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Abstract. This paper gives a high-level introduction to the topic of formal, interactive,
machine-checked software verification in general, and the verification of operating systems
code in particular. We survey the state of the art, the advantages and limitations of machine-
checked code proofs, and describe two specific ongoing larger-scale verification projects in
more detail.
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1 Introduction

The fastest, cheapest and easiest way to build something is properly the first time (Parker, 2007).
This engineer’s credo has made it into popular literature, but it seems to be largely ignored in the
world of software development. In the late 1960s a software crisis was diagnosed on a summit
in the Bavarian Alps (Naur and Randell, 1969): Software was getting more and more complex,
and we had no structured way of building it. We ended up with projects that took significantly
longer than planned, were more expensive than planned, delivered results that did not fully address
customer needs, or at worst were useless. This summit in the late 1960s is widely seen as the birth
of the discipline of software engineering.

Now, almost 40 years later, we have come a long way. There are numerous books on software
engineering, a plenitude of methodologies, programming languages, and processes to choose
from. We are routinely building large software applications, and often they work. The situation has
certainly improved. Unfortunately, it has not improved enough. A large number of software projects
still fail or produce software of low quality. The US National Institute of Standards and Technology
estimated in 2002 that losses from poor software quality amounted to $59.5 billion (NIST, 2002)
in the USA alone. The industries surveyed in greatest depth were aeroplane and car manufacturers
as well as financial services. This value compares to a total of only $180 billion made in software
sales in the USA in 2000.

The reasons for this situation are manifold and this article will not present a solution to fix the
entire problem. Instead, this article aims to renew broad attention towards a method that achieves
very high assurance of software implementation correctness for a comparatively cheap price:
formal, mathematical proof. Formal methods held much promise in the 1970s but failed to deliver.
It is our view that this situation has changed drastically. We now have the methods, tools, and
people to achieve what was the goal then. Formal, machine-checked, mathematical proof that a
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given program correctly implements a formal specification is eminently achievable for important
classes of software.

The main factors that influence the practicability of formal correctness proofs are the level
of detail, the complexity, and the size of a program. The level of detail might be very abstract.
For example, one might be interested in only whether the general idea of a high-level security
policy works. In other projects, the level of detail might be much higher, including direct hardware
interaction and low-level protocols, with the focus on showing that an implementation covers all
possibilities and will work correctly under all circumstances. The second dimension, complexity,
is the inherent complexity of the problem. Some problems can be encoded in restricted logics
that offer a high degree of efficient automation, making verification as simple as the push of a
button. Many interesting problems fall into this category. Other problems will require the use of
more general logics where proofs need to be guided interactively by humans with the machine
offering assistance and proof checking. The size of the program to be verified plays a crucial role.
Depending on the nature of the problem the software solves, the effort needed for verification does
not necessarily scale linearly, but sometimes exponentially or worse. Usually, size does matter.

The exception is formal verification on very abstract levels. This usually considers only parts of
software systems and would thus not be much constrained by the size dimension. Simple properties
of high-level models are often easy to verify.

Formal verification of medium-level models of larger systems has been demonstrated before.
These model the system fairly precisely, but not at the level of a C implementation. Achievable
program size here would be in the area of 100,000 lines of code (loc) of the final system. The
VerifiCard project (Jacobs et al., 2001), for instance, modeled the full JavaCard platform, including
the source language, the compiler, and the JCVM machine language. Proofs included a number of
complex security and safety properties of the platform and the correctness of the compiler. This
was a major collaborative effort, but its results show that a very high degree of assurance at this
level can be achieved. For comparison, full certification of the JavaCard platform to high security
levels like Common Criteria EAL 7 seemed prohibitive to industry before this project, and was
mostly abandoned. Now, Gemalto, for instance, commercially offers such a certified platform
using essentially the same verification technology.

Formal verification of low-level implementations has so far been considered prohibitively
expensive, or even impossible. In recent years, this view has been changing and there are a number
of verification projects that target realistic amounts of low-level code. An obvious application area
are Operating Systems (OS). The OS is at the core of almost every computer system, and a recent
renewed trend in operating systems towards microkernels means that the size of the program to
be verified is only around 10,000 loc. The properties to be considered range from fairly simple,
e.g. memory safety, to very complex, e.g. implementing a full specification of behaviour.

It is this combination of low-level, complex property, roughly 10,000 loc that is still considered
intractable in industry. Given the size of case studies that were published up to only 3 years ago,
this impression is not surprising. However, it does not necessarily reflect the capabilities of the field.
We aim to show that it is not only possible, but in fact can be cheaper to use formal verification
instead of traditional methods for this area.

To get an impression of current industry best practice, we look at the Common Criteria (2006).
The Common Criteria are a standard for software verification that is mutually recognised by a
large number of countries. There are seven levels of assurance (EAL 1-7) in the standard and a
number of so-called protection profiles that detail what exactly is being certified and for which
application area. The standard is used for example by government agencies to specify software
assurance requirements in requisitions and regulations. Fig. 1 shows a table with the assurance
levels on the left, and software artefacts on the top.
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From left to right, the software artefacts are: the software requirements, for example a security
property, the functional specification, the high-level design of the system, the low-level design,
and finally the implementation. The bottom row of the table compares this with software that is
fully formally verified. The highest Common Criteria evaluation level requires a formal treatments
of requirements, functional specification and high-level design. The low-level design may be
treated semi-formally and correspondence between implementation and low-level design is usually
affirmed in an informal way. To call a piece of software fully formally verified, the verification
chain should reach at least down to the level of implementation. This article is about research
projects trying to achieve this level of assurance.

