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Abstract. A core property of program semantics is that local reasoning
about program fragments remains sound even when the fragments are ex-
ecuted within a larger system. Mathematically this property corresponds
to monotonicity of refinement: if A refines B then C(A) refines C(B) for
any (valid) context defined by C(-).

In other work we have studied a refines order for information flow in
programs where the comparison defined by the order preserves both
functional and confidentiality properties of secrets. However the semantic
domain used in that work is only sufficient for scenarios where either
the secrets are static (i.e. once initialised they never change), or where
contexts C(-) never introduce fresh secrets.

In this paper we show how to extend those ideas to obtain a model of
information flow which supports local reasoning about confidentiality. We
use our model to explore some algebraic properties of programs which
contain secrets that can be updated, and which are valid in arbitrary
contexts made up of possibly freshly declared secrets.

Keywords: Refinement; information flow; security; monotonicity; proba-
bilistic semantics; compositional reasoning; Dalenius Desideratum.

1 Introduction

Algebras are powerful tools for describing and reasoning about complex behaviours
of programs and algorithms. The effectiveness of algebraic reasoning is founded
on the principle that equalities between expressions mean that those expressions
are interchangeable: if P and @ are algebraic expressions representing programs
that are considered to have “the same” behaviours, then C(P) and C(Q) must also
exhibit “the same” behaviours for any program context C(-) represented in the
algebra. In theories of non-interference security this principle poses a surprising
challenge in models describing properties of programs containing secrets which
can both be updated during program execution, and which can be partially
observed by a passive but curious adversary. Although there are many semantic
models for reasoning about information flow, they typically support only a subset
of these behaviours. For example [1, 4, 24] assume that the secrets once set never
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change. Our more recent work [13,16] does allow updates to secrets, however it
also assumes a “closed system model” for program execution, where there is a
single global secret type which must be declared at the outset.

In this paper we show how to extend the applicability of algebraic reasoning
for all contexts and behaviours, in particular we remove the assumption of a
closed system model of operation. On a technical level this requires generalising
our earlier model [13,16] based on Hidden Markov Models (HMM’s) to include
not only information flow about some declared secret, but also information flow
that can potentially have an impact on third-party secrets —undeclared in a given
program fragment— but introduced later as part of a context C(-). In terms of
practical verification this theoretical extension is crucial: it means that local
reasoning about program fragments remains sound even when those program
fragments are executed in contexts which could contain arbitrary secrets.

The surprise here is that our extension of standard HMM'’s is related to an
old problem in privacy in “read-only” statistical databases, first articulated by
Dalenius [6] and later developed by Dwork [7]. It says that third-party information
flow is possible if a database’s contents are known to be correlated with data not
in the databases; in this case, information revealed by a query could also lead to
information leaked through the correlation.

Our approach rests fundamentally on Goguen and Meseguer’s original model
for qualitative non-interference [9] and on more recent work in quantitative
information flow of communication channels [24, and its citations]|; we combine
them into a denotational program-semantics in the style of [21, for qualitative]
and [13, for quantitative].

In [9] the program state is divided into high- and low-security portions, and
a program is said to be “non-interfering” if the low variables’ final values cannot
be affected by the the high variables’ initial values. Note that this is a qualitative
judgement: a program either suffers from interference or it doesn’t. Here instead
we follow others in quantifying the interference in a program [24], since it has
been recognised for some time that absolute noninterference is in practice too
strong: even a failed password guess leaks what the password is not. Then a more
personal choice is that we address leaks wrt. the high variables’ final values, not
their initial ones; we explain below why we believe this view is important for
refinement.

We embed both of the above features in a denotational semantics based on
HMM'’s supporting a refinement relation in the style of [3,12,20]: our programs
here are probabilistic, without demonic choice, and include a special statement
leak that passes information directly to an adversary. A result is that the
apparently “exotic” problems we highlighted above become surprisingly mundane.
For example, the program state is entirely secret (all of it is “high”), and leaks
are not through “low variables” but rather are explicit via the special leak
statements. Furthermore, conventional refinement —the tradition on which we
draw— compares programs’ final states, not their initial ones: and thus so do we
here. Finally, the “Dalenius” problem, of our potential effect on third parties



// Secret X is initially uniformly distributed over X = {0.N—1}.

Program run in isolation Program run in context
while(X > 1) { Zz:=X *
leak (X > 1) t while(X > 1) {
X:= X-2 leak (X > 1) f
} X:= X-2
}

* The program is run in a context where new secret Z is freshly declared, and then set
to the initial value of X

t leak (...) This models the timing leak, by allowing the adversary to count the
number of times the loop checks the loop guard as it erecutes.

Fig. 1. Timing attacks in isolation and in context

unknown to us, is merely the issue of preserving refinement when extra variables
are declared that were not mentioned in our original program.
We make the following contributions.

(a) We note that the Dalenius issue is simply that security of data can be affected
by programs that do not refer to it, and we illustrate it by example;

(b) We review Hidden Markov Models and explain how they can be used as the
basis for an abstract model of programs that model information flows to
secrets that can be updated;

(¢c) We show, by considering HMM’s as transformers of correlations, that they
can also model information flows of possibly correlated secrets;

(d) We define a partial order on abstract HMM’s based on the information
order defined elsewhere [2, 1, 18] and show that it is general in the sense that
equality is maintained in arbitrary contexts.

We begin in §2 with an example addressing (a) just above. In §3 we show
how to model program fragments as HMM’s and, in doing so, we show that to
address the issue at (a) it is sufficient to model only the correlation between
initial and final states of secrets in local reasoning in order to predict general
information flows about arbitrary secrets in arbitrary contexts. In §4 we show
how to define a partial order on HMM’s as correlation transformers resulting
in a general law of equivalence (Thm. 1). Finally in §5 we prove some general
algebraic laws valid for abstract HMM’s as correlation transformers.

