the type of the COGENT-generated specification.

The Take and Put operators

File system code typically maintains a large state, but each component of a modular
implementation only affects a small portion of that state, namely the local state of the
component. To access record fields in COGENT code, we first need to logically remove
them in order to avoid introducing multiple references to the same variable, and then
later, the fields are logically replaced in the record. This is easily modelled using linear
types: the required parts of the data structure may be taken in isolation, altered, and
then re-inserted.

Consider the type 0bj declared above; we may take a field out of a record as follows:
let objl {data = objl data} = obj0 in

objo is the initial object with all its fields. We take the field data which introduces two
variables in scope: obj1, which is objo with the field data taken; and obji_data, which is
the field data of obj0. The type system records which fields of a record have been taken,
to ensure the absence of aliases. Otherwise one could break linearity by taking a field
more than once and introduce multiple linear variables that refer to the same record field.

We can put obj1_data back into the data field of the obj1 record as follows:

let obj2 = objl {data = objl data}

1n

obj2 now refers to the record with its data field replaced. The syntactic sugar {data}
may be used in take and put expressions as shorthand for {data=data} when the record
field and the variable have the same name.

By providing methods to decompose the state at arbitrary granularity, COGENT
enables verification engineers to benefit from the programmer’s state decomposition when
reasoning formally about file system functionality. This is a key aspect of our approach,
and is required to fully benefit from the design modularity of the file system. We further

discuss the decomposition of file system state in Section 4.4 as it is an important factor
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in the increase in verification productivity afforded by our approach, which we report on
in Chapter 6.

4.2 Cogent Foreign function interface

COGENT is intentionally restricted to simplify formal reasoning while ensuring type and
memory safety in the absence of garbage collection. However, there are legitimate reasons
to temporarily bypass COGENT’s restrictions, including implementing data structures that
require memory aliasing to be efficient or loops. To lift COGENT’s restrictions, we invoke
C code from COGENT via its foreign function interface (FFI). In order to conserve the
strong correctness guarantees provided by COGENT, foreign functions have to be proved
correct manually. These proofs involve showing that the C code does not break COGENT’s
type system assumptions about memory and type safety. For instance, foreign functions
must not introduce memory aliases that are accessible from COGENT code. In the rest
of this section, we present an example of a loop iterator declared and implemented via
COGENT’s FFI.

Declaring a simple loop iterator

All COGENT loop iterators are declared using its FFI. COGENT functions that are declared
but do not have a body are assumed to be foreign functions. For instance, the following
code fragment declares the seq32 iterator:

seq32: all (acc,obsv,brk). Seq32P acc obsv brk —> LoopResult acc brk

The types of the parameters for seq32 are defined in Figure 4.2. seq32 is a polymorphic

function that allows iterating over a range of values and storing the result of the loop
in an accumulator. Since COGENT is a purely functional language, functions cannot
have side effects, thus seq32 loops must return the effect of the loop in an accumulator.
The all keyword indicates that the function takes polymorphic type parameters. The
polymorphic types acc, obsv, brk are parametrised for each loop. seq32’s argument is of
type Seq32P which is an unboxed record that defines the range, frm to to; the increment
step; and a function pointer, £, to the body of the loop (see Figure 4.2). Other fields
include the initial value for the accumulator, and the observable state which corresponds
to the read-only part of the state accessible to the loop body.

The accumulator type acc is used to pass the part of the state that can be modified

by the loop. The observable part of the state, which is shareable so that the type system
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— Type of seq32 parameters
type Seq32P acc obsv brk = #{

frm: U32,

to: U32,

step: U32,

f: Seq32F acc obsv brk, — loop body
acc: acc, —— accumulator

obsv: obsv! — observables

}

type LoopResult acc brk = <Iterate acc | Break brk>

— Type of seq32 loop body
type Seq32F acc obsv brk = Seq32FP acc obsv —>
LoopResult acc brk

— Type of seq32 loop body parameters
type Seq32FP acc obsv = #{

acc: acc,
obsv: obsv!,
idx: U32

Figure 4.2: seq32 types

ensures it cannot be modified, is passed via the type obsv. Finally, the type brk is used

to carry the value returned when breaking out of the loop.

The body of the loop is defined by the type Seq32F, which is the type of a COGENT
function that takes as input an unboxed record seq32FP declared on lines 18-22 of
Figure 4.2. seq32FP is composed of three fields: the accumulator acc, the observable part
of the state obsv, and the loop counter idx. The loop body function returns a tagged

union LoopResult defined as follow:
type LoopResult acc brk = <Iterate acc | Break brk>

LoopResult is a parametric polymorphic type that carries the result of a loop iteration.
The two constructors of this tagged union type allow the loop body to indicate that an
iteration should either continue with accumulator a (Iterate a) or that the loop should
terminate early with result b (Break b), where a and b are of the type parameters acc

and brk respectively.
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check flash is empty: (ExState, MountState!, UbiVol!) —
(ExState, <Success Bool|Error ErrCode>)
check flash is empty(ex, mount st, ubi vol) =
let (ex, r) = seq32[ExState, UbiVol, ErrCode|
#{frm =0,
to=mount st.super.nb eb,
step=1,
f=check flash empty loop,
acc=ex, obsv=ubi_ vol}

in r
| Break err —>
if err = eNotEmpty then
(ex, Success False)
else

(ex, Error err)
| Iterate () —>
(ex, Success True)

check flash empty loop: #{acc:(ExState), obsv:(UbiVol!l), idx:U32} —
(ExState, LoopResult () ErrCode)
check flash empty loop #{acc=ex, obsv=ubi vol, idx=i} =
let (ex, r) = ubi_is mapped #{ex, ubi_ vol, ebnum=i}
in 1
| Error err —>
(ex, Break err)
| Success is_mapped —>
if is_mapped then
(ex, Break eNotEmpty)
else
(ex, Iterate ())

Figure 4.3: seq32 example

Loop example in Cogent

In the previous sub-section we have seen how to declare an loop iterator in COGENT.
Here, we show how to use such loop iterators in file system code, before explaining how
implement them in C using COGENT’s FFT in the next sub-section.

Figure 4.3 shows BilbyFs’ function for checking whether the flash device is empty,
which makes used of the seq32 iterator. As described in Section 3.3, UBI is a volume

management system for flash memories that provides a mapping from logical eraseblock
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addresses to physical ones to transparently implement a wear-levelling algorithm. UBI
automatically maps an eraseblock when the file system writes to the UBI volume. When
no logical eraseblock address is mapped to a physical address, it means that the UBI
volume has never been written to and is empty.

We check for emptiness by scanning all logical eraseblock addresses, from 0 to
mount_st.super.nb_eb which corresponds to the number of logical eraseblocks present
on the UBI volume. check_flash_empty takes three arguments: ex is external environ-
ment of the file system; mount_st is the read-only part of the state initialised at mount
time; ubi_vol is a reference to the UBI volume. On lines 4-9, we invoke the loop iter-
ator seq32 incrementing by one (i.e. step=1) from 0 to nb_eb. We pass the loop body
check_flash_empty_loop as a callback which gets called for every iteration of the loop.
ex may be modified by the loop body, so it is passed as the accumulator (i.e. acc) which
is also returned by the loop body. The UBI volume reference ubi_vol is passed as a
shareable variable (i.e. read-only) in the observable parameters. We make the most of
COGENT type system to ensure that the loop body does not modify the UBI volume. As
explained in Section 4.1, by passing ubi_vol as a shareable argument, we do not need to
return it. The loop can either terminate with Iterate (), meaning the last iteration of
the loop returned Iterate (), or it can terminate with Break err, meaning that one of
the iterations interrupted the loop and returned Break err.

The loop body definition on lines 21-30 simply calls ubi_is_mapped; if it returns an
error (line 24) we break out of the loop by constructing and returning a tuple made of
ex and a tagged union Break with the error code. When ubi_is_mapped succeeds (line
26), we only continue iterating if the logical eraseblock being tested is not mapped. In
this case, we return a tuple including the accumulator and the tagged union Iterate ().
Otherwise, if the ubi_is_mapped indicates that the logical eraseblock is mapped, we break
out of the loop with the special error code eNotEmpty. Note that in check_flash_is_empty
on line 12, we check if value of the error code is eNotEmpty to decide whether the loop

succeeded or not.

Antiquoted-C implementation of seq32

Recall that we implement ADTs, allocation functions and loop iterators directly in C.
To facilitate the interactions between COGENT and C, the COGENT compiler supports
antiquoted-C, a small template language designed to access COGENT types and call
COGENT functions from C. The COGENT compiler generates monomorphised C from the
polymorphic antiquoted-C templates.
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static inline $ty:(acc, <Iterate ()|Break rbrk>)
$id :seq32($ty:(Seq32P acc obsv rbrk) args)

{
u32 i;
$ty:(acc, <Iterate ()|Break rbrk>) ret;
$ty:(Seq32FP acc obsv rbrk) fargs;

ret .p2.tag = TAG ENUM Iterate;
ret .pl = args.acc;

if (largs.step)
return ret;
fargs.acc = args.acc;
fargs.obsv = args.obsv;
for (i = args.frm; i < args.to; i += args.step) {
fargs.idx = 1i;
ret = ((3$spec:(Seq32F acc obsv rbrk))args.f)(fargs);
if (ret.p2.tag =— TAG_ENUM Break)
return ret;
else
fargs.acc = ret.pl;

}

return ret;

Figure 4.4: Antiquoted-C seq32 implementation

Figure 4.4 shows the antiquoted-C implementation of the seq32 iterator. We refer to
the C type that implements the COGENT type TYPE with $ty: (TYPE) and we refer to the C
identifier for a COGENT function FUNC with $id:FUNC. ($spec: (FTYPE) f) (FARGS) denotes
calling a COGENT function £ whose type is FTYPE passing arguments FARGS. COGENT
n-tuples are implemented as a C data structure with n fields named p1l to pa. Records
are implemented as C data structures with field names matching the record fields. All
COGENT functions take one argument, but the argument may be of tuple type. The
COGENT type system assumes that the execution of seq32 is well defined and terminates
whenever its arguments are well typed under COGENT’s type system. On lines 11-12 we
perform a sanity check on the step parameter of the loop. On lines 13-14, we initialise
the loop-body arguments. On line 15 we initiate the for-loop that iterates from args.frm
to args.to by adding args.step to the loop counter at each iteration. On lines 16-17,

we initialise the last loop body argument args.idx with the current loop counter i and
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we call the loop body passed in args.f using the $spec antiquoted-C directive. On the
next line, we check whether the loop body broke out of the loop by returning Break. The
COGENT compiler implements tagged unions by storing the tagged union’s tag in the
field tag. Each tag t is identified in C via the value TAG_ENUM_t, thus TAG_ENUM_Break
identifies the COGENT tag Break of the LoopResult tagged union (see Figure 4.4).

4.3 Abstract data types interfaces

This chapter demonstrates the feasibility of implementing a the core logic of a file system
in a linearly typed language. The main source of difficulty presents itself in the design
of ADT interfaces that integrate with and respect the restrictions of COGENT’s linear
type system. In particular, foreign functions must be semantically well defined for all
type correct COGENT arguments. They must also avoid creating COGENT-visible aliases.
This way, any correctly typed program is guaranteed to follow COGENT’s well defined
semantics.

Our ADT library implements two kind of polymorphic arrays. The Array type is used
to store boxed objects, such as linear values. COGENT also supports a more specialised
type of arrays, called WordArray, that is used to more conveniently store non-linear values
such as machine words?. We discuss the difference between Arrays and WordArrays later
in this section.

Boxed objects need to be allocated on the heap and are of linear type so their
use has to comply with the linear type system. Hence, we have to proceed with care
when designing an interface for manipulating arrays in COGENT, imagine we declare the
following operation that takes an array and an index of type U32, and returns the element
of the array at this index:

array get:all(a). (Array a, U32) —> a

This operation cannot be implemented in C such that it always respects the linear
type system while having well defined C semantics. What should the C code do if the
element requested does not exist in the array? We could allocate an object and return it,
but allocating memory in the kernel is never guaranteed to succeed. Just as important,
however, consider what happens to the array once the element is returned? The returned
element must be logically taken from the array (akin to COGENT’s take operation on
records) to prevent further invocations from introducing multiple references to the same

object, which would otherwise break the linear type system. Logically removing the

2WordArray is a misnomer since it can be used to store more than merely words. WordArrays
can be parameterised with any non-linear type.
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object from the array also means that a program that only wants to read the object will
have to logically put it back in afterwards. Such an interface is clearly cumbersome both
for expressing file system logic but also for verifying it: a program that only needs to
temporarily read an element from an array will have to prove that the array modifications
leave the array visibly unchanged.

Fortunately, we can leverage COGENT’s type system to design ADT interfaces that
avoid these problems. The idea is to design a library of functions to manipulate ADTs
using combinator-like operations such that part of the data structure can be logically
taken in isolation, inspected or modified by the combinator, and then logically re-inserted.
We use the Array ADT to show an example of such interface in the rest of this section.

Our Array ADT library exports operations to read, remove and replace boxed objects
for an array. Instances of Array a are implemented in C as an array of pointer to COGENT
objects of type a. Each slot of the array either contains a pointer to a valid linear object
in memory or NULL to denote an empty slot which arises when removing an element
from the array for example. The operation to read an element of an Array is called

array_use_value.

type ArrayUseValueF a acc obsv = #{
elem:a!,
acc:acc,
obsv:obsv!

} — acc

type ArrayUseValueP a acc obsv = #{
arr: (Array a)!,
idx: U32,
f: ArrayUseValueF a acc obsv,
acc: acc,
obsv: obsv!

}

array use value: all(a, acc, obsv).

ArrayUseValueP a acc obsv —> acc

Conceptually, array_use_value allows temporarily taking in isolation an element of
the array as shareable (i.e. read-only). array_use_value takes five parameters packed in
an unboxed record (denoted by the # on line 6): the array, the index of the element to
read from, a combinator callback function that will operate on the element if it exists, an

accumulator that can be used to store the result of the callback, and the state observable
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static inline $ty:(acc)
$id :array use value($ty:(ArrayUseValueP a acc obsv) args)
{
if (args.idx < args.arr—len) {
$ty:(#{elem:a!, acc:acc, obsv:obsv!}) fargs;

fargs.elem = args.arr—>values|args.idx]|;
if (!fargs.elem)
return args.acc;

fargs.acc = args.acc;
fargs.obsv = args.obsv;
return

(($spec:(ArrayUseValueF a acc obsv)) args.f)(fargs);

}

return args.acc;

Figure 4.5: Antiquoted-C implementation of array_use_value.

from the callback. The callback is of type ArrayUseValueF, the parameters include the
shareable element of the array.

We note that array_use_value does nothing if the index passed as argument is out-of-
bounds, or if the index refers to an empty slot. The operation is easy to implement such
that any correctly typed input values leads to well behaved C code.

The antiquoted C implementation of array_use_value is in Figure 4.5. The function
checks whether the index passed as argument is in bound on line 4, and if there exists
an element at this index on line 8. If so, we pack the arguments of the callback on
lines 7-11 and calls it on lines 12-13. If the element referenced by the index does not
exist, array_use_value merely returns the accumulator unchanged on lines 8-9. The
function assumes that the arguments are well-typed, for instance the COGENT type

checker guarantees that args.arr is a valid pointer to a COGENT Array a.

Cogent array types

The interface for Array has to be designed in a way that it never introduces two references
to the same linear object. On the other hand, for WordArrays (which, recall, hold unboxed
non-linear values) there is no such restriction, because elements are non-linear, so they may
be freely duplicated. Such freedom makes the interface for Worddrrays more convenient to

use than Arrays. Moreover, elements of a WordArray do not need to be freed individually
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since they are unboxed. By contrast, elements of an Array are boxed and must be freed
one at a time. We illustrate the simplicity of the WordArray interface with the following

example:
wordarray _get: all(a :< DSE). ((WordArray a)!, U32) —> a

It reads an element of a Wordarray at a given index. Before we dive into a description
of wordarray_get, we briefly describe the type kinding rules supported by COGENT’s type
system. A kind is a type specifier that can put restrictions on a the type parameter of
a polymorphic type. Polymorphic types can be tagged by three different kinds: D for
discardable, S for shareable and E for escapable. Discardable means that the type of the
variable does not force the variable to be used (as opposed to linear variables that have to
be used exactly once). Shareable type means that the variable can appear multiple times
without breaking linearity (such as let! bindings). Finally, escapable means that when
the variable is bound by a let! statement, it can escape the scope of the let! statement

(linear variables cannot).

In the type signature of wordarray_get, the kinding constraint a :< DSE ensures that
the type parameter a (the array element type) is not linear. COGENT’s compiler will thus
reject programs that attempt to instantiate a WordArray with a linear type. wordarray_get

takes a WordArray and an index of type U32 as argument. It is implemented as follows:

$ty:a $id:wordarray get ($ty:(((WordArray a)!, U32)) args)
{
if (args.p2 >= args.pl—>len)
return args.pl—values [0];

return args.pl—>values|args.p2];

Again, here we cannot assume anything about arguments of the function beyond type
correctness. A well typed COGENT program can pass an index that is out of bounds. This
should not cause an invalid memory access, hence we check whether the index argument,
namely args.p2, is in-bounds, and we return the first element of the WordArray if it is
not. Note that wordarray_create, the operation that allocates a WordArray, returns an
error when the requested length is zero. Hence, all WordArray ADTs always have at least

one element.
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Array

Function name

Description

array create
array _free
array _use_ value
array remove
array__modify
array _length
array _map

array map_ex
array _map_no_ break
array _filter

array _fold
array fold no break

create an array of specific size

free an array

temporary access an element read-only

remove an element from the array

modify an element of the array

returns the length of the array

iterate over all elements of the array with read/write
access

same as array _map but only iterate through existing
elements

map all elements, the loop body cannot break out of
the loop

remove all elements that match the filtering callback
loop over elements of the array with read access only
same as above but cannot break out of the loop

WordArray

Function name

Description

wordarray create
wordarray _free
wordarray _get
wordarray _modify
wordarray _length
wordarray map

wordarray map no_break
wordarray _fold

wordarray fold no_break

create an array of machine words

free an array of words

reads the data at a given index

modify the data a given index

returns the length of the word array

iterate over range of the word array, each iteration
can update the element

same as wordarray map but cannot break out of the
loop

iterate over a range of the word array, each iteration
has read-only access to the element

same as wordarray fold but cannot break out of the
loop

Figure 4.6: Arrays vs WordArray interfaces




4.3. ABSTRACT DATA TYPES INTERFACES 79

Comparison of array interfaces Figure 4.6 shows the list of Array and WordArray ADT
operations 3. The most striking difference between the two interfaces is how elements are
read from the array. Arrays have two operations to access an element at a specific index:
array_use_value and array_remove, whereas WordArrays have only wordarray_get. We
described array_use_value at length earlier in this section, however we did not discuss
array_remove. array_remove updates the slot of the element to NULL in the array and
returns the element. If the index is not in-bounds or refers to an empty slot, array_remove
does nothing. Since its slot in the array is set to NULL, the element can only be returned
once, satisfying the linearity requirements of the type system.

Both interfaces provide iterators to traverses elements of the array. The map variants
(whose names are of the form *_map*) allow iterating through array elements while poten-
tially modifying them, whereas fold iterators only provide read-only access to the elements
being iterated over. All iterators provide a no-break variant (e.g. array_map_no_break)
for loops that cannot be interrupted.

The Array interface also has an operation array_filter that allows removing several
elements at once from an array. array_filter takes a callback function using the same
mechanism we use for the loop body of the seq32 iterator. The callback may remove an
element by freeing it or leave it in place by simply returning it. No such operation is
needed for WordArrays since all elements are allocated in batch at creation, thus only the

WordArray itself must to be freed, not every single elements of it.

Red-black tree interface

A red-black tree [Cormen et al., 2009] is a self-balancing in-memory tree data structure
commonly used in systems programming. For instance, red-black trees are used in several
parts of the Linux kernel including: in the anticipatory, deadline, and CFQ I/O schedulers
to track requests; in the ext3 file system to track directory entries; in the memory
management sub-system to track virtual memory areas; and many other places [Corbet,
2006]. The functionality of a red-black tree is easily modelled using a key-value partial
map with a well defined ordering on keys. This provides a convenient abstraction to
reason about code that manipulates the tree in COGENT-generated specifications.

File system code may have critical I/O paths where failures such as memory allocation
errors are not allowed, or they would otherwise leave the in-memory data structures of

the file system in inconsistent state. To avoid allocation failures in critical paths, file

3The complete interface, including the types, is available in the COGENT repository at
https://github.com/NICTA /cogent /tree/master /impl/libgum /array.cogent and https://github.
com/NICTA /cogent /tree/master /impl/libgum /wordarray.cogent


https://github.com/NICTA/cogent/tree/master/impl/libgum/array.cogent
https://github.com/NICTA/cogent/tree/master/impl/libgum/wordarray.cogent
https://github.com/NICTA/cogent/tree/master/impl/libgum/wordarray.cogent
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Red-black tree
Function name Description
rbtnode create allocate a node for the tree
rbtnode free free a node of the tree
rbtnode get key return key of a node
rbtnode put_key set new key for a node
rbtnode get val return value stored in a node
rbtnode put_val set new value for a node
rbt_create allocate a red-black tree
rbt free free a red-black tree
rbt _modify update node for a given key (existing or not)
rbt get value return value for a given key
rbt_iterate iterate over a range of keys
rbt_iterate no break | same as rbt_iterate but cannot break out of loop
rbt_filter iterate over range of tree node and conditionally re-
move nodes that satisfy a condition
rbt _cond erase same as rbt_filter but for a single key/node
rbt next find the next node in the tree given a key

Figure 4.7: Red-black tree interface

systems may pre-allocate data structures. Thus a red-black tree interface for in-kernel
file systems must provide means to pre-allocate nodes such that the insertion of a node
can be guaranteed regardless of the state of the system’s memory when the insertion
is undertaken. Hence, both in C and in COGENT, the interface of red-black trees node

allocation and insertion are decoupled.

Another particularity of kernel code that makes use of red-black trees is that for
performance reasons, searching the tree is often done in a ad-hoc manner. This is especially
true in the Linux kernel, where each client of the red-black tree library implements its
own iterator on the tree*, enabling clients to perform modifications to the tree while

minimising the number time the tree is traversed, for instance.

Designing a red-black tree ADT interface for COGENT, which allows us to write
COGENT code that provides the same functionality and that is asymptotically equivalent
to the equivalent code in C, attests of the expressiveness of COGENT’s FFI. Similarly to
the Array interface, red-black tree operations to access the tree cannot merely return a
node as linear variable because the type-system would not be able to guarantee linearity.

Hence, we design an efficient combinator-like interface to access our red-black tree.

In Figure 4.7, all operations prefixed with rbtnode_ create, free and manipulate

4https:/ /www.kernel.org/doc/Documentation /rbtree.txt
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red-black tree nodes ®. Operations prefixed with rbt_ manipulate the tree directly. By
decoupling node allocation from tree manipulation, we can guarantee that the operation
rbt_modify will always succeed, for instance. This happens to be critical in BilbyFs,
when the ObjectStore has successfully written to the flash and must update several
nodes of the red-black tree used for the in-memory index, a failure would lead to an
inconsistency between on-flash data and in-memory index, and would not be recoverable

without remounting the file system.

Apart from rbt_next, other operations are analogous to the Array ADT interface.
rbt_next takes a tree and a key as argument, and will return the key of next adjacent
node in the tree structure. If no such node exists, the operation returns a constant key

value known to be invalid.

The interface choice for the rbt_modify function was crucial. It is common for file
systems to search for a node in the tree and insert a new one if the node could not be
found. Looking up a node in a red-black tree is an expensive operation because it involves
traversing the tree to find the node in question. Inserting a node is even more costly, since
in addition to finding the node’s location, we also need to insert it. Performing these two

operations one after another is highly inefficient since we are traversing the tree twice.

We solved this problem by providing the rbt_modify function that looks for a node
and invokes the callback passed as argument regardless of whether the element was found
in the tree. rbt_modify takes a pre-allocated node as argument that is only used when
the element requested is not found in the tree. To save traversing the tree again if the
callback decides to add a node, rbt_modify keeps a pointer to the location in the tree
of the node as the callback is invoked. The callback modifies the element if it exists, or
returns the node to be inserted otherwise. To perform the insertion, we use the pointer
to the location we kept in memory, avoiding traversing the tree again. When the element
is found in the tree, the pre-allocated node is returned and must be freed by the COGENT

code.