The next section provides a more detailed overview of software verification in general, to
define what correct means and to provide a bigger picture of what verification achieves.

Sect. 3 introduces microkernels, the subject of the verification efforts in this paper, and looks
at which high-level properties and security policies can be enforced with these kernels.

Sect. 4 surveys the state of the art in the application area of OS verification. Next to early work
in the area in the last century, there are a number of verification projects tackling the problem of
verifying OS microkernels. Two of these are sufficiently resourced to achieve their goal.

2 Software Verification

This section gives a brief overview of software verification in general. For a more comprehensive,
general-interest analysis of mechanised software verification, its development, and its role in
building software, the author recommends MacKenzie (2001). For an overview on theorem proving
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systems and what their proving styles look like, Wiedijk’s compilation The Seventeen Provers of
the World (Wiedijk, 2006) is an excellent resource. Wiedijk also maintains an online list of which
of the 100 top mathematical theorems have been mechanised in a theorem prover (Wiedijk, 2008).

We begin the overview by investigating in more detail how formal verification fits into the
bigger picture. We continue by looking at what formal verification promises, which will enable
us to define more clearly what the promise entails, and we finish the overview by analysing the
remaining risks.

2.1 The Big Picture

Fig. 2 depicts the main artefacts that are involved in software verification.
The top layer contains concepts and ideas. Examples of these are customer expectations, the

mental image of how the system works in the minds of the developers, an informal requirements
specification, or an informal, high-level design document. These are not constructs of logic, and
they can not be reasoned about directly with mathematical logic, mechanised or otherwise.

These notional concepts have formal counterparts in the middle section of Fig. 2. Informal
requirements, written down or existing just in the user’s mind, may be translated into properties of
the system specification. Examples of such requirements are Applications never run in privileged
mode of the hardware or User U may never access resource R unless the policy explicitly allows it.
Their formal counterparts would be expressions in a logic using terms and concepts that are defined
in the formal system specification. For example, the system specification may define predicates for
users, resources, access, and policy. The formal requirement then might be ∀U ∈ users. ∀R ∈
resources. (U,R) ∈ access −→ (U,R) ∈ policy. The system specification would further have
some kind of formal description of how the system behaves, which actions it executes or how its
state mutates over time.

The bottom layer of Fig. 2 shows the physical artefacts. Strictly speaking, the physical artefacts
are the microchips, the transistors, their electrical charges, and the environment the machine
operates in. Describing these precisely is the realm of physics, and if pursued to the end, the
question of whether we can even describe and predict reality in full detail is a matter of philosophy.
Fetzer (1988) uses this observation in a well-cited and much discussed, but ultimately pointless



article to reject the whole idea of formal program verification as impossible. Following this view,
we might just as well give up on any science that uses mathematics to model and predict reality.
Pragmatically, the choice for this bottom layer still is a matter of lively discussion, together with
the question of what a good formal model should therefore correspond to. The verification projects
surveyed in the second part of this article start from different levels of abstraction with different
aims and choices. Some examples for what is considered the physical artefact are C source code,
assembly source code, assembly binary code including memory contents, or a VHDL description
of the machine. Program source code could be viewed as a physical artefact, and it is usually the
lowest level a software development project deals with. Nevertheless, if one aims to eliminate all
possible sources of error in an implementation, there is a large gap between the source code and
the physical memory state of a computer—it involves at least the compiler, the linker, the operating
system, and input devices. Even a gate level description of the microprocessor might still not be
precise enough to capture reality fully. Where one makes the cut-off depends on what level of
assurance one is interested in and where a point of diminishing returns is reached.

Although often confused with formal artefacts, all of the above-mentioned concepts (program
source code, assembly code, gate level description) are not formal yet. They may be very close to
formal artefacts, and in an ideal world they even might be, but currently they are merely inputs
for tools or machines that we use in development. We still cannot reason about them directly. For
that to be possible, we again need a translation into formal logic, preferably in the same formal
framework that we use for specification and requirements. For example, in this context, even a
VHDL description itself would not be a formal artefact, whereas its translation into the formalism
of the theorem prover would be. The distinction becomes clearer for higher-level programming
languages. An example of this would be a formal semantics of the C programming language
that assigns logical meaning to each of the syntactic constructs of the language, for instance
describing how each statement changes the machine state. Although Norrish (1998) comes close,
there currently exists no such semantics for the full C language. Currently, programs as such are
clearly not formal artefacts.

It is only at this point, with the translations from ideal concepts and from the physical world
into formal logic, that we can use the tool of formal proof. In an ideal setting, at this point we are
able to make formal correctness guarantees with an absolute degree of assurance. Even in the less
than perfect real world, with machine-checked proof we can achieve a level of assurance about our
formal statements that surpasses our confidence in mathematical theorems which we base all of
physics and engineering on. Not trusting these makes as much sense as not trusting the theorem of
Pythagoras.