2 Getting real: updating secrets and third-party
“collateral” damage in everyday programs

Fig. 1 illustrates the difference between running a program in isolation versus
in a system where there are multiple possibly correlated secrets. We adopt the
working assumption of a passive, but curious adversary, by which we mean an



adversary who is trying to guess secrets. She does so by observing the program
as it executes and matching observations to (possible) values of the secret. The
adversary is able to do this because we assume that she has a copy of the program
code. The adversary is not actively malicious, however: she cannot change data
nor affect normal program operation.

In both scenarios in Fig. 1 there is a loop which is subject to a timing attack
and, for simplicity, we assume that it can be performed by counting how many
times the guard is executed. We use an explicit statement leak as a signal that
our passive adversary can observe when the loop body is executed, even though
she cannot observe the exact value of the secret X. When leak (X>1) is executed,
the adversary learns whether the current value of X is strictly greater than 1
or not. She cannot deduce anything else about X, but by accumulating all her
observations, and her knowledge of the program code, over time she can deduce
many facts about the initial and final states of X.

First of all, since the adversary knows the program code, without even
executing it, she deduces that the final value of X will be either 0 or 1. To learn
something about the initial state, she must observe the program as it runs: if
she observes that (X > 1) was true three times in total then the initial value of X
must have been either 6 or 7; if it was true only twice, then the initial value of X
must have been either 4 or 5.

What can the adversary do with this analysis?

Suppose that the adversary also knows that there are no other secrets, i.e.
even if the loop is part of a larger piece of code, the only secret variable referred
to in that code is X. This means that her knowledge about the initial state of
X is not useful because X is no longer equal to its initial state (unless it was 0
or 1). Thus the information leak about the initial value of X is not useful to the
adversary who tries to guess the current value of X.

On the other hand, suppose that in a different scenario there is a second
secret Z and it is initially correlated with X, as in the program at the right in
Fig. 1. Now the fact that X was initially 6 or 7 is highly significant because it
tells the adversary that the current value of Z is either 6 or 7. And the adversary
might actually be more interested in Z than in X. This is the Dalenius problem
referred to above: the impact of some information leaks become manifest only
when programs are executed in some context with fresh secrets.

In sequential program semantics, it is usual to focus on the final state because
the aim is to establish some goal by updating the variables, and so when we inte-
grate security we still need to consider final values. Indeed it is the concentration
on final values that allows small state-modifying programs, whether secure or not,
to be sequentially composed to make larger ones [13,15,16]. But here we have
demonstrated by example that this is not enough if we want a semantics which
is compositional when contexts introduce new secrets, because if the semantics
only captures the uncertainty about the final states, we have potentially lost the
Dalenius effect i.e. how much uncertainty remains about the correlated secrets.
For example, if we only consider scenarios where there is a single secret X, then
we would only need to consider the remaining uncertainty of final states. We



could then confidently argue that the loop on the left at Fig. 1 is equivalent to
the program X := X mod 2. However, consider context C(P) defined by Z := X; P,
where Z is a secret (and P is some program fragment). We must now consider
confidentiality properties of both Z and X, and for monotonicity of refinement since
C(X:=X mod 2) leaks less than C(leak(X > 1);X := X mod 2), then our seman-
tics must distinguish between (X := X mod 2) and leak (X > 1);X:=X mod 2,
even though all their properties concerning the final state of X are the same.

In the remainder of the paper we describe a semantics which combines infor-
mation flow and state updates in which refinement between program fragments
can be determined by local reasoning alone (i.e. only about X when the program
fragments only refer to X). Crucially the refinement relation satisfies monotonicity
when contexts can include fresh secrets (as in C(-) above).

3 A denotational model for quantitative information flow

3.1 Review of the probability monad and hyper-distributions

We model secrets as probability distributions reflecting the uncertainty about
their values (if indeed they are secret). Our semantics for programs computing
with secrets is based on the “probability monad”, which we now review; and in
§3.2 we explain how it can be used to define a model for information flow.

Given a state space X we write DX for the set of probability distributions
over X, which we assume here to be finite so that we consider only discrete
distributions that assign a probability to every individual element in X. For some
distribution § in DX we write §,, between 0 and 1, for the probability that ¢
assigns to z in particular.?

The probability monad [8] is based on D as a “type constructor” that obeys a
small collection of laws shared by other, similar constructors like say the powerset
operator IP. Each monad has two polymorphic functions n for “unit”, and p for
“multiply”, that interact with each other in elegant ways. For example in P, unit
7 has type X —=PX, generically in X, and n(x) is the singleton set {«}; in D the
unit has type X —DX and n(x) is [z], the point-distribution on x.%

For multiply, in P it is distributed union, taking a set of sets to the one
set that is the union of them all, having thus the type P2X—PX. In D we
can construct D(DX) or D2X which is the set of “distributions of distributions”
(just as P? was sets of sets), equivalently distributions over DX. We call these
“hyper-distributions”, and use them below to model information flow; we normally
use capital Greeks like A for hyper-distributions. In D, the multiply has type
D2X—DX — it “squashes” distributions of distributions back to a single one,

3 Mostly we use the conventional f(x) for application of function f to argument .
Exceptions include d, for § applied to  and Df for functor D applied to f and f.x.y
for function f(z), or f.z, applied to argument y, and [H].w, when H is an HMM
inside semantic brackets [-].

4 The point distribution on x assigns probability 1 to = alone, and probability 0 to
everything else; we write it [z].



and is defined p(A)y:= > 5 py As X0, giving the probability assigned to x as
the sum of the inner probabilites (of x), each scaled by their corresponding outers.
We also write avg for the yu of DX.5

Monadic type-constructors like P and D are functors, meaning they can be
applied to functions as well as to objects: thus for f in X—) the function Pf
is of type PX—PY so that for X in PX we have Pf(X) = {f(x) | z€X} in
PY. In D instead we get the push forward of f, so that for 7 in DX we have

(Df)(ﬂ)y = Zf(z):y Tg-

We shall write X and Z for secret types and ) for the type of observations
used to enable us to model information flow. Given a joint distribution J in
D(X xY) we define hyper-distributions of secrets by abstracting from the values
of observations as follows: we retain only the probabilities that an observation
occurs, together with the residual uncertainty in X _\related to those observations.

