
Reasoning about Translation Lookaside Buffers

Syeda Hira Taqdees and Gerwin Klein

Data61, CSIRO, Australia
School of Computer Science and Engineering, UNSW, Sydney, Australia

{Hira.Syeda,Gerwin.Klein}@data61.csiro.au

Abstract

The main security mechanism for enforcing memory isolation in operating systems is
provided by page tables. The hardware-implemented Translation Lookaside Buffer (TLB)
caches these, and therefore the TLB and its consistency with memory are security crit-
ical for OS kernels, including formally verified kernels such as seL4. If performance is
paramount, this consistency can be subtle to achieve; yet, all major formally verified ker-
nels currently leave the TLB as an assumption.

In this paper, we present a formal model of the Memory Management Unit (MMU)
for the ARM architecture which includes the TLB, its maintenance operations, and its
derived properties. We integrate this specification into the Cambridge ARM model. We
derive sufficient conditions for TLB consistency, and we abstract away the functional details
of the MMU for simpler reasoning about executions in the presence of cached address
translation, including complete and partial walks.

1 Introduction

In this paper we construct a formal model of an ARM-style memory management unit (MMU),
consisting of multi-level page tables and translation lookaside buffers (TLBs) for complete and
partial page table walks in the interactive proof assistant Isabelle/HOL [15]. We integrate
this model with the extensive, well-validated Cambridge instruction set architecture model for
ARM [5], and use it as the basis for reasoning about executions in the presence of a TLB and
page tables, without the complexity direct naive reasoning about the model would entail.

The motivation for developing a low-level memory model for program verification is that
TLBs are caches for page tables, and operating systems use page tables as the main mecha-
nism for enforcing memory isolation. Page tables encode the address translation from virtual
to physical addresses. In most widely deployed architectures they are hardware-defined data
structures that reside in main memory, typically as two- to four-level sparse lookup tables.
Without further help, this central mechanism is slow: main memory is already significantly
slower than the CPU, and traversing a page table can cost up to five memory accesses. The
TLB caches such lookups, and significantly reduces the number of such memory accesses. It
is therefore the TLB that is the main security mechanism the OS relies on. This is also true
for verified OS kernels such as seL4 [7] and CertiKOS [6], which do reason about page table
structures and their content, but currently ignore the TLB, assuming it is used correctly. What
could go wrong? When a page table structure is changed by the OS, changing the translation
for a set of virtual addresses, the TLB may still contain the old translation and provide incorrect
results, violating the isolation the OS is trying to achieve. Consistency can be re-established
by the OS using TLB maintenance operations to invalidate the corresponding TLB entry or
the entire TLB, forcing it to reload its contents from the page table in main memory. TLB
invalidation is expensive, and OS developers work hard to delay the operation and to make it
as specific as possible, using additional TLB features such as address space identifiers (ASIDs)
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to only invalidate specific sets of entries. Getting this right is subtle, and deserves support by
the hardware model used to reason about the program.

In order to verify programs that run in a virtual memory environment, we develop a model
of an ARMv7-style MMU including TLB and page tables, and integrate it with the Cambridge
ARM model [5]. This establishes the ground truth of how the hardware behaves in the presence
of a TLB. We chose ARM, because we aim to eventually integrate this method with the existing
seL4 proofs [7] on ARM. To demonstrate the idea of the logic and reasoning method, we model
the features of the TLB that make reasoning complex, but do not yet provide full fidelity of all
modes and flags present in the ARMv7 architecture. We then extend this model to also cover
partially cached page table walks as they occur in the x86 and ARMv7-A architectures.

Reasoning directly about programs under TLB-cached memory translation is hard, because
the TLB introduces non-determinism even for otherwise deterministic programs, because global
state changes even on memory reads, and because it introduces new failure modes that need to
be avoided. The main contribution of this paper is to show how we can reduce this complexity
using data refinement and arrive at a model that is well behaved for standard use cases such
as user-level programs and OS code under fixed address translation, yet expressive enough to
allow for the kind of optimisations OS developers need to achieve.

After presenting related work in Sect. 2, we introduce Isabelle/HOL notation in Sect. 3.
We describe our formal model of the MMU, the TLB, and its maintenance operations for the
ARMv7 architecture, as well as the integration with the Cambridge ARM model in Sect. 4.
Sect. 5 presents the series of step-wise data refinements that each simplify reasoning. We then
extend this framework in Sect. 6 to the ARMv7-A architecture which provides a dedicated
cache for partial page table walks, and show how it reduces to almost the same abstract model.

2 Related Work

As a cache, the TLB has the nice property that it has no effect on the execution of a program
apart from making it faster, if it is used correctly. For this reason, most OS kernel verification
work so far has left correct TLB behaviour as an assumption. This includes the OS kernel veri-
fication work in seL4 [7,8] and CertiKOS [6], which both do reason about page table structures,
but omit the TLB. Similarly, Daum et al. [4] reason about user-level programs on top of seL4,
including page tables, but not about the TLB.