There exist several different kinds of formal methods that may be used to prove the connections
between properties, specification, and model. They range from fully automatic methods that may
even construct the system model automatically from source code to interactive methods that
require human guidance. The trade-off is between the expressiveness of the logic and the degree
of automation. Logics with little expressiveness, e.g. propositional logic, make it hard to write
down the three required logical artefacts and hard to understand the resulting formalisations, but
they offer a high degree of automation in return. So-called SAT (satisfiability) solvers are such
successful, automated tools. Logics with a high degree of expressiveness like Zermelo-Fraenkel
Set Theory or Higher-Order Logic (HOL) make it easier to express properties and specifications
precisely and more importantly in a readable way, but they require human creativity and expertise
in performing the proof. There are many steps in between these two extremes with model checking
and automated first-order theorem proving as two intermediate examples. As we shall see in later
sections, all of these have their use in the analysis of operating systems. It is currently mainly
the interactive methods that provide sufficient expressivity to handle the formal statement of full



functional correctness of an OS microkernel, although there are efforts to shift these proofs towards
more automation where possible.

It is illustrative to view the traditional methods of code inspection and testing in terms of
Fig. 2. Code inspection means looking at the code, following its logic, and manually comparing
it to the intended behaviour. Testing means implementing the program, running it on input data,
and comparing the results to the expected outcome. Code inspection attempts to make a direct
connection between the ideal model of requirements and design that exists in the head of the
inspector and the arguably physical artefact of source code. To accomplish this, the code inspector
does at least need to construct a mental model of the physical system behaviour which in spirit,
but not in form, is usually very close to what a formal system model might be. One might say that
code inspection requires a mental model of system behaviour, but not an additional model of the
requirements. Testing similarly bypasses formal models, but again not always entirely. Depending
on the particular testing methodology, models of system behaviour, expected output, code coverage
and more may be used. These correspond to the high-level system specification (coverage) and
requirements (test sets). Here, one might say that testing does not require a physical execution
model because it runs the physical system, but it does require some kind of model of correct system
behaviour.

2.2 The Promise

The basic promise of formal verification is the following.

Make sure software works.
Convince others that it does.

The first part of this promise concerns software correctness. As we will see in the next section,
we need to be more precise at this point. Correct software can still be useless. The common
meaning of works is that the software fulfils the user’s or customer’s requirements and expectations.
The more specialised meaning often employed in the context of verifying software (formally or
otherwise), is that the implementation fulfils its specification.

There are a number of techniques that can be used to achieve this kind of correctness. Current
industry best practice comes down to code inspection and testing. The alternative is formal
verification. Formal verification is used in industry, but not nearly as widely as testing and
inspection. We will analyse specific advantages and disadvantages of these three approaches
further below.

The second part of the promise is possibly even more interesting than the first. It is not enough
to build a piece of software and be confident that it works as intended. One needs to be able to
demonstrate that it does work and convince others of the fact. If you are building a new model of
airplane that will transport millions of people during its product cycle lifetime, you need to be able
to convince the relevant authority such as the FAA that the plane and its software are safe. If you
are building a storage device for secret information, you need to convince software certification
bodies like the NSA that the secret cannot be leaked.

The process of convincing others of software correctness is most prominent in software
certification. Currently, these software certifications are process based, that is, they are mostly
concerned with how the software was developed, and for sensitive projects even with who worked
on it, which methods were used, and which tests and inspections were conducted. Certification
authorities mandate a large amount of documentation that does not deal with the final software
artefact itself, but rather with the software development process instead. One reason for this is



that the quality of tests and inspections depends very much on organisational discipline and the
person who conducts them. This is obvious for code inspections, but applies to tests as well: Given
an extremely large input data space to choose from, it takes great skill to design and implement
useful, repeatable tests that build confidence in the correctness of the software. An old adage of
formal methods is that for any interesting system, tests can only show the presence of bugs, not
their absence. Proofs, on the other hand, can.

Some certification processes, like Common Criteria, do require formal verification, but only on
abstract levels, and only with an informal, usually inspection-based connection to the implementa-
tion.

The main difference between formal proofs and current certification processes is that proofs are
artefact-based. With a machine-checkable proof of correctness, it does not matter which process
was used to implement the software. Neither does it matter who worked on it, or even who worked
on the proof and how the proof was arrived at. To check the validity of a proof, only the formal
specifications and the proof are needed. What remains is validating that the formal models indeed
describe the physical artefact and requirements correctly. This is independent of the development
process itself and shifts effort into the early requirements part of the development process, where
studies (Bowen and Hinchey, 2005) say the money should be spent. Shifting from process-based to
artefact-based certification has an immense potential for simplification, saving costs, and making
certification more meaningful at the same time.

2.3 What could possibly go wrong?

The previous two sections showed software verification from a high level and explained what it
is trying to achieve. This section analyses the remaining risks. After the promise of an absolute,
mathematical guarantee of correctness, the question insinuates itself Surely there this a catch? Life
cannot possibly be that simple.