The probability of observation y is computed from J the marginal on ) (relative

to the joint distribution J in D(X'xY)), so that J,:= > s Jay. Next, for each
observation y, we can compute JY: DX the conditional probability distribution

over z given this y. It is JY:= J,,/J,. This conditional probability distribution
represents the residual uncertainty of x by taking the observation y into account.
We now write [J]:D2X so that § is in the support of [J] provided that there is

some y: ) such that 6 = JY. Finally [J]s is equal to the sum > ;_;, J,.

3.2 Review of “traditional” vs. more recent quantitative
information flow semantics for (non-)interference

Goguen and Meguer’s treatment of non-interference separated program variables
into high- and low-security, and defined “non-interference” of high inputs with low
outputs: that a change in a high input-value should never cause a consequential
change in a low output-value [9]. A hostile observer of final low values in that case
could never learn anything about initial high values. Subsequent elaborations of
this allowed more nuanced measurements, determining “how much” information
was revealed by low variables about the initial values of high variables. The
measurements can be of many different kinds: Shannon Entropy was until recently
the default choice, but that has now been significantly generalised [2].

In the traditional style, the side channel attack of Fig. 1 would be modelled
by an explicit assignment to some low-security variable L say, actually in the
program text; and the program’s security would be assessed in terms of how
much final observations of L could tell you about the original secret value X. In
particular, the program’s action on X and L together would be described as a

® We are aware that in D(DX) the outer I is not acting over a finite type: indeed
DX is non-denumerable even when X is finite, so a fully general treatment would
use proper measures as we have done elsewhere [14, 16]. Here however we use the
fact that, for programs, the only members of D*X we encounter have finite support
(i.e. finitely many DX’s within them), and constructions like Y s ;. Asd, remain
meaningful.



joint distribution, and standard Bayesian reasoning would be used to ask (and
answer) questions like “Given this particular final value of L, how do we change
our prior belief of the distribution on X to an a-posteriori distribution on X?”

Our more recent style here is instead to make the whole of the program’s
state-space hidden, and to model information flow to the hostile observer via an
explicit leak statement. Execution of a statement leak FE, for some expression
E in the program variables (here just X), models the emission of E’s value at
that moment directly to an observer: from it, she makes deductions about X’s
possible values at that point. Usually F will not be injective (since otherwise she
would learn X exactly); but, unless E' is constant, she will still learn something.
But how much? Assume in the following program that X is initially one of 0,1, 2
with equal probability:

X:= X+1; leak (X mod 2); X:=2%X

Informal reasoning would say that after the first statement X is uniformly dis-
tributed over 1-3; after the second statement it would (via Bayesian reasoning)
either be uniform over 1,3 (if a 1 was leaked) or it would certainly be 2 (if a zero
was leaked) — and the first case would occur with probability 2/3, the second
with probability 1/3. After the third statement, then, our observer would 2/3
of the time believe X to be uniform over 2,6 and /3 of the time know that X
was 4. A key feature of this point of view is that her final “belief state” can
be summarised in a hyper-distribution introduced above. In this case we would
have the distribution “uniformly either 2 or 6” itself with probability 2/3, and
the distribution “certainly 4” itself with probability 1/3.

Hyper-distributions (objects of type D?X), or hypers for short, explicitly struc-
ture the relationship between a-posteriori distributions (“2 or 6” and “certainly 4”
above) and the probabilities with which those “posteriors” occur (2/3 and 1/3 resp.)

— we call the a-posteriori, or posterior distributions “inners” of the hyper; and we
call the distribution over them the “outer”. In our model for security programs
we use this two-layered feature to provide a clean structure for information flow.
It is based on our general conviction that the value of an observation itself is
not important; what matters is how much change that observation induces in
the probability distribution of a secret value [18]. Therefore the observations’
values do not need to participate in the semantics of information flow, and its
formalisation becomes much simpler.

That semantic simplification also enables a calculus of information flow,
explored in other work [13], and allows the use of monads, a very general semantic
tool for rigorous reasoning about computations [19] and even the implementation
of analysis tools [23].

Definition 1. [16] Given a state space X of hidden (i.e. high-security) variables,
a denotational model of quantitative non-interference secure-sensitive programs
consists of functions from prior (input) distributions on the state space to hyper
(output) distributions on the same space — the domain is DX—D?X.



Given two abstract programs h', h?: DX —D2X we define their composition
as h'; h%:= avgo Dh2 o h', which is also of type DX —D?X. 6

In other work we have shown that Def. 1 is an abstraction of HMM’s and works
well in closed systems where there is exactly one secret X and that the composition
defined using the Giry constructors correspond exactly to composition of HMM’s.
However, as illustrated by Fig. 1, modelling only the residual uncertainty of
the final state does not enable us to draw conclusions about behaviour of the
program fragment running in the larger context in which fresh secrets participate
in some larger computation. It turns out however that we are able to predict
the behaviour of a program fragment in such larger contexts by preserving the
uncertainty with respect to the correlation between initial and final states. We
do this by viewing HMM’s as correlation transformers and we show that this
is sufficient to obtain a compositional model suitable for open systems where
contexts of execution can contain arbitrary fresh secrets.