Kolanski et al. [9–11] develop an extension of separation logic to formally reason about
page tables, direct physical memory access, virtual memory access, and shared memory in the
Isabelle/HOL theorem prover. However, they stop short of the TLB and do not address TLB
caching, consistency and invalidation.

Nemati et al. [14] show the design, implementation and verification of a direct paging mech-
anism in a virtualization platform for ARMv7-A in the HOL4 theorem prover. They model the
state parameters of the MMU, such as page table walks, but do not reason about the TLB or
the effect of its maintenance operations.

Kovalev [12] and Alkassar et al. [1] do provide a TLB model, in particular a model of the
Intel x64 TLB including selected maintenance operations and partial walks. Kovalev [12] states
a reduction theorem for page table walks in ASID 0 for a specific hypervisor setup. However,
while the result of the abstraction is used in mechanised reasoning about a hypervisor, the
reduction theorem itself is not mechanised in a theorem prover. It is also aimed specifically
at the correctness of TLB virtualisation in this hypervisor, not at reasoning about programs
under TLBs in general.
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Barthe et al. [3] present an abstract TLB model including TLB flushes and invariants for
enforcing isolation between guest operating systems. Our model provides a similarly general
TLB abstraction, but grounds it by refinement proof in a detailed operational model.

3 Notation

This section introduces Isabelle/HOL syntax used in this paper, where different from standard
mathematical notation.

Isabelle denotes the space of total functions by ⇒, and range f is the set of values returned
by function f, i.e. range f = {y | ∃ x. f x = y}. Type variables are written ’a, ’b, etc. The
notation t::τ means that HOL term t has HOL type τ . The option type

datatype ’a option = None | Some ’a

adjoins a new element None to a type ’a. We use ’a option to model partial functions, writing
bac instead of Some a and ’a ⇀ ’b instead of ’a ⇒ ’b option.

Isabelle’s type system does not include dependent types, but can encode numerals and
machine words of fixed length. The type ’n word represents a word with n bits, concrete types
include e.g. 32 word and 64 word.

The Cambridge ARM formalisation [5] models the CPU state as a record type state. For
every record field, there is a selector function of the same name. For example, if s has type
state then MEM s denotes the value of the MEM field of s, and s(|MEM := id|) will update MEM of s
to be the identity function id.

The ARM formalisation uses the state monad to model state transformers. The state monad
encodes a pure functional model of computation with side effects. For result type ’a and state
type ’s, the associated monad type, abbreviated (’s, ’a) state_monad, is ’s ⇒ ’a × ’s. That
is, a function from current state to next state together with a computation result. A pure state
transformer is typically denoted by the one-valued return type unit, that is, ’s ⇒ unit × ’s.
The two monad constructors return and bind are defined as follows:

return :: ’a ⇒ (’s, ’a) state_monad
return a ≡ λs. (a, s)

bind :: (’s, ’a) state_monad ⇒ (’a ⇒ (’s, ’b) state_monad) ⇒ (’s, ’b) state_monad
f >>= g ≡ λs. let (v, s’) = f s in g v s’

The constructor return simply injects the value a into the monad type, passing the state un-
changed, while bind sequentially composes a computation f, and a computation g (a function
from the return type of f). We occasionally write bind f g as f >>= g and use the do syntax
for longer computations.

f >>= g ≡ do { x ← f; g x }

For fetching and updating a particular parameter from the state, the Cambridge ARM model
uses the read_state and update_state functions (sometimes also called gets and puts):

read_state f ≡ λs. (f s, s)
update_state f ≡ λs. ((), f s)

We abbreviate multiple read_state calls into tuple notation, e.g. (a,b) ← read_state (f,g).

3
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4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that differ in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [11], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model differentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four different sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags
| EntrySection asid (12 word) (12 word option) flags

4
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where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb ⇒ asid ⇒ 32 word ⇒ tlb_entry set
entry_set t a va = {e ∈ t | va ∈ entry_range e ∧ a = asid_of e}

lookup :: tlb_entry set ⇒ 8 word ⇒ 32 word ⇒ lookup_type
lookup t a va ≡

let S = entry_set t a va
in if S = ∅ then Miss

else if ∃ x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb ⇒ asid ⇒ 32 word ⇒ tlb
selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb ⇒ asid ⇒ tlb
asid_invalidation t a ≡ t - {e ∈ t | asid_of e = a}

va_invalidation :: tlb ⇒ 32 word ⇒ tlb
va_invalidation t va ≡ t - {e ∈ t | va ∈ entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ⊆ t
asid_invalidation t a ⊆ t
va_invalidation t va ⊆ t

Proof. By unfolding definitions.

5
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We can also rely on the fact that they remove inconsistent entries, and therefore are guaranteed
to produce the safe Miss result for the relevant queries:

Lemma 2. All invalidation instructions produce Miss for the corresponding lookup.

lookup (selective_invalidation t a va) a va = Miss
lookup (asid_invalidation t a) a va = Miss
lookup (va_sel_invalidation t va) a va = Miss

Proof. By unfolding definitions.