This design allows searching for an element and inserting one if the element was not
found without traversing the tree a second time. This happened to be crucial for the
performance of any operation that writes to the ObjectStore, because it involves updating

the Index which is implemented using a red-black tree.

>The complete interface is available at https://github.com/NICTA /cogent /tree/master /impl/
libgum /rbt.cogent
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Design pattern for ADT interfaces

Having introduced the interfaces of several ADTs, we distill the general principle we
follow when designing ADT interfaces for a linearly typed language. ADTs interfaces
must provide operations to temporarily focus a part of the data structure and manipulate
it in COGENT code. As we have seen for the Array and red-black tree interface, we would
like to be able to take in isolation a part of the data structure, read or modify it, and

then logically re-insert it.

The design principle we follow consists of providing operations that invoke a combinator
callback that works on the part of the data structure the client of the interface wants to
focus on. Since the rest of the data structure is inaccessible from the combinator, there is
no need to logically remove part from the data structure. This way COGENT code can
focus on a part of the data structure (e.g. element of an Array, or a node of a red-black
tree) and manipulate that part of the data structure while respecting the constraints

imposed by the linear type-system.

In order to facilitate verification of COGENT code, we encode as much information in
the COGENT types as possible. Thus, ADT operations only take the part of the state
that they access, and we separate explicitly the part they read from and the part they
modify. We leverage COGENT’s parametric polymorphism to achieve this separation.
Concrete types are specified to instantiate the type parameters of an ADT operation
when it gets invoked. The read-only part of the state is passed as a shareable type so that
the COGENT’s type system guarantees that the combinator callback only reads from it.
By contrast, the part of the state that can be modified is passed as a linear accumulator

that must be returned by the combinator.

4.4 Cogent as a system implementation language

In this section we explain how we use COGENT to implement efficient file system code.
We present another COGENT function from BilbyFs’ implementation in order to highlight
how the language deals with code idioms that appear in modular file system code such as:
error-handling, state decomposition, memory management and low-level data structures
manipulation. We conclude this section by explaining how to design top-level file system
interfaces that do not expose potential memory aliasing, in order to be implementable in

COGENT without breaking the linear type-system.
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ostore_read: (ExState, MountState!, OstoreState, Objld)
—> ((ExState, OstoreState), <Success Obj| Error ErrCode>)

ostore read(ex, mount st, ostore st, oid) =
index get addr (ostore st.index st, oid) !ostore st

Error err —>

((ex, ostore st), Error err)

Success addr —>

let wbuf eb = ostore st.wbuf eb !ostore st

and ((ex, ostore st), r) =

(if addr.ebnum = wbuf eb then

let ostore st {wbuf} = ostore st

and wbuf = wbuf {bound=ostore st.used} !ostore st

in deserialise Obj (ex, wbuf, addr.offs) !wbuf

| Error (e, ex) —>
let wbuf = wbuf {bound=mount st.super.eb size}
in ((ex, ostore_ st {wbuf}), Error e)

| Success (ex, obj, sz) —>
let wbuf = wbuf {bound=mount st.super.eb size}
in ((ex, ostore_ st {wbuf}), Success obj)

else
let ostore st {rbuf} = ostore st
and ((ex, rbuf), r) = read obj pages in_ buf (ex, mount_st,
ostore st.ubi_vol, rbuf,
addr) !ostore st
in r

| Error e — ((ex, ostore st {rbuf}), Error e)
| Success () —>
deserialise _Obj (ex, rbuf, addr.offs) !rbuf
| Error (e, ex) —> ((ex, ostore st {rbuf}), Error e)
| Success (ex, obj, sz) —>
((ex, ostore st {rbuf}), Success obj)

)

in r

Success obj —>
let oid’ = get_ obj oid obj !obj
in if oid = oid’ then

((ex, ostore st), Success obj)
else

((deep freeObj(ex, obj), ostore st), Error eRoFs)
Error e —> ((ex, ostore_st), Error e)

Figure 4.8: Example of COGENT source code
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Cogent file system code

Figure 4.8 gives a flavour of what file system code in COGENT looks like. As described in
Section 3.3, ostore_read reads a file system object from the ObjectStore. We present the

correctness proof of ostore_read in Chapter 6.

ostore read Functionality ostore_read searches the index to retrieve the physical
address of the object to read and checks whether the object is located in the current
eraseblock. Recall that BilbyFs maintains a buffer in memory called the write-buffer that
is a synchronised to the current eraseblock on flash when ostore_sync is called. Thus, if
the object requested is located in the current eraseblock, we directly de-serialise it from
the write-buffer, without requiring any read operation on the flash storage. Otherwise,
we need to read the portion of the eraseblock containing the object from the flash into
a buffer and de-serialise the object from that buffer. Note that the buffer used to read
objects which we call the read-buffer is different from the write-buffer.

ostore_read takes four arguments: ex of type ExState is used to model the external
environment of the file system in the proofs; the read-only part of the state mount_st; the
ObjectStore’s state ostore_st of type OstoreState; and the identifier of the object to read
oid. ostore_read returns a tuple containing the reference to the external environment of
the file system and the ObjectStore’s state, as well as a tagged union indicating whether
the function succeeded or returned an error. The Success case also references to the
object that was read, whereas the Error case returns an error code.

On line 4, ostore_read retrieves the physical address of the object from the index using
index_get_addr. index_get_addr works only on the index’s part of the ObjectStore’s
state, i.e. ostore_st.index_st. Since index_get_addr only reads from index_st, we pass
a read-only version of the state, denoted by !ostore_st at the end of the line. If oid
references no object in the store, index_get_addr returns eNoEnt, and so does ostore_read.

On lines 9-10, we bind the result of a if expression to a tuple:

((ex, ostore_st), r) where ex and ostore_st are the value described above updated
and r is a tagged union capturing the result of the expression. The if expression checks
whether the object is stored in the current eraseblock, and if so we de-serialise the
object from the write-buffer by calling deserialise_0bj on line 13. Prior to calling
deserialise_0bj, we set the bound of the buffer to ostore_st.used, indicating that the
buffer contains valid data (only) up to that offset. This bound prevents deserialise_0bj

from accessing data beyond that offset and potentially observing uninitialised data®.

5Note that from a proof point of view, this check is not needed. As we will see in Chapter 6,
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Regardless of deserialise_0bj’s result, we reset wbuf.bound to the size of an eraseblock
(mount_st .super. eb_size).

If the object needs to be read from an eraseblock the object is not in the current
eraseblock, so needs to be read from flash, we call read_obj_pages_in_buf on line 22 to read
all the flash pages that contain a part of the object into the read-buffer (ostore_st.rbuf).
Once we successfully read the flash, we attempt to de-serialise the object from the
read-buffer. In the error case, we simply recompose ostore_st and propagate the error
code.

Finally, on line 33, we pattern match on r, the result of the if expression, and in the
success case we return a reference to the read object after performing a sanity check to

ensure that the object we read has the correct identifier”.

Error handling ostore_read contains a relatively large amount of error-handling code.
This is no surprise, as reported by Saha et al. [2011], file systems have among the highest
density of error-handling code in Linux. A lot of work report on the number of bugs found
in error handling which highlights the importance of verifying error-handling code [Gunawi
et al., 2008; Rubio-Gonzélez and Liblit, 2011; Saha et al., 2013; Lu et al., 2014]. The
current version of COGENT requires all error handling logic to be expressed explicitly.

As the ostore_read example shows, most of the error handling is straightforward, but
verbose, and more often than not merely consists of recomposing the state and propagating
error codes. On the one hand it may be frustrating to write so much error handling, on
the other hand error handling is part of the file system logic, and is unavoidable as the
file system cannot prevent all kinds of errors from occurring. Hence, correct handling of
errors must be verified in order to achieve trustworthy file systems.

For the moment, we force the developer to explicitly consider all these branches during
the development, which may increase the incentive to keep the control flow of function as
simple as possible. We believe that introducing a mechanism that merely compresses the
amount of error handling by introducing language constructs to propagate error codes
and provide no extra verification support would be of little value. Verifying functions
that have a lot of error-handling code often involves proving that for every error case,
the error-handling code allows an invariant to be preserved. Removing the need for such

proof obligations solely by adding features to the language seems rather difficult. By

the invariant of the file system guarantees that every object referenced by the index has a
valid corresponding object stored on flash or in the write-buffer. However, such run-time check
guarantees that even if the storage device assumptions get violated e.g. the flash exhibits a bit-flip
error, we will not read uninitialised data from the buffer.

"Again, the verification proves this check unnecessary assuming that BilbyFs’ invariant holds.
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contrast, investigating how these proof obligations can be automatically discharged on
the verification side by a combination of language and verification techniques might be a
more fruitful alternative. Since COGENT specifications are purely functional, they already
greatly facilitate proving that file system state preserves an invariant in the presence of

errors. We discuss error-handling proofs further in Section 6.6.

Memory management COGENT provides control over which variables are located on
the stack and which variables are allocated on the heap. Unboxed variables (i.e. tuples,
unboxed records, primitive types and tagged unions) are all by default located on the
stack and managed automatically by the COGENT compiler, whereas boxed records need
to be allocated on the heap via a FFI call and must obey the linearity requirements of
COGENT’s type system. This gives developers control over memory while enabling the
use of a simple purely functional shallow embedding representation to reason about the
file system code. When verifying COGENT code, the difference between variables located
on the stack or on the heap is essentially irrelevant. We present the memory model we

use to reason about COGENT code in Chapter 6.

State decomposition and let! File systems often maintain a large state, but each
individual function of the implementation tends to work only on a small part of that
state. Exploiting such state decomposition is important to be able to reason about file
system code modularly. As part of the modular design phase presented in Section 3.3, we
decompose the file system state into sub-states, one for each component.

In order to understand the benefit of a modular state decomposition for verification
productivity, we briefly explain the problem with verifying non-modular file system code
with traditional software verification techniques. The state maintained by file systems is a
large C structure with several fields. Often, by convention the whole state is passed via a
pointer to most functions, which only access the subset of fields they need to provide their
functionality. When using such code idioms, verifying functional correctness is extremely
tedious because for every function that only accesses a small subset of the fields of the
state, we have to prove that all fields that are not in that subset are irrelevant and that
they are not modified by the function. Although these proofs are usually easy, they
unnecessarily increase the verification effort.

In COGENT, the take and put language constructs allow decomposing and recomposing
the state of COGENT programs easily. However, for the underlying C code to be efficient,

the developer needs to be careful about the data structure layout of the file system state.
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A naive layout for the file system state would be to use a large record with a field for

each sub-state as an unboxed record, as follows:
type FsState = { compl st:#{...}, comp2 st:#{...}, ...}

Here, FsState is an boxed record, and each field corresponds to a component’s sub-state
is an unboxed record. FsState emulates the layout of traditional file systems state written
in C. This way, when the file system is initialised, the code merely allocates the large
FsState data structure on the heap, with a single call to the memory allocator and keeps
the same state as long as the file system runs. The problem with such layout is that in
COGENT, when we take a sub-state out of FsState and pass it to a component’s function
that only operates on that sub-state, because the sub-state is unboxed, it is passed by
copy. Hence, we would pass a rather large sub-state by copy on the stack to all the
operations of that component which leads to inefficient C code.

The solution for avoiding passing large sub-states on the stack is to make sub-state
boxed records and allocate them on the heap when the file system is initialised. This way,
when a function only operates on a sub-state, we use the take language constructs extract
the state and pass that sub-state as a pointer, which is much cheaper than copying an
unboxed record.

Combined with let!, take and put enable Isabelle/HOL to leverage the type informa-
tion of the COGENT-generated specifications. More precisely, since COGENT specifications
are purely functional and the state is explicitly passed around by value, by only passing a
small part of the state to a function, we avoid having to prove that the parts untouched
by the code are indeed unmodified by the function. This is one the key improvements
of reasoning about COGENT as opposed to a language where memory must be modelled
via a mutable heap like C or Java. With such models one must reason about how an
object is updated in the heap, but also specify how the rest of the heap is unmodified.
Our simpler memory model, where a state is passed explicitly by value, contributes to
the increase in verification productivity when we prove the functional correctness of the

COGENT code. We discuss this further in Chapter 6.

Low-level data structure manipulations

A significant fraction of file system code is dedicated to parsing and updating data while
respecting the on-medium data layout of the file system. Manipulating low-level data
structures in memory is a hazardous task [Bangert and Zeldovich, 2014] and file systems

often fail to do so correctly [Lu et al., 2014].
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Typically, a file system reads data from storage into a buffer and manipulates data
structures in that buffer. Such data manipulation makes heavy use of pointer aliasing.
For instance, when file systems implement directories, part of the directory is loaded in
memory and the file system parses the buffer by casting a C pointer that points to an
offset within the buffer into a directory entry structure within the buffer. The file system
jumps from one directory entry to another by using C pointer arithmetic.

COGENT restricts the amount of data sharing which makes parsing and updating
the on-medium data format quite different from traditional file systems. In COGENT
the programmer writes serialisation and de-serialisation functions to parse and update
file system objects encoded in a buffer. A buffer is implemented as a WordArray and
serialisation functions simply write to the buffer by using the WordArray ADT interface
presented in the previous section. By implementing serialisation functions in COGENT
we avoid all the memory bugs, which account for around 10% of all bugs in Linux file
systems [Lu et al., 2014].

Serialisation and de-serialisation code can be automatically generated [Bangert and
Zeldovich, 2014; Fisher et al., 2006]; Kanav [2014]’s recent work also automates the
functional correctness proof of a subset (essentially excluding loops) of the generated
code. However, for BilbyFs all the serialisation and de-serialisation code was written
manually directly in COGENT. As we show at the end of this chapter, serialisation and
de-serialisation functions were the main source of bugs we found when testing COGENT
code.

A clear disadvantage of our approach to manipulate file system objects stored on
medium is that every time we de-serialise an object from a buffer, we need to copy data
from the buffer and to create a COGENT object. These objects are often too large to live
on the stack, so they must be allocated on the heap with an explicit call the memory
allocator. Both the copy and the memory allocation are sources of performance overhead

in COGENT file systems.

File system interface in a linear type system

COGENT’s linear type system required careful design of the top-level file system interface,
which is called by the VFS, to reduce the friction with the parts of the VFS interface
that expect memory aliasing. Specifically, the rename operation expects the possibility of
aliasing in its top-level entry point called from the VFS.

Rename can move a file or a directory from one directory to another or within the

same directory. When a user renames a file within the same directory, the source and
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ostore read: (ExState, MountState!, OstoreState, Objld)
—> ((ExState, OstoreState), <Success Obj| Error ErrCode>)

Listing 4.1: Cogent prototype

struct ostore read args {
ExStatex pl;
struct MountStatex p2;
struct OstoreStatex p3;

Objld p4;
b
struct ostore read ret {
struct {
ExStatex pl;
struct OstoreStatex p2;
}opl;
struct {
tag t tag;
u32 Error;
struct Obj* Success;
} p2;
b

struct ostore read ret ostore read(struct ostore read args al);

Listing 4.2: Generated C code

target directory inode pointers passed to rename refer to the same inode structure in
memory and thus alias each other. Since COGENT’s linear type system does not permit
aliasing, our solution was to split the rename operation into two. We write a simple C
wrapper around rename that compares the addresses stored in the pointers, and invokes a
new top-level operation called move when the pointers reference different inode structures
in memory and invokes rename when they are pointing to the same one. Our COGENT
rename operation only takes one directory inode, eliminating the memory alias. Spliting
the operation in two led to about 150 lines of duplicated code out of a total of 3,500 lines
of COGENT for BilbyFs.

Code generation

We hinted at the COGENT to C compilation in Section 4.1. Here we elaborate on this
and illustrate the systematic translation of COGENT structures to C. Most COGENT
language constructs can be translated to C in a straightforward manner. More specifically,

record definitions, tuples, if then else, let! and record updates have obvious equivalent
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constructs in C. The most challenging aspect of code generation is dealing with tagged
union types and case distincions with COGENT pattern matching. However, as we show
next, once we use the appropriate C structure for tagged unions, pattern matching is

straightforward to implement.

To describe the systematic translation of COGENT code to C, we present the generated
data structures and prototype for the ostore_read function discussed earlier. Listing 4.1
shows the COGENT prototype of ostore_read, while Listing 4.2 shows its generated C
prototype and the accompanying data structure definitions. The generated code was
slightly polished for presentation. In particular, we replaced the C structs with generated

names by inline structs in order to increase readability.

As described earlier, ostore_read takes a tuple of four elements as argument. Co-
GENT’s code generator creates a C data structure ostore_read_args with four fields, one
for each element of the tuple. Tuples are systematically converted into a C structure with
fields named pn, where n is the index of the field in the tuple. ExState, OstoreState
and MountState are all boxed record types, thus they are linear and passed by pointer
references in the C code. Objld, for which the definition is not shown, is a 64-bit machine

word, so it is passed by value.

To facilitate systematic translation of COGENT code to C, every function takes a single
argument. Hence, when COGENT code calls ostore_read, it must pack the arguments
into the ostore_read_args structure that represents a tuple and then call ostore_read by
passing it to the function. Argument structures are passed by copy because our verification
framework for C code does not support passing local (i.e. stack-allocated) variables by
reference. Despite the fact that such C code is unconventional, our experiments showed
that in most cases, an optimising compiler like gee [Stallman, 2001] is able to detect such
patterns and, when it is safe to do so, pass the data structure by reference instead in the

compiled object code.

ostore_read_ret is the return type of the ostore_read function. The tagged union
is described by the inline struct definition on lines 13-17. The first field, tag, is of type
tag_t which is an enum indicating which constructor is in use, i.e. Error or Success. The
tag field is used in pattern matching, to compare against the values of the enum and
match the case matching the expression. The two next fields, Error and Success are C
structures storing the value held by the constructor matching their respective field names.
One might wonder why we do not merely pack the tagged union fields in a C union.
Again, here, our experiments with gcc showed that when we use C unions, the compiler

refrains from performing stack optimisations, producing a slower binary executable.
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lozone performance, 4 KiB writes
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Figure 4.9: COGENT BilbyFs under all IOZone scenarios

4.5 Evaluation of BilbyFs implementation in Cogent

In this section we evaluate the performance of BilbyFs’ COGENT implementation. More
specifically, we are interested in making sure that the design patterns we presented in
Section 4.3 do not incur unacceptable performance overhead. Since the current COGENT
compiler is only a prototype, this evaluation does not aim to show that a COGENT file
system achieves the same performance as the handwritten C implementation. But instead,
we focus on identifying the source of the overhead and we show that despite the COGENT
compiler not being optimised, BilbyFs COGENT implementation exhibits reasonably low
overhead.

To evaluate the BilbyFs in COGENT, we run the same benchmarks presented in
Section 3.4, on the same hardware, in order to compare the COGENT implementation of
BilbyFs to its native C implementation, presented in Section 3.4. As before, UBIFS and
JFFS2 serve as useful baselines for comparison.

Figure 4.9 shows that the throughput overhead of the COGENT version of BilbyFs
is less than 10% on all IOZone tests. When profiling the CPU load we find 29% =+ 2 pp.
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Sequential write performance, 4 KiB writes
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Figure 4.10: COGENT BilbyFs sequential writes 4K with file size increasing

(percentage point) of CPU usage for BilbyFs-COGENT compared to 26% +2pp. for
BilbyFs-proto. As the diagrams show, despite the slow down, BilbyFs-COGENT remains
faster than UBIFS on most tests.

To further analyse the overhead of BilbyFs-COGENT, we run the sequential write test
of I0Zone while progressively increasing the size of the file to write. Figure 4.10 plots the
throughput between the first and the last write() without calling the sync() operation.
Thus this test measures the run-time performance of the file system excluding the ‘flush’
operation. Note that the X-axis, which represents the file size, is on a log scale.

BilbyFs-COGENT is consistently slower than BilbyFs-proto with less than 10% overhead
on average with a CPU usage of 23% +2 pp. compared to the 18% + 2 pp. of the prototype
version. However, despite the slow down, BilbyFs-COGENT achieves a throughput increase
of around 25% when compared to UBIFS. Kernel profiling of the file system revealed
that the CPU overhead is mostly the effect of redundant memory copy operations in the
generated C code when passing structures on the stack. This causes to the modest slow
down observed on the benchmarks. but this result shows that the read() and write()
I/0 path of BilbyFs can be implemented in COGENT with reasonably low performance
overhead.

Figure 4.11 shows the same benchmarks but IOZone is configured with the -e option
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Sequential write performance, 4 KiB writes
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Figure 4.11: COGENT BilbyFs sequential writes 4K with file size increasing including
sync()

to include the cost of performing a sync() after the last write. We observe that as
the size increases, BilbyFs-COGENT and UBIFS data points get closer and are almost
indistinguishable from 2 MiB onwards. BilbyFs-COGENT throughput is about 5% lower
than its C counterpart. BilbyFs-COGENT uses 23% + 1 pp. of CPU compared to the
18% =+ 1 pp. of the C prototype. The reason for this overhead is the same as for Figure 4.10.

We evaluate BilbyFs-COGENT against some pre-defined workload personalities of
Filebench [Filebench| in Figure 4.12. The detailed description of the workload is provided
in Section 3.4. The overhead of COGENT on BilbyFs is less than 10% on all the Filebench
tests, which is consistent with the degradation we see on the IOZone results. We now
further analyse this overhead by running the postmark benchmark and profiling the file
systems.

Figure 4.13 shows postmark [Katcher, 1997] results while profiling the CPU usage of
each file system with OProfile [Levon|. BilbyFs-COGENT uses 51% of the CPU whereas
BilbyFs-proto only uses 31%. In both implementations, the bottleneck is in the function
bilbyfs-sum-obj, which collects the indexing information and adds it to the summary.
However, the COGENT version of the function takes three times as long because the C

compiler fails to optimize the COGENT loop on the WordArray ADT, to pass the element
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Figure 4.12: COGENT BilbyFs under Filebench workloads

of the array by reference for each iteration of the loop instead of copying. Since a summary
is a large WordArray of summary entry of size 18 bytes each, the loop copies that many
bytes in memory for each iteration every time we an object is written to the ObjectStore.
A summary can easily have hundreds entries, since the number of entries depends on the
number of unique objects (i.e. uniquely identified by their object identifier) serialised in

the write-buffer.

The underlying reason for these results is the COGENT compiler is at present overly
reliant on the C compiler’s optimiser. In particular, it passes many structures on the stack,
which result in much extra copying that the C compiler fails to optimise away. Further
work is needed to generate code that is more in line with the C compiler’s optimisation
capabilities. In addition, as mentioned earlier in this chapter, low-level manipulation
of data structures stored on flash is not as efficient in COGENT as it is in C, because
we have to invoke the memory allocator to create an object, before de-serialising which
involves copying data from the buffer to the object. However, since in most cases we

de-serialise objects when an operation reads from the flash, in our benchmark the overhead
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Figure 4.13: Performance and CPU usage for postmark benchmark for BilbyFs-COGENT
of de-serialisation is mostly hidden by the cost of waiting for the flash device.

Bugs in Cogent implementation of BilbyFs

Although our COGENT compiler provably prevents type and memory-safety bugs, it is far
from being enough to claim that a file system implemented in COGENT is bug-free. In
fact we found several bugs when testing the COGENT version of BilbyFs.

We present an overview of the bugs found in order to explain the kinds of bugs that
still arise in type-correct COGENT code that can be found without the use of further
verification. Chapter 6 shows how to verify the absence of these kinds of bugs via a proof
of functional correctness.

Most of the bugs presented here were found when running BilbyFs-COGENT for the
first time. None of these defects were caught by COGENT’s type system and we found
them solely by testing the file system before we began the verification of the code. Some
bugs were found when running the Fstest POSIX test suite [Dawidek|. This suite includes
1830 tests for operations such as: chmod, chown, link, mkdir, open, read, write, rename,

rmdir, symlink, truncate and unlink.
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Figure 4.14: Bugs found when running bilby-COGENT

Figure 4.14 shows a summary of the bugs we encountered when running BilbyFs-
CoGENT. We found 19 bugs in total. Four bugs were typographical errors where the
wrong value was assigned to a variable or where the field of a data structure was not
initialised. We count such bugs in the logic category which accounts for 11 of the 19 bugs
found in total. The remainder of the logic bugs were missing checks, such as not checking
the maximum length of the file name in lookup(), or bugs occurring when manipulating
objects stored on flash. For instance, we found two bugs caused by de-serialising an
on-flash data structure from the wrong offset.