3.3 HMM'’s as correlation transformers

The basic step of an HMM consists of a secret type X, and two stochastic
matrices’, one to describe the updates to the secret (called a Markov matrix) and
the other to describe the information flowing about the secret (called a Channel
matrix). A Markov matrix M (over XxX) defines M,,  to be the transition
probability for an initial value of the secret x updated to z’. A Channel matrix
C (over XxY) defines Cy, to be the probability that y is observed given that
the secret is currently x, where recall that we use ) for the type of observations.
A Hidden Markov Model step is also a stochastic matrix, and is determined
by first a Channel step followed by a Markov step, denoted here by (C:M).
The execution of the Markov step is independent of the observation, and so
(C:M)gyzr:=Cryx My, (where “x” here means multiplication). In general we
write A— B for the type of stochastic matrix over Ax B, so that rows are labelled
by type A. Thus M: X - X, C: X — Y and (C:M): X — YxX.

We can compose HMM steps to obtain the result of executing several leak-
update steps one after another. Let H!: X — Y!1xX and H%: X — Y?xX. We
define their composition H'; H*: X — (Y1 xY?)x X, which now has observation
type V! x Y2 so that information leaks accumulate.

(Hl;HQ)z( = Z leylx“XH2x”y2£’ . (1)
z': X

y1,y2)x’

We use the term HMM to mean both an HMM step, and more generally some
composition of steps. In the latter case, the observation type ) will actually consist
of a product of observation types arising from the observations of the component
steps. Given an HMM H:X — YxX and an initial distribution 7: DX we write
(m)H) for the joint distribution D(X' xYxX) defined by (7)H)gyzr:=Tp X Hyyar.

5 This is the standard method of composing functions defined by a monad.
" A matrix is stochastic if its rows sum to 1.



It is the probability that the initial state was x, that the final state is now z’
and that the adversary observed y. Similarly, as special cases, we write (7)C)
and (m)M) for the result of applying a prior 7 to respectively a pure Channel
and a pure Markov.

In the next sections (§3.2 and §4) we describe a modification of Def. 1 based
on HMM'’s; it focusses on tracking correlations between initial and final states.
We begin by illustrating how the loop body of Fig. 1 can be represented as an
HMM -style matrix. Recall its definition as a program fragment:

leak (X >1); X:=X—-2. (2)

The first statement of (2) ~leak (X > 1)— corresponds to a channel matrix
in X—)), where the observation type ) consists of two values, one for when the
secret is strictly greater than 1 and one where the secret is no more than 1.

oG oL The labels oG, oL denote the observations that X is

0 0 1 strictly greater than 1, or no more than 1 respec-

. 1 0 1 tively. Cyy is the chance that y will be observed

C: 2 1 0 given that the secret is x. Observe that this is a
3 1 0 deterministic channel.

If m: DX is a prior distribution over X’ we create a joint distribution in D(X %))
defined by (m)C). In our example, we take 7 to the the uniform distribution over
{0, 1,2, 3}; for each observation, we learn something about this initial value of X

— if oG is observed, then we can use Bayesian reasoning to compute the residual
uncertainty of the secret. It is the conditional distribution over X of (7)C') given
the observation oG; we call this posterior (m)C)°¢. If oL is observed instead we
can similarly define the posterior (7)C)°" as the conditional distribution over
X of (m)C) given the observation oL. Notice that both posteriors occur with
probability 1/2.

The second statement of (2) is only executed in a context when X > 1 and
therefore is equivalent to if (X>1) then X:= X-2. It corresponds to a Markov
matrix X—X"

Each entry of the Markov matrix M,
provides the probability that the final
state will be 2’ given that it is z ini-
tially. Note that it is impossible for z’
to be either 2 or 3.

W N = O

O = O~ O
_ O = O =
SO OO N
SO OO w

The combination of the two statements yields an HMM to form the compo-
sition (C:M): X — Yx X, where recall that (C: M),y = Cypy X My, (where “x”
here means multiplication). For our example y is one of the observations oG or
oL. The combination as an HMM matrix becomes:



oG oL
The labels oG and oL denote

the observations correspond-
ing to those from C, and the
other column labels come from
the column labels in M. Thus
each column is labelled by a
pair in {oG, oL} xX.

(C:M):

W N+~ O

O OO o
— o OO -
SO OO N
OO OO w
S oo+ o
SO O K
SO OO N
OO OO w

Notice that the rows are not identical, because M updates the state in a way
dependent on its incoming value.

Consider now the initial (uniform) prior m:DX combined with the ma-
trix (C:M) above. The combination is a joint distribution (7)(C:M)) of type
D(XxYxX). We can now take the conditional probability with respect to an
observation y: ) to obtain the corresponding residual uncertainty over the corre-
lation in D(X?) between the initial and final state of X. For example, given that
oG was observed, the probability that the initial value of the secret was 2 and
the final value is 0 is 1/4 + 1/2 = 1/2. The probability that the initial value of
the secret was 3 and its final value is 0 is 0.

We summarise all the posterior distributions by forming the hyper-distribution
[)(C:M)]: D2X2. The outers in our example are both 1/2, because each observa-
tion occurs with the same probability; the corresponding inners are distributions
of correlations modelling the adversary’s residual uncertainty. These correlations
retain just enough detail about the relationship between initial and final states
to explain the behaviour of (2) in arbitrary contexts. In particular 6: DA? is in
the support of [r)(C:M)] means that for some observation, the adversary can
deduce the likelihood between the initial and final states of the secret, and from
that the likelihood of its initial value, and the likelihood of its current value.

The hyper-distribution over correlations for our example at (2) is as follows.

[T)(C:M))] : 1/2 1/2
The labels along the outside of the
1 boxes represent the possible initial states
0 00 /2 0 (0,1,2,3 on the left column), and the
1 0 0 0 1/2 possible final states (0,1 twice along the
1 bottom). The large boxes represent the
2 /2 0 00 two distinct posterior distributions (one
3 0 1/2 0 0 for each observation in {oG,oL}), and the
small boxes (1/2 each) are the marginal

probabilities for each observation.
01 0 1

Notice that we no longer need labels of type ), in fact they have been replaced
by outers (the small boxes containing 1/2 each). By comparing with (C:M) above,
we also see now that only the relevant effect of the observations has been preserved
in [7)(C:M)] — for example there are no columns only containing zeros because



they represent events that cannot occur. Only the relevant posteriors are retained,
together with the chance that they are observed. For example with probability
1/2 the observer can now deduce when the initial state was in the set {0,0} or
in the set {2,3}.