It is harder to characterise which entries are guaranteed to remain in the TLB, because each
entry covers a whole set of virtual addresses, depending on its size. However, since the TLB
is free to evict entries at any point, we cannot rely on the presence of specific entries anyway.
One basic property does hold in Isabelle:

Lemma 3. ASID invalidation affects only the ASID that is being invalidated.

a1 6= a2 ∧ lookup t a2 va = Hit e =⇒ lookup (asid_invalidation t a1) a2 va = Hit e

Proof. Also by unfolding definitions.

This covers the base model of the TLB itself. We have defined its state and the basic TLB
operations.

4.2 From TLB to MMU and the ARM Cambridge Semantics

Using this operational TLB model, we now develop an MMU model based on the ARM archi-
tecture manual [2] and integrate it with the instruction set architecture (ISA) semantics by Fox
and Myreen [5]. This ISA model is very detailed and extensively validated, but it assumes a flat,
total function MEM :: 32 word ⇒ 8 word without address translation as its model for memory.

We will keep MEM as the basic model for physical memory, but we generalise it to the partial
function MEM :: paddr ⇀ 8 word to express that it works on physical addresses and that not all
physical address might be backed by memory in the machine. If a computation accesses non-
existing memory, an exception will be raised. We will then change all read and write instructions
that access main memory to not access physical memory directly, but to go through the TLB
and address translation first. The existing Cambridge ARM model conveniently provides a
narrow interface to memory with the functions mem_write and mem_read that all other memory
accesses go through, so we can concentrate our work there.

Since our plan for Sect. 5 is to provide a series of these models that differ in the details of
TLB operation, making them simpler and easier to reason about as we progress, we design the
interface between the rest of the ARM model and the MMU as two type classes in Isabelle that
we can instantiate. Separate instances will give us separate models between which we then can
prove refinement theorems.

To get there, we first need to model the rest of the MMU. Figure 2 gives an overview. To
formalise this picture, we extend the original state record of the Cambridge ARM model with
two additional hardware registers: the page table root register TTBR0, and the current ASID
register ASID. We then use Isabelle’s extensible records [13] to extend state with the type tlb
which will contain the TLB hardware state we modelled in the previous section.

The main interface for the rest of the model to the MMU is the address translation function,
which we wrap up in its own type class mmu:

6
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class mmu =
fixes mmu_translate :: vaddr ⇒ ’a state_scheme ⇒ paddr × ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (λs. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) ← read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss ⇒

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (λs. s(|tlb := tlb ∪ {entry}|));
return (va_to_pa va entry)

}
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The effect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa
and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1ARM also provides locked down entries that will not be evicted automatically. These could be modelled
easily here by excluding them from the eviction set.

7
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Figure 2: ARM-style Memory Management Unit

type class mmu_op:

class mmu_op = mmu +
fixes mmu_write :: bool list × vaddr × nat ⇒ ’a state_scheme ⇒ unit × ’a state_scheme
fixes mmu_read :: vaddr × nat ⇒ ’a state_scheme ⇒ bool list × ’a state_scheme

The interface for the values being read and written in the ARM model is via bool list instead
of machine words directly, which we keep here, and the nat paramenter indicates how many
bytes to read/write, e.g. one byte, a word, a double word, etc.

Reusing the original functions mem_write and mem_read for physical memory, the instances
for the base-level TLB and MMU model are then straightforward:

mmu_write (val, va, sz) = do {
pa ← mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

when_no_exc f = do {
exception ← read_state exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa ← mmu_translate va; mem_read (pa, sz) }

Both, mmu_write and mmu_read, first perform address translation, and then their original purpose,
but using translated addresses instead. In case of an exception in mmu_translate, the write
function does nothing to give the translation exception precedence, while the pure read function
can continue, because it does not change the state.

By redirecting all other memory-related functions in the ARM model to go through this
interface, we arrive at a full operational model that supports address translation and TLB.

The purpose of this paper is not to provide a fully detailed formalisation that is validated
to comprehensively conform with existing hardware, but to present the main ideas on how to
simplify reasoning in the presence of a TLB. Despite this focus, we have validated the model
by executing a number of instructions in the theorem prover, manually checking consistency
with the expected behaviour. A full formalisation would need a more extensive test suite in the
spirit of Fox and Myreen [5].

8
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In summary, we have so far extended the Cambridge ARM model by: a change of memory
model to admit the notion of unmapped memory, the introduction of an MMU including TLB
and page table lookup mechanisms, and an adjustment of the subsequent memory operations
to include the address translation layer.