All the logic bugs would have been uncovered with a functional correctness proof on
the COGENT specification of the code akin to the ones presented in Chapter 6. These
two de-serialisation logic bugs could also have been avoided by using a data description
language to generate the serialisation code for on-medium data structure from a declarative
specification of the on-medium encoding of file system objects, as mentioned in Section 4.4.

Seven of the bugs discovered when testing BilbyFs-COGENT were found in the manually
written C wrapper code that invokes COGENT entry points from the VFS (i.e. the Cache
Manager, as explained in Chapter 3). Most of these bugs were very shallow, and
simple testing was sufficient to find all of them because the logic of the wrapper code is
intentionally very simple.

Finally, the one concurrency bug we found was due to a missing lock acquisition in
the sync() wrapper code of the Cache Manager, meaning that the operation could run
concurrently with other the file system operations. Although our verification approach
presented in the next chapter does not support reasoning about concurrent code, this
could easily have been found using a static analysis tool such as SDV [Ball et al., 2006]
by writing usage rules for BilbyFs’ API specifying that the lock must be acquired before
invoking an entry point for instance.

Overall this short survey teaches us that the Cache Manager wrapper code is a non
negligible source of bugs (8 out of 19) in COGENT file systems and our methodology does

not prevent against these. Logic bugs, however, can be provably eliminated by proving
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the functional correctness of COGENT code as explain in the rest of this thesis.

4.6 Summary

We presented the use of COGENT as a provably safe language designed to write and
verify file system code. We described the key design decisions that made COGENT
successful. COGENT is a purely functional linearly typed language. It is purposefully
restricted to enable automatic correspondence proof between a formal model of the code
in Isabelle/HOL and the low-level C implementation of the file system. COGENT code
relies on a library of abstract data structures and loops are implemented as iterators over
these data structures.

Linear type systems present several challenges that have sometimes precluded their use
for general systems programing in the past. But COGENT keeps the linear types where they
are most useful: for tracking memory allocation, error-handling, and higher-level control
code. In addition, ADTs provide a safety-hatch for escaping the confines of the linear
type system when necessary. We demonstrated that COGENT can be used to implement a
carefully designed file system, and presented the key design patterns we developed when
implementing BilbyFs in COGENT. These design patterns include ADT interfaces that
take combinator-like callbacks as argument to perform an operation on a small part of
an ADT, decomposing the file system state in a way that leads to efficient C code, and
manipulating low-level data structures via serialisation/de-serialisation functions. We
evaluated the COGENT implementation of BilbyFs and showed that COGENT’s overhead
is lower than 10% on most benchmarks and 25% in the worst case for the postmark
benchmark. Finally, we analysed the bugs we found when testing COGENT code, most of
which can be eliminated with a functional correctness proof on the generated-COGENT
specifications as presented in the rest of this thesis.

In the following chapter, we present the high-level specification of BilbyFs that we use

to prove the functional correctness of key top-level file system operations in Chapter 6.






5 Specification

This chapter draws on work presented in the following paper:

¢ Sidney Amani and Toby Murray. Specifying a realistic file system. In Workshop on
Models for Formal Analysis of Real Systems, pages 1-9, Suva, Fiji, November 2015.

In the previous chapter, we described COGENT, a language tailor made to implement
verifiable file systems. In this chapter, we focus on the first step of the verification phase
of our methodology: specifying the correctness of the file system. BilbyFs’ correctness
specification is a formal description of the intended functionality of each file system
operation. We present the most interesting elements of the correctness specification
of BilbyFs. The specification supports asynchronous writes, a feature that has been
overlooked by several file system verification projects [Ernst et al., 2013; Hesselink and
Lali, 2009; Chen et al., 2015a]. We write the correctness specification as a functional
program in Isabelle’s higher-order logic and we used it in Chapter 6 to prove that BilbyFs’
implementation of the iget () and sync() operations satisfy the specifications presented
in this chapter.

In Section 5.1 we present the detail of the formalisation we chose to specify the
correctness of BilbyFs. To support fully asynchronous writes, BilbyFs’ specification
explicitly separates the in-memory and on-medium file system state. We give an overview
of our file system model in Section 5.2 and explain this separation further in Section 5.3.
In Section 5.4 we show how to use this model to specify the correctness of file system
operations including: create(), iget() and sync(). Finally, in Section 5.5 we discuss the

limitations of our correctness specification and we conclude in Section 5.6.
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5.1 Formalisation

Our objective is to prove the functional correctness of BilbyFs, specifically that every
behaviour exhibited by the implementation is captured by its specification (i.e. formal
refinement de Roever and Engelhardt [1998]). As explained in Section 3.1, BilbyFs
implementation uses a global lock to avoid all concurrency, meaning that its specification
can be entirely sequential. This specification should be concise enough to be easily audited
to ensure it captures the intended behaviour of BilbyFs.

We chose to shallowly-embed the correctness specification of BilbyFs in Isabelle/HOL [Nip-
kow et al., 2002]. Our specification is formalised in the nondeterminism monad, inspired
by the nondeterministic state monad of Cock et al. [2008]|, where computations are
modelled as sets of values, one for each possible execution and associated return-value of
the computation. A computation that returns results of type o is modelled as a value
of type o set: singleton sets model deterministic computations; the empty set models
computations whose semantics are not well-defined.

We define return x = {x}, so the primitive computation return x simply yields the
result x. The “bind” operation, written >>=, sequences two computations together. £ >>= g
is the specification that for each result r of the computation f, executes g passing r as
g’s argument: f >>= g = |J,cfr g r. The nondeterministic choice x M y between two
computations x and y is defined trivially: x My = x U y. We write do x <« f; g x od
as sugar for £ >>= g, in the style of Haskell.

The do-notation makes the specification readable by ordinary programmers. Being
shallowly-embedded in Isabelle/HOL, the specification is more straightforward to reason
about than if it were deeply-embedded. Finally, following Cock et al. [2008], this formalism
supports a scalable, compositional framework for proving refinement.

Unlike Cock et al., we eschew a state monad for our correctness specification. Our
specifications are simple enough that passing the file system state explicitly adds little
overhead. Further, we found that a state monad makes our specifications harder to read
while imposing extra mental overhead due to having to unpack and repack the state when

calling into sub-modules that only touch a small part of it.

5.2 File System Abstraction

Having described the formalism of our specification, we now describe more precisely the
level of abstraction at which we specify file system behaviours and we present our abstract

model of the file system state used to specify asynchronous writes.
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Figure 5.1: Correctness specification overview

Modern operating systems include a variety of file systems. Each in-kernel file system
does not directly provide functionality to the user, but instead interacts via the kernel’s
VEFS providing a common interface to all file systems. We introduced the cache manager
layer that handles Linux’s kernel file system caching mechanisms (see Section 3.2) to
obtain a cleaner interface that we can more easily specify. Thus the top-level operations
provided by BilbyFs, and described by its correctness specification, are those expected by

the cache manager. These include a total of 19 file system operations:

e create(), unlink(), mkdir() and rmdir() for respectively creating and removing

both files and directories.

e readpage(), write_begin(), write_end(), readdir() for reading and writing files

and listing directories.
e lookup() finds an inode number by name and iget () reads an inode from disk.
e rename() renames and move () moves a file or directory.

e symlink() creates a symbolic link and follow_link() reads the path stored in a
symbolic link.

e link() creates a hardlink to a file.
e setattr() and getattr() for accessing and altering attributes of file and directories.
e evict_inode() is called when an file is evicted from the cache.

e sync() synchronises in-memory updates to storage.
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Figure 5.1 shows how the correctness specification, which we call the Abstract File
system Specification (AFS), relates to the Linux VFS and to the BilbyFs implementation.
BilbyFs operations are invoked by the VFS through the cache manager introduced in
Section 3.2. The AFS describes concisely how each file system operation should behave.
The complete correctness specification of BilbyFs for these 19 operations is about 850
lines of Isabelle/HOL.

The BilbyFs functional correctness proof, completed for the operations sync() and
iget (), establishes that the BilbyFs implementation correctly implements the AFS, by
proving that the former formally refines [de Roever and Engelhardt, 1998] the latter.
Although most of the AFS is not specific to BilbyFs and could be reused to formally
verify another file system, a refinement proof is greatly facilitated when the operation’s
specification is structurally similar to the implementation it describes. Hence, in that sense
the AFS is specific to BilbyFs. However, since reasoning about our correctness specification
is much easier than directly on the implementation, it would be little work to link our
specification to a higher-level of abstraction that is common to all the feature-equivalent

file systems.

Modelling the File System State

Internally, a file system implements its hierarchical structure on disk in linked objects
called inodes, which are file system specific. Similarly to previously-mentioned work [Ernst
et al., 2013; Hesselink and Lali, 2009], the AFS models the file system state as the type
afs_map, which is a synonym for a (partial) mapping from inode numbers (32-bit integers
that uniquely identify inodes) to afs_inode objects. afs_inodes abstractly models the

on-medium representation of BilbyFs inodes.

type synonym afs_map = "ino — afs_inode"
datatype afs_inode_type =
IDir "filename — ino"

| IFile "vfspage list"

record afs_inode =

i_type :: "afs_inode_type"
i_ino :: "ino"
i_nlink :: "32 word"

i_size :: "64 word"
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An afs_inode represents either a directory or a file, and the i_type field stores both
what kind of object it represents as well as the content it holds in each case. Fach directory
inode holds a mapping from filenames (byte strings) to associated inode numbers. Each
file inode links to the data pages that hold its file’s contents.

This abstraction allows the AFS to be as simple as possible while comprehensively
capturing the behaviour of the various file system operations. In practice, inode imple-
mentations are a source of complexity and defects [Lu et al., 2014] for file systems. For
instance the inode contents described above, which the AFS models as stored directly
in the i_type field of the afs_inode object, will in practice be stored in separate data
structures on the medium to which the inode links, often via multiple levels of indirection.

The AFS represents a file’s contents as a list of VFS pages (each of which is a list of
bytes). An alternative would have been to use just a single flat list of bytes. However, we
chose the former because the VFS layer interacts closely with the Linux page cache (i.e.
memory management subsystem) which is directly reflected in the VES API that BilbyFs
implements.

Directory inodes are usually implemented as a collection of directory entries stored in
a file. The AFS instead models directory contents as a mapping from filenames to inode
number: the inode number for a particular filename identifies the inode that implements
the file or directory with that name. In file systems like BilbyFs that support hardlinks, the
same file inode may be linked to by multiple filenames (in possibly different directories).
Like most file systems, BilbyFs restricts hardlinks to point only to file inodes, to ensure

that the file system’s logical structure is acyclic.

AFS Invariant

The aforementioned requirement on hardlinks is encoded as part of the global invariant
of the AFS, which we describe only briefly because (like the AFS’ state itself) it is very
similar to that of Ernst et al. [2012]. The invariant assertion includes the following

requirements of the afs_map structure:
e A root inode exists

e for each directory inode, there is only one directory with an entry pointing to that

inode — i.e. no hardlinks on directories
e the i_ino field of each inode matches the afs_map mapping

e the i_nlink field of each inode correctly tracks the number of links to that inode
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Figure 5.2: The effect of the create() operation

e the i_size field of each file inode is consistent with the number of VFS pages
attached to the inode.

Modelling File System Updates

The AFS’ abstract representation of the file system state makes describing the effects of
the file system operations easy, and in turn facilitates auditing of the specification.

Figure 5.2 depicts the changes to the afs_map structure when the create() operation
is called to create a new file jiggle in the /tmp directory. Grey nodes are those altered
or added by the operation. Creating a file involves adding a file inode and a link to it in
the parent directory. Directories are pictured as circles with arrows denoting each entry
in the directory. Small triangles denote files and are linked to VF'S pages shown as tiny
squares. The newly created file contains no data so no VFS page is attached to its inode.

The effect on the afs_map structure m of creating a new file "jiggle" in a directory
(whose inode is) itmp, by installing the new file inode ijiggle, is specified by the following
single line of Isabelle/HOL!.

m{i_ino itmp + i_dir_upd (\dir. dir(’’jiggle’’ + i_ino ijiggle)) itmp,
i_ino ijiggle +— ijiggle)
We write m(a — b) to denote updating the (partial) map m such that a maps to b.
Each transformation to the file system state may be captured by a function of
type afs_map = afs_map. We call such functions file system updates. We exploit this

idea in the following section, where we describe the model of asynchronous writes used in

the AFS.

Note that the specification for the create () operation (see Figure 5.3) is a lot more complex
than this single line, because it needs to also incorporate error checking and handling, and
interactions with the Linux VFS.
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5.3 Specifying Asynchronous Writes

The afs_map type models the state of the file system as stored on the physical storage
medium, which in the case of BilbyFs is the raw flash storage device, and updates to
the storage medium are simply transformations: afs_map = afs_map. Like many other
realistic file systems, although the effects of file system operations become visible as soon
as those invocations return, the actual storage medium update that they implement may
not be applied until some point in the future, for instance when sync() is next invoked.
Thus writes to the storage medium are performed asynchronously, an essential feature
of file systems since the original UNIX |[Thompson, 1978]. Storage medium updates
are therefore buffered in-memory, allowing operations such as create() and unlink() to
return straightaway, without incurring the cost of writing to the storage medium. For the
file system correctness specification, this implies that the in-memory file system state and
the state of the physical storage medium (afs_map in the AFS) need to be distinguished,
especially if the semantics of operations like sync() are to be precisely specified.

As mentioned earlier, several file system models [Ernst et al., 2013; Hesselink and Lali,
2009; Chen et al., 2015a] overlook this requirement. In the AFS for BilbyFs, the pending
writes buffered in-memory are modelled as a sequence of file system transformations, each
of type afs_map = afs_map. The global state of the specification is captured by the type

afs_state, for which the record definition follows.

record afs_state =

a_is_readonly :: "bool"

a_current_time :: "time"

a_medium_afs :: "afs_map"

a_medium_updates :: "(afs_map = afs_map) list"

Besides the state of the physical medium (of type afs_map) and in-memory pending
updates (of type (afs_map = afs_map) list), afs_state also includes a boolean flag
that tracks whether the file system has been placed into read-only mode, which can occur
for instance if a disk failure arises; as well as a record of the current time, which is used
for instance when updating the timestamps on an inode that track e.g. the last time it
was modified.

To model the idea that file system modifications become visible straightaway, even
when they have not yet been applied to the physical storage medium, the AFS needs
a way to calculate the (hypothetical) file system state that includes both the physical
medium and the pending in-memory updates, i.e. the state that would arise if all of

those updates were applied to the medium. It is this hypothetical state that must be
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considered, for instance, when the unlink() operation is invoked to remove an inode that
was previously create()ed but has not yet been sync()ed to disk. It is calculated by
the function updated_afs, that makes use of the standard fold function to apply the

in-memory updates to the medium state:

Definition 1. updated_afs afs_state =

fold (Mx. x) (a_medium_updates afs_state) (a_medium_afs afs_state)

An operation like create() that updates the file system state may buffer the updates
it performs in memory, or (if the in-memory buffer is full) it may cause preceding updates
to be applied to the storage medium. Given that the size of the in-memory buffer is
below the level of abstraction of the AFS, the precise number of updates that may be
propagated to the storage medium could vary upwards from zero. The AFS captures
this effect via the following helper function, which nondeterministically splits the list of
updates into two parts: to_apply, the updates to be applied to the medium; and rem, the
remainder. It then applies the updates in to_apply and updates the in-memory list of

pending updates to rem.

Definition 2. afs_apply_updates_nondet afs =
do (to_apply, rem) < {(t, r) | t @ r = a_medium_updates afs};
return
(afs(a_medium_afs := fold (Ax. x) to_apply (a_medium_afs afs),
a_medium_updates := reml))
od

The following helper function afs_update then generically specifies the process for
updating the file system state, and is used in the specifications of the various file system
operations (see e.g. create() in Figure 5.3). It takes an update function upd of type
afs_map = afs_map. It adds it to the back of the list of in-memory updates and then
calls afs_apply_updates_nondet. If after afs_apply_updates_nondet returns, the list of in-
memory updates is empty, then afs_apply_updates_nondet caused all in-memory updates
(including upd) to be propagated to the storage medium, in which case the modification
must report Success. Otherwise, it might succeed (if, for instance, the new update is simply
buffered in-memory without touching the storage medium), or report an appropriate error
(because a write to the medium failed, or a memory allocation error occurred etc.). If an
error is reported, the new update upd is forgotten, ensuring operations that report an

error do not modify the (combined in-memory and on-medium) file system state.

Definition 3. afs_update afs upd =
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do afs <«
afs_apply_updates_nondet
(afs(a_medium_updates := a_medium_updates afs @ [upd]|));
if a_medium_updates afs = [] then return (afs, Success ())
else return (afs, Success ()) I
nondet_error {eI0, eNoSpc, eNoMem}
(Xe. (afs(a_medium_updates := butlast (a_medium_updates afs)|),
Error e))
od

Importantly, this specification requires that no updates get lost when an error occurs:
each is either applied (in order), or is still in the list of pending updates (in order). It also
requires the BilbyFs implementation not to report an error if it succeeds in propagating
all updates to disk. Thus the implementation cannot attempt to allocate memory, for
instance, after successfully writing to disk. In practice, file system implementations
structure each operation such that all resource allocation (and other actions that could
potentially fail) occur early, so no potentially-failing operation needs to be performed
after successfully updating the storage medium.

The afs_update definition is the heart of how the AFS specifies asynchronous file
system operations while keeping the AFS concise and readable. In the following section,

we present specifications of the most interesting top-level file system operations from the
AFS.

5.4 Specifying File System Operations

Specifying create()

The specification for the create() operation is shown in Figure 5.3. Recall that BilbyFs’
top-level operations, like create (), are those expected by the cache manager presented in
Section 3.2. The cache manager is invoked by Linux’s VFS. Since the VFS interacts with
a range of different file systems, each of which may have its own custom inode format,
the VFS provides a common inode abstraction, called a vnode. Top-level file system
operations invoked by the VFS often take vnodes as their arguments and return updated
vnodes in their results. The afs_inode structure mentioned in Section 5.2 is very similar
to the generic vnode structure of the VFS.

Much of the complexity of Figure 5.3 comes from error checking and handling, as

well as specifying the correct interaction with the VFS (e.g. conversion from vnodes to
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afs_create afs vdir name mode vnode =

1 if a_is_readonly afs then return ((afs, vdir, vnode), Error eRoFs)

2 else do r < afs_init_inode afs vdir vnode (mode || s_IFREG);

3 case r of Error (afs, vnode) = return ((afs, vdir, vnode), Error eNFile)

4 | Success (afs, vnode) =

5 do r < read_afs_inode afs (v_ino vdir);

6 case r of Error e = return ((afs, vdir, vnode), Error e)

7 | Success dir =

8 do r < return (Success (i_dir_update (Ad. d(awa name +—> v_ino vnode)) dir))

9 M return (Error eNameTooLong);

10 case r of Error e = return ((afs, vdir, vnode), Error e)

11 | Success dir =

12 do r < Success ¢ {sz | v_size vdir < sz} I return (Error eOverflow);
13 case r of Error e = return ((afs, vdir, vnode), Error e)

14 | Success newsz =

15 do time < return (v_ctime vnode);

16 dir < return (dir(i_ctime := time, i_mtime := timel));
17 inode < return (afs_inode_from_vnode vnode) ;

18 (afs, r) <« afs_update afs (\f. f(i_ino inode — inode,
19 i_ino dir w— dir));
20 case r of Error e = return ((afs, vdir, vnode), Error e)
21 | Success () =

22 return ((afs, vdir(v_ctime := time, v_mtime := time,
23 v_size := newszD, vnode) ,

24 Success ())

25 od

26 od

27 od

28 od

29 od

Figure 5.3: Functional specification of the create operation.

afs_inodes).

The state of the file system, of type afs_state, is passed as the argument afs. create()
also takes the parent directory vnode vdir, the name name of the file to create, a mode
attribute mode, and a vnode vnode to fill with the information of the newly created file. It
returns three values: the updated file system state, the updated parent directory vnode,
and the updated vnode.

The specification precisely describes the file system behaviour expected by the VFS,
including possible failure modes. For instance, the implementation needs to return an
error if the file system is in read-only mode (line 1). On line 2, it allocates a new
inode number and initialises the vnode fields by calling the function afs_init_inode (not
shown). If afs_init_inode returns an Error (line 3), create() returns afs, vdir and
vnode unchanged, as well as the error Error eNFile indicating the file system ran out
of inode numbers. This pattern is repeated on lines 6, 10, 13 and 20, which each check
for errors in preceding operations and specify that these errors must be propagated to

create()’s caller, leaving the file system state unchanged.
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afs_iget afs inum vnode =
if inum € dom (updated_afs afs)
then do r < read_afs_inode afs inum;
case r of Error e = return (vnode, Error e)
| Success inode = return (inode2vnode inode, Success ())
od
else return (vnode, Error eNoEnt)

D O WN =

Figure 5.4: Functional specification of the iget operation.

On line 5, the specification reads the parent directory given by the vnode argument,
and computes what the new directory should look like (with the file being created added
to it). Line 12 implies that the size of the directory must increase. The core of create() is
specified on lines 18-19 where the file system state is updated with the updated directory

and file inode.

Specifying iget )

Figure 5.4 shows the correctness specification of the iget () operation, which looks-up
inodes on the physical medium. It takes a inode number inum and a vnode structure
vnode as argument. It first (line 1) checks whether an inode with the given inode number
exists in the file system. To do so it must consult both the in-memory and on-medium
state, computing via the expression updated_afs afs what the file system state would
be if it were synchronised to the medium. If the inode number is not present (line 6) an
appropriate error code is returned. Otherwise, the iget () specification reads the inode
with that number from the medium (line 2) and then returns appropriately based on
whether the inode read succeeded (line 4) or produced an error (line 3). In the case
of Success, the inode must be converted to a vnode structure for inter-operating with
the Linux VFS. Observe that the iget () specification does not return an updated afs
structure: thus its type signature automatically captures that it can never modify the

abstract file system state.

Specifying sync()

Figure 5.5 shows the specification for sync (), the file system operation that propagates all
in-memory updates to the disk. sync() returns an appropriate error when the file system
is in read-only mode. Otherwise, it propagates the in-memory updates to the medium

using the afs_apply_updates_nondet function of Section 5.3. Recall that this function
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afs_sync afs =
if a_is_readonly afs then return (afs, Error eRoFs)
else do afs <+ afs_apply_updates_nondet afs;
if a_medium_updates afs = [] then return (afs, Success ())
else do e « select {eIO, eNoMem, eNoSpc, eOverflow};
return (afs(a_is_readonly := e = eI0|), Error e)
od

NO O WN R

od

Figure 5.5: Functional specification of the sync operation.

applies the first n in-memory updates, with n chosen nondeterministically to model the
effect of e.g. a disk failure happening part-way through. sync() returns successfully
when all updates are applied; otherwise it returns an appropriate error code. When an
I/0O error occurs (eI0), indicating a storage medium failure, the file system is put into
read-only mode to prevent any further updates to the medium (whose state may now be
inconsistent).

The economy of the sync() specification shows the advantage we obtain by carefully
choosing an appropriate representation for the in-memory updates, separate from the on
disk state of the file system.

5.5 Limitations

We discuss the BilbyFs AFS in order to tease out its limitations and avenues for future
improvement. An obvious limitation of the AFS is that it supports no form of concurrency,
and so implicitly specifies that top-level operations cannot run concurrently to one another.
This limitation arises primarily because the verification methodology (based the COGENT
framework) we used to prove the functional correctness of file system operations does not
support reasoning about concurrent programs.

Another limitation of the AFS is that it imposes a strict ordering on all updates to
be applied to the storage medium. In practice, many other file systems impose weaker
ordering constraints, especially file systems that are highly concurrent or those built on
top of low-level block interfaces that are asynchronous. Some file systems can reorder
asynchronous writes of data but not those for meta-data.

The AFS, besides excluding concurrency, also does not specify the interaction between
BilbyFs and the Linux kernel’s inode, directory entry and page caches. These interactions
are isolated and implemented in the cache manager component pictured in Figure 5.1

that itself must be verified in isolation.
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Another limitation of the AFS arises because function arguments are passed by value
(rather than e.g. as pointers to variables in a mutable heap). This prevents the AFS from
specifying VFS operations that take multiple pointer arguments that point to the same
variable (i.e. are aliases for each other). As explained in Chapter 4, we eliminate data
sharing from the interface in order to be able to implement all file system operations in
COGENT.