There are four main points of possible failure: translating each of the three informal concepts
into their formal counterparts and the correctness of the proof itself.

The latter point of proof correctness is within the realm of formal logic and has been studied
extensively in the field. Proofs about large systems are large, complex, highly detailed, and in
many parts repetitive. This is one of the worst possible combinations for human error (Reason,
1990). It is therefore reasonable to expect errors in large proofs, especially if they are constructed
by hand. The solution to this problem is to mechanise proofs, that is, to let a machine check or
even construct the proof. In both cases, the immediate question is What if the theorem prover
is incorrect? There are a number of answers to this question depending on how seriously this
concern is taken and whether the human user of the theorem prover is seen as benign or potentially
malicious.

Careful implementation. A large number of formal methods tools derive their trust from having
implemented their tool carefully and having based it on systematically, often formally analysed
algorithms. Tools in this category are PVS (Owre et al., 1996), ACL2 (Kaufmann et al., 2000),
the B-tool (Abrial, 1996), and most popular model checkers, first-order automatic provers and
static analysis tools. They assume a benign user who would not actively exploit loopholes in
the implementation and upon noticing an implementation error, would either fix or avoid the
problem. This is based on the fact that prover implementation errors are second-order errors,
and have only a second-order effect: Most such bugs do not lead to proofs that are wrongly
claimed to be correct, but rather lead to the user not being able to prove a true property. Even
in the case of wrongly proving an unsound statement, this is usually noticed very quickly,
because complex properties are suddenly proved easily. Although the author of this article



is not aware of any catastrophic software failure that can be traced back to a proving tool
itself being incorrect, this is not necessarily a satisfactory answer for high-assurance software
certification unless the tool itself has undergone an in-depth traditional certification process.

LCF-style provers. There is a family of theorem provers that uses a concept from LCF, Scott’s
logic of computable functions (Scott, 1970), in the mechanisation of proofs: correctness by
composition. The prover at its core has only a very small kernel of functions that are able to
create new theorems. These functions correspond directly to the basic axioms and derivation
rules of the logic that is being implemented. The theorem prover then relies on mechanisms of
the programming language to ensure that all other parts of the system have to invoke kernel
functions to create more complex building blocks such as automated proof search. This means
that only implementation errors in the kernel can be critical to soundness. Bugs in any other
part of the system can only lead to frustration on the user’s part when a true theorem cannot
be proved, but never to an unsound statement being treated as a theorem. The idea is that this
proof kernel is small enough to inspect and certify satisfactorily by traditional means. Tools in
this category are HOL4 (Norrish and Slind, 1998–2006), Isabelle (Nipkow et al., 2002), and
HOL-light (Harrison, 1996).

Independent proof checkers. Another approach to the correctness of theorem provers is the ob-
servation that proof checking is much easier than proof search and construction. Consequently,
upon proving a theorem, an external standardised proof representation (usually a proof term)
can be created and later checked independently by a small and easy-to-certify proof checker.
Incidentally, LCF-style provers can be easily extended this way, because their proof kernel
already provides most of the necessary infrastructure. Isabelle, HOL4, and HOL-light have
been extended with proof term generation. Other tools in this category are often found in the
area of constructive logic, where the prover additionally exploits the fact that the constructive
proof of a formula can be turned directly into an algorithm that computes the effective content
of the formula being proved. Two tools in this category are Coq (Bertot and Castran, 2004)
and Minlog (Schwichtenberg, 2004).

Verified theorem provers. One suggestion that is often immediately put forward whenever the
correctness of theorem provers is pondered is Why not use the theorem prover to formally
verify itself? As John Harrison put it when presenting a paper on just such an effort: This
endeavour would be impossible and useless at the same time (Harrison, 2006). Nevertheless it
is fun. It is impossible, because ultimately one hits Gödel’s incompleteness theorem (Gödel,
1931) which states that any logic expressive enough to prove its own consistency is necessarily
inconsistent. That means we should hope that it is impossible to formalise the logical content
of the theorem prover in its own logic. If it is not impossible, it is already useless, because
the logic the theorem prover implements has to be unsound. Harrison deals with this problem
by slightly changing the logic used to verify the theorem prover, but using the same prover
infrastructure. Changing the axiom system to a similar, but slightly different one allows him
to escape the Gödelian restriction. Having so evaded the impossible part, strictly speaking,
one still gets caught out with a useless statement. There is no guarantee that the new axiom
system is sound and even if it was, we still have used the tool itself to show its own correctness,
which means we are still relying on its infrastructure to be correct. A soundness-critical bug
in the infrastructure can easily show its own correctness by exploiting precisely this bug.
Nevertheless, going back to the argument of benign users, it is an interesting and revealing
exercise to go through the process that genuinely increases the degree of assurance of the
theorem prover being correct. Additionally checking the proof in a different, compatible prover
like Isabelle/HOL makes the probability of accidentally using an infrastructure implementation
bug very small. There is currently only one such self-verified tool: Harrison’s HOL-light.
A similar idea is using one theorem prover to show the correctness of another. Followed



to the end, this must lead to either an infinite chain of such proofs or stop somewhere at
a traditionally certified system. The author is not aware of any production-quality systems
that have undergone such a process, but there are certainly examples of theorem-proving
algorithms and models being analysed in theorem provers (Ridge, 2004).