5 TLB Abstraction

The MMU model of Sect. 4 gives us the ground truth of how hardware operates, and thereby
the foundation for a logic for programs under TLB, but the model is hard to reason about
directly. From Sect. 4, we see that a TLB introduces:

1. non-determinism through unspecified entry replacement strategy,

2. potential state change caused by any memory access, including reads,

3. potential (internally) inconsistent TLB state from multiple conflicting entries, and

4. potential (external) inconsistency between page table and TLB.

The latter two are states the program must avoid. The first two introduce unnecessary
complexity: a program that is otherwise deterministic should not require reasoning about non-
determinism, and a correctly operated TLB should not complicate reasoning about memory
reads nor memory writes that are unrelated to page tables.

In this section, we show how we can construct a model that avoids the additional complexity
and produces sufficient conditions for safe execution. In particular, we build a series of formal
abstractions of the concrete MMU model of Sect. 4 that are increasingly easier to reason about,
but preserve functionality and the optimisation opportunities OS developers must be able to
exploit. We verify these step-wise abstractions by refinement theorems.

The main burden on the proof engineer that we cannot hope to eliminate completely in
general will be to show that the TLB is currently in a consistent state for the address to be
accessed. We formalise consistency for a virtual address as:

consistent mem asid ttbr0 tlb va ≡
lookup tlb asid (addr_val va) = Hit (pt_walk asid mem ttbr0 va) ∨
lookup tlb asid (addr_val va) = Miss

This condition combines internal consistency (no Incon results permitted), with external
consistency, i.e. synchronicity with the current state of the page table for this particular address.

5.1 Determinism

With this in mind, we observe as the first step in our abstraction chain that a TLB with fewer
entries is always more consistent, and in this sense safer, than one with more entries. Formally,
lookup results naturally form an order with Miss being the bottom element, and Incon the top:
l ≤ l’ ≡ l = Miss ∨ l’ = l ∨ l’ = Incon, and we can prove monotonicity

Lemma 4. t ⊆ t’ =⇒ lookup t a v ≤ lookup t’ a v

Proof. By case distinction and unfolding the definitions.

We can use this in the abstraction chain by making the abstraction less safe, i.e. more
inconsistent, with the standard refinement idea that if we manage to prove safe behaviour of
the abstraction, we will also have proved safe behaviour of all possible actual executions.

9
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Figure 3: Data Refinement between Non-Deterministic and Deterministic MMUs

This means, we can use our observation above by noting that, instead of a TLB that non-
deterministically evicts entries, we can use a TLB that never evicts entries, unless explicitly
instructed. If we can prove a program safe with this larger TLB, it will also be safe with
the smaller TLB. We can prove this fact by instantiating mmu_translate for a deterministic
version in which the TLB does not evict entries and then proving refinement. We name this
instantiation mmu_translate_det. We do not repeat the definition here; the only difference to
mmu_translate from Sect. 4.2 is the missing tlb_evict line.

Theorem 1. Assuming that two states s and t have the refinement relationship

tlb_rel s t ≡ truncate s = truncate t ∧ tlb s ⊆ tlb t

where the notation truncate s means all fields of the extensible state record without the tlb
extension. That is, the states s and t differ only in the contents of the TLB, and the TLB of
s contains fewer entries. If the TLB of t is consistent w.r.t. lookups in va, then the address
translation of a virtual address va performed using mmu_translate in s is the same as the one
performed by mmu_translate_det in t. Moreover, the resultant final states retain the relationship
tlb_rel and the TLBs remain consistent w.r.t. va. Figure 3 depicts this theorem as a diagram.
Formally:

mmu_translate va s = (pa, s’)
mmu_translate_det va t = (pa’, t’) consistent t va tlb_rel s t

pa’ = pa ∧ consistent t’ va ∧ tlb_rel s’ t’

Proof. We observe that the abstract TLB in state t is consistent for va, that is, a lookup for va
will either produce Miss or Hit. Given the subset relationship and Lemma 4, we get that either
both TLBs produce the same Hit e, or both walk the page table (with the same result, since
the states only differ in TLB content), or that t produces a Hit, but s walks the page table.
Since t is consistent for va, the result of the walk has to agree with the Hit.

This step removes nondeterminism from the model and is sound for executions in which
the larger TLB never triggers an inconsistency. The definitions of the memory write and read
operations remain unchanged compared to the base model, but they now pick up the new
mmu_translate_det instance of the mmu class. Since Theorem 1 says that mmu_translate_det and
mmu_translate return the same results, memory write and read behaviour is trivially equal to
the base model.

10
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5.2 Invariance

As the next step, we eliminate TLB state change for memory reads. We note that the presence
of an inconsistent entry is not dangerous yet, only using the inconsistent entry is. This means,
for every memory transaction we can add to the TLB all entries that the current page table
produces. As we have seen in the previous step, this is sound because we add more entries that
are consistent with the page table, and inconsistency with older entries is not dangerous yet.
This will give us a TLB that is always saturated with entries. On read operations, the state
will not change, because the set of page table results before and after reading is the same. On
write operations outside the page table we have the same — only on writes to the page table
we will get a state change in the TLB, which is what we should expect.