Next we show that [7)(C:M)] is all that is required for computing the be-
haviour when we introduce a correlated fresh secret Z, as in this program fragment:

Z:=X; leak (X>1); X:=X—2. (3)

Take the HMM (C:M) above representing the program fragment at (2), but
now consider executing it with extra secret Z as at (3). The initialisation of Z
creates an interesting correlation between X and Z given by II*:D(ZxX) which
is defined to be IT}, :=m, if and only if x = 2z, where recall 7 is the uniform
initialisation of X. We now compute the final joint distribution (IT*)(C:M)) of
type D(ZxYxX); in this case because of the definition of IT*, it is

(H*>(C:M))Zya:’ = I, x (C:M)zy:v’ )
with corresponding hyper-distribution in D?(ZxX) given as follows:

[I1%)(C:M)] :
0

The labels along the outside of the boxes

now represent the final posteriors in

(0,0) 1/2 D(ZxX). Notice that the posteriors can

(1,1) 0 1/2 be computed directly from (w)(C:M)) as

1 explained above. In fact, as we describe

(2’0) /2 0 below, it can also be computed directly
(3,1) 1/2 0 from the abstraction [7)(C:M)].

More generally we can study the behaviour of an HMM H: X — Y x X when
it is executed in the context of some arbitrary correlation IT: ZxX. The joint
distribution IT)H is computed explicitly as

(INH)zyer =3 IpXHyyar . (4)
x: X

Just as in the special case above, we can calculate the associated hyper-distribution
from H'’s posterior correlations on the initial and final value of the secret type X.

We first define a matrix Z: Z — X as Z,,:=1II,, /I, and IT*:DX? as:

N

II*,or=I, if and only if = =2a .
With these in place we have that IT = Z - IT*, where we are using (Z-) as matrix

product, asin (Z-1).e:= Y. v Z20 X Lyer. We can now express (4) equivalently
as an equation between hyper-distributions:

(NH] = D(Z))H] . ()



Notice that we have applied D to the function (Z-), since it must act on the
inners of the hyper-distribution [IT) H] to re-install correlations of type D(ZxX).

But [IT)H] is the special case of H applied to a prior in DX, which models the
hyper-distribution of the correlation between the initial and final value of the
secret (type X'). This allows us to define a family of liftings of HMM’s which, by

construction, can be computed from hyper-distributions of the form [IT)H].

Definition 2. Given an HMM H: X — YxX. We say that X is its mutable
type; for fresh secret type Z called the correlation type define [H]Z:D(ZxX) —
D?(ZxX) as

[H]®.11 = D(Z)[m)H] ,
where Z is defined relative to II as at (5).

Def. 2 divides the secrets up into a mutable part X and correlated part Z,
where the former can have information leaked about it, and then subsequently
be updated by H, whilst the latter cannot be changed (by H), but can have
information about its value leaked through a correlation with X. Our next
definition, modifies Def. 1 to describe an abstract semantics taking the correlated
part into account, consistent with the way a concrete HMM leaks information
about correlated secrets. Our abstraction enforces the behaviour of the correlated
secret to be determined by the behaviour of the mutable state as in Def. 2, via
the commuting diagram summarised in Fig. 2.

Definition 3. Given a state space X of hidden (i.e. high-security) variables, a
context-aware denotational model of quantitative non-interference is a family of
functions from prior (input) distribution correlations on D(ZxX) to (output)
hyper-distributions on the same space, where Z is any correlated type, and
X is the mutable type. For a given correlated type Z, function hZ has type
D(ZxX)—=D?(ZxX). Moreover h* and h® must satisfy the commuting diagram
in Fig. 2.
We define the composition of h¥,h% to be h¥;h = avgo DhZ o h¥.

Fig. 2 describes the commuting diagram which captures exactly the effect on
collateral secrets as described by the concrete situation of HMM’s at (5). The
function h?* can preserve the correlation between the initial and final values of
the mutable variables, after which the the correlated variable can be reinstalled
by applying D(Z-) to the hyper-distribution D?X2.

The next lemma shows that the standard Giry composition also satisfies the
healthiness condition of Fig. 2.

Lemma 1. Let th:H))(ZxX) — D*(ZxX) satisfy the commuting diagram in
Fig. 2. Then h¥;hZ also satisfies it.

Proof. Let II:D(ZxX) and Z, ©* be defined as in Fig. 2 so that IT = Z -7*. We
now reason:



At left: Given a correlation I1:D(ZxX) define a matrix Z: ZxX and X-prior m: DX to be
such that I1, , = Z, ;7. This is arranged so that I = Z-7* where 7*:DX? with Thry = Ta
iff v =a’.

hZ , At right (in grey): For an initial/ﬁnal

D(2xX) D(D(Z2xx")) distribution &: D(X'xX’), the left-
multiplication Z-§ produces a dis-

tribution in D(ZxX'), just as ma-

Z- D(Z-) D(ZxX") trix multiplication would (with
/}. 0 as a matrix of probabilities).

At right (in black): The D-lifting

D(XxX) h* D(m) (push forward) of the multiplica-

tion (Z-) thus takes an initial-final
hyper in D*(X'xX’) to a hyper in
D*(ZxX).

Summary: A collateral Z is linked to our state X by joint distribution II:D(ZxX).
This II can be decomposed into its right marginal 7: X on our state space, and a
“collateral stochastic channel matrix” Z: Z+X between it and Z, i.e a right conditional

of IT. For each x the matrix Z gives the conditional distribution over Z, as in “the
probability that Z is some value, given that X is «”. The original joint distribution I7 is
restored from 7 and Z by matrix multiplication. Since 7 is not presented as a matrix,

but Z is, we use the notation Z(r to reconstruct IT from the components. (Note that
right-conditionals are not necessarily unique; but the variation on z’s where m.x=0 does

not affect D(Z-) at right.)