A final limitation of the AFS presented here is that, unlike e.g. the recent work of
Chen et al. [2015a], it does not specify the correct behaviour of the mount () operation,
which is called at boot time, nor does it specify the file system state following a crash, for

instance to require that the file system is crash-tolerant.

5.6 Summary

In this chapter, we presented the most interesting elements of BilbyFs’ correctness
specification, a formal description of the intended behaviour of each file system operation.
We write the specification as functional program shallowly embedded in higher-order
logic and we keep it concise by using nondeterminism. As a result, the specification is
easy to reason about using the Isabelle/HOL proof assistant, and is easy to audit to
ensures it captures the intention of the system’s designers and users. BilbyFs’ correctness
specification is, to our knowledge, the first to model full asynchronous writes for a POSIX
file system, by separating the in-memory file system state and the on-medium one. This
separation enables us to precisely specify the behaviour of the sync() operation. In the
next chapter, we use our correctness specification to prove the functional correctness of

two operations of BilbyFs, namely: iget () and sync().
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In Chapter 5 we presented BilbyFs’ correctness specification called the Abstract
File system Specification (AFS). We explained how it concisely captures the expected
functionality of the file system. The AFS separates the in-memory and on-medium file
system state which enables us to accurately specify the sync() operation. In this chapter,
we present our verification methodology to modularly verify the functional correctness
of COGENT code. By functional correctness we mean writing a mathematical machine-
checked proof that guarantees that every behaviour exhibited by the implementation
is captured by its specification, i.e. formal refinement as presented in de Roever and
Engelhardt [1998]. And by modular verification we mean that the structure of the proof
follows the modular design of the file system and reasons about each component of
the implementation in isolation. We show evidence of the effectiveness of our modular
verification methodology by proving the functional correctness of two key operations of
BilbyFs: iget() and sync(). We also analyse the effort required for the aforementioned
proofs, in order to determine whether the overall methodology, for designing and verifying

file systems, leads to a reduction in verification effort compared to traditional systems
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software verification. We use the seL4 [Klein et al., 2014| verification as a point of
comparison, and find that we achieve a reduction in effort by about 50%.

Existing modular verification techniques [Vaynberg and Shao, 2012; Feng et al., 2006;
Ernst et al., 2014; Gu et al., 2015; Chen et al., 2015b] are not well suited for our purposes
for the following reasons. First, almost none of the frameworks we are aware of work for
a shallow embedding like our COGENT specifications; most of them require a meta theory
to compose proofs about deeply embedded programs [Vaynberg and Shao, 2012; Gu et al.,
2015|. Second, some of these meta theories target system software with components
implemented in multiple languages (e.g. C, assembly, etc.), and they require writing
relations linking the semantics of one language to another. Hence, these frameworks
tend to be more complicated than necessary for our purposes. The goal of the COGENT
certifying compiler is to simplify reasoning about file system code. To this end, we
want COGENT-generated specifications to be a purely functional shallow embedding that
matches the input source code as closely as possible to ease verification, so that the
programmer’s intent is exactly what the verification engineer reasons over, not some
convoluted formal encoding of it. COGENT-generated specifications do not require a
memory model with mutable heaps, and thus we do not need to resort to cumbersome
machinery like separation logic [Reynolds, 2002|. In COGENT specifications, z and y
being different objects follows trivially from z and y being separate variables. This way,
COGENT specifications enable the verification engineer to make heavy use of equational
reasoning and Isabelle’s powerful rewriting engine; we return to these claims in Section 6.2
and Section 6.4. Finally, we also value the readibility of high-level specifications written
as a functional program so that both the system’s users and designers can check it
correctly captures their intentions and understanding of the system. Some of the modular
verification frameworks mentioned earlier do not support functional specifications [Feng
et al., 2006; Chen et al., 2015b].

To bridge the gap between a high-level functional specification and COGENT specifica-
tions, we present a modular and lightweight verification framework that allows us to fully
exploit the design modularity of COGENT code, and we relate our experience using it to

prove the correctness of the iget () and sync() operations of BilbyFs.

6.1 Verification strategy and chapter overview

Figure 6.1 shows BilbyFs’ proof strategy that we use to explain the general verification
methodology of our approach. Our objective is to prove modularly the functional

correctness of the COGENT file system implementation.
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Figure 6.1: BilbyFs’ verification strategy

From the COGENT specification of a file system operation, we want to prove that it
refines the functionality described by its AFS. To this end, we developed a refinement
framework for COGENT specifications in the spirit of Cock et al. [2008]. We return to
this framework in Section 6.3.

The refinement proof operates over the top-level component of BilbyFs, namely the
FsOperations component, and proves that each of its behaviours is present in the AFS.
This proof exploits the modular design of BilbyFs by assuming that all components
used by FsOperations are themselves correct; later steps of the proof formally prove
these components are indeed correct. The only component used by FsOperations is the
ObjectStore.

Figure 6.1 depicts the structure of the full refinement proof. It begins by assuming
the correctness of the ObjectStore component, whose correct functionality is formally
described by an axiomatic specification. An axiomatic specification is a list of formal
assumptions (i.e. axioms) that abstractly describe the interface provided by a component

and allow client components to be verified without having to reason about the internal
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implementation details of the components on which they rely. Axiomatic specifications
must be validated later on by proving that the component’s implementation satisfies every

axiom of the specification.

We follow the same principle to prove the correctness of the complete chain of
components; each is in turn shown to satisfy its axiomatic specification by relying on its
sub-components’ axioms. For instance, we show that the ObjectStore correctly implements
its axiomatic specification by relying on the axioms of the four components: Index, Serial,
UBI and FreeSpaceMgr. The proof bottoms out at the ADTs (abstract data types) and

the UBI components, which we leave for future work.

In the rest of this chapter we detail our verification methodology, and describe how
we used it to prove the full component chain up to the UBI component and ADTs, for the
functional correctness of two file system operations: iget() and sync(). iget() reads
an inode from the flash device, whereas sync() writes the pending in-memory updates
to the flash. Both are crucial file system operations that form key building blocks for
proving the correctness of other file system operations or for a crash resilience proof. The
iget () proof involves proving the ObjectStore operation that reads generic file system
objects from the flash, which is used by all the operations that read from the medium.
sync(), on the other hand, as we have seen in Chapter 5, may nondeterministically be
called by any operation that writes to the medium. To our knowledge, ours is the first

proof of functional correctness for sync() of any file system.

We begin by presenting an overview of COGENT specifications in Isabelle higher-order
logic (HOL), where we highlight their similarities with the input COGENT source code
and report on the challenges of generating a convenient Isabelle/HOL shallow embedding
representation of COGENT code in Section 6.2. We present the refinement framework for
COGENT specifications in Section 6.3 and we explain how we specify components interface
using axiomatic specifications in Section 6.4. Then we use BilbyFs as a case study for our
modular verification methodology. In Section 6.5, we describe the refinement relation of
BilbyFs and explain how to encode file system invariants in it. In Section 6.6, we outline
the modular proof of BilbyFs’ operations iget () and sync(). Finally, in Section 6.7 we
report on our experience using the methodology presented in this chapter and evaluate the
proof modularity and the productivity of our approach, before summarising this chapter

in Section 6.8.



6.2. COGENT SPECIFICATIONS 117

6.2 Cogent specifications

COGENT allows verification engineers to reason about file system code at roughly the
same level of abstraction as programmers. Hence, from COGENT code we generate
COGENT specifications that are syntactically very close to the input source code. These
specifications are shallowly embedded in Isabelle/HOL, a language of total functions
with a type system reminiscent of ordinary functional programming languages (without
support for sophisticated typing features like linear types for instance). Thus the generated
COGENT specifications in Isabelle/HOL preserve all of the type information that is useful
to prove correctness over those specifications, while omitting details like linearity.

For instance, all record types, tuples and tagged-union types are preserved in COGENT
specifications because they are of substantial help to understand the specification. By
contrast, the difference in semantics between linear objects and non linear ones, let and
let!, or unboxed and boxed records is irrelevant when reasoning over pure functions —
these are implementation details only — thus we eliminate them in COGENT specifications.

As explained in the Chapter 3 and Chapter 4, a key requirement of our methodology
is to produce performant file systems. COGENT’s linear type system allows us to generate
efficient C code with in-place updates of variables in the heap, from a purely functional
input source code. If we were to implement a file system directly in Isabelle/HOL, without
language support such as the linear type system, it would be much harder to generate
efficient C code without implementing garbage collection, for instance. Hence, we opted
for designing our own language and generating Isabelle/HOL COGENT specifications
instead. Nevertheless, in order to facilitate the verification of COGENT programs, it is
important for the COGENT-generated specifications to be as intelligible as the handwritten
COGENT code.

In the rest of this section, we compare COGENT’s input source code and the matching
COGENT-generated specifications with an example. Figure 6.2 shows the top-level function
of the sync() operation of BilbyFs both in COGENT source and in COGENT specification.
Many of the language constructs such as let, if, tuples, cases are syntactically very similar
and semantically equivalent. COGENT-generated specifications have extra variables,
named ds,, where , is a unique number generated by the COGENT compiler. These
variables are introduced by the de-sugaring phase of the compiler, which converts syntactic
sugar into core language constructs. But in general the code and its specification show
the same structure.

COGENT provides syntactic sugar for the ‘take’ language construct, which takes a

field out of a record, e.g. the arguments of fsop_sync use the expression #{ex, fs st},
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fsop sync #{ex, fs st} =
let is _ro = fs_ st.fsop st.is ro !fs st
in if is _ro then

(#{ex, fs_st}, Error eRoFs)

else
let fs st {ostore st , fsop st} = fs st
and ((ex, ostore st), r) = ostore sync(ex,
fs st.mount st, ostore st
ostoreWriteNone) !fs st
in r

| Error err —>
(#{ex, fs st = fs st {ostore st,
fsop st = fsop_ st {is_ro= err =— elO }}},
Error err)
| Success () —>
(#{ex, fs st = fs st {ostore st , fsop st} },
Success ())

fsop_sync dsg =
let (ex, dsg) = takecq dso exy; (fs_st, dsi) = takecq dsg fs_sty;
is_ro = is_roy (fsop_sty fs_st)
in if is_ro then (make ex fs_st, Error eRoFs)
else let (ostore_st, ds3) = takecg fs_st ostore_sty;
(fsop_st, fs_st) = takecg ds3 fsop_sty;
(dS5, r) =
ostore_sync (ex, mount_sty fs_st, ostore_st, ostoreWritelNone) ;
(ex, ostore_st) = dss
in case r of
Error err =
(make ex
(fs_st
(|ostore_stf := ostore_st,
fsop_sty := fsop_st(is_ro; := err = eIO|)))),
Error err)
| Success vgg =
(make ex
(fs_st(ostore_st; := ostore_st, fsop_st; := fsop_stl)),
Success ())

Figure 6.2: COGENT code (top) and COGENT specification in Isabelle/HOL (bottom)
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which is syntactic sugar to take the fields ex and fs_st out of the unboxed record passed
as argument of the function. To emulate the semantics of ‘take’ expressions, COGENT
specifications use the Isabelle definition takecq. Recall from Chapter 4 that in order to
accommodate the linear type system, COGENT ‘take’ expressions return two values: the
record with the field marked as taken, and the field’s value. Our takec¢ definition does
just that, it takes a record and a projection extracting a field to read from a record as
argument, and it returns the record and the value read.

COGENT ‘put’ expressions are replaced by the Isabelle record update syntax, where
r(as := v|) updates the field a of record r with the value v. To construct a record, we
use the make function that takes the value of each field as argument and returns the newly
constructed record!.

Like the type linearity information, let! disappears in the COGENT specifications. In
COGENT code, let! makes the linear type system more convenient to use by removing the
need to return a linearly typed object when we only read from it. Type linearity and let!
are only useful to provide hints, leveraged by the COGENT certifying compiler, to generate
efficient C code. This type information is indispensable to implement in-place updates of
linear objects in the C source code. However, it is no longer necessary in Isabelle COGENT
specifications because they are purely functional and variables are passed by value which
greatly simplifies high-level reasoning in a proof assistant.

The rest of the code and the specification match very closely, giving the verification
engineer a convenient formal model of the COGENT code to reason about, with a proof
that the model is an accurate representation of the low-level C implementation. In the
next sub-section, we discuss the main ideas that underpin the generation of COGENT
specifications while converting COGENT structural typing to an equivalent representation
in Isabelle/HOL.

Generating Cogent specifications

The main ideas underpinning the generation of COGENT specifications in Isabelle/HOL are
all geared towards ensuring that the COGENT compiler can produce an automatic proof of
correspondence between the generated specifications and the (de-sugared) COGENT code.
Proof-producing generation of shallow-embeddings is well covered terrain [Myreen, 2012;
Greenaway et al., 2012| so here we focus on just those elements that are new. Specifically,

representing structural types in Isabelle/HOL and case expressions. Structural typing

!Each record type has a make constructor. To avoid type ambiguity COGENT specifications
qualify make with the name of the record type. However, for readability we do not show qualified
names in our examples.
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means a type may be referred to by its name or its structure interchangeably. This
greatly simplifies some aspects of a language but also substantially complicates generating

specifications in a Isabelle/HOL, since its type-system is not structural.

Polymorphism and structural typing Consider the following COGENT types:

type R1 = {f1 : T1, 2 : T2}
type P a = {f1 : T1, f2 : a}
type R2 = P T2
Because COGENT types are structural, R1 and R2 are the same, and they may be used

interchangeably. However, a naive translation of these types into Isabelle/HOL records

produces irreconcilable record types.

record R1 =
fly :: "T1"
2§ :: "T2"

record ’a P =
fly :: "T1"
f2y :: "a"

Specifically, there is no easy way to convince Isabelle that instantiating P with T2 is
the same as R1, i.e. in Isabelle two types with the same structure but with have different
names are different. The fragment of Isabelle/HOL above declares two records R1, and P
that takes a type parameter ’a for its field £2;.

Our approach to emulate structural typing and to propagate COGENT polymorphism
to type definitions in Isabelle is to encode type structures as Isabelle/HOL records, rather
than specific types. To do so we make every field of every record (or tagged-union)
polymorphic, and to generate only one record for all the records with the same structure.
For instance, the COGENT code above leads to the following Isabelle definitions:
record (’a, ’b) P =

f1 f s "M2an
£25 :: "b"

type synonym Rip = "( T1, T2) P"
type synonym ’a Pp = "( T1, ’a) P"
type synonym R2p = " Rip"

Where P is a record with two type parameters, one for each of its fields. Note that

the record is named P and not R1 merely because P is a shorter name; i.e. we choose the
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type V= <A U32 | B Ul6 | C U8

foo: VI — U64

foo v =
v
| A x — u32 to u64 x
| B x — ul6_to_u64 x
| C x — u8 to ubd x

foo dsg =
let v = dsg
in case v of A x = u32_to_u64 x
| Bvg =
case B vg, of B x = ul6_to_ub4 x
| C vgo = Let (case C vgg of C x = x) u8_to_u6b4
| Cvgr =
case C vg1 of B x = ul6_to_ub4 x
| C vgo = Let (case C vgg of C x = x) u8_to_ub4

Figure 6.3: COGENT code (top) and COGENT specification in Isabelle/HOL (bottom)

shortest name among all the types that have the same structure.

Along with the record definition, we generate a type synonym with the suffix r for each
COGENT type synonym. We apply the same trick to translate COGENT tagged-unions
into Isabelle data types, but tagged-unions lead to further complications as we explain in

the next paragraph.

Cogent case expressions and tagged-union Figure 6.3 shows a small fragment of
COGENT code with a case expression that does a case distinction on a tagged-union type
with three constructors A, B and C, each holding a machine word of different size.

The COGENT specification is more verbose than the input COGENT code. This happens
because the COGENT compiler internally de-sugars case expressions into a cascade of
case statements, each matching a single constructor at a time, as shown in Figure 6.4.
The universal pattern _ matches any constructor. Since the COGENT pattern maching
expressions consumes the constructor matched, the variable that the follows the universal
pattern has a smaller tagged-union type where the constructor that was matched on is
removed. In the de-sugared version of foo, v’ is of type <B U16 | C U8> and v’’ is of
type <C U8>, i.e. a tagged-union with a single constructor C.

To emulate this behaviour in Isabelle, we generate the following data type definitions

that respectively match the types of v?2, v’ and v:
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type V= <A U32 | B Ul6 | C U8

foo: VI — U64
foo v =
v
| A x — u32 to u64 x
| v —
¢’
| B —> ul6_to_ u64 x’
| _ —

X7
V77
v )

|

’

Q

x'? —> u8 to_ubd x’’

Figure 6.4: De-sugared case expression in COGENT

datatype ’a Vpp1 =

c Il’all
datatype (’a, ’b) Vgpi1 =
B ll)a”/

C ll}b”

datatype (’a, ’b, ’c) Vi =

A II’aII/
B H)b”/
C II}CH

type synonym Vg = "(32 word, 16 word, 8 word) Viii"

Note that all data types take a type parameter for each of their constructors for the
reason explained in the previous named paragraph. Each data type name has a subscript
bit-field to indicate which of the constructors are enabled/disabled. Since Vgg; only has
the constructor ¢ enabled, we use the bit-field g9; to indicate that the first and second
constructors are disabled. From the COGENT source code, the COGENT compiler infers
all the different combinations of constructors disabled actually used in the code, and it
only generates data types for these. For the example in Figure 6.3 we need the three data
types declared above.

While in Figure 6.3, the Isabelle specification seems closer to the de-sugared version in
Figure 6.4 than the original source code, using the rewriting rules automatically generated

for every Isabelle/HOL data type, the COGENT specification of foo is trivially simplified



6.3. REFINEMENT FRAMEWORK FOR COGENT SPECIFICATIONS 123

by Isabelle’s rewriting engine "simp", as follows:

foo dsg =
case dsg of A x = u32_to_u64 x | B x = ul6_to_ub64 x | C x = u8_to_ub4 x

Conveniently, this form is syntactically closer to the input COGENT code shown on
Figure 6.3. This highlights the benefits of having specifications directly in shallowly
embedded in Isabelle/HOL, as it allows us to use Isabelle’s powerful rewriting engine
to simplify the terms. All we had to do is call the simplifier with the rules Vyg; . simps
and Vgi1.simps which are automatically generated by Isabelle when a data type is
declared. These simplification rules eliminate the case expressions for which the matching
constructor can be determined statically.

Our COGENT specifications provide a convenient formal model of the underlying C
code, with a machine-checked proof that guarantees that it is an accurate abstraction of
the implementation. They provide the same level of abstraction as COGENT code, while
discarding the linear type information, which, as mentioned, is unnecessary for reasoning
on top of the specifications.

In the next section we present the framework we built to prove refinement between
the generated COGENT specifications we just introduced and abstract specifications in
the style described in Chapter 5.

6.3 Refinement framework for Cogent specifications

Our objective is to prove refinement between an abstract program acting as a specification
and a concrete one corresponding to the implementation of the system. Formal refine-
ment [de Roever and Engelhardt, 1998| consists of showing that every behaviour exhibited
by the implementation is also present in its specification. One way to show refinement is
to prove forward simulation, whereby each execution step of concrete program is shown
to correspond to some matching step of the abstract one. Correspondence is defined by
constructing a state relation R that relates abstract and concrete program states. When R
relates states that use different data structures, as it is the case here, the proof technique
is called data refinement.

In our context, the initial state of the state machine is the file system’s state after
the mount () operation is called and the steps are a sequence of file system operations.
Our verification framework allows us to show that a step on the concrete state machine

corresponds to a step on the abstract one, via the state relation R.
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Refinement may be viewed as a proof technique between two possibly nondeterministic
programs [Cock et al., 2008; de Roever and Engelhardt, 1998], where we quantify over
all the elements of the set of results returned by the implementation, and show that
there exists a computation produced by the specification that is related via R. However,
since our COGENT specifications are deterministic purely functional higher-order logic
(HOL) programs, our framework only allows proving refinement between an nondeter-
ministic specification and a deterministic implementation. This greatly simplifies the
correspondence statement which formally states our notion of refinement. Correspondence

is defined as follows:

Definition 4.

cogent_corres R absspec cogentspec = Jracabsspec. R ra cogentspec

It says that the COGENT specification cogentspec refines the abstract specification
absspec, if and only if, the non-deterministic absspec can produce a computation related,
by the relation R, to the computation of the cogentspec program, which is a shallowly
embedded program in HOL. R relates the return values of the abstract specification and
the COGENT-generated specification. This correspondence statement will be proved for
each pair of corresponding functions between the abstract specification and concrete
implementation.

Typically the arguments to those functions must also be related via a proof assump-
tion, so that it is possible to prove the relation of the return values. The following
example of theorem shows how we relate arguments and return values when specifying a

correspondence statement:

Theorem 1 (Example of correspondence statement relation).

rel abs_st cogent_st —
cogent_corres
(A(abs_st’, ra) (cogent_st’, rc). rel abs_st’ cogent_st’ A ra = rc)

(afs_op abs_st) (fsop cogent_st)

The result of abstract and concrete programs are usually a pair of values containing
the updated state (abs_st’ and cogent_st’) and a tagged-union indicating whether
the operation succeeded or returned an error (ra and rc). The lambda expression
extracts the pair of values and specifies the relation between them. Thus, this example of

correspondence statement states that assuming that the arguments afs_st and fsop_st
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a - a
a’ = a

cogent_corres R b b’ cogent_corres R ¢ c’

p . COGENT IF
cogent_corres R (if a then b else ¢) (if a’ then b’ else c?) -

r = Error ra r’ = Error rc
/\ra rc.
cogent_corres R (c ra) (c’ rc)
r = Success ra r’ = Success rc
Ara rc.

cogent_corres R (d ra) (d’ rc)
(3v. r = Error v) = (3v. r’ = Error v)

CG_REs
cogent_corres R (case r of Error rc = ¢ rc | Success rd = d rd) —

(case r’ of Error rc = ¢’ rc | Success rd = d’ rd)

Rxy

COGENT RETURN
cogent_corres R (return x) y -

vesS cogent_corres R (a v) ¢

COGENT _SELECT
cogent_corres R (select S >>= a) ¢ -

cogent_corres R a (c v)

COGENT LET EXEC
cogent_corres R a (Let v c) - -

Figure 6.5: Correspondence rules of our refinement framework

are related by the relation rel, the COGENT file system operation fsop corresponds to
the non-deterministic specification afs_op such that the state cogent_st’ returned by
fsop and the abstract state afs_st’ returned by afs_op are related by the relation rel
too, and the tagged-union results rc and ra are equal.

Our correspondence statement is much simpler than the one of Cock et al. [2008]
for two reasons. First, as explained in Section 5.1, our AFS avoids using a state in the
non-deterministic monad because our specifications are simple enough that passing the
state as function argument manually adds little overhead. Second, since our concrete
COGENT specifications are deterministic, they are shallowly embedded in HOL, and as
opposed to Cock et al. [2008], they do not require a nondeterminism nor mutable state.

As alluded to in Chapter 5, our refinement framework exploits the structural similarity
between the abstract specifications and the COGENT ones. Figure 6.5 defines the set of
syntax-directed rules we use to prove the top-level refinement step of our verification
strategy described earlier. The rules are meant to be used in backward reasoning, i.e.
they are applied when the conclusion of the rule matches the proof goal. All of them are

straightforward, the key idea is that the conclusion of each rule syntactically matches on
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both the abstract specification and the COGENT one.

For instance, the rule cogent_if matches a if _ then _ else statement on both
specifications. Once applied, the cogent_if rule creates sub-goals to show that both
abstract and concrete programs correspond when the condition is true, when it is false
and that the conditions on both sides are equivalent. The rule cg_Res follows the same
principle for the case construct of Isabelle, but in addition to splitting the goal, it extracts
the value held in each case of the Result data type (i.e. the cases Error and Success).

On the other hand, cogent_select simply match syntactically on the abstract specifi-
cation level because its purpose is to instantiate a nondeterministic choice specified at
the abstract level with a value matching the one picked by the concrete level, where the
choice does not exist. Furthermore, cogent_select forces us to pick a value in the set of
choices imposed by the abstract specification.

All these rules are lemmas that we proved, i.e. they are not axioms but are sound
proof rules. However, we omit the detail of our proofs because they follow from the

definition of correspondence and are straightforward.