Formally, we instantiate mmu_translate in this model such that the TLB always remains
saturated i.e. whenever it accesses memory it reloads the entire page table. We name the
operation mmu_translate_sat:

mmu_translate_sat va = do {
tlb_refill;
(tlb, asid) ← read_state (tlb, ASID);
case lookup tlb asid (addr_val va) of
Miss ⇒ raise IMPLEMENTATION_DEFINED
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

tlb_refill = do {
(asid, mem, ttbr0, tlb) ← read_state (ASID, MEM, TTBR0, tlb);
let tlb’ = tlb ∪ range (pt_walk asid mem ttbr0);
update_state (λs. s(|tlb := tlb’|))

}

The call to tlb_refill at the beginning of mmu_translate_sat achieves the saturation mentioned
above by adding the range of the pt_walk function to the TLB for the current state and ASID.

Note that by using the full range of the pt_walk function we have benefited from the option
type in the physical base address field of TLB entries. For addresses that the page table
specifies a page fault for, the physical base address will be None. In the model this means we
have reduced external and internal inconsistency conditions to one condition: our saturated
TLBs always encode the full state of the page table, and even removing a mapping from the
table will now lead to (internal) TLB inconsistency, one entry showing Some and another None
for the same virtual address.

In this saturated TLB mmu_translate_sat then performs a standard lookup. Incon results
still lead to the same exception as before. Miss results cannot be triggered any more, since the
TLB is saturated, and Hit results are the same as in the previous models.

Theorem 2. With the refinement relation

tlb_rel_sat s t ≡ truncate s = truncate t ∧ tlb s ⊆ tlb t ∧ saturated t

where saturated t ≡ range (pt_walk (ASID t) (MEM t) (TTBR0 t)) ⊆ tlb t, we get data re-
finement between the original mmu_translate and mmu_translate_sat:

mmu_translate va s = (pa, s’)
mmu_translate_sat va t = (pa’, t’) consistent t va tlb_rel_sat s t

pa’ = pa ∧ consistent t’ va ∧ tlb_rel_sat s’ t’

11
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Figure 4: Data Refinement between Memory Write Functions using Non-Deterministic and
Saturated MMUs

This means, we still get the same address translation results, and preserve consistency, as well
as the refinement relation, including saturation.

Proof. Essentially the same argument as before, observing that entries stemming from pt_walk
cannot make a va-consistent entry inconsistent.

For this model, we do not only need to change mmu_translate, but also the write operation
to preserve saturation. The new instantiations for saturated TLBs are mmu_write_sat and
mmu_read_sat:

mmu_write_sat (val, va, sz) = do {
pa ← mmu_translate_sat va;
when_no_exc do { mem_write (val, pa, sz); tlb_refill }

}

mmu_read_sat (va, sz) = do { pa ← mmu_translate_sat va; mem_read (pa, sz) }

Similarly, the TLB invalidation operations now need to include a global TLB refill to preserve
saturation. They will still remove old entries that in this model would lead to internal instead
of external inconsistency.

Since these operations have now changed, it is worth explicitly stating refinement for the
write operation. Figure 4 shows the corresponding diagram.

Theorem 3. Memory writes preserve the TLB refinement relation, including saturation.

mmu_write_sat (val, va, sz) t = ((), t’)
mmu_write (val, va, sz) s = ((), s’) tlb_rel_sat s t consistent t va

tlb_rel_sat s’ t’

Proof. Follows directly from the refinement result on mmu_translate.

It is important to note here that consistency of the TLB cannot be preserved in Theorem 3,
since memory writes can change the page table. This means, re-establishing consistency on
writes will be an obligation on the proof engineer, not an automatic invariant that is provided
by the model. This mirrors the reasoning OS developers do mentally.

Consistency is established either by reasoning that the write was not to a page table, by
using appropriate invalidation instructions, or by reasoning that if a page table was changed,
the change was unrelated to the address that is about to be accessed.

For memory reads, as planned, the TLB state remains unchanged, eliminating one of the
major difficulties in reasoning about the TLB.

12
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Theorem 4. In saturated states, memory reads do not change the TLB.

mmu_read_sat (va, sz) s = (val, t) saturated s

tlb t = tlb s

Proof. By observing that memory reads do not change the state and that a saturated TLB
already contains all current page table entries.

A simple optimisation to this model would be to not update the TLB for every memory
write, but only for writes to the current page table structure or the page table root register. This
immediately produces a reduction result: if the current page table structure is not writeable,
and if the execution mode is unprivileged, i.e. the page table root register cannot be changed,
then we know that no memory transaction will change the saturated TLB state, and we can
therefore reason about a much simpler model without TLB and with fixed address translation.
This is what user-level execution expects: users should not need to worry about the presence
or absence of a TLB. The following theorem encapsulates the conditions for this reduction.