Fig. 2. Healthiness condition for h: general collateral correlation IT:D(ZxX) can be
computed from the effect of h on initial and final states.

(hf;h3).11
= avgoDhZohf.II “Def. 87
= avgoDhZ oD(Z:) o h¥.7* “Fig. 2 for hi: hE¥ .11 =D(Z-) o h¥.7*”
= avgoD(h% o(Z-)) o hit.7* “Punction composition: D(f o g) = Df o Dg”
= avgoD(D(Z-)ohy)ohy.o* “Fig. 2 for hy: h% o (Z-)=D(Z-)ohy”
= avgoD?(Z.) oDhy o hi¥.7* “Function composition”
= D(Z:)oavgoDhy ohi.z* “Monad law: avgoD*f = Df o avg”
= D(Z)o (hf;hf).m* . “Def. 87

By construction, the action of HMM’s defined above at Def. 2 satisfy the
commuting diagram of Fig. 2, because for 7* defined in Fig. 2 we have

—

[H]*.7* = [x")H]. (6)

Finally we note that HMM composition given above at (1) is consistent with the
abstract semantics.

Lemma 2. Let HY2: X — YxX be HMM’s, with mutable type X ; further let Z
be any collateral type. Then [H'; H?]? = [H']?;[H?]?, where composition of
HMM’s (inside [-]) is defined at (1), and composition in the semantics (outside
[-1) is defined at Def. 3.



Proof. This follows from [16][Thm12] for HMM’s generally where we set the
secret type explicitly to be ZxX (rather than just X ).

In this section we have shown how to describe an abstract semantics for
programs based on viewing HMM’s as correlation transformers, generalising
our previous work [16]. We have identified in Fig. 2 how the behaviour of the
correlation transformer A% determines the behaviour of A< when X is the mutable
type and Z is the correlation type. This provides a general abstract account of
how programs modelled as HMM’s update and leak information about secrets.

So far we have not defined a refinement order on abstract HMM’s which takes
information flow into account. We do that next.

4 Generalising entropy: secure refinement

We quantify our ignorance of hidden variables’ unknown exact value using
uncertainty measures over their (known) distribution, a generalisation of (e.g.)
Shannon entropy and others [1,2,13,18,24]. These measures are continuous,
concave functions in DX—R [16]. With them, programs’ security behaviours
can be compared wrt. the average uncertainty of their final (probabilistic) state
when run from the same prior distribution; and for programs that don’t update
their state (e.g. the information channels of Shannon, intensively studied in
current security research), the amount of information flowing due to a single
program’s execution can be measured by looking for a change in uncertainty,
i.e. by comparing the program’s prior uncertainty with its average posterior
uncertainty. Such comparisons between uncertainties are used to define secure
refinement.

It is assumed that the adversary knows the program text (and for us this
usually means some HMM ), and that he observes the values emitted by (for ex-
ample) leak statements as described above. Given a hyper-distribution produced
by some program, each inner is a posterior distribution having some uncertainty;
and the (outer) probability of that inner represents the probability with which
that uncertainty occurs.

For general S, a distribution ¢: DS and a real-valued (measurable) function
f:8—=R, we write E,(f) for the expected value of f over o. Typical cases are
when S=X and f: X—R is over the initial state, and when S=DX" and we are
taking expected values of some f:DX—R over an output hyper in D?X: in that
case Ea(se) would e.g. be the conditional Shannon Entropy of a hyper A, where
sem=—)  ,7glog(my).

An important class of uncertainty measures, more appropriate for security
applications than Shannon entropy alone, are the “loss functions” [16].

Definition 4. A loss function ¢ is of type =X —R for some index set I, with
the intuitive meaning that L.i.x is the cost to the adversary of using “attack
strategy” i when the hidden value turns out actually to be x. Her expected cost for



an attack planned but not yet carried out is then Es(€.3) if & is the distribution in
DX she knows to be governing x currently.®

From such an ¢ we define an uncertainty measure Up(p):= inf;. ; £,(¢.3) . When
I is finite, the inf can be replaced by min.

The inf represents a rational strategy where the adversary minimises her cost or
risk under the ignorance expressed by her knowing only the distribution p and
not an exact value: she will choose the strategy i whose expected cost £,(£.7) is
the least. If p is the prior §, then Up(d) is her expected cost if attacking without
running the program, i.e. she attacks the input. If she does run the program,
producing output hyper A=[P].d, then her expected cost is Ea(Uy); here she
attacks the program’s output, taking advantage of the observations she made as
the program ran.

For example, consider the following loss function for which the index set I is
the same as X', and the adversary is trying to guess the secret. If she chooses some
¢ which turns out to be the same as the secret, then her losses are 0, otherwise if
her guess is wrong, then she loses $1. Formalised, this becomes:

Lix:=(0if i=x else 1) . (7)

In Fig. 1 if the prior m: DX’ is uniform over X then U,(m) = 3/4, since whichever
i is picked there is only 1/4 chance that it is equal to the value of the variable.
After executing the program however, the hyper-distribution A on X alone has
a single posterior which assigns equal probability to 0 or 1, thus EA(Uy) = 1/2,
showing that the adversary is better able to guess the secret after executing the
program than she was before.

Loss functions have been studied extensively elsewhere [2], where they have
been shown to describe more accurately than Shannon entropy the adversary’s
intentions and losses versus benefits involved in attacks [24]. The crucial prop-
erty of the derived uncertainty measures is that they are concave functions of
distributions — this feature embodies the idea that when information is leaked
then the losses to the attacker will be reduced. Thus if C' is Channel matrix, and
I is the identity Markov matrix then we always obtain the inequality:

Eie:yz.nle < Ue(lD) (8)

where the expression on the left gives the adversary’s losses relative to the release
of information through C' and loss function ¢, and on the right are the losses
without any release of information.