6.4 Axiomatic specifications

Having introduced the framework we use to prove the top-level refinement proof, we now
present our methodology for describing the interface of sub-components of the modular
decomposition of the file system. These components include the ObjectStore, as well as
all those below it in Figure 6.1.

An aziomatic specification is a list of formal assumptions or axioms describing the
interface of a component using abstractions that expose just enough information to capture
the properties of the interface without detailing the underlying implementation. The
correctness proof of each implementation component relies on the axiomatised behaviour
of its sub-components. This way, each component is shown to satisfy its specification in
isolation.

These axiomatic specifications are used to establish the top-level refinement or to
prove another axiomatic specification. Hence, as opposed to the top-level correctness
specification presented in Chapter 5 which favours readability, axiomatic specifications are
carefully crafted to facilitate their usage in proofs. Thus, whenever possible, we phrase
axiomatic specifications as equalities, fostering equational reasoning using Isabelle’s
rewriting engine, the simplifier. Alternatively, we write axioms as HOL proof rules.

To illustrate our purpose, we show a fragment of the axiomatic specification for the
COGENT WordArray ADT (see Section 4.3).
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axiomatization
a :: "’a WordArray = ’a list"
and
make :: "’a list = ’a WordArray"
and
inv_wa :: "’a WordArray = bool"
where
wordarray_make:
"Axs. « (make xs) = xs"
and
wordarray_length_ret:
"inv_wa arr = unat (wordarray_length arr) = length (o arr)"
and
wordarray_get_ret:
"inv_wa arr = unat i < length (a arr) —
wordarray_get (arr, i) = « arr ! unat i"
and
wordarray_modify_ret:
"AP. [ inv_wa arr ; unat i < length (a arr);
N\r arr’. | r = modifier (((a arr)!unat i), acc, obs) ;
arr’ = make (« arr[unat i:=fst r]);
inv_wa arr’ | =
P (arr’, snd r)
] =
P (wordarray_modify (arr, i, modifier, acc, obs))"
and
wordarray_create_ret:
"AP.[
\ex’. (ex’, None) = malloc ex —> P (Error ex’);
Nex? v. [ sz > 0 ;
(ex’, Some v) = malloc ex;
length (a v) = unat sz;
inv_wa v
| =
P (Success (ex’, v))
] =

P (wordarray_create (ex, sz))"

To better describe the experience of the verification engineer when using axiomatic
specifications, we show the proof rules directly in the format understood by the Isabelle

proof assistant. In Isabelle/HOL, a proof rule written as [A; B] = ¢ is equivalent to
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; and A is a meta universal quantifier, so Ax. P x is is equivalent to Vx. P x.

The axiomatization command allows positing the existence of a set of constants with
associated properties (axioms). In our WordArray specification example, we fix three
constants, «, make and inv_wa; all three are used to state the assumptions of the axiomatic
specification. The WordArray interface abstracts over the array element type ’a. « is
an abstraction that provides an abstract view of WordArrays and allows specifying its
interface without revealing its implementation details. Thus « function turns a concrete
’a WordArray into a ’a list, i.e. Isabelle’s type for lists. make goes the other way: it
converts a list back into a WordArray. We borrowed this idea from the Isabelle Collection
Framework |[Lammich and Lochbihler, 2010| which has a similar function for describing
the array interface of the library. We only use make to specify WordArray axioms. inv_wa
is the invariant required and maintained by every axiom of the WordArray specification.
We have an invariant because in practice any implementation may have an internal
invariant that is required to hold for its API functions to work correctly. Invariants
ensure that the ADT specifications are implementable. For instance, inv_wa guarantees
that the size of the array is always greater than zero. Note that inv_wa is established by
wordarray_create when we create a WordArray and the rest of the interface guarantees
that the invariant is maintained. Since ADTs are meant to be verified separately, we leave
the invariant underspecified such that each specific ADT implementation can define its
own internal invariant.

In general, axiomatising the behaviour of a component requires capturing the effects
of its functions with respect to its internal state. But this internal state cannot be
precisely described in the interface specification, as this would break the design principle
of information hiding [Parnas, 1972]. Abstraction functions are a known technique for
specifying interfaces of abstract data types [Lammich and Lochbihler, 2010]. They expose
just enough information to capture properties of the interface without detailing the actual
implementation.

The axiom wordarray_make establishes that « is the inverse of make, for any list xs.
wordarray_length_ret specifies that the results of wordarray_length, which returns a
32-bit word, converted to natural number must be equal to the length of the list.

wordarray_get_ret describes the axiom to read an element of the array. The axiom
requires two premises: the invariant inv_wa arr and that the index to access the array

is within the bound of the array?. wordarray_get_ret is written to enable equational

2 Although the semantics of out-of-bound accesses is undefined in the WordArray axiomatic
specification, in COGENT code out-of-bound accesses have well-defined semantics. Since BilbyFs
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reasoning. Specifically, its conclusion is phrased as an equality, which makes it easy to
use with Isabelle’s automatic rewriting engine, and therefore is well suited to increase
proof automation.

The wordarray_modify_ret axiom describes the function that modifies an element
of the array. When writing an element, we also need to know that the index is within
the bound of the array as specified by the assumption of the axiom. wordarray_modify
takes a modifier callback that is invoked to modify the element at index i. The callback
takes three arguments: the element to modify, an accumulator acc to pass the mutable
part of the state, and obs the observable part of the state. The modifier returns the
element modified and the accumulator which are both used to form the return value
of the wordarray_modify function. This axiom uses the free higher-order predicate P to
be able to describe the changes of the array through the abstract functions « and make,
while still being able to assert that the invariant holds on the updated array. In the
wordarray_modify_ret rule, the predicate P is used to match the surrounding context
(the program text surrounding the call to wordarray_modify. When the rule is applied,
the proof goal has the function call substituted with the result of the function call as
modeled by the axiomatic specification. Because we can only describe the update to the
array via these abstract predicates, this rule’s conclusion cannot be written as an equality
unlike wordarray_get_ret.

Ideally, every axiom would be phrased as an equality in order to foster equational
reasoning, but as we have seen with wordarray_modify_ret, sometimes it is not a possible,
e.g. while maintaining abstraction. This is also the case when the second part of the
equality is so complicated that breaking up the problem into multiple smaller ones might
help. The wordarray_create_ret axiom demonstrates this. When a COGENT program
calls the function wordarray_create, there are two possible outcomes: the WordArray
is successfully created, or an error occurs. Even if we could phrase the axiom as an
equality with a disjunction on the right-hand-side, this would force us to split the goal
manually once the rule has been applied. We found that a better solution is to phrase the
axiom as a introduction rule, that splits the current goal into multiple ones, one for each
possible outcome in which the axiomatised term is substituted with a term representing
the outcome. The first outcome of wordarray_create is when malloc?® returns an error
and the second one is when malloc is successful. In the latter case we also know that the

size requested with the second argument of wordarray_create is greater than zero and

always uses in-bound indices (so long as our proof assumptions hold), out-of-bound accesses need
not be defined.

3malloc is itself axiomatised as a function returning either an object or an error.
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that the size of the allocated array is consistent with the requested size.

Axiomatic specifications of BilbyFs’ components tend to be more complicated than
the WordArray’s one, though not fundamentally different. In particular, the ObjectStore
has an interface that requires differentiating between two types of invariants: internal
and external ones. The external invariant asserts consistency on the « abstraction of the
component functionality, whereas the internal one ensures the consistency on the internal
fields of the concrete state of the component, so that the implementation complies with its
abstract specification. We describe BilbyFs’ ObjectStore axiomatic specification further
when we relate our experience applying our verification methodology in Section 6.6 and
Section 6.7. But before that, we describe BilbyFs’ refinement relation and its invariants

in the next sections.

6.5 BilbyFs' Refinement relation and invariants

Having introduced the framework we use to prove the top-level refinement step and
the axiomatic specifications for the rest of our proof strategy, we now present BilbyFs’
refinement relation that we instantiate the framework with, i.e. the R parameter of the
correspondence statement introduced in Definition 4. In our framework, the R relation
specifies how the AFS state relates to the concrete COGENT file system state, and we also
use it to specify that the invariant must be preserved by the refinement step. Presenting
its complete definition is not the purpose of this section, instead we focus on the interesting
parts of the relation that would be transferable to proofs of other file systems.

BilbyFs’ refinement relation, called afs_fsop_rel, is composed of six predicates that
either relate various parts of the abstract and concrete states, or assert invariants on

them:

e afs_fsop_match_step_updates, which establishes the connection between the AFS
logical representation of a file system and BilbyFs’ ObjectStore state for all the
prefixes of the list of pending updates.

e Read-only flags of the AFS’ and BilbyFs’ state, which must be equal.

e The AFS’ invariant, presented in Section 5.2, holds on abstract logical representation
of the file system, with any prefix of the list of pending updates applied to the AFS

state.

e inv_a_ostore, the ObjectStore external invariant, which asserts consistency on the

abstraction of the component functionality. This invariant is necessary to prove the
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Logical representation of | file system pending updates | read-only flag
Abstract specification a_medium_afs a_medium_updates | a_is_readonly
Related via afs_fsop_match =

Concrete implementa- | a_ostore_medium| a_updates is_roy

tion

Figure 6.6: Refinement relation overview

correctness of the file system operations implemented on top of the ObjectStore (i.e.

FsOperations component proofs).

e inv_ostore, the ObjectStore internal invariant that restricts the set of values the
ObjectStore’s state can have and ensures we can prove that the ObjecStore’s

implementation satisfies its axiomatic specification.

e inv_superblock, the superblock invariant. The superblock stores information about
the flash device such as the number of eraseblocks, the size of a flash page, etc. The

superblock invariant ensures that these values are consistent with each other.

The relation afs_fsop_rel is defined as a conjunction of all these properties. The
rest of this section gives an overview of the refinement relation, and BilbyFs’ invariants
mentioned above. In order to describe the ObjectStore’s internal invariant, we explain
how we formalise BilbyFs on-flash log format, and to describe the ObjectStore’s external
invariant, we show the abstractions functions used to specify the interface presented by
the ObjectStore. Later in Section 6.6 of this chapter, we use afs_fsop_rel to formulate

the top-level correspondence statement for the operations iget () and sync().

BilbyFs’ refinement relation

Recall from Section 5.2 that the AFS abstraction is composed of a_medium_afs and
a_medium_updates. a_medium_afs is an abstract logical view of the file system of type
afs_map, and a_medium_updates is a list of pending file system updates of type (afs_map
= afs_map) list. To prove data refinement [de Roever and Engelhardt, 1998], these
parts of the AFS must be formally connected to the concrete state of BilbyFs. We leverage
the simplicity of BilbyFs’ ObjectStore abstraction to specify the relation between the
abstract and the concrete state of the refinement. Figure 6.6 summarises the mapping
between the AFS state and the implementation one. The AFS logical representation

of the on-medium files and directories has a direct mapping via afs_fsop_match to the
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ObjectStore abstraction «_ostore_medium. «_ostore_medium returns the abstract view
of the ObjectStore, but only considering the data stored on flash. To construct this
abstract view, a_ostore_medium logically mimics behaviour of the mount () operation
which requires parsing the contents of the flash. a_updates returns the list of in-memory
pending updates of the ObjectStore. The afs_fsop_match relation has the type afs_map
= ostore_map = bool. We use the relation to match the AFS’ state to the ObjectStore’s
state with and without the pending updates applied.

The afs_fsop_match relation requires that there is a file system object in the AFS
iff (i.e. if and only if) there is a matching one in the ObjectStore. More precisely, the

relation is valid when all the following conditions are satisfied:
e There is an inode in the afs_map iff there exists a matching one in the ObjectStore.

e For every file inode in the AFS, VFS pages (i.e. data blocks) are attached to the
inode iff the matching data block objects are in the ObjectStore.

e For every directory inode in the AFS, there is a file name to inode number mapping
in the directory iff there exists a dentarr (i.e. directory entry array — see Section 3.3)

object in the ObjectStore with the same name and inode number combination.

We use afs_fsop_match in afs_fsop_match_steps, the relation asserted by afs_fsop_rel,
to specify that all the prefixes of the list of pending updates in the abstract and concrete
BilbyFs states match.

The abstraction provided by the ObjectStore, implemented via the a_ostore_medium
and «a_updates functions of its axiomatic specification, makes this refinement relation
straightforward to specify. This highlights the benefits of designing a file system modularly,
with verification in mind.

In the rest of this section, we describe the specification of a valid BilbyFs log segment
and the abstract representation of the ObjectStore in more detail. Both are necessary to
describe the external and internal invariants of the ObjectStore. The external invariant
asserts the well-formedness of the ObjectStore directly on its abstract representation,
whereas the internal invariant ensures the consistency of the fields of the ObjectStore
implementation. We also describe the invariant on the super-block at the end of this

section. All these invariants are asserted in the refinement relation of our framework.

BilbyFs on-flash physical representation

In order to describe the refinement relation between the AFS and BilbyFs” COGENT state,

we first need to explain how the file system meta-data written as raw bytes on the physical
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storage is abstracted into a high-level representation of file system objects. We use such
abstractions abundantly in our proofs; they are necessary to talk about transactions in
BilbyFs’ write-buffer as well as to define a_ostore_medium which involves parsing objects
from the log.

As explained in Chapter 4, the COGENT implementation of BilbyFs uses serialisation
and de-serialisation functions to store and parse file system objects in a buffer. To verify
BilbyFs, we had to specify and verify the behaviour of these functions. In this sub-section
we describe the HOL definitions that specify abstractly the effect of de-serialising a file
system object from a buffer and serialising an object into a buffer. In Section 6.6, we
prove that when successful, the serialisation and de-serialisation functions have the effect
described by these abstractions.

On-flash encoding of file system objects The main difficulty of specifying BilbyFs’
on-flash format is that some objects have a variable length. The ability to store variable
length objects is one of the fundamental tasks performed by realistic file systems. For
instance, each entry in a directory records a name that is chosen by user applications of
the file system, hence does not have a constant length. The only way to store directory
entries efficiently, that is without always allocating the maximum length allowed for a

valid name, is to have directory entries of variable length.

Log segment

hdr.len hdr.len hdr.len hdrlen hdr.len
0 0x100 0x200 log offset ...
o L HE HES |
ol |fTi oS! kS
|  C: HieH Herl |
..... | et el |
~_ 7 N

log parsing offset jumps
Figure 6.7: BilbyFs log format: objects encode their own length in their header

BilbyFs’ on-flash format of log segments is almost identical to UBIFS’ [Hunter, 2008|
journal on-flash format, and both of them use variable length directory entries. In BilbyFs,
the length of an object is encoded in its header, hence we must first parse the header and
then parse the rest of the object according to its length. This complicates the format

specification because functions to parse file system objects are only well defined* when the

4HOL allows for undefined statements, that is statements that lead to unspecified results.
undefined statements often lead to dead ends in Isabelle/HOL proofs, thus we always try to
guard against them by writing predicates that guarantee every result we have to explore in the
proof is specified.
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buffer contains a valid object header. Figure 6.7 shows a log segment, which is a sequence
of log transactions, each of which comprises a sequence of objects. The validity of a log
segment depends on the length of the first objects in the log, which indicates where to
parse the next object, and so on. When objects encode their own length, specifying the
validity of a log segment must be done inductively. We return to these issues later in this
sub-section.

The definition we use to parse the header of file system objects follows:

Definition 5.

pObjHeader data offs =
make (ple32 data offs) (ple32 data (offs + 4)) (ple64 data (offs + 8)) offs

(ple32 data (offs + 0x10)) datajunat (offs + 0216)] d@tunat (offs + 0217)]
undefined

pObjHeader buf offs parses an object header from the buffer buf of type U8 list
(where U8 means 8-bit word) at the byte offset offs of type U32 and returns a record
of type 0bjr with the fields initialised with the value parsed from the buffer. ple32 buf
offs parses a litte-endian 32-bit machine word from the buffer buf at the byte offset
offs, whereas ple64 does the same for 64-bit words. pObjHeader parses the object field

per field, in the same order as the record definition of 0bj which follows®:

Definition 6.

record Objr =

magicy :: "U32" (* Magic number *)

crcy :: "U32"  (* Checksum value *)

sqnumy :: "U64" (* Transaction number *)

offsy :: "U32" (* Offset of object in segment *)

leny :: "U32"  (* Length of object in segment *)
trans; :: "U8" (* Transaction tag *)

otypes :: "U8" (* Type of object *)

ouniony :: "ObjUnionr" (* Tagged-union object value *)

pObjHeader parses every field except for offs; which is only only kept in memory

since it is easy to recover at run-time, and ounion; which corresponds to the payload of

®Note that the record definition is polished for presentation, otherwise, as explained in
Section 6.2, all fields would be type parameters and Objr would be a type synonym.
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the object and is not part of its header. pObjHeader also skips two bytes at offsets 0x14
and 0x15 which are filled with padding. The payload in ounion; will be filled in later on,
with a value of type ObjUnionr, that is consistent with the field otype s representing the
type of the object, and len; its length. ObjUniony is a data type with a constructor for
each object type, including inode, data blocks, directory entry arrays and padding objects
which we discuss later in this section. pObjHeader is only well defined if the buffer is large
enough to contain an object header at the position of the offset passed as argument.
Having seen how we abstract parsing (i.e. deserialisation), we now briefly explain the

opposite function to serialise an object header as list of bytes:

Definition 7.

sObjHeader obj =

sle32 (magicy obj) @

sle32 (crcy obj) @

sle64 (sqnumy obj) @

sle32 (leny obj) @

[bilbyFsPadByte] @ [bilbyFsPadBytel @ [trans; obj] @ [otype; objl

sObjHeader takes an object as argument and converts it to U8 list by following the
0bj 7 record definition and serialising field by field the object and appending the lists
of bytes using Isabelle’s list append operator @. bilbyFsPadByte is the value we used as
padding in BilbyFs, so we set the bytes 0x14 and 0x15 to bilbyFsPadByte. sle32 and
sle64 encodes 32-bit and 64-bit machine words into a list bytes, providing the opposite
functionality of their parsing counter-parts ple32 and ple64. We use lemmas like the one

that follows to prove the connection between serialising and parsing functions:
pObjHeader (sObjHeader obj @ xs) 0 = obj(ounions := undefined, offs; := 0|

This lemma says that serialising an object obj and parsing the buffer at offset 0
returns that same object, modulo the fields ouniony and offs; which have a constant
value.

We use the same idiom to specify parsing and serialising abstract functions for each
file system object. Figure 6.8 shows the call graph of parsing functions. pObj parses file
system objects and is defined using pObjHeader. Depending on the type of the object
parsed in the header, pObjUnion calls the parsing function for a specific file system object
type. As the call graph shows, all the objects are made of primitive types encoded in
little-endian via the functions ple16, ple32 and ple64.
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pObjUnion
pOijeader pObjData ) (pObjinode

PR o g

pObjDel pObjPad

Figure 6.8: Object parsing call graph

pObj is unspecified when the buffer does not contain a valid object header. Hence,
we define a predicate is_valid_ObjHeader to check whether an object header is valid.
is_valid_ObjHeader checks include making sure the object’s length is within the bound
of the buffer and the type of the object is known. In the next paragraph, we use

is_valid_ObjHeader to define a function that recursively parses objects in a sequence to

form a transaction.

Log segment Key _
<—> Transaction
transaction transaction transaction Header trans
- > -~
0 0x100 0x200 log offset ...

I o
O O

Figure 6.9: Log segments transactions made of objects with incomplete and commit tags

Commit

Parsing transactions Figure 6.9 shows an overview of BilbyFs’ transactions encoding,
where transactions are made of a sequence of objects and the last object header marks the
end of the transaction with a commit tag. The transaction tag is stored in the trans; field
of object headers. The trans; field of a valid object header may be of one of two values:
bilbyFsTransIn to indicate that the transaction is incomplete, or bilbyFsTransCommit to
mark the end of a transaction. In order to convert an array of bytes into a transaction of

objects, we define pTrans as follows:

Definition 8.

fun

pTrans :: "U8 list = (U8 list x Trans)"
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where
"pTrans data =
(let obj = pObj data 0
in if —is_valid_ObjHeader obj data then
(drop (max (unat bilbyFsObjHeaderSize) (unat (Obj.leny obj))) data, [])
else if Obj.transy obj = bilbyFsTransIn then
(A(d,o0s). (d, (obj#os))) (pTrans (drop (unat (Obj.len; obj)) data))

else
(drop (unat (Obj.leny obj)) data, [obj]))"

pTrans takes a buffer as argument and returns a pair with the remaining part of the
buffer and the transaction parsed (i.e. a list of objects). If the object parsed at offset
zero of the buffer has an invalid header, we return an empty transaction. The use of drop,
which removes at least the length of an object header from the beginning of the buffer,
ensures that the length of the buffer is always decreasing, which in turns allows us to
call pTrans recursively to parse all the transactions in a buffer without worrying about
termination (see Definition 9 below). Otherwise, when the object header is valid, we
check whether the object is the transaction is completed by comparing the field trans; to
bilbyFsTransIn. When the transaction is incomplete, we call pTrans recursively on the
rest of the buffer and we add the object to the list of objects forming a the transaction
(Trans is a type synonym for Objr 1ist). When the transaction is complete, we terminate

the recursion by returning the the rest of the buffer and a transaction with a single object.

Key

E Padding bytes
Log segment [ObjPad |padding object
0 0x100 0x200 log offset ...

header
header
header
header
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Figure 6.10: Example of log segment with padding bytes and padding objects

header
header
header
header

We use pTrans to define the function list_trans that recursively parses all the
transactions in a buffer and returns them packed in a list. In addition, we use 1ist_trans
to ignore the padding between transactions. Inspired by the UBIFS on-flash format,
BilbyFs supports two types of padding: padding objects and padding bytes. Figure 6.10
illustrates a log segment with the two types of padding. In this example the page-size is
256 bytes (i.e. 0x100 bytes) and both kinds of padding fill the segment up to the next

page-size offset in the segment.
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Padding objects are just another type of file system object that are used to add
padding in the log in order to be able to write complete pages to the flash. When the
amount of padding to fill a flash page with is too small to fit an object header, we use
padding bytes to pad individual bytes by setting them to the value bilbyFsPadByte.

The definition of the Isabelle function 1ist_trans follows:

Definition 9.

function
list_trans :: "U8 list = (U8 list X Trans list)"
where
"list_trans data =
(case pTrans data of
(_, [1) = (data, [1)
| ([1,0bjs) = ([1, [objs])
| (newdata, objs) =
let (d,txs) = list_trans (nopad newdata)
in (d,objs#txs))"

list_trans parses a transaction using pTrans and aborts when the transaction parsed
is empty. When the first element of the pair returned by pTrans is empty, we have reached
the end of the buffer. Otherwise, we call 1ist_trans recursively with the buffer stripped

of its leading padding bytes thanks to the nopad function which is defined as follows:
nopad xs = dropWhile (op = bilbyFsPadByte) xs

dropWhile removes elements from the beginning of a list as long as they satisfy the
condition taken as first argument. bilbyFsPadByte is the value used for padding bytes,
so nopad makes sure that a list is not prefixed by padding bytes. Note that BilbyFs
on-flash format guarantees that object headers’ first byte value (defined by the constant
value bilbyFsMagic) differs from bilbyFsPadByte. We also define 1ist_trans_no_pad, a
wrapper around list_trans that filters out all transactions composed of a single padding
object.

When BilbyFs functions correctly and no system crash occurs, all log segments on
flash as well as the write-buffer should be free of invalid transactions. So we must specify
what a valid log segment is. We do so by writing two functions: trans_len to calculate the
size of a transaction; and valid_trans to check the validity of a transaction. valid_trans
checks the validity of each object header in the transaction, including that the value of
the object’s trans fields is either bilbyFsTransIn or bilbyFsTransCommit. Then in order

to ensure the validity of a complete log segment, we define a predicate valid_log_segment
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Figure 6.11: BilbyFs’ write-buffer description

which ignores padding between transactions and ensures that all the transactions are
valid by calling valid_trans recursively while truncating the buffer to length trans_len.
We use valid_log_segment in the refinement relation to specify the ObjectStore’s internal

invariant which we describe in the next sub-section.