With independent, small proof checkers, even the most paranoid customers of formal veri-
fication, such as the defence and intelligence communities, are satisfied that the correctness of
formal proofs themselves is essentially a solved problem. Much more critical and potentially
dangerous are the relationships between the informal and formal parts. In the following, we look
at the formal/physical and formal/idealistic dimensions in turn.

Translating physical artefacts into formal models. One crucial question in formal verification
is how closely the model resembles the physical system. The exposition in Sect. 2.1 has already
established that this connection can never be fully precise. As in all of engineering, we work
with abstractions of the real world. The important part is to cover what is relevant to the task at
hand. As mentioned before, opinions vary on what is appropriate here, because the more detailed
the model, the harder and more resource-intensive the verification. Even if it is agreed what the
appropriate level should be, it is still possible to make mistakes in the translation itself. If for
instance, the semantics of the C programming language on the formal side does not match the
compiler’s interpretation, then the proof constructed with that semantics will exhibit a large gap
to the physical artefact and might make wrong predictions of its behaviour. This gap is often
downplayed in academic literature and in the marketing material of companies. For instance,
there currently exists no operating system kernel that can be called formally verified in the above
sense, although two of the projects surveyed below come close and have made promising progress
towards that goal. Not even the highest Common Criteria evaluation level (EAL 7) demands a
formal or even semi-formal implementation. No strong, formal case needs to be made that the
low-level design adequately models the implementation. What is verified is the low-level design
with respect to the functional specification only. This, of course, is already a very worthwhile
process, and it might be all that is required or appropriate for a specific application, but it falls short
of what can be achieved. Even though the projects surveyed below have different views on which
level of implementation detail is appropriate, they all agree that it should at least be as deep as the
source code level of the implementation language. This level is significant, because it is the lowest
level that is usually worked on manually. Deeper levels are commonly produced by automated
tools such as compilers and while they may produce errors, they at least do so systematically.1

Translating requirements and design into formal specifications and properties. The gap between
the ideal and the formal world is often hard to even define. One aspect of this gap is an almost
banal question of notation: does the written formula actually mean what the reader thinks it does
and does this adequately captures the requirement or design idea of the developer? Since proofs
are machine-checked, this is where most of the remaining risk is concentrated. For large systems,
it is deceptively simple to make inconsistent statements that are trivially true. For instance, the
difference between ∀x.∃y.P (x, y) and ∃x.∀y.P (x, y) might seem small and subtle to the untrained
eye, but can of course make a world of difference in a specification. As in mathematics, adequate
notation, using a logic of appropriate expressiveness and short, clear property statements are
essential. In addition to property statements, it is also important to get the high-level description
of the system right. If at all possible, it should be in a form that can be read, explored or even
executed by the person designing the system. Otherwise one might build a perfectly correct coffee

1 Edsger Dijkstra is attributed with saying We must not put mistakes into programs because of sloppiness,
we have to do it systematically and with care.



machine that satisfies all security requirements when the customer actually wanted a cruise missile
guidance system instead.

The main lesson to draw from this section is that formal verification is able to tell that a
program was built right, but it cannot tell that the right program was built. The latter is the job
of validation, and it is important to understand that verification without validation is not a strong
proposition. Validation is where testing and inspection are of real value. If the formal model
is executable, testing can be used with a high degree of automation to validate the translation
between the physical and the formal world. Prototyping and testing on executable high-level
models can also be used to bridge the gap between the ideal world of expectations and a formal
specification, quickly exposing inconsistent property statements. Inspection is best used at the level
of high-level properties and specifications to make sure that the formulas correspond to intentions
and requirements. Verification can handle everything in between.

Thus, very much like Bowen and Hinchey (2005), we do not advocate verification as the sole
solution to the problem of making complex software work, but we advocate that testing, inspection,
and verification each be used in a complementary way, each at where they bring the largest benefit.

3 Microkernels

This section introduces the subject of the verification projects in this article: operating system
microkernels. By definition, the kernel of an operating system is the part of the software that runs
in the privileged mode of the hardware. This privileged mode typically distinguishes itself from
normal user mode by additional machine instructions and by write access to hardware registers
and devices that are invisible or read-only in user mode, for instance the memory management
unit (MMU) of the processor.

Microkernels try to minimise the amount of code that runs in the privileged mode. There are
many kinds of such small OS kernels. For the purposes of this survey, we restrict ourselves to
kernels such as Mach (Rashid et al., 1989), L4 (Liedtke, 1995), and VAMOS (Gargano et al.,
2005) that do not rely on co-operation from user mode processes to implement their services.
This usually implies that the kernel at least manages the MMU and runs only on hardware that
provides such a unit. The MMU can be used to implement virtual memory. It provides translation
from virtual to physical addresses and other management functions like memory access rights
(read/write/execute). If operated correctly, it can be used to protect kernel memory and memory of
different user applications from each other.