Theorem 5. Memory writes that do not change the page table content leave the saturated TLB
constant, preserving consistency and saturation.

mmu_write_sat (val, va, sz) s = ((), s’)
∀ va. pt_walk (ASID s) (MEM s) (TTBR0 s) va = pt_walk (ASID s’) (MEM s’) (TTBR0 s’) va

consistent s v saturated s

tlb s’ = tlb s ∧ consistent s’ v ∧ saturated s’

Proof. The condition that all pt_walk outcomes remain the same after the memory write directly
implies that the range (pt_walk asid mem ttbr0) term in tlb_refill remains the same, and
since the TLB is already saturated, the TLB refill has no effect.

In summary, reasoning about the TLB has become much more tractable in this model.
Inconsistency is reduced to internal inconsistency only, and non-determinism as well as unnec-
essary state change are removed. For a program logic on top of this model it would suffice to
guarantee the absence of inconsistencies, and to treat page faults the same way a program logic
for standard address translation would, e.g. as in Kolanski’s work [10].

5.3 Essence

This leads us to the last refinement step, where we abstract the saturated TLBs to the extent
that no actual TLB lookup is required: the functionality of the TLB can be captured completely
by only keeping record of those virtual address/ASID pairs that are inconsistent in the TLB
with the current page table. It is then enough to perform address translation using the page
table only.

For this last abstraction, we extend the record type state not with tlb, but with incon_set
of type (asid × 32 word) set and instantiate mmu_translate of type class mmu to:

mmu_translate_set va = do {
(mem, asid, ttbr0, incon_set) ← read_state (MEM, ASID, TTBR0, incon_set);
if (asid, addr_val va) ∈ incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if is_fault entry then raise PAGE_FAULT else return (va_to_pa va entry)
}

Note that this address translation contains no state change at all any more, apart from poten-
tially raising exceptions.

With this definition, we get the following theorem.

13
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Theorem 6. Let tlb_rel_abs denote the refinement relation

tlb_rel_abs s t ≡ truncate s = truncate t ∧ asid_va_incon (tlb s) ⊆ incon_set t

where asid_va_incon tlb ≡ {(asid, va) | lookup tlb asid va = Incon} constructs the set of
TLB-inconsistent addresses in the saturated TLB. Then the functions mmu_translate_sat and
mmu_translate_set preserve this relation and yield the same result. Formally:

mmu_translate_sat va s = (pa, s’) mmu_translate_set va t = (pa’, t’)
saturated s (ASID t, addr_val va) /∈ incon_set t tlb_rel_abs s t

pa = pa’ ∧ tlb_rel_abs s’ t’

Proof. According to the refinement relation, incon_set tracks the inconsistent entries in the
saturated TLB. We are therefore in the else branch of mmu_translate_set and in the Hit case
of mmu_translate_sat. The results must agree, because saturated says that the Hit results
represent precisely the walks we perform in mmu_translate_set.

As in the previous step, the memory access instantiations have to change. For mmu_write_set,
we must figure out which new addresses might have become inconsistent. We do this by
comparing the page tables before and after the physical write operation: all addresses for
which the result of a page table walk is different after the write operation are potentially
unsafe. For mmu_read_set, the definition is similar to the base-level model, we only use the new
mmu_translate_set instance.

mmu_write_set (val, va, sz) = do {
(ttbr0, asid, mem, incon_set) ← read_state (TTBR0, ASID, MEM, incon_set);
pa ← mmu_translate_set va;
when_no_exc do {

mem_write (val, pa, sz);
mem’ ← read_state MEM;
let new_incon = ptable_comp asid mem mem’ ttbr0;
update_state (λs. s(|incon_set := incon_set ∪ new_incon|))

}
}

ptable_comp asid m m’ ttbr0 =
{asid} × {va | pt_walk asid m ttbr0 (Addr va) 6= pt_walk asid m’ ttbr0 (Addr va)}

mmu_read_set (va, sz) = do { pa ← mmu_translate_set va; mem_read (pa, sz) }

While for mmu_translate_set and mmu_read_set it is now obvious in this model that the
entire state remains constant if there is no translation exception, and, with Theorem 6 also
that memory reads return the correct result, the mmu_write_set operation is interesting enough
for its own refinement theorem:

Theorem 7. Memory writes for TLB-consistent addresses preserve the refinement relation
tlb_rel_abs while the saturated invariant holds.

mmu_write_set (val, va, sz) t = ((), t’) mmu_write_sat (val, va, sz) s = ((), s’)
(ASID t, addr_val va) /∈ incon_set t saturated s tlb_rel_abs s t

tlb_rel_abs s’ t’

Proof. First, we observe that, with Theorem 6, the TLB lookup produces the same result
on each abstraction level, and therefore the two physical write operations produce the same
memory state. Second, we need to establish that incon_set correctly tracks which entries in
the saturated TLB have become inconsistent. These are the entries with those addresses for
which pt_walk now yields a different result, which is precisely what ptable_comp computes.