Internal invariant of the ObjectStore

)

We focus on the ObjectStore invariant because it is the most interesting part of BilbyFs
invariant. As opposed to the external one which asserts properties on the ObjectStore
abstraction exposed to the ObjectStore’s clients, the internal invariant talks about the
COGENT state (i.e. implementation) of the ObjectStore. It restricts the set of values the
internal ObjecStore’s state can have and ensures that the fields have consistent values with
each other; without it, we cannot prove that the ObjecStore’s implementation satisfies its
axiomatic specification. The internal invariant is need to prove that the ObjectStore’s
implementation satisfies its axioms.

Figure 6.11 illustrates the write-buffer and describes the fields of the ObjectStore’s
state. At the top we show the contents of the current eraseblock on flash, i.e. the
eraseblock to which the write-buffer is synchronised (e.g. when sync() is called). At the
bottom, we show the write-buffer which caches in memory the contents of the current
eraseblock plus some extra log data which encodes transactions describing each in-memory
pending update. The sync_offsy field of the ObjectStore’s state indicates up to where

the contents of the current eraseblock and the write-buffer are synchronised. The used
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field, on the other hand, indicates up to where the write-buffer contains log data. Data
in the write-buffer beyond sync_offs; (as depicted in Figure 6.11) has not yet been
synchronised to flash when sync () is called, the write buffer and the current eraseblock
are synchronised by overwriting the latter with the contents of the former. Since flash
memories only allow one to write data at page-size granularity, sync_offsy must be
aligned to the size of a flash page, whereas used; may be an arbitrary value but must be
greater than or equal to sync_offsy. Both fields must not exceed the field eb_size; of
the mount state, which records the length of an eraseblock.

To specify the well-formedness of the log data stored in the write-buffer, we define
a HOL function buf_slice that extracts a range of bytes from a buffer. Then we use
buf_slice to specify that part of the buffer synchronised is a valid portion of log:
valid_log_segment (buf_slice (wbuf; ostore_st) O (sync_offsy ostore_st))
where wbuf ; ostore_st is the write-buffer. Similarly, the internal invariant of the Ob-
jectStore also contains:
valid_log_segment (buf_slice (wbuf; ostore_st) (sync_offsy ostore_st) (used; ostore_st))
From these two facts we are able to deduce that the entire log data in the write-buffer is

a valid log using the rule valid_log_segment_append:
valid_log_segment xs valid_log_segment ys

valid_log_segment (xs @ ys)
This rule is proved from the definition of valid_log_segment, rather than assumed

as an axiom. The ObjectStore internal invariant also asserts valid_log_segment on all
the non-empty eraseblocks of the UBI volume. When we prove that the ObjectStore’s of
ostore_sync operation correctly satisfies its axiomatic specification, we need to show that
updating the contents of the flash makes the ObjectStore abstraction that only considers
the contents of the flash equal to the in-memory ObjectStore abstraction with all the
pending updates applied. Since the ObjectStore abstract is constructed by parsing the
contents of the flash and the write-buffer, we need to know that they all constitute valid
log segments.

This completes the description of the most interesting elements of the internal in-
variant of the ObjectStore. In the next sub-section, we describe the high-level abstract

representation of the ObjectStore, used for the external invariant.

Abstract representation of the ObjectStore

The interface presented by the ObjectStore (as described in its axiomatic specifica-

tion, which we discuss later in Section 6.6) is characterised by three abstraction func-
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tions: a_ostore_medium, which presents an abstract view of the ObjectStore, by only
considering the contents on flash; a_updates, which presents an abstract view for the
in-memory updates of the ObjectStore that have not yet been synchronised to flash;
and a_ostore_uptodate, which combines the two preceding abstractions to present a
unified view of the ObjectStore state as it would be, were the in-memory updates ap-
plied to the flash. It is over the abstraction implemented by these three functions that
the ObjectStore’s external invariant is defined. We provide the complete definition of
a_ostore_medium (Definition 11) and other abstract functions in Section 6.6, when we
discuss the ostore_sync axiomatic proof. Here, we only give enough details to describe
the external invariant of the ObjectStore.

We hinted at the abstract representation of the ObjectStore in Section 3.3. The
ObjectStore was designed such that its functionality is easily captured with a partial

mapping from object identifier to object; hence we define the type ostore_map as:
type synonym ostore_map = "ObjId — Objr"

In order to construct this ostore_map abstraction from the BilbyFs’ state in COGENT,
we define a_ostore_medium, a function that logically mimics BilbyFs’ mount () operation
to parse the entire log on flash, and returns the abstract view of the ObjectStore only
considering the contents permanently stored on flash.

Since the ObjectStore provides an asynchronous interface to write file system objects,
its abstraction must capture this behaviour and separate the in-memory and on-flash
state of the ObjectStore. Hence, analogously to the list of file system updates of the
AFS, the ObjectStore abstraction exposes a list of ObjectStore updates representing the
updates in the in-memory write buffer that have not been written to flash yet.

a_ostore_uptodate takes the ostore_map abstraction returned by «_ostore_medium
and apply all the updates in a_updates to it, by folding over the list of updates and
applying them sequentially, similarly to the AFS presented in Section 5.3 of Chapter 5.
As a result, a_ostore_uptodate returns the ostore_map as visible by a client of the

ObjectStore interface.

External invariant of the ObjectStore

The external invariant of the ObjectStore inv_«a_ostore is used to prove the correctness
of file system operations implemented on top of the ObjectStore. It is simpler than the
internal one because the internal invariant talks about implementation details whereas the

external one talks about the ObjectStore abstraction presented in the previous sub-section.
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The external invariant inv_a_ostore asserts facts about the objects stored in the

ObjectStore using the a_ostore_uptodate such as:

e Objects in the object store must be of one of the following types: inode, data block

or dentarr.

e Objects identifiers of the ostore_map must be consistent with the object identifier

stored in the object.
e If an object is of type dentarr, the following must hold:

— the number of entries must be greater than zero but must not exceed the

maximum number of entries allowed in a dentarr.
— No two entries in the dentarr have the same name.

— None of the names stored in the entries exceed the maximum length for a

name in BilbyFs.

The external invariant captures all the information about the ObjectStore abstraction
needed when proving file system operations on top of the ObjectStore (i.e. the FsOp-
erations component of the modular decomposition in Figure 6.1). Next we explain the

superblock invariant, before outlining BilbyFs modular proofs in Section 6.6.

Superblock invariant

The superblock is a file system data structure read at mount time which records information
about the flash device such as the size of an eraseblock, the size of a flash page, etc. The
superblock does not change at run-time, hence we decomposed the state in such a way that
isolating the superblock is easy so that the superblock can have its own separate invariant.
This way, the ObjectStore operations take the superblock as read-only, meaning that we
do not need to prove that the superblock invariant is maintained by the ObjectStore,

At mount time, BilbyFs reads the superblock and ensures that each of its fields is
consistent with the values that can be retrieved from the UBI interface. Recall from
Section 3.3, that UBI is a flash memory abstraction BilbyFs is implemented on top of.

The superblock is a record with a field io_size s recording the size of a flash page and
a field eb_size recording the size of an eraseblock in bytes.

The superblock invariant inv_superblock, ensures the following:

e The flash page size is a power of two.
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e The flash page size is greater than 512.
e The eraseblock size is divisible by a flash page size.
e The eraseblock size is lower than bilbyFsMaxEbSize which is 16MB.

These conditions are needed to specify the constraints on UBI operations and to
specify properties on the write-buffer. For instance, since the ObjectStore’s write-buffer
is written to flash up to the value of the field sync_offs, the internal invariant asserts
that sync_offsy is divisible by the flash page size.

All these conditions were extracted from the sanity checks in UBI’s source code, except
for the maximum size of an eraseblock, for which we chose a value we deemed reasonable,
because the specification by the Open Nand-Flash Interface (ONF1) consortium [ONFi|
does not specify a maximum number of pages per eraseblock.

This completes the overview of the refinement relation afs_fsop_rel that we use to
instantiate our correspondence statement with. In the next section we outline the modular

proof of iget () and sync().

6.6 BilbyFs' modular proof

At the beginning of this chapter, we presented our methodology for verifying BilbyFs
modularly. In this section we relate our experience applying this methodology to prove
the functional correctness of iget () and sync(). We follow the modular decomposition
shown earlier in Figure 6.1, to reason about each component of the implementation in
isolation. We prove the correctness of the file system operations by relying on the axiomatic
specification of the ObjectStore. Then we prove that the ObjectStore satisfies its axiomatic
specification by relying on the specification of the Index, the FreeSpaceMngr, and the

Serial components, each of which in turn prove to satisfy their axiomatic specification.

FsOperations: file system operations component

iget () proof To prove the functional correctness of iget (), we need to prove the fol-

lowing correspondence statement:

Theorem 2 (corres iget).

afs_fsop_rel afs_st fs_st —
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cogent_corres
(A (avnode, ra) (fsr, rc).
ra = rc A
afs_fsop_rel afs_st (fs_sty fsr) A avnode = ainode (vnode; fsr))
(afs_iget afs_st inum (ainode vnode))

(fsop_iget (make ex fs_st inum vnode))

It says that assuming afs_st is related to fs_st via afs_fsop_rel, which is the
refinement relation described in the previous section, running fsop_iget and afs_iget
with an inode related via the a_inode abstraction, leads to results related via the lambda
expression which we explain below. a_inode converts the VfsInode type taken as argument
by fsop_iget into a vnode type: its abstraction at the AFS level.

The lambda expression instantiates the relation R of the correspondence statement
cogent_corres (see Definition 4 of Section 6.3), it is a function that takes two pairs of
arguments. The first pair carries the values returned by afs_iget: the updated vnode
avnode; and the value ra indicating success or failure of the operation. The second pair is
the corresponding values at the implementation level. The first element of the pair is fsr,
a record containing the updated external state ex, the updated fs_st and the updated
vnode. And rc, the second part of the pair, is the value indicating the result of the
operation. The lambda expression asserts that afs_iget and fsop_iget must return the
same result for ra and rc, that the unchanged afs_st still relates to the updated fs_st
state, and that the vnode returned by afs_iget is the same as abstracting the updated
vnode contained in fsr. Note that, as explained in the previous section, afs_fsop_rel
includes all the invariants, hence proving this correspondence statement also asserts that
the invariants are preserved by iget ().

We presented the AFS of iget () in Section 5.4; the specification essentially says that
if the inode number exists in the AFS logical representation of the file system, afs_iget
must initialise the vnode passed as argument with the values of the inode present in the
logical representation of the file system.

The corres_iget proof is straightforward and follows the structure of the implemen-
tation. We apply the proof rules presented in Section 6.3 and rely on the ObjectStore’s
axiomatic specification for ostore_read to progressively prove the correspondence between

each statement in the specification and its implementation.

ostore_read's axiomatic specification We describe ostore_read’s axiomatic specifica-
tion. ostore_read reads the object matching the object identifier passed as argument

from the ObjectStore, and returns eNoEnt when the object is not found or some other
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error code when an unexpected error occurs. To better understand the specification, recall

ostore_read’s COGENT prototype:

ostore read: (ExState, MountState!, OstoreState, Objld) —>
((ExState, OstoreState), <Success Obj | Error ErrCode>)

ostore_read’s first argument is the external state which (as explained in Section 4.1)
helps us to model the behaviour of functions outside the semantics of COGENT like
memory allocation. The state of the file system initialised at mount time and unmodified
at run-time is packed into the MountState record and is passed as a shareable argument.
ObjectStore’s state is passed as the third argument and, like the ExState, is returned,
meaning it may be updated by the function. And finally, the last argument is the object
identifier, selecting which object to read from the ObjectStore.

The axiomatic specification for ostore_read follows:

Lemma 1 (ostore read ret).

[[inv_ostore mount_st ostore_st; inv_superblock mount_st;
inv_oa_ostore (a_ostore_uptodate ostore_st);
/\ex’ ostore_st’ obj.
[[inv_ostore mount_st ostore_st’;
«_ostore_uptodate ostore_st’ oid = Some obj;
inv_a_ostore (a_ostore_uptodate ostore_st’);
«_ostore_medium ostore_st’ = «_ostore_medium ostore_st;
a_updates ostore_st’ = a_updates ostore_st]
— P ((ex’, ostore_st’), Success obj);
/\ex’ ostore_st’ e.
[[inv_ostore mount_st ostore_st’;
e € {eIO0, eNoMem, eInval, eBadF, eNoEnt};
(e = eNoEnt) = (a_ostore_uptodate ostore_st’ oid = None);
inv_a_ostore (a_ostore_uptodate ostore_st’);
«a_ostore_medium ostore_st’ = «_ostore_medium ostore_st;
a_updates ostore_st’ = a_updates ostore_st]
= P ((ex’, ostore_st’), Error e)]

— P (ostore_read (ex, mount_st, ostore_st, oid))

The rule describes the effect of ostore_read through the ObjectStore’s abstraction.
The abstraction is obtained by the projection a_ostore_medium, that returns the abstract
representation of the ObjectStore, and «_updates that returns the abstract representation

of ObjectStore’s updates; both were introduced in Section 6.5. The a_ostore_medium
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projection takes the ObjectStore’s state ostore_st and constructs an abstract mapping
of type ostore_map (0bjId — Objr). By contrast, the other projection returns a list
of ostore_map transformers (of type (ostore_map = ostore_map) list), analogous to
the list of pending updates at the AFS level described in Section 5.2. Additionally,
a_ostore_uptodate takes the ostore_map abstraction returned by a_ostore_medium and
applies all the pending updates returned by «_updates.

The file system state is decomposed in multiple parts, and each part has its own
invariant specifying the consistency requirements on its fields. The ObjectStore’s internal
invariant is captured by the first assumption of the ostore_read axiomatic specification:
inv_ostore. Since the ObjectStore state is also decomposed into multiple parts including
the Index, the FreeSpaceMngr and UBI, each part has its own invariant embedded within
inv_ostore. The superblock invariant is captured by the next assumption: inv_superblock.
The external invariant, which asserts the consistency requirements on the ostore_map
abstraction of the ObjectStore, is captured by third assumption: inv_a_ostore. Both the
internal and external invariants are preserved by ostore_read regardless of the result of
the operation.

ostore_read may modify the ObjectStore’s stateS, however, its axiomatic specification
ensures that any modification performed on the state must keep it consistent by preserving
the invariants, and that modifications keep the abstract representation of the ObjectStore
unchanged.

ostore_read’s axiomatic specification is structured as a rule that transforms the goal
into two sub goals: one for when ostore_read succeeds, and another when ostore_read
returns an error. The higher-order predicate P is used to match the surrounding context
(i.e. the program text surrounding the call to ostore_read. In the success case, we obtain
a new ObjectStore state ostore_st’ and an object obj. obj is the object obtained by
looking up the up-to-date abstract representation of the ObjectStore (i.e. with all the
pending updates applied). Both the internal invariant and the external one hold on
ostore_st’, and the abstract ObjectStore representation, including pending updates,
must be the same as the one of ostore_st.

Similarly, when ostore_read returns an error, we obtain a new ObjectStore state
ostore_st’ with the same properties described for the success case except for one point:

the object identifier passed as argument does not exist in the up-to-date ostore_map

6 Since ostore_read merely reads an object from the ObjectStore, it is legitimate to wonder
why would the function need to update the ObjectStore’s state? As it turns out, ostore_read
modifies the state when it reads from the storage device, because it temporarily stores the data
read in a buffer that is part of the ObjectStore’s state.



6.6. BILBYFS’ MODULAR PROOF 147

abstraction, iff the error code returned by the function is eNoEnt. Additionally, the axiom

asserts that the error code returned must be one of the following values:
e eI0: input/output error when accessing the storage device.
e eNoMem: memory allocation error.
e elnval: invalid argument.
e eBadF: invalid data read from storage device.
e elNoEnt: described above.

In summary, the ostore_read axiom specifies that the ObjectStore’s state may be
modified during a ostore_read call but clients of the interface must not see the difference.
This is enough to prove the correctness of any operation that reads a file system object
from the ObjectStore. The specification describes ostore_read functionality directly on
the abstract representation of the ObjectStore, regardless of the details of the underlying
implementation.

The only proof obligations of iget()’s functional correctness proof that required
manual intervention to help the proof assistant were discharged by deriving facts from the
ObjectStore’s external invariant and AFS’ invariant (both are part of the afs_fsop_rel
assumption). The ObjectStore’s external invariant asserts that an object identifier of
type inode maps to an inode object, so we wrote a lemma to extract this fact from the
invariant. Similarly, we proved another lemma to infer from the afs_fsop_rel assumption
that there is an inode matching the inum argument in the AFS state if and only if there is
one in the ObjectStore. These two lemmas and a mindful use of Isabelle/HOL’s rewriting

engine were enough to complete the corres_iget proof.

sync() proof The correspondence statement for sync() shows a lot of similarity with

iget()’s one:

Theorem 3 (corres_sync).

afs_fsop_rel afs_st fs_st —
cogent_corres

(M(afs, ra) (fsr, rc). ra = rc N\ afs_fsop_rel afs (fs_st; fsr))
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(afs_sync afs_st) (fsop_sync (make ex fs_st))

We make the same assumption: afs_st and fs_st must be formally related via the
afs_fsop_rel relation. The lambda expression relating the results of both afs_sync and
fsop_sync is simpler; it asserts that the return values must always match and that the
updated versions of afs_st and fs_st must still be related with afs_fsop_rel.

We only summarise fsop_sync’s functionality briefly as we presented afs_sync specifi-
cation in Figure 5.5 of Section 5.4, and showed its implementation at the beginning of this
chapter in Figure 6.2 of Section 6.2. fsop_sync checks whether the read-only flag is set,
if so we return the eRoFs error code. Otherwise, we unpack the file system state fs_st
and call ostore_sync to apply all the ObjectStore’s pending updates. When ostore_sync
returns an error, we repack the file system state, propagate the error code, and set the
read-only flag if a critical I/O error happened (i.e. err equals eI0). When ostore_sync
succeeds, we repack the state and return Success.

The proof follows the implementation’s structure, applying the proof rules presented
in Section 6.3 to match implementation statements to specification ones. The most
interesting part of the proof is the application of the ostore_sync axiom. ostore_sync
synchronises the in-memory state of the ObjectStore with the medium. More specifically,
it flushes out to flash the in-memory write-buffer that contains the pending updates of

the ObjectStore. ostore_sync’s COGENT prototype follows:

ostore sync:(ExState, MountState!, OstoreState, U32) —>
((ExState, OstoreState), <Success () | Error ErrCode>)

The prototype is the same as ostore_read’s one except for the last argument of the
function, which is a set of flags encoded in a 32-bit machine word value. One of flags is
used for instance to force ostore_sync to fill up the rest of the write-buffer with padding
entirely before synchronising and allocating a new eraseblock for the next segment of the
log.

ostore_sync’s axiomatic specification is similar to ostore_read’s one in several as-

pects, hence we focus on the differences between the two specifications.

Lemma 2 (ostore sync_ret).

[[inv_ostore mount_st ostore_st; inv_superblock mount_st;
inv_oa_ostore (a_ostore_uptodate ostore_st);

/\ostore_st’ ex’.
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[[inv_ostore mount_st ostore_st’;
inv_a_ostore (a_ostore_uptodate ostore_st’);
«_ostore_medium ostore_st’ = «_ostore_uptodate ostore_st;
a_updates ostore_st’ = []]
— P ((ex’, ostore_st’), Success ());
/\e ostore_st’ ex’ n.
[[inv_ostore mount_st ostore_st’;
inv_a_ostore (a_ostore_uptodate ostore_st’);
e € {eI0, eNoMem, eNoSpc, eOverflow}; n < |«a_updates ostore_st/;
a_ostore_medium ostore_st’ =
apply_n_updates n (a_ostore_medium ostore_st) (a_updates ostore_st);
a_updates ostore_st’ = (drop n $ a_updates ostore_st)]
= P ((ex’, ostore_st’), Error e)]

—> P (ostore_sync (ex, mount_st, ostore_st, ostoreWritelNone))

Like ostore_read’s axiomatic specification, ostore_sync’s is structured as a rule that
transforms the goal into two sub goals: one for when ostore_sync succeeds, and another
for when ostore_sync returns an error. The higher-order predicate P is used to match
the surrounding context (i.e. the program text surrounding the call to ostore_sync.
In the success case, the specification gets a new ObjectStore state ostore_st’ with
all the updates applied such that the abstract representation of the new ostore_map
only considering the on-flash contents (a_ostore_medium ostore_st’) is the up-to-date
ostore_map of the old ObjectStore state (a_ostore_uptodate ostore_st). The new list
of pending updates projected from ostore_st’ is empty, since all the updates must have
been applied.

In the more interesting error case, the axiomatic specification allows an arbitrary
number of pending updates to have been applied (i.e. any prefix of the list). n specifies the
number pending updates applied, n < |«a_updates ostore_st/| ensures that it is less than
the total number of pending updates. The new abstract representation of the ObjectStore
«a_ostore_medium ostore_st’ is the same as applying the first o pending updates to the
old ObjectStore state. The list of pending updates is the same as the old one but with
the first n pending updates removed, as specified by a_updates ostore_st’ = drop n
(a_updates ostore_st).

The semantics of ostore_sync are aligned with the ones allowed by the AFS of sync(),
assuming we can relate the AFS to the ObjectStore when they have the same number of
pending updates applied consecutively. In afs_sync, the number of updates applied in
the error case is non-deterministically selected using the choice function select of the

non-deterministic monad presented in Section 5.1.
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The corres_sync proof has to show that all execution paths of the implementation
have a corresponding one in the specification. The fragment of the proof that deals with
the non-determinism proceeds as follows. First we apply the ostore_sync axiom, which
fixes the number of updates applied in the error case, then we use the COGENT_select
rule presented in Section 6.3 to pick a concrete value within the set of non-deterministic
choice allowed by the specification. We have to show that the value we selected is indeed
allowed by the specification, before we proceed to finish the correspondence proof with
the selected value.

For the corres_sync proof, showing that the selected list of pending updates applied
is a non-deterministic choice allowed by the specification simply consists of showing that
taking the n first elements of a list returns a prefix of the list, and dropping | a_updates
ostore_st| - n elements returns a suffix of the list. Such proofs are discharged automat-

ically using Isabelle/HOL’s lemmas library for lists.

Discussion Both correspondence statements for iget () and sync() were straightforward
to prove using our refinement framework. This is not surprising because we benefit
significantly from dealing only with the high-level abstraction of the ObjectStore to
read and write file system objects. iget () proof is merely ~120 lines of Isabelle/HOL
proof-script and =100 for sync()’s. Although, the high-level logic of the operation
iget () is simple and the complexity of proving the sync() operation is delegated to
the ostore_sync proof, the economy shown by the size of these proofs still highlights
the benefit of designing a file system modularly with interfaces that follow the design
principles of information hiding [Parnas, 1972] and separation of concerns [Dijkstra, 1982].
Proving the correctness of the file system logic on-top of the ObjectStore abstraction is
much easier than if we were to reason directly about its implementation. At this level,
details about how file system objects are stored on flash are completely abstracted away
and the logic of operations that manipulate these objects is confined into the FsOperation
component. In the next subsection we address the ObjectStore axiomatic specification

proof.

ObjectStore: object store component

We saw that iget () relied on the ostore_read axiom and sync() on ostore_sync’s one
to complete the top-level proof of correctness. This section explains how we proved that

both these functions satisfy their axiomatic specifications.
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ostore_read axiomatic proof We only briefly summarise the control flow of the ostore_read
operation in this section, because its implementation was presented in Figure 4.8 of Sec-
tion 4.4. ostore_read uses the object identifier passed as argument to look-up the index
which stores the addresses of objects on flash. Addresses of objects are kept in the index
as a record that includes eraseblock number, offset within the eraseblock and the length of
the object. If the object identifier is not found in the index, ostore_read returns the error
code eNoEnt. Otherwise, we check whether the object happens to be located in the current
eraseblock, i.e. the eraseblock where the in-memory write-buffer of the ObjectStore is
being synchronised to. If so, we de-serialise the object from the write-buffer. Otherwise,
we read all the flash pages overlapping the object’s data on flash into the read-buffer
of the ObjectStore. At this point, the read-buffer is partly initialised, since only the
page-size chunks of the eraseblock with data belonging to the object are filled with data
read from the flash. Then, we de-serialise the object from the read-buffer, specifying the
offset position indicating where to de-serialise from. We also specify a bound on the buffer
to ensure we do not access uninitialised parts of the buffer. Finally, as a sanity check, we
compare the requested object identifier to the value stored in the object we read, before

returning the object.