Sect. 3.1 gives sample architectures of microkernel-based systems. In Sect. 3.2 we investigate
the properties and policies these kernels provide, which will become the verification targets of
Sect. 4.

3.1 Architectures

Fig. 3 compares traditional monolithic kernels such as Windows and Linux on the left with the
microkernel approach on the right. In a monolithic kernel, device drivers, system services like the
file system, and even parts of the graphical user interface are part of the kernel and run in privileged
mode. In the microkernel approach, only the microkernel itself runs in privileged mode. It exports
sufficiently powerful mechanisms to run system services and even low-level device drivers with
the same degree of protection that is afforded to applications.

This has several advantages for system design and reliability. In a monolithic kernel, even an
unimportant part of the kernel, e.g. a graphics card driver on a network server, has full access to all
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memory and all kernel data structures. A fault in such a driver can be exploited to fully undermine
the whole system, be it maliciously or by accident. This is not a theoretical threat. Such exploits
are found frequently in the wild, see e.g. Slashdot (2006) or Securityfocus (2008). In a microkernel
on the other hand, such a driver would run in its own protection domain. An exploit in the driver
would compromise only memory of that driver and will only deny service to those parts of the
system that rely on it. For the normal operation of a network server for instance, the graphics
driver is irrelevant and could be safely terminated and restarted. The main disadvantage of the
microkernel approach was famously brought forward by Linus Torvalds in 1992 (DiBona et al.,
1999): Performance. Creating these protection domains, switching between them for execution, and
passing messages across domain boundaries was considered expensive overhead. This overhead
would be incurred at the innermost, lowest level and therefore accumulate rapidly and unacceptably
for all OS services. Providing roughly equal services, the main selling point of operating systems
is performance, and the years that followed seemed to prove Torvalds right. Monolithic OS kernels
not only persevered, but rose in popularity.

More recently, however, it has been shown that the performance of microkernels can be
improved to minimise this overhead down to the order of magnitude of a C procedure call.
Especially the L4 microkernel is known for its exceptional performance (Liedtke, 1995). High-
performance user-level network device drivers have been created Leslie et al. (2005) and even fully
a virtualised Linux runs on top of L4 with only a very small performance impact (Härtig et al.,
1998). Consequently, industry interest in this system architecture is on the rise again. The most
common use scenario for microkernels is not the fully decomposed OS of Fig. 3, though. Instead,
microkernels have achieved success as powerful para-virtualisation engines, running for example
multiple copies of a guest OS like Linux on the same machine with protection boundaries between
the instances. In para-virtualisation, small parts of the guest OS are modified to call microkernel
primitives instead of their own mechanisms. In light of Torvalds’ performance complaints, this
lead to amusing effects such as a para-virtualised L4/Linux which runs certain context-switching
benchmarks thirty times faster than native Linux (NICTA, 2006). This could be achieved because
Linux’s context-switching code was replaced with a call to the highly performance-optimised
version of L4. Another example in widespread use is Apple Computer’s Darwin Mac OS X which
runs as a largely monolithic OS with a modified Mach kernel. The resulting design is too large
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to still be called a microkernel, though. Close to the original vision of microkernels is the OKL4
kernel, a commercial development of the L4 kernel currently running on 100 million 3G mobile
phones, an estimated 30% of the global market. Fig. 4 shows a common system architecture for
this kernel.

The left half of the system runs the phone user interface on top of a traditional phone OS like
Windows CE or Embedded Linux. Isolated from this user interface runs the phone communications
protocol stack. Only explicitly enabled communication channels between the phone stack and the
interface are permitted by the kernel. This allows chipset manufacturers to run their communication
protocols in software without having to open their intellectual property to the OS manufacturer. It
also protects the phone infrastructure from software exploits and the notorious instability of current
phone user interfaces. This protection is critical, because a suitably exploited communications
stack on the phone is sufficient to take down the operation of a whole cell of a network provider
who may be liable to provide guaranteed uptime for emergency services.

As becomes clear from the discussion above, a wide variety of systems and architectures can
be implemented with microkernels. One topic of discussion in the OS community is whether a
microkernel should provide a hardware abstraction layer (HAL) and hide hardware details, or
simply provide a set of mechanisms to control the hardware and export underlying complexities to
user space. The verification projects surveyed in the next section take different views on this topic
which influences what the formal models look like and what properties are being proved.

HAL or not, all microkernels used in these verification projects provide at least the following
services:

Threads. Threads are an abstraction from the CPU, in effect allowing multiple programs to share
a single CPU and provide the illusion of parallel execution. Typical operations on threads are
starting and stopping execution, managing scheduling parameters or inspecting and possibly
modifying the execution state of a thread.

IPC. IPC stands for inter process communication. This communication can be synchronous
(communication partners have to rendezvous and be ready at the same time) or asynchronous
(which usually involves some form of buffering or potential message loss). IPC is the central
mechanism for transferring information across protection boundaries.



Virtual Memory. As mentioned above, protection domains are usually implemented using MMU
hardware mechanisms. The kernel can either fully manage the MMU or just export sufficient
mechanisms and resource arbitration to user space for implementing specific virtual memory
policies there. In the latter case, the mechanism needs to be hardened against malicious use
from user space.