14
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For unprivileged user-level code, we have already established that we can reduce to a model
without TLB and with fixed address translation. For privileged OS-level code, address transla-
tion is usually fixed for the OS code itself and all locations it accesses. In this case, the TLB will
always return these fixed mappings, and cannot become inconsistent since they never change.
The following theorem ties this down more precisely.

Theorem 8. Let SA be a set of consistent, safe addresses as follows.

consistent_set SA s ≡ ∀ va∈SA. (ASID s, addr_val va) /∈ incon_set s ∧
¬ is_fault (pt_walk (ASID s) (MEM s) (TTBR0 s) va)

Then any memory write to one of these safe addresses will leave all safe addresses consistent
in the same sense, if the write does not change their page table mappings.

mmu_write_set (val, va, sz) s = ((), s’) va ∈ SA consistent_set SA s
∀ v∈SA. pt_walk (ASID s) (MEM s) (TTBR0 s) v = pt_walk (ASID s’) (MEM s’) (TTBR0 s’) v

consistent_set SA s’

Proof. The consistency condition ensures that the TLB lookup is a page table walk without
faults, and the page mapping condition ensures that the safe addresses are not part of the
ptable_comp term in the incon_set update of the mmu_write operation.

That means, if we prove that each OS memory access remains within a safe set of addresses
and that the page table mappings for this set never change, execution is safe and does not need
to reason about the TLB. For seL4 for instance, this property is already proved as part of its
reasoning about page tables without the TLB.

Taken together, the proofs [16] in the refinement chain presented in this paper mean that a
program logic on top of this model only has to keep track of and check for inconsistent TLB
entries, and that TLB entries can only be made inconsistent with changes to the page table,
ASID, or TTBR0. TLB invalidation can be selective and can be deferred until we can no longer
prove from other sources that we only access consistent mappings. In essence, the refinement
chain in this paper hides the low-level hardware TLB reasoning and provides a much simpler
interface to the proof engineer, including reduction theorems to the common cases of pure
user-level execution and fixed, safe OS mappings.

6 Caching Partial Walks

Our TLB model so far always caches full page table walks. The ARMv7-A architecture adds
a separate cache for partial page table walks, similar to x86. In this section, we show how our
model can be extended to cover such partial walks. For 2-level page tables, this means there
is one additional cache for storing page directory entries, the Page Directory Cache (PDC).
Figure 5 represents the the role of the PDC in address translation. The formalisation idea
remains the same: we extend the state record with the a type tlb × pdc, define base-level, non-
deterministic address translation and memory operations, and then prove a refinement chain
up towards the model of Sect. 5.3. This time, we will skip one step in the chain, and directly
prove refinement between saturated and non-deterministic TLB/PDC. We then introduce one
new step, in which we observe that the saturated TLB/PDC combination can be replaced by
just a saturated TLB. The refinement step to the most abstract model in Sect. 5.3 then follows
naturally and can be reused.

Formally, a PDC is a set of page directory entries:
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Figure 5: Intermediate Translation Table Cache in ARM-style MMU

type synonym pdc = pde set

datatype pde = EntryPDE asid (12 word) (32 word option) flags

An EntryPDE provides the 32 bit physical address of the page directory entry for an ASID and a
virtual address. Analogously to the TLB lookup function lookup, we can define a PDC lookup
lookup_pdc (details omitted), with the return type:

datatype lookup_pdc_type = Miss_pde | Incon_pde | Hit_pde pde

For the base-level address translation function, we then instantiate mmu_translate as follows.

mmu_translate_part va = do {
update_state (λs. s(|tlb_pdc := tlb_pdc s - tlb_evict s|));
(asid, tlb, pdc) ← read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of Miss ⇒ pdc_lookup_reload va
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_lookup_reload va = do {
(asid, tlb, pdc) ← read_state (ASID, tlb_pdc);
case lookup_pde pdc asid (addr_val va) of
Miss_pde ⇒ tlb_pdc_reload_trans va
| Incon_pde ⇒ raise IMPLEMENTATION_DEFINED
| Hit_pde pde ⇒ tlb_reload_trans pde va

}

After evicting an underspecified set of entries from the PDC and the TLB, the function
mmu_translate_part performs the TLB lookup. If the result is Hit or Incon, we proceed as
in the old model. If the result is Miss, we perform a PDC lookup and potential reload instead:
if lookup_pdc results in Hit_pde e, we use the function tlb_reload_trans to complete the partial
translation for address va from pde and store the result in the TLB. If the result is Miss_pde,
we use tlb_pdc_reload_trans to perform the full address translation, and reload both, PDC
and TLB. If the result was Incon_pde, the machine raises an unrecoverable exception and halts.
We omit the formal definitions of tlb_reload_trans and tlb_pdc_reload_trans here for space
reasons; they are analogous to the simpler model with just one TLB.
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From this, we can start the refinement chain. We abstract mmu_translate_part to a satu-
rated model to achieve determinism and state-invariance for memory operations at consistent
addresses. We saturate both, the PDC and the TLB, as below.