The axiomatic specifications of the Index and the FreeSpaceManager components
are similar to the WordArray axiomatic specification presented in Section 6.4. Both
their functionality are captured by abstraction functions. The Index abstraction is
a partial mapping from object identifier to an address on flash (i.e. an eraseblock
number, an offset in the eraseblock and the length of the object). Since we implemented
the Index using a red-black tree (and our axiomatic specification for red-black trees
already describes the effects of the tree operations on a partial mapping), the proof that
the Index correctly implements its axiomatic specification was trivial. Similarly, the
FreeSpaceManager is implemented using the COGENT ADTs WordArray and red-black
tree, and its axiomatic specification makes use of these ADTs abstractions to describe
the component’s functionality. As the proof that both these components satisfy their
axiomatic specifications was straightforward, we focus on the more challenging part of

ostore_read’s proof in the rest of this section.
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In order to prove that objects are read correctly by the file system (and ostore_read
in particular), we need the right specification for object de-serialisation. The specification

for the deserialise_0bj function called by ostore_read is:

Lemma 3 (deserialise  Obj ret).

[wellformed_buf buf; |la $ datay buf|/ < unat bilbyFsMaxEbSize;
offs + bilbyFsObjHeaderSize < bound; buf;
offs < offs + bilbyFsObjHeaderSize;
\ex e. e € {elnval, eNoMem} —> P (Error (e, ex));
/\ex obj offs’.
[is_valid_ObjHeader (pObjHeader (a (datay buf)) offs) (a (dataj buf));
obj = pObj (a (datay buf)) offs; offs’ < offs + leny obj;
let end_offs = offs + leny obj;
data = take (unat end_offs) (a (datay buf))
in dentarr_entries_len_le_end_offs (otype; obj) data offs end_offs]
= P (Success (ex, obj, offs’))]
—> P (deserialise_0bj (ex, buf, offs))

The deserialise_0bj axiom is part of the Serial axiomatic specification. The details
of the Serial component axiomatic proof are presented in Appendix A.1. The specification
uses the HOL parsing function pObj described in Section 6.5 to specify the decoding of a
file system object from a buffer. deserialise_0bj COGENT prototype follows:

deserialise Obj: (ExState, Buffer!, U32) —
<Success (ExState, Obj, U32)| Error (ErrCode, ExState)>

The only unfamiliar type is Buffer, it is defined as a record made of a WordArray U8
where the actual data is stored and a U32 specifying a bound on the buffer. The bound
field, ensures that if a buffer is only initialised up to a specific offset, i.e. the bound,
deserialisation operations do not read beyond that bound.

deserialise_0bj takes a shareable read-only buffer and an offset as argument. When
successful, it returns the external state, the object de-serialised and an offset (namely
offs’) specifying the byte position in the buffer right after the object de-serialised. offs’
must be lesser than or equal to the initial offset plus the length of the object de-serialised,
i.e. end_offs. When unsuccessful, deserialise_0bj simply returns an error code and the
external state. deserialise_0bj takes the external state as argument because it allocates

objects.
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deserialise_0bj relies on two assumptions on the input buffer. First, the buffer must
be well-formed, and its bound must not exceed the length of its data array. Second,
the maximum size of the data array must not exceed bilbyFsMaxEbSize, the maximum
eraseblock size allowed by the UBI flash memory abstraction on top of which BilbyFs is
implemented. We also need to know there is enough room in the buffer to de-serialise
at least an object header, and that the offset does not overflow when we add the object
header size to it.

Given all these assumptions, the axiomatic specification says that calling deserialise_0bj
may result in one of two possible outcomes. If an error occurs, then all we know is that the
error code returned is either eInval when the function detected an invalid object header,
or eNoMem when a memory allocation failed. When deserialise_0bj succeeds, the axiom
asserts that the object header at the position offs in the buffer is valid, that the object
returned by the function is equivalent to the result of the HOL abstraction pobj” at this
offset, and that the offset returned by deserialise_0bj is positioned after the object just
de-serialised in the buffer. Finally, the assumption dentarr_entries_len_le_end_offs

which we describe shortly.

Key
ﬁ log data

Unitiallised
data

eraseblock on-flash
0 0x100 0x200 ... eb_size

read-buffer .. eb_size

page(s) overlaping the object
Figure 6.12: Reading an object from an eraseblock on flash
The major proof obligation for the ostore_read axiomatic proof requires showing that

parsing an object from a buffer where only the relevant part of the eraseblock is loaded in

memory is equivalent to parsing the object on the entire eraseblock. This proof obligation

"pObj was introduced in Section 6.5, and makes use of pObjHeader and pObjUnion to
parse an object header and its payload. For completeness, we present outline proof of
deserialise_0ObjHeader’s axiomatic specification in Appendix A.1.
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arises because our ObjectStore internal invariant talks about entire eraseblocks. The
internal invariant says that for every address kept in the index, there is a valid object
header on flash (or in the write-buffer) and that the object returned by the ObjectStore
corresponds to calling pObj on the (entire) eraseblock at the offset recorded in the index.
Yet, as illustrated by Figure 6.12, for efficiency reasons ostore_read only reads into the
read-buffer the flash pages that contain parts of the object it needs to de-serialise.

This means that at some point in the ostore_read proof we have to prove a lemma

like the following:

slice (unat frm) (unat to) entire_eb = slice (unat frm) (unat to) read_buffer
— pObj entire_eb frm = pObj read_buffer frm
Where slice is a function that returns the sub-list from offset frm to to and unat converts
32-bit word to natural number. We need to show that if the relevant part of the entire
eraseblock (slice (unat frm) (unat to) entire_eb) is equal to the part read from the
flash (slice (unat frm) (unat to) read_buffer), then the pObj function return the same
result. We prove this by showing that pobj only accesses elements of the input list that
are between frm and to.

Specifying the extent of the buffer read by pObj is complicated by dynamically sized
file system objects, particularly directory entry arrays (dentarrs) because each directory
entry encodes its own length and the length of the previous entry is used to jump to the
next entry when pObjDentarr parses them (called by pobj; see Figure 6.8). This is the

reason for the dentarr_entries_len_le_end_offs predicate we alluded to earlier.

[header! object header
Log segment dentarr header
dentry header
[_name’} dentry name
~<—> name length

0 0x100 0x200 log offset ...

header.len

.....
jor] T i . T . e

H - 10 i - i - i
(OB >0 W 20 BW2o 2o

#eH © loE=RIu o b= il © [E=IR=ill © [£=]
- L ocRAlcE Bl <& KRcERceE
:GJ: 0] © © R Qo RO © K]V ©
J: i T Ci fa: T C i &0 C T <

v >t 42

parsing offset jump
dentry.name_len «—» <———>»> <> ‘< >

Figure 6.13: Parsing object dentarr where each directory entry stores its own length.

Figure 6.13 illustrates the recursive parsing of directory entries. A directory entry
array is encoded after the object header, and starts with a dentarr header which stores the
number of directory entries in the array. Then each directory entry has a small directory
entry header colored in grey, which stores the length of the name following the directory

entry header. So parsing the array involves reading a directory entry header and using
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the length of the name to jump to the next directory entry in the array.

The dentarr_entries_len_le_end_offs predicate tells us that when we successfully
de-serialise an object from a buffer, if that object is of type dentarr, recursively parsing
each directory entry in the array never leads to accessing an area of the buffer beyond the
length of the object stored in its header. dentarr_entries_len_le_end_offs is defined
recursively, and it asserts that for each directory entry the length of the current entry
added to the length of all the previous directory entries does not go beyond the length of
the buffer. Note that this is not equivalent to asserting that the sum of all the directory
entry lengths plus the current buffer position is less than its length, because it guarantees
the absence of overflow when the additions are performed on 32-bit words.

This gives us enough information to prove that parsing the object on the partially
initialised read-buffer is equivalent to parsing the object on the entire erase-block, allowing

us to complete the proof of the ostore_read axiom.

ostore_sync implementation ostore_sync writes all the pending updates on flash, this
involves adding padding to the write-buffer such that it contains enough data to write
complete flash pages and handling potential errors.

Before we outline the proof of the ostore_sync axiom we show the COGENT specifica-

tion of ostore_sync:

Definition 10 (ostore sync def).

ostore_sync dsg =
let (ex, mount_st, ostore_st, osw_flags) = dsg;
sync_offs = sync_offsy ostore_st; used = used; ostore_st
in if sync_offs = used A — is_set (osw_flags, ostoreWriteNewEb)
then ((ex, ostore_st), Success ())
else let pad_to = padding_to (mount_st, ostore_st, osw_flags);
(dsi12, r) = prepare_wbuf (ex, mount_st, ostore_st, pad_to);
(ex, ostore_st) = dsia
in case r of Error e = ((ex, ostore_st), Error e)
| Success vge =
let (dss1, r) =
ostore_sync_summary_if_eb_new
(ex, mount_st, ostore_st, osw_flags);
(ex, ostore_st) = dso;
in case r of Error e = ((ex, ostore_st), Error e)

| Success vg1 =
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let nb_bytes = usedy ostore_st - sync_offs;
(ds33, r) =
ostore_write_buf
(ex, mount_st, ostore_st, sync_offs, nb_bytes,
osw_flags);
(ex, ostore_st) = dsss
in case r of Error e = ((ex, ostore_st), Error e)
| Success vgy =
let used = usedy ostore_st;
ostore_st = ostore_st(sync_offs; := used|

in ((ex, ostore_st), Success ())

ostore_sync takes four arguments: the external state, the mount state, the ObjectStore
state and a set of flags osw_flags. Recall from Section 6.5 that the write-buffer is kept
consistent with several fields of the ObjectStore state in accordance with the internal
invariant inv_ostore. As shown by Figure 6.11, the write-buffer which is of the size of
an eraseblock, the sync_offs; field indicates the offset up to where the write-buffer is
synchronised with the on-flash content of the eraseblock. The used; field is the position
in the buffer up to where the write-buffer has been written to in memory. Therefore,
the range of the buffer between the offsets sync_offs; and usedy contains the pending
updates of the ObjectStore.

The implementation of ostore_sync checks whether there are no pending updates
and the flag ostoreWriteNewEb is not set, and returns Success if so. When sync_offs
equals usedy, it means that no data has been written to the write-buffer since it was
last synchronised to flash. The ostoreWriteNewEb flag is used by ostore_write to force
ostore_sync to allocate a new eraseblock. The code path when ostoreWriteNewEb is set
true has not been verified, since when ostore_sync is called by fsop_sync this flag is not set.
Otherwise, when sync_offs; and used; differ, the invariant guarantees that sync_offs
is less than used ;. We call padding_to to calculate the offset up to which we need to add
padding to the write-buffer. Adding padding may be necessary to avoid writing partially
filled pages of data to the flash device. We pass the result of padding_to to prepare_wbuf,
which modifies the write-buffer to add padding to it. prepare_wbuf may return an error
when it fails to find a unique transaction number for the padding transaction. When it
succeeds, it updates the write-buffer and the used; field in the ObjectStore’s state. The
next step is to update the write-buffer by serialising the eraseblock summary at the end of
the buffer, when it is getting full. This is done by ostore_sync_summary_if_eb_new which

can return an error or succeed. Then, in the success case, we call ostore_write_buf to
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write the buffer to the eraseblock used to store the write-buffer on-flash. ostore_write_buf
too may return an error and when it does, the error code is propagated. Otherwise, we
set the sync_offsy field to used;’s value to indicate that the buffer is synchronised with
its on-flash eraseblock. Note that we re-read the used; field from the ObjectStore’s state,

because prepare_wbuf may have modified it.

ostore_sync axiomatic proof The non trivial parts of the ostore_sync proof were to
specify what a valid log segment is, showing that writing the write-buffer to flash is
equivalent to applying all the pending updates on the abstract representation of the
ObjectStore. We explained how to specify a valid log segment in Section 6.5 with the
predicate valid_log_segment.

Showing that the write-buffer remains valid when we add padding to it is relatively
easy once we have such specification. However, as mentioned earlier in Section 6.5, BilbyFs
supports two types of padding: padding objects and padding bytes, the latter of which is

used when the area to fill is smaller than the size of an object header.

Padding objects are merely another type of object, and form a normal transaction
with a single object in the log that are just ignored by mount (), so they do not require any
special handling. We serialise them just like any file system object and we need to prove
that they produce a valid transaction in the buffer. This is guaranteed by the axiomatic
specification of the serialisation function serialise_0bj, which says that when we call
serialise_Obj (buf, offs, obj) to serialise an obj in buf at offset offs, the slice of the
buffer between offs and offs + leny obj is replaced with the value returned by s0Obj
obj. We introduced s0Obj in Section 6.5, and it is a HOL function that returns an object
encoded as a list of bytes. Padding objects also need to be ignored by specifications that
talk about transactions in a log segment. 1list_trans, the HOL function that recursively
parses transactions in the log and returns all the transactions found, including those made
of a single padding object. Any specification that requires ignoring padding objects uses
the wrapper list_trans_no_pad that post-processes the list of transactions returned by
list_trans, to filters out transactions composed of a single padding object.

Padding bytes, on the other hand, are directly ignored by valid_log_segment and
list_trans. As seen in Section 6.5, both valid_log_segment and list_trans use the
nopad HOL function to eliminate padding bytes from the beginning of a list of bytes.

The function prepare_wbuf invoked by ostore_sync adds a padding object or padding
bytes to the write-buffer depending on the size of the area to pad. To deal with the
padding in ostore_sync’s axiom proof, we had to prove a lemma akin to the following:

snd (list_trans_no_pad buf_with_padding) = snd (list_trans_no_pad buf)
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This says that calling 1ist_trans_no_pad on the write-buffer with and without padding
returns to the same list of transactions, where the buf_with_padding is the write-buffer
returned by prepare_wbuf thus it potentially includes padding bytes or a padding object.
From such lemma, we conclude that prepare_wbuf does not alter the list of non-padding
transactions in the write-buffer, and that the padding added does not affect the Object-
Store’s abstract representation.

The heart of proving correct synchronisation (i.e. of the ostore_sync proof) requires
showing that updating the ObjectStore’s state with the write-buffer completely written to
flash and the sync_offs; field updated to used; is equivalent to applying all the pending
updates on the abstract representation of the ObjectStore. This corresponds to the asser-
tion a_ostore_medium ostore_st’ = a_ostore_uptodate ostore_st of the ostore_sync
axiom when the function succeeds. Recall that ostore_st’ is the new ObjectStore
state and ostore_st the one ostore_sync was invoked with. a_ostore_medium’s definition

follows:

Definition 11 («_ostore medium).

«_ostore_medium ostore_st =
let alltrans = concat (list_eb_log (awubi (ubi_vol; ostore_st)));
alltrans’ = sort_key trans_order alltrans

in fold id (map ostore_update alltrans’) empty

The awubi function projects an abstract representation of the UBI volume, returning
a list of eraseblocks, where an eraseblock is a list of bytes. list_eb_log takes the
abstract UBI volume as argument and returns all the segments (i.e. eraseblocks) that
belong to the log and applies 1ist_trans_no_pad on them to obtain a list of lists of
transactions, which we flatten into a list of transactions. Then we sort all transactions
by transaction number using sort_key trans_order, and convert the transactions into
a list of map transformers using ostore_update. ostore_update takes a transaction of
objects and returns a transformation of type ostore_map = ostore_map, like the one
introduced in Section 5.3 for the AFS. ostore_update transformations are functions that
take an ostore_map and update it by iterating over each object of the transaction. For
each object, the transformation adds a mapping from the object identifier to the object,
or if the object is a deletion object, it removes the range of objects specified by the
object’s deletion pattern, as explained in Section 3.3. Finally, since the list of map

transformer is sorted by transaction number, a_ostore_medium can sequentially apply
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each map transformer by calling fold id on the list and an empty map, to obtain the
abstract view of the ObjectStore only considering the contents on flash. a_ostore_medium
projects a ostore_map from the ObjectStore’s state by logically mimicking the mount ()
operation®.

The overall idea of the proof is that the ostore_map obtained by writing the extra
part of the write-buffer containing the pending updates and then parsing the entire log is
the same as parsing the entire log and applying the pending updates while still volatile in
memory. This is true because all the transactions in the pending updates have a higher
transaction number than any transaction currently in the log, and because conceptually
mount () (and indirectly a_ostore_medium) sorts the list of transactions by transaction
number before applying them. In addition, we also need to know that there is a one-to-one
mapping between transactions and transaction numbers, i.e. the function that extracts a
transaction number from a transaction is injective. Otherwise, two transactions having the
same number lead to ambiguity as to which one should be applied first. These properties

are guaranteed by the ObjectStore’s internal invariant.

Discussion Using our modular proof methodology, we were able to reason about the
ObjectStore’s correctness in isolation: the components on which it relies, namely Serial,
UBI, Index and FreeSpaceMngr functionality are solely described by their axiomatic
specifications. The ability to abstract the on-flash format and reason abstractly about
binary data stored on flash was key to verifying the ObjectStore component. Verifying
error handling requires proving that the invariants still hold, and we found that often it
seems we are proving the same property multiple times but in fact the property is slightly
different. For instance, in the ostore_sync proof, when prepare_wbuf succeeds, we have
to prove that most of the inv_ostore invariant is preserved since the ObjectStore state is
slightly different from before the call, and as we follow the control flow, each function call
updates the state slightly, requiring another invariant proof. None of these proofs are

particularly difficult, but are time consuming, and often require writing a lemma that

8 The actual mount () implementation is optimised to read eraseblocks summaries instead of
the entire log, and it only falls back to parsing the contents of a segment when a summary is missing,
which could be caused by the system crashing for instance. Despite mount () implementation
being much more complicated than the abstraction we just described, its functionality is captured
by it. In addition, with a similar framework for reasoning about system crashes as Chen et al.
[2015a], the current a_ostore_medium definition could be used for specifying and verifying
crash-tolerance properties of BilbyFs. In this thesis we mainly focus on the functional correctness
of run-time operations, we leave the mount () refinement proof and any crash-tolerance related
properties for future work.
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is proved by unfolding the relevant definitions and leveraging Isabelle/HOL automated

tactic to discharge the parts of the invariant that make use of V or 3 quantifiers.

UBI axiomatic specification

In Section 3.3, we introduced UBI, the flash memory abstraction on top of which BilbyFs
is implemented. In this sub-section, we present the high-level abstraction we use to
describe UBI’s axiomatic specification. As explained in the rest of this section, some of
the formal assumptions we make about UBI are not fully realistic, for instance we assume
that when we write a buffer to an eraseblock, either the entire buffer is written or none,
without considering potential bit-flip errors that flash memories are subject to [Tseng
et al., 2011]. Additional work can make these assumption fully realistic, but we leave this
for future work. Our specification of UBI is straightforward; and shares some similarities
with the specifications the eraseblock manager of Pfihler et al. [2013| and the NAND
flash specification of Butterfield et al. [2009]. For completeness we detail our axiomatic

specification for UBI in Appendix A.2.

6.7 Evaluation

In this section, we give an overview of the bugs we found during the proofs of iget () and
sync (), and analyse the effort required to determine whether the overall methodology, for
designing, implementing and verifying file systems is practical. In particular, we want to
know whether it leads to a reduction in verification effort compared to traditional systems
software verification. To this end, we use the sel.4 verification as a point of comparison,
and find that we achieve a reduction in effort of at least a third compared to traditional

software verification in C.

Bugs

The verification found six defects in the already tested and benchmarked BilbyFs COGENT
implementation. Three of these occurred in serialisation functions. The first bug was
a missing check to ensure that the transaction flag of an object is one of two values:
bilbyFsTransIn for an incomplete transaction and bilbyFsTransCommit for committing
a transaction. The second one was the omission of an overflow check for a value read
from medium. The last serialisation bug is more interesting, so we devote the next few

paragraphs to it.



6.7. EVALUATION 161

When we deserialise a dentarr object, each entry in the array encodes the length of
the name it stores. So after decoding the entry we had the following check:
offs < offs + bilbyFsObjDentryHdrSize + name len
Where name_1len is the length of the name stored in the directory entry, and bilbyFsObjDentryHdrSize
is the size of the fixed-length header for each entry. The intent of the check was to ensure
that no overflow is possible when we add name_len to offs. When we perform the check
above, we know for fact that offs < offs + bilbyFsObjDentryHdrSize. Hence, we mistakenly
assumed we could derive from these two facts the following:
offs + bilbyFsObjDentryHdrSize < offs + bilbyFsObjDentryHdrSize + name len

However, during the proof, we realised we cannot because the check only prevents
name_len to overflow when bilbyFsObjDentryHdrSize is added to it. But if, for instance,
name_len equals the maximum value that fits in a 32-bit word, since bilbyFsObjDentryHdrSize
is greater than one, the check is true despite the right-hand-side of the inequality over-
flowing. The fix consisted of using the following check instead:
offs + bilbyFsObjDentryHdrSize < offs + bilbyFsObjDentryHdrSize + name len.

Serialisation and de-serialisation are mechanical and tedious to write, which makes
them prime candidates for further language and proof generation support.

The three other bugs were found in the sync() implementation. Two of them were
caused by not restoring the ObjectStore’s state properly when an error occurs, and the
bugs were found because we could not prove the internal invariant of the ObjectStore was
preserved. The last one was found when verifying the top-level correspondence refinement
step of the sync() operation. We forgot to set the file system in readonly-mode when a
critical I/O error happens, therefore the execution path where the error occurred in the

implementation was not allowed by the specification.

Proof modularity

As explained in the previous section, BilbyFs’ functional correctness proofs were done by
following the modular decomposition of the implementation. We found that we could
divide the effort and work on separate components in isolation. For instance, the Serial
component’s proof was done in part by Christine Rizkallah and Yutaka Nagashima who
had no familiarity with BilbyFs’ internals. All of us were able to prove functionalities of
BilbyFs that rely on one another without interfering with each other. This was greatly
facilitated by our design and verification methodology presented in this thesis, where
each implementation components communicate through well defined interfaces that are

described by abstractions, exposing just enough information to capture the functionality
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of the component, without detailing the underlying implementation. Our specification
of these interfaces has been surprisingly stable, none of the axiomatic specifications
experienced major changes. We did find a few typos, for instance our ostore_read axiom
was referencing the ostore_st instead of ostore_st’ in one occurrence. The axiom that
required the most significant change was the deserialise_0bj one where, we did not
anticipate that we needed to specify the extent of the buffer read by p0Obj to finish the

ostore_read proof.

Proof productivity

The effort for verifying the complete chain from the FsOperations component to the UBI
axiomatic specification for the functions sync() and iget () in BilbyFs was roughly 9.25
person months, and produced roughly 13,000 lines of proof for the 1,350 lines of COGENT
code. 4.5 person months, ~4,000 lines of proof, of these were spent on serialisation/de-
serialisation functions (/850 lines of COGENT code), which, as mentioned, could be
further automated. An additional /1,500 of the ~13,000 lines of proof are libraries. The
sync () -specific proof size is just about 5,700 lines and took 3.75 person months for ~300
lines of COGENT code. The iget () proofs took 1 person month for /1,800 lines of proof
and /200 lines of COGENT code.

This compares favourably with traditional C-level verification as for instance in
sel4 |Klein et al., 2014], which spent 12 person years with 200k lines of proof for 8,700
source lines of C code. Roughly 1.65 person months per 100 C source lines in sel.4 are
reduced to ~0.69 person months per 100 COGENT source lines in COGENT. Although
this calculation indicates a significant gain in productivity when reasoning about a purely
functional COGENT-generated specifications, we should keep in mind a few caveats when
considering these numbers.

First, COGENT restrictions on data sharing makes it unsuitable for implementing
a high-performance micro-kernel where several optimisations require memory aliasing.
Second, micro-kernels like sel.4 are tightly coupled systems where performance is so critical
that they cannot be designed modularly. By contrast, in this thesis we have shown file
systems can be designed modularly, without incurring unacceptable performance overhead.
Finally, the sel.4 functional correctness proof is complete for the entire micro-kernel,
whereas BilbyFs’s proof establishes the functional correctness of operations iget () and
sync() only. This means that BilbyFs’s invariant might be incomplete and might need
modifications to include missing information required to prove the functional correctness

of other file system operations. Klein et al. [2014] reported experiencing multiple omissions
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of this kind for sel.4.

By considering the effort per line of the 1,350 lines of verified COGENT code and
the remaining 2,150 lines unverified, we estimate completing the proof of BilbyFs would
require an effort of ~15 person months. However, we believe that taking into account the
effort already spent on the specification of BilbyFs’ abstractions and on reusable libraries

for reasoning about COGENT code the effort would be closer to one person year.