In other work [13,18,16] we have shown that loss functions (equivalently
their dual “gain functions”) are sufficient to determine hyper-distributions, that
is (remarkably) that if we know £ (U,) for all £ then we know A itself.? They
therefore define a “secure refinement” relation between programs (Def. 5 below),
based on their output hyper-distributions. Any program that, for all loss functions,
can only cost more for the adversary, never less, is regarded as being more secure:

8 Here £.i is the function £(i) of type X =R — we are using Currying.
9 This was called the Coriaceous Conjecture in [2].



Definition 5. [13] Let H? be programs represented by HMM’s in X — YxX
so that X is the mutable type. We say that H*CH? just when, for any correlated
type Z we have Epgyz.1(Ue) < Eppeyz.1(Ue) for all priors I1:D(ZxX) and loss
functions £ on ZxX.

Notice that Def. 5 captures both functional and information flow properties:
when the loss function is derived from a single choice, it behaves like a standard
“probabilistic predicate” and the refinement relation for this subset of loss functions
reduces to the well known functional refinement of probabilistic programs [12] .

In order to determine when H; T Hs it might seem as though all contexts
need to be considered. Fortunately the healthiness condition summarised in
Lem. 2 means that general refinement in all correlation contexts can follow from
local reasoning relative to [H]*. Context-aware refinement is defined with respect
only to correlations between initial and final states.

Definition 6. Let H"? be two HMM'’s both with mutable type X. We say that
H'CH?, whenever Eanyx.s(Ue) < Equepx 5(Ur) for all 5:DX? and ¢: I-X%—R.

Our principal monotonicity result concerns state extension: it shows that
context-aware refinement is preserved within any context — even if fresh variables
have been declared.

Theorem 1. Let H2? be HMM’s with mutable type X. Then
H'CH* iff H'CH*.

Proof. If H' T H? holds then it is clear that H'C H?.

Alternatively, we observe that from Fig. 2 we deduce that D(Z-) o [H]* .7* =
[H]?.11, where Z, ©* are determined by IT. This means that for any §: D(ZxX)
in the support of [H|?.II, there is a corresponding §*:DX? in the support of
D(Z-) o [H]*.7m* such that § = Z - §*.

Now given £: I — ZxX — R we calculate:

Doar 0823 X O

Do 82T XD Ty X “§=7.57
= ZI,,LZ Li.z.x X Zyy X 85 “Rearrange”
= ZI,’I Yo (iza X Zp) x 8%, “Rearrange”

Do Ui X Oy, “Define £*i.x.a’:= Y, Liza'XZ.."

We see now that Egpyx r+(Uex) = Epayz.1(Ur), where on the left we have an
expression that only involves the mutable type. Thus if H' Z H? we can find
some £ and some Z such that Egryz 11 (Ue) > Erpeyz.1(Ue) which, by the above,
means that Egiyx o+ (Uer) > Epppx o= (Upr) implying that H''(ZH?.

Thm. 1 now restores the crucial monotonicity result for reasoning about
information flow for sequential programs modelled as HMM’s. In particular
it removes the quantification over all priors in D(ZxX), replacing it with a
quantification over all priors in DX2. We comment on how this applies to practical
program analysis in §6.



5 Some algebraic inequalities

In this section we illustrate some useful algebraic laws for security-aware programs
modelled as abstract HMM’s denoted by Def. 2, and equality determined by the
partial order at Def. 5.

Given §',6%: DS we define convex summation for distributions by &' ,+ 62,
also in DS, as (6! ,+ 0%)s:=08'sxp + §%sx(1—p) , where 0 < p < 1. Similarly,
given A, A2:D2S we define convex summation between hyper-distributions as
Al & A2 also in DS, as (Al j A?)s:= Alsxp + A% x (1—p).

5.1 Basic laws for information flow

We write h:D(ZxX) — D?(ZxX), where X' is the mutable type and Z is
some correlated type. The laws in Thm. 2 describe some basic monotonicity
relationships between HMM’s. (1) says that if there is more information available
in the prior, then there will be more information flow. Similarly (2) says that if
all the observations are suppressed, then less information flows: recall that avg
applied to a hyper-distribution averages the inners (in our case the posteriors)
and therefore summarises the state updates only. (3—4) say that refinement is
preserved by sequential composition. Finally (5) says that if both h', h? simply
release information but don’t update the state, then the order in which that
information is released is irrelevant.

Theorem 2. Let h, h', h? be instances of HMM'’s respectively [H]Z, [H1]Z, [H2]*
with mutable type X and correlated type Z. Further, let II:D(ZxX), and 0 <
p < 1. The following refinements hold.

hII ,@hIl' T h.(I ,+II')

hCnoavgoh

h' C h2 implies h; h' C h; h?

W' T K2 implies h'; h T W% h

If b, h? correspond to channels, then h'; h? = h?; hl.

Grds o do =

Proof. (1-4) have appeared elsewhere for an HMM model without collateral
variables (see [16, 13] for example), and the proof here is similar for each possible
correlated state, and relies on the concavity of loss functions. (5) also follows
directly from the definition of channels.

5.2 Information flows concerning the collateral state

In some circumstances we can summarise simply the behaviour of a complex
HMM matrix formed by sequentially composing some number of leak-update
steps. We look at two cases here, and both result in summarising the overall
effect as a single step of an HMM, i.e. as a leak of information concerning the
mutable type, followed by a Markov update.



Let H be an HMM matrix with mutable type X, and recall dup: X — X2 is

defined by dup.z = (z, ). Now define chn.[H]*:D(X?) — D2Xx?
chn.[H]¥ := D*(dup)oD(-)o[H]Y, )

which ignores the update of the final state, and records the information flow
concerning the initial state only [17].