The typical implementation size of a microkernel is on the order of 10,000 lines of C code.
The kernels differ in which additional services they provide and how access to shared resources
such as interrupts and devices is managed. We will go into more detail where necessary in later
sections when we look at specific verification projects.

3.2 Services and Policies

The usage scenarios and consequently the services and mechanisms the kernels are optimised to
provide are as diverse as the microkernels themselves. Without attempting to create a full taxonomy
of microkernels, we can divide them into kernels intended to support general-purpose operating
systems and kernels that are optimised for smaller, embedded systems. The emphasis in the former
case is often on abstraction and flexibility, such as the ability to dynamically reconfigure possibly
hierarchical security policies and protection domains. The emphasis for embedded systems on the
other hand is often on small memory footprint, short interrupt latencies, real-time capabilities and
strong isolation guarantees. There are also systems that cater to both areas.

The most complex end of the scale tend to be general-purpose kernels. The least complex
end of the scale usually are specific-purpose embedded systems kernels. An example would
be an extremely simple separation kernel whose only purpose is to multiplex hardware into a
fixed number of partitions without any communication between them. These kernels would not
even provide the IPC service mentioned above. Allowing controlled communication would be
the next step up; allowing communication channels to be changed during runtime would further
increase complexity. Allowing to adjust protection domains at runtime, or to create new protection
domains at runtime increases complexity again, until we arrive at a fully dynamic system where
communication, CPU, or memory access cannot only be changed dynamically, but the authority to
do so can also be safely delegated to subsystems.

Functional specifications of microkernels usually consider at least two levels. The first level
concerns all the services the kernel provides, and their formalisation. In order to be useful and
general enough, this kind of specification needs to be fairly detailed and describe precisely which
actions the kernel can perform and what their effect is. The second, more abstract level concerns a
specific purpose important for the kernel. For microkernels, these tend to be security and isolation
properties. If the system can be reduced to its security aspects only, the specifications involved
become much smaller, more abstract and easier to reason about.

In the following, we concentrate on security-related properties that make interesting targets for
formal verification.

Access Control and Data Separation A classic target for verification is access control. One
purpose of the kernel will be to arbitrate and restrict access to shared resources such as memory,
devices and CPUs. There is a whole host of different abstract access control models that kernels
can implement and that could be used as a top-level specification. Examples are capability mod-
els (Dennis and Van Horn, 1966) or the Bell-LaPadula model (Bell and LaPadula, 1973). In the
first, access to a resource is granted only on presentation of a sufficiently authorised capability to
that resource. A capability is basically a set of access rights together with a reference to a specific
resource. Capability systems allow very fine-grained access control.



Security-critical systems often require mandatory access control. This means that the kernel
enforces a security policy via its access control method and does not rely on good behaviour of
processes and users not to circumvent the policy. Mandatory access control is used to implement
system-wide security policies, for example stating that files with classification level top-secret have
to remain protected. In contrast to that, discretionary access control allows users to make policy
decisions themselves and for instance grant read access to everyone; an example is the standard
Unix file system model.

Access control can be used to achieve data separation between processes. Data separation
means that no process is allowed access to memory of other processes, be it by accident or malicious
intent. Because they are easy to formalise and already provide strong security implications, access
control models are the most popular specification target for the verification projects surveyed
below.

Information Flow A stronger property is control of information flows. Formally, it is hard to
define what information flow is, and there currently is still no universally accepted definition.
Information flow properties are usually about secrecy: Process A stores a secret cryptographic
key, and no other process should be able to infer what that key is. The information is not allowed
to flow outside process A. Pure access control models are not strong enough to establish this
property. They will prohibit direct access to the memory storing the key, and might also prohibit
explicit communication channels, but there might be indirect means of inferring what the key is.
One of the most challenging scenarios is collaboration between security levels to break system
policies. For example, top-secret process A might be controlled by a spy in the organisation, and
unclassified process B might be the means to send the information outside. In this case, so-called
covert channels need to be considered: process A could for instance use up its full time slice for
transmitting a 1-bit and otherwise donate its remaining time slice. All B needs to observe is if
more than its allocated time is available for computation. If yes, then A has transferred information.
Of course, one can devise mechanisms against this specific attack, but the game becomes one of
guessing the attack and guarding against it. Creating a new attack ‘merely’ requires looking at the
model and choosing something that is below its level of abstraction or that is otherwise not covered.
The above example is a timing channel attack; it would not work against a kernel providing strict
temporal separation, such that no thread can influence the scheduling and computing time available
to other threads.

Other attacks include observing CPU temperature, memory bus congestion, or cache misses.
Known attacks against smart cards go as far as using radiation or heat to introduce memory faults
into a computation, using an electron microscope to look at the chip in operation, etc. Modern
high-security smart cards have physical tamper-proof devices against such attacks. It is unclear
how far software alone can guard against them.

Non-Interference More well-defined than general information flow is the property of non-
interference (Goguen and Meseguer, 1982, 1984; Rushby, 1992). This property is able to capture
indirect information flows in a model if the code for both sides is known. Given a secret process S
and an attacker A, it requires one to prove that the behaviour of A cannot depend on the actions
of S, i.e. that S does not interfere with the behaviour of A. It is possible to establish this property
by looking at execution traces of the system: Given a trace where execution of both S and A
occurs, one needs to show that the result in A is the same when all S actions are removed from
the trace. Unfortunately, this property is not necessarily preserved by the proof technique of
refinement which is the one most commonly used to relate an implementation to its model (Jacob,
1989). This means that proving non-interference of the model only implies non-interference of



the implementation when special care is taken in the implementation proof. The standard access
control models do not have this problem.

Common Criteria The Common Criteria introduced in Sect. 1 have a protection profile geared
towards separation kernels which are close to the services microkernels provide. The properties
considered important for this class of kernels are: Non-bypassable, Evaluatable, Always invoked,
Tamper proof (NEAT). They are designed to be able to build systems with multiple independent
levels of security (MILS), i.e. systems with components of different trust and assurance levels. In
this context, non-bypassable means that the communication channels provided by the kernel are the
only ones available to components and that there are no lower-level mechanisms that could be used
for communication. Evaluatable means that the system must be designed such that an in-depth
evaluation, including a fully formal evaluation if required, is possible. This restricts the size,
complexity, and design of such systems. The term always invoked means that the access control
methods of the kernel must be used every time a resource is accessed, not for instance just the first
time a resource is requested. Finally, tamper proof means that the access control system cannot be
subverted, e.g. access rights be changed against the security policy by exploiting a loophole in the
mechanism. These concepts, although intuitive, are not necessarily easy to formalise and prove
directly. However, they can be established with reasonable effort by inspecting high-level formal
models of the system. In this case it is important that the proof method used to relate the high-level
model to code preserves these properties down to the code level.

Because of their small size, the small number of services they provide, and their critical nature,
microkernels offer a high-yield target for pervasive formal verification. The next section surveys
the state of the art and the progress of current microkernel verification projects.

4 OS Verification – The State of the Art

We begin the survey with a high-level, table-style overview. The following sections then go into
more detail about early work on OS verification and the current projects.

We limit the survey to projects that at least aim to prove high-level functional correctness
or security properties of an OS or OS kernel implementation. The kernel should be usable for
a general-purpose system. To keep the scope manageable, we do not include efforts such as
SLAM (Ball et al., 2006) or Terminator (Cook et al., 2006, 2007) which focus only on specific
aspects of correctness such as deadlock freedom and termination. These are certainly worthwhile
efforts, but by themselves they would not produce a formally verified operating system kernel.

4.1 Overview

The table in Fig. 5 gives a condensed overview of the projects surveyed. The first two columns
after the name of the project contain the highest and lowest levels of verification artefacts the
project considers. They usually correspond to the terms Specification and Model of the verification
picture in Fig. 2. The next two columns detail what percentage of the specification artefacts in the
project have been completed, and how much of the proofs are estimated to be discharged. The
sixth column gives the main theorem proving tool used. The penultimate column contains one or
two key phrases indicating the approach used, and the last column indicates when the project took
place. Years in parentheses are estimated completion dates.

The first three projects in Fig. 5, UCLA Secure Unix, PSOS, and KIT, concern early work in
the 1970s and 1980s. While they pioneered the field and all finished successfully in their way,
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none of them produced a realistic OS kernel with full implementation proofs. We look at these
projects in more detail in Sect. 4.3.

The next two projects in the table are recent, smaller-scale efforts that have made significant
contributions. The first one, VFiasco, is a project at TU Dresden, Germany, and RU Nijmegen in
the Netherlands. It is described in Sect. 4.4. The second project, the verification of the Coyotos
kernel, has unfortunately been cut short. We survey its contributions in Sect. 4.5.

The last two projects are larger-scale efforts and have made substantial progress towards the
goal of a realistic, fully verified OS kernel. At the time of writing, they are expected to complete
their proofs in 2008. They differ in approach and main focus, but they also share a large portion of
their verification technology. We look at Verisoft and L4.verified in detail in Sect. 4.6 and Sect. 4.7
respectively.

The table does not include any currently commercially available OS kernels, because none have
been formally verified to the degree discussed here. Three popular ones, Trusted Solaris, Windows
NT, and SELinux (Red Hat Enterprise Linux 4.1) have been certified to Common Criteria EAL 4,
but this level does not require any formal modelling and is not designed for systems deployed in
potentially hostile situations. However, the security policies of SELinux have undergone formal
analysis (Archer et al., 2003); in one instance using TAME (Archer et al., 2000; Archer, 2000,
2006), which is based on the PVS prover (Owre et al., 1996), and in another instance by a different
group using model checking (Guttman et al., 2005). The security framework is based on the Flask
architecture (Spencer et al., 1999) which was originally developed on the Fluke microkernel (Ford
et al., 1996) and later ported by the NSA to Linux as the security architecture in SELinux. The two
projects analysed the security policies themselves, but did not aim at proofs establishing that the
the SELinux kernel correctly implements them. Greenhills’ Integrity kernel (Greenhills Software,
Inc., 