6.8 Summary

In this chapter we presented our approach to prove modularly the functional correctness
of a file system. We explained how the COGENT specifications generated by COGENT’s
certifying compiler are purely functional and allow reasoning about the file system logic
using equational reasoning. We presented our methodology to decompose a functional
correctness proof by following the modular decomposition of the implementation, and
our refinement framework to prove that a high-level functional specification is refined
by a COGENT-generated specification with a level of abstraction higher than traditional
verification frameworks for C. The methodology is organised in two phases. First, we
use our refinement framework to prove the top-level refinement step, showing that the
high-level correctness specification of a file system operation is refined by the COGENT
implementation. We strongly rely on the axiomatic specification of the ObjectStore,
which is specified through a simple partial map abstraction. Second, we prove that
the implementation of each component (including the ObjectStore), correctly satisfies
its axiomatic specification. An axiomatic proof subsequently relies on the axiomatic
specification of the components relied on by the implementation. We provided evidence
of the practicality of our methodology by proving two operations of BilbyFs: iget () and
sync(). Finally, we evaluated our approach to analyse its strengths and weaknesses, and
to determine whether it increases verification productivity when compared to traditional
C software verification techniques and found that it produces an increase of up to 50%

compared to the sel.4 verification.






7 Conclusion

In this thesis we have presented a methodology for designing, implementing and verifying

realistic file systems.

In Chapter 3, we provided the key design ingredients required to make a file system
verifiable. We presented a file system design that keeps the verification tractable by
forcing sequential execution of file system operations, separating the virtual file system
switch (VFS) caches interactions from the core file system logic, and pursuing aggressive
modular decomposition of the file system functionality. With BilbyFs, we have shown
that when designed carefully, a file system can not only be performant, but also verifiable.
In order to keep the verification effort manageable, we chose a simple log structured
design for BilbyFs, where the indexing information of the log is kept only in memory and
must be reconstructed at mount time. BilbyFs supports asynchronous writes, a crucial
performance optimisation that has been overlooked by several file system verification
projects in the past. We have shown that BilbyFs’ modular design does not incur
unacceptable performance overhead: its runtime performance is on par with existing
Linux flash file systems except for carefully designed benchmarks where concurrency is a
bottleneck.

In Chapter 4, we presented COGENT — a linearly typed language we co-designed — to
implement file systems that are much easier to reason about using a proof assistant than
reasoning directly in C. We have described the main features that made the COGENT
language sufficiently expressive to implement efficient file systems. In particular, the
language needs to provide a way to bypass type restrictions when necessary, e.g. for
accessing data structures that require memory aliasing (i.e. ADTs). We presented a
set of design patterns for implementing a file system in a linearly typed language like
COGENT in a way that enables decomposing the implementation into a set of components

such that each of them can be reasoned about in isolation. We implemented BilbyFs in
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COGENT to demonstrate the practicality of the language and to compare the performance
of the COGENT implementation to the handwritten C prototype version introduced in
Chapter 3. We showed that this implementation approach does not impose unacceptable
performance overhead: COGENT’s overhead is lower than 10% on most benchmarks and
25% in the worst case for benchmarks with intensive meta-data updates like postmark.

In Chapter 5, we showed how to specify the functional correctness of file systems in
higher-order logic, including the correctness of asynchronous writes — a feature omitted
from prior work on verified file systems. Specifically, we presented the formal correctness
specification of BilbyFs called the AFS. The AFS uses non-determinism for conciseness,
and is shallowly embedded in higher-order logic to facilitate reasoning about it using
the Isabelle/HOL proof assistant. The AFS is a description of the correct behaviour of
each file system operation as expected by the VFS. The AFS captures the semantics of
asynchronous writes by separating the in-memory and on-medium file system state. This
allows us to precisely specify the sync() operation.

In Chapter 6 we presented a lightweight modular verification technique for proving the
functional correctness of file system operations while exploiting the file system modular
decomposition. We demonstrated the practicality of this technique, and evaluated the
utility of the overall methodology presented in this thesis for producing verified file
systems at reasonable cost, by verifying the functional correctness of two file system
operations of BilbyFs. Specifically, we used the AF'S to prove the functional correctness of
iget () and sync(). We demonstrated that purely functional COGENT specifications allow
leveraging the implementation modularity to increase verification productivity and greatly
simplify reasoning about the file system logic. Therefore, we showed that our approach
for designing, implementing and verifying file systems is practical, and increases the
productivity of building trustworthy file systems. A comparison with the sel.4 verification

showed an increase in verification productivity up to 50%.

7.1 Future work

We conclude this thesis by discussing three research challenges not directly addressed by
our methodology that we deem interesting directions for future research.

First, our approach leaves out the verification of the VFS layer, the cache manager
(the wrapper between the VFS and the COGENT file system implementation — see
Chapter 3) and ADTs. Since these components are implemented in C, verifying them
requires supporting cross-language verification between COGENT and C. Second, our

methodology currently does not consider correctness guarantees related to crash-safety.
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Finally, supporting concurrency and other more complicated file system designs. We

discuss each of these research directions in a separate sub-section next.

VFS, cache manager and ADTs verification

Our methodology left out the verification of the parts of the file system that cannot
be implemented in COGENT and must be implemented in C. The VFS layer, the cache
manager and ADTs, all extensively use data sharing to be implemented efficiently. The
VFS layer and the cache manager would be hard to implement in COGENT because they
are tightly coupled and interact with several parts of the Linux kernel like the virtual
memory manager. For example, directory entries located in the directory entry cache
contain C pointers to the inodes in the inode cache, which in turn reference memory in
the page cache that holds memory pages of data blocks that belong to files and directories.
The restrictions on memory aliasing in COGENT, makes the language unsuitable for
implementing components with highly inter-dependent data structures like the VFS and

the cache manager.

Currently, our verification rests on the validity of our ADT specifications and the
assumption that they are correctly implemented. We also assume that the VFS layer and
our cache manager are bugfree (we need to trust the rest of the Linux kernel too). To
discharge these assumptions, we would need to prove that the C stubs are correct and

have a formal link between parts of the system implemented in C and COGENT.

Previous research such as Feng et al. [2006]; Vaynberg and Shao [2012]; Gu et al.
[2015] focus on designing verification frameworks that support cross-languages verification.
However, since the COGENT certifying compiler generates C code, and all the properties we
prove on COGENT hold on the C code by refinement, proving C stubs can be done directly
using the C semantics used by the COGENT compiler. The COGENT certifying compiler
works on top of AutoCorres [Greenaway et al., 2014| a tool that automatically abstracts
low-level C semantics into higher-level representations and provides a Isabelle/HOL
machine-checked proof that guarantees that the higher-level representation is an accurate
model of the low-level C code. Hence, when reasoning about the implementation of C
stubs, we can still benefit from a shallow embedding in Isabelle/HOL, but unlike COGENT
specifications, we must deal with many of C’s low-level details, such as memory aliasing,

undefined behaviours, etc.
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Crash resilience proof

Although this thesis did not consider file system consistency when a crash occurs, we can
reason about crash resilience on top of COGENT-generated specifications. Such reasoning
would probably be easier with a crash-Hoare logic, akin to to the one presented in Chen
et al. [2015a], to specify and prove properties about the file system when a crash occurs.
Chen et al. [2015a]’s crash Hoare-logic is an augmented version of Hoare logic, where in
addition to defining pre and post-conditions for a program statement, the logic allows one
to specify a crash-condition encompassing the correct behaviour of the file system when a
crash occurs. Using such a framework it is possible to prove that under any sequence of

crashes followed by reboots, the file system will be able to recover without losing data.

Currently, our methodology does not use a Hoare logic, instead preferring more
lightweight equational reasoning over the purely functional COGENT specifications. In
this style of equational reasoning, preconditions are represented as formal assumptions
about function arguments, and post conditions are simply formal assertions about the
return values of functions. Designing a suitable analogue of this kind of reasoning for
talking about program state and behaviour when a crash occurs is certainly feasible, but
it remains to see whether the same compactness of expression achieved by Chen et al.

[2015a] can be replicated in the absence of Hoare logic.

High-performance journaling file systems

The methodology presented in this thesis was only applied to BilbyFs. However, an ext2
implementation was also written in COGENT by Alex Hixon and Peter Chubb. This shows
that COGENT is expressive enough to implement other types of file systems than simple
log structure flash file systems like BilbyFs. However, both BilbyFs and ext2 remains
relatively simple file system implementations when compared to a full-blown journaling
file system like ext3, ext4d or XFS or JFS. Unfortunately, these high-performance file
systems have huge code bases with at least 30 K lines of C code each. The size of these file
system implementations was driven by many factors including performance optimisations
like extents, copy-on-write, concurrency, etc.; support for larger files as storage capacity
increased; user requested features like extended attribute, quotas, snapshots, etc.; and
backward compatibility.

Many of these features do not present fundamental challenges to our methodology, and
we can reasonably expect that users of a fully verified file system would be willing to make

practicability trade-offs, and hence not all these features would be absolutely necessary in
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all domains. However, we can conceivably assume that adding concurrency will cause
fundamental changes to the way we specify and reason about file system correctness.
At the moment we cannot implement such concurrent file systems with COGENT
because it is a sequential language. Although it allows implementing file systems with
fully asynchronous writes, it does not support full concurrency (i.e. where multiple file
system operations are invoked concurrently). While a transition to concurrent language
semantics would be non-trivial, we believe the linear type system of COGENT will help:
because COGENT programs pass the file system’s state explicitly, it lets the compiler
keep track of memory locations and side effects. Hence, we could allow the COGENT
functions that access different parts of the state to run concurrently, and provide additional
synchronisation primitives that make more fine-grained concurrency available for functions
that are likely bottleneck to the concurrent execution of file system operations. One
problem here is the external state, which one may want to decompose to allow different

threads to access different bits of Linux kernel concurrently.

7.2 Concluding remarks

The goal of this thesis was to demonstrate that an implementation-level proof of correctness
of a file system can be done at a reasonable cost. As we have argued, our methodology
for building trustworthy file systems accomplishes that goal. We hope that the work
presented in this thesis will be used in the future to build fully verified file systems

incorporated into mainstream operating systems.






A | Modular proof details

A.1 Serial: serialisation/de-serialisation proofs

We serialise file system objects to a buffer using the function serialise_0bj. and we
deserialise them using deserialise_0Obj. As explained in Section 6.5, serialise_0bj
calls serialise_ObjHeader to serialise the header of the object and serialise_0bjUnion
to serialise its payload. All serialisation and de-serialisation routines follow the same
idiom. Since serialise_0bj is trivially implemented by calling serialise_ObjHeader and
serialise_0ObjUnion, here we focus on the more interesting proofs of serialise_0bjHeader

and deserialise_ObjHeader.

Serialisation

The following function serialises an object header in a buffer.

Definition 12 (Serialising an object header).

serialise_ObjHeader dsg =
let (buf, offs, o,) = dsg; buf = serialise_le32 (buf, offs, magic; 0,);
buf = serialise_le32 (buf, offs + 4, crcy o0,);
buf = serialise_le64 (buf, offs + 8, sgnumy 0.);
buf = serialise_le32 (buf, offs + 0x10, leny o0,);
buf = serialise_u8 (buf, offs + 0x14, bilbyFsPadByte) ;
buf = serialise_u8 (buf, offs + 0x15, bilbyFsPadByte);
buf = serialise_u8 (buf, offs + 0x16, trans; o,);
buf = serialise_u8 (buf, offs + 0x17, otype; o,)
in (buf, offs + bilbyFsObjHeaderSize)
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The function serialises each field of the object header, starting at the position of
the offset offs passed as argument. The functions serialise_lel6, serialise_le32,
serialise_le64 serialises machine words in little endian as explained in Section 6.5.
serialise_ObjHeader and its HOL abstraction sObjHeader (see Definition 7) follow the
record definition of BilbyFs’ object header introduced in Definition 6,

The axiomatic specification of serialise_0bjHeader follows:

Lemma 4 (serialise ObjHeader ret).

ﬂoffs < offs + bilbyFsObjHeaderSize;
is_valid_ObjHeader obj (drop (unat offs) (awa (datajy buf)));
/\buf’ offs’.
[offs’ = offs + bilbyFsObjHeaderSize;
buf’ = buf
(data; :=
make
(buf_sub_slice buf offs (offs + bilbyFsObjHeaderSize)
(sObjHeader obj)) )]
= P (buf’, offs’)]
—> P (serialise_ObjHeader (buf, offs, obj))

The specification assumes that the offset does not overflow when added the object
header size bilbyFsObjHeaderSize, and that obj has a valid object header, with the
is_valid_ObjHeader assumption. Lemma 4 specifies that serialise_0ObjHeader returns a
pair of buffer and offset, where the buffer is updated with the object header is serialised,
as encoded by sObjHeader, at offset offs, and the offset returned is the initial offset plus
the object header size.

The proof that serialise_ObjHeader satisfies Lemma 4 was straightforward. We
use lemmas to convert serialise_plel6, serialise_ple32 and serialise_ple64 to their
simpler HOL abstraction. To show that none of the offset calculations used for serialisating
fields of the object header can lead to a word overflow, we use Lemma 4’s first assumption

and invoke Isabelle’s tactic to solve word arithmetic proof goals.

De-serialisation
To outline the de-serialisation proofs, we present the definition of deserialise_0ObjHeader.

Definition 13 (De-serialising an object header).
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deserialise_0ObjHeader dsg =
let (buf, offs, obj) = dsg; magic = deserialise_le32 (buf, offs);
crc = deserialise_le32 (buf, offs + 4);
sqnum = deserialise_le64 (buf, offs + 8);
len = deserialise_le32 (buf, offs + 0x10);
trans = deserialise_u8 (buf, offs + 0x16);
otype = deserialise_u8 (buf, offs + 0x17);
obj = obj
Qmagicf := magic, crcy := crc, sqnumy := sqnum, offs; := offs,
leny := len, transy := trans, otypey := otypel);
end_offs = len + offs
in if end_offs < offs V
bound; buf < end_offs V
magic # bilbyFsMagic V
trans # bilbyFsTransIn A trans # bilbyFsTransCommit V
— is_len_and_type_ok (otype, len)
then (obj, Error 0x16) else (obj, Success (offs + bilbyFsObjHeaderSize))

The function de-serialises each field of the object header, initialises the object obj
passed as argument, and performs several sanity checks to ensure that the header is valid
(i.e. satisfy the checks performed by Definition 8). When it passes the sanity checks, the
de-serialised object header is returned together with an offset to the position in the buffer
right after the header. Otherwise, the object and an error code is returned.

To prove the deserialise_0bj_ret lemma presented in the previous section, we proved

the following lemma:

Lemma 5 (deserialiseObjHeader ret).

ﬂwellformed_buf buf; offs + bilbyFsObjHeaderSize < boundy buf;

offs < offs + bilbyFsObjHeaderSize; [\obj. P (obj, Error elnval);

/\obj offs’.
lis_valid_ObjHeader (pObjHeader (awa (dataj buf)) offs) (bounded buf);
dv. obj(ounion; := v|) = pObjHeader (awa (datajy buf)) offs;
offs’ = offs + bilbyFsObjHeaderSize; offs + leny obj < boundy buf;
offs < offs + leny obj]
= P (obj, Success offs’)]

— P (deserialise_ObjHeader (buf, offs, obj))

Which says that when deserialise_0ObjHeader succeeds, the buffer contains a valid

object header at the offset we de-serialised the object. Proving the lemma involves using
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lemmas to convert de-serialise functions to their HOL parsing abstraction, e.g. replace
deserialise_le32 with ple32. The most interesting part of the proof was to find a way
to automatically show that none the arithmetic operations on the offset overflow. The
definition of deserialise_0bjHeader shows that we add a fixed constant value to the offset
passed as argument every time we de-serialise a field. This trivial arithmetic operation
complicates the proof because we have to show that none of them leads to an unsigned
overflow!. We know that none of these operations overflow because the offset passed as
argument must not be greater than the maximum length of an eraseblock, which is much
smaller than the maximum value of a 32-bit word; and since any of the constant values
plus the maximum length of an eraseblock does not overflow, any of the constant values
plus the offset does not overflow either. We automated the proofs by writing an Isabelle
tactic that carefully applies a bunch of rewriting rules to unfold the necessary information

about the offset bound and then uses the Isabelle’s tactic to solve word arithmetic proofs.

A.2 UBI axiomatic specification

UBI is a volume management system, that allows partitioning a flash device into UBI
volumes. UBI also provides an interface to write and erase to the flash without having to
worry about wear-levelling. In COGENT, a UBI volume is accessed via an ADT called
UbiVol. When reasoning about the generated COGENT specifications, we use UbiVol to
project a simple representation of the state of the UBI volume as visible through the UBI

interface. To this end, we axiomatize the following function:

axiomatization

awubi :: "UbiVol = ubi_leb list"

awubi projects a list of ubi_leb which is a type synonym for U8 1list, i.e. a list of
bytes which stores the concatenated contents of the flash pages written in each eraseblock.
We chose a list of bytes instead of a list of flash pages, because the UBI interface already
deals with buffers which are a list of bytes. Hence, using a list of pages would complicate
the specification unnecessarily, given that we are able to specify all the page-size related
restrictions on a buffer. The abstract representation of the UBI volume comes with an
invariant ensuring that no flash page is partially written, no eraseblock is larger than the

size of an eraseblock, etc.

1Unsigned overflow are allowed in COGENT, just like in C, however, in this context an overflow
must not occur for the function to behave correctly.
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Recall from Section 3.3 that eraseblock flash pages have to be written in sequential
order and that the UBI interface maintains that restriction. UBI’s behaviour is undefined if
a file system does not write flash pages sequentially. Thus when we write to an eraseblock,
we update our abstract representation merely by concatenating the buffer the ubi_leb
representing the eraseblock.

Although the abstraction we just presented is simple, UBI’s axiomatic specification is
quite verbose due to dealing with records packing imposed by COGENT’s foreign function
interface (FFI) and due to the several pre-conditions required for the semantics of UBI
operations to be defined.

A fragment of the UBI axiomatic specification follows:

axiomatization
where
wubi_leb_read_ret:
"AP. [ buf_length rbuf = eb_size; (super; mount_st);
unat buf_offs + unat nb_bytes < unat (eb_size; (supery mount_st));
inv_ubi_vol mount_st ubi_vol;
Nex rbuf’ . Jv. rbuf’(datays:=v|) = rbuf = buf_length rbuf’ = buf_length
rbuf — P ((ex,rbuf’), Error eBadF);
Nex rbuf’. |
rbuf’ = rbuf(datay:= WordArrayT.make (buf_take rbuf buf_offs @
slice (unat buf_offs) (unat buf_offs + unat nb_bytes) (awubi ubi_vol
! (unat ebnum) @ replicate (unat nb_bytes) 0xff) @
buf_drop rbuf (buf_offs+ nb_bytes)) |
] = P ((ex,rbuf’), Success ())
] = P (wubi_leb_read (WubilebReadP.make ex ubi_vol ebnum rbuf buf_offs nb_bytes))"
and wubi_leb_write_ret:
"AP. [ length ( (awubi ubi_vol) ! (unat ebnum)) = unat frm;
buf_length wbuf = eb_size; (super; mount_st);
unat frm + unat nb_bytes < unat (eb_size; (super; mount_st));
io_sizey (super; mount_st) udvd nb_bytes;
inv_ubi_vol mount_st ubi_vol;
Nex . P ((ex,ubi_vol), Error eI0);
Nex ubi_vol’. [ inv_ubi_vol mount_st ubi_vol’;
(awubi ubi_vol’) = awubi ubi_vol[(unat ebnum):=(awubi ubi_vol!(unat ebnum)@buf_slice
wbuf frm (frm + nb_bytes))]
] = P ((ex, ubi_vol’), Success ())
] = P (wubi_leb_write (WubilebWriteP.make ex ubi_vol ebnum wbuf frm nb_bytes))"

The wubi_leb_read_ret axiom describes the behaviour of wubi_leb_read, the operation
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to read part of an eraseblock into a buffer.

type WubiLebReadP = #{
ex: ExState
ubi_ vol:UbiVol!,
ebnum : EbNum,
buf: Buffer ,
buf offs:BufOffs,
nb_ bytes:U32
}
wubi_leb read: WubiLebReadP —> ((ExState, Buffer),
<Success ()] Error ErrCode>)

The function takes six arguments packed into an unboxed record of type WubiLebReadP:
ex, the external environment of the file system; ubi_vol, the UBI volume; ebnum, the
eraseblock number we want to read from; buf a buffer to read data into; buf_offs, the
offset indicating where to start reading the eraseblock from; nb_bytes, indicating the
number of bytes to read. The function returns a tuple including: the external environment
of the file system and the buffer containing the data read; and a tagged-union recording
whether the function succeeded or returned an error code.

Several conditions must be satisfied before BilbyFs can read an eraseblock, hence we
specify them as assumptions of the wubi_leb_read_ret axiom. Some of these conditions
are more restrictive than necessary, but since we do not prove that UBI axioms are satisfied
by their implementation, we decided to take a conservative approach when specifying
them to make sure that UBI axioms are implementable. The first two assumptions of the
wubi_leb_read_ret axiom ensure that the operation does not write beyond the length
of the buffer. eb_size; (super; mount_st) corresponds to the size of an eraseblock, so
the first assumption which ensures that the length of the buffer is also the length of the
eraseblock.

Since the buffer only needs to be large enough to contain the data read, this condition
is more restrictive than it needs to be, but this is enough prove the correctness of BilbyFs’
operations that read from the flash. inv_ubi_vol is the invariant ensuring the abstract
representation of the UBI volume is consistent with the state of the file system initialised
at mount time. For instance, inv_ubi_vol asserts that the length of the list of eraseblocks
in the abstract UBI representation is equal to the number of eraseblocks reported by the
flash device. Similarly to specifications seen in Section 6.4, wubi_leb_read_ret forces us

to consider success and error cases. When wubi_leb_read returns an error, the function
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returns the error code eBadF and the contents of the buffer is unknown. This indicated by
the existentially quantified variable v which replaces the contents of the buffer. In case of
success, wubi_leb_read updates the contents of the buffer, replacing the part of the buffer
requested with a slice of the eraseblock taken from the awubi abstraction. buf_take takes
a buffer and a 32-bit word n indicating the number of bytes, and must return the list
with the n first bytes from the buffer. buf_drop takes the same parameters, but returns
the buffer’s list of bytes with the n first bytes removed. Both buf_take and buf_drop
are helper functions that first convert COGENT types to their high-level abstraction and
return a prefix or a suffix of the list of the length passed as argument. Note that when
we extract the slice of the eraseblock requested, we make sure to pad the eraseblock with
0xff bytes because our UBI abstract representation of eraseblocks represents partially
written eraseblocks as the list of bytes containing only the data that has been written. A
UBI client is allowed to read flash pages that have never been written to, and when this
occurs, UBI writes 0xff bytes to the buffer.

wubi_leb_write_ret shares similarities with wubi_leb_read_ret. The arguments are
the same, but wubi_leb_write does not update the buffer passed as argument, instead
ubi_vol of type UbiVol is updated because the operation writes the flash device.

The first assumption, ensures that we always write sequentially to eraseblocks, by
asserting that the length of the eraseblock identified by ebnum must be equal to frm, the
offset we start writing from. Since awubi only contains the data that has been written to
flash, the length of the ubi_leb tells us the next offset we are allowed to write from. The
second and third assumptions are the same as for wubi_leb_read. The forth one ensures
that we only write complete flash pages of data, as required by UBI. io_size; (super;
mount_st) corresponds to a flash page-size, and udvd is the divides operator for machine
words. Hence the assumption ensures that page-size divides nb_bytes, guaranteeing that
we write complete flash pages.

The specification forces us to consider two possibilities when we invoke wubi_leb_write,
either the function returns an error or succeeds. When the function returns an error,
the error code eI0 is returned and the ubi_vol is unchanged; we return to this shortly.
Otherwise, when the function succeeds, we obtain ubi_vol’ a new UbiVol with an abstract
representation capturing the changes of the write operation. The axiomatic specification
uses the list update syntax, where xs[a := b] returns the list xs with the element at
index a replaced with b. In addition, xs!i is syntactic sugar for accessing the ith element
of the list xs. Thus, wubi_leb_write updates the eraseblock ebnum by appending the data
stored in the buffer between the offsets frm and frm + nb_bytes, as specified with the

buf_slice call.
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