mmu_translate_part_sat va = do {
pdc_tlb_refill;
(asid, tlb, pdc) ← read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of
Miss ⇒ raise IMPLEMENTATION_DEFINED
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_tlb_refill = do {
(mem, asid, ttbr0) ← read_state (MEM, ASID, TTBR0);
let all_pdes = range (pde_walk asid mem ttbr0);

all_tlbes =
⋃

range (tlb_pde_walk asid all_pdes mem ttbr0)
in update_state (λs. s(|tlb_pdc := tlb_pdc s ∪ (all_tlbes, all_pdes)|))

}

Similar to tlb_refill, the call to pdc_tlb_refill at the beginning achieves the saturation of
the PDC and the TLB. We preserve the caching hierarchy by first loading all current page
directory entries into the PDC using pde_walk, and then using this saturated PDC to load all
completed address translations into the TLB with tlb_pde_walk. We then prove the first step
in the refinement chain: this hierarchical saturation retains address translation and consistency.

Theorem 9. With the refinement relation

tlb_rel_sat’ s t ≡
truncate s = truncate t ∧ tlb s ⊆ tlb t ∧ pdc s ⊆ pdc t ∧ saturated’ t

and

saturated’ t ≡
range (pt_walk (ASID t) (MEM t) (TTBR0 t)) ⊆ tlb t ∧
range (pde_walk (ASID t) (MEM t) (TTBR0 t)) ⊆ pdc t

we get refinement between the original mmu_translate_part and mmu_translate_part_sat:

mmu_translate_part va s = (pa, s’)
mmu_translate_part_sat va t = (pa’, t’) consistent’ t va tlb_rel_sat’ s t

pa’ = pa ∧ consistent’ t’ va ∧ tlb_rel_sat’ s’ t’

where consistent’ t va ensures the absence of inconsistent entries for va in the PDC and
the TLB in state t. This means, we get the same address translation results, and preserve
consistency, as well as the refinement relation, including saturation.

Proof. We observe that entries stemming from pde_walk and pt_walk cannot make a va-consistent
entry inconsistent, and that the PDC is part of the changed definition of consistent.

We can now proceed to the next refinement step and replace mmu_translate_part_sat with
mmu_translate_sat, which contains no PDC, only a saturated TLB.

Theorem 10. With the refinement relation

17



Reasoning about Translation Lookaside Buffers Syeda Hira Taqdees and Gerwin Klein

tlb_rel_sat’’ s t ≡ truncate s = truncate t ∧ tlb s ⊆ tlb t ∧ saturated’ s ∧
saturated t

we get data refinement between the original mmu_translate_part_sat and mmu_translate_sat:

mmu_translate_part_sat va s = (pa, s’)
mmu_translate_sat va t = (pa’, t’) consistent t va tlb_rel_sat’’ s t

pa’ = pa ∧ consistent t’ va ∧ tlb_rel_sat’’ s’ t’

Again, we get the same address translation results, and preserve consistency, as well as the
refinement relation, including saturation.

Proof. Observing that a saturated PDC is transparent to a saturated TLB in the same state.

Taken together, these two refinement steps have eliminated the need to reason about the
PDC, and the last step of Sect. 5.3 in the refinement chain composes directly. Note that
because of the PDC, more potentially different entries are being reloaded into the TLB at write
operations. Formally, the function ptable_comp from Sect. 5.3 now not only needs to talk about
full page table walks that might have changed result, but also about partial walks on the page
directory level. This is the only effect that adding the additional cache has at the most abstract
level.

The conditions for safe memory read and write operations in the presence of cached partial
walks are analogous to those in Sect. 5. We omit the details here, but the interested reader can
find them in the full Isabelle formalisation [16].

7 Conclusions and Future Work

We have shown a formal ARM-style TLB model that we used as ground truth to develop a
much simpler model for reasoning that is deterministic, and where normal memory accesses do
not change further global state. It also lets us reason about cached partial walks and memory
accesses that change page tables, giving us sufficient conditions for establishing safe execution.
We established soundness of this model by constructing “less safe” TLB models, and then giving
sufficient conditions for showing that even these less safe models lead to safe execution.

The model presented here does not have full fidelity for any specific ARM architecture
version, but shows the principles to be applied for constructing such a model. If the intent is
to reason on the ISA directly, a useful next step would be to lift the refinement theorems for
the memory interface we have shown to the entire ISA model. This is a mostly mechanical
exercise, since the refinement theorems show equality for the effect of the memory operations
on the state the rest of the ARM model cares about. If the intent is to reason about higher-level
languages, we have laid the groundwork for compiler correctness in the presence of a TLB and
the main reduction needed for a program logic: we know we only have to keep track of and
avoid TLB-inconsistent addresses. All other low-level TLB complexity can be abstracted away.
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