Similarly we can define the overall Markov state change mkv.[H]¥:D(X?) —
D2X2, which simply ignores the information flow. Its output is therefore a point
distribution in D?X:

mkv.[H]Y = noavgo[H]" . (10)

If the effect of an HMM can be summarised as its associated channel fol-
lowed by its associated Markov update then it can be written in the form
chn.[H]¥; mkv.[H]*. Next we illustrate two circumstances when this can (al-
most) happen.

We say that chn.[H]?* is standard if it does not leak information probabilis-
tically. For example the leak statement in Fig. 1 is standard — informally this
means any information it does leak is not “noisy” and corresponds to the adver-
sary deducing exactly some predicate. We can express standard leaks equationally
by saying that if we leak the information (about the initial state) first, and then
run the program, we learn nothing more — this is not true if the information
released is noisy because each time a noisy channel is executed, a little more
information is released. Thus non-probabilistic leaks have associated channel
satisfying the following:

chn[H]Y [H]Y = [H]Y . (11)

Similarly we say that mkv.[H]? is standard if the relation between the initial

and final values for all inners in [H]?¥ is functional, which can be expressed
equationally as:

mkv.[H]* o D(dup)o (-).8 = n(s), (12)

for any 6 in the support of [H]* o Ddup.r.

Thm. 3 says that if either chn.[H]¥ or mkv.[H]" is standard then H is
refined by a leak step followed by a Markov update. In the latter case where
mkv.[H]? is standard the refinement goes both ways.

Theorem 3. Let H be an HMM with mutable type X .
1. If mkv.[H]?Y is standard, then

[H]?* o Ddup = (chn.[H]*; mkv.[H]™) o Ddup
2. If chn.[H]?™ is standard, then

[H]* o Ddup C (chn.[H]Y; mkv.[H]¥) o Ddup 1°

10 We overload T defined on HMM’s directly to be defined similarly for the abstract
semantics: h'Ch? of type DX? — D*X? if £;1(5)(Ur) < Ep25)(Uy) for all L.



Proof. Suppose that mkv.[H]?* is standard. We reason as follows:

(chn.[H]Y; mkv.[H]Y*) o D(dup)
= avgoD(mkv.[H]*) o D?(dup) o D(-) o [H]* o D(dup) “Def. 3 and (9)”
= “Function composition: D(f o g) =Df oDg”
avg o D(mkv.[H]* o D(dup) o (-)) o [H]* o D(dup)
= avgoD(n) o [H]Y* o D(dup) “12)”
= [H]* o D(dup) . “Monad law: avgoD(n) is the identity”

Now suppose that chn.[H]?* is standard. We reason as follows

[H]*
= chn.[H]*; [H]? “(11)”
C  chn.[H]™; mkv.[H]® . “Thm. 2(2), (10) and (3)”

Recall our program in Fig. 2 — since the change to X is functional, it means
that overall the HMM model for the loop is standard in its Markov component.
Thus by Thm. 3 (2) we can summarise its behaviour as a single HMM-style step,
which we can also write as

leak(X =+ 2); X := X—(Xmod 2) . (13)

The inclusion of the leak statement now ensures that the possible impact on
third-parties is now accurately recorded.

6 Related work and discussion

In this paper we have studied an abstract semantic model suitable for reason-
ing about information flow in a general sequential programming framework. A
particular innovation is to use hyper-distributions over correlations of initial
and final states. Hyper-distributions summarise the basic idea in quantitative
information flow that the value of the observation is not important, but only the
effect it induces on change of uncertainty wrt. the secret. An important aspect
is that our context-aware refinement order means that local reasoning is now
sufficient to deduce that the behaviours of 1leak (X) ; X:=0 are not the same
as those of X:=0: even though all confidentiality properties concerning only the
final value of X are the same in both program fragments. This is because they
leak differing kinds of information about he initial state, and this could become
significant when the program fragments are executed within contexts containing
fresh secrets correlated with X.

We have illustrated the model by proving some algebraic properties; further
work is required to develop the equational theory, and to apply it to a semantics
for a general programming language.

Classical analyses of quantitative information flow assume that the secret does
not change, and early approaches to measuring insecurities in programs are based



on determining a “change in uncertainty” of some “prior” value of the secret —
although how to measure the uncertainty differs in each approach. For example
Clark et al [4] use Shannon entropy to estimate the number of bits being leaked;
and Clarkson et al [5] model a change in belief. Smith [24] demonstrated the
importance of using measures that have some operational significance, and the
idea was developed further [2] by introducing the notion of g-leakage to express
such significance in a very general way. The partial order used here on programs
is the same as the g-leakage order introduced by Alvim et al [2], but it appeared
also in even earlier work [13]. Its properties have been studied extensively [1].

Others have investigated information flow for dynamic secrets, for example
Marzdiel et al [11] use probabilistic automata. Our recent work similarly explored
dynamic secrets, but allows only a single secret type X [13,16].

The abstract treatment of probabilistic systems with the introduction of a
“refinement order” was originally due to the probabilistic powerdomain of Jones and
Plotkin [10]; and those ideas were extended to include demonic nondeterminism (as
well as probability) by us [22]. In both cases the order (on programs) corresponds
to an order determined by averaging over “probabilistic predicates” which are
random variables over the state space. The compositional refinement order for
information flow appeared in [13] for security programs expressed in a simple
programming language and in [1] for a channel model.

Our work here is essentially the Dalenius scenario presented in a programming-
language context where X is the statistical database and the correlation with Z
is “auxiliary information” [7] except that, unlike in the traditional presentation,
ours allows the “database” (the password) to be updated. This model can be
thought of as a basis for developing a full semantics for context-aware refinement
for a programming language with the aim of reasoning about and developing
information flow analysis which is valid generally for all operating scenarios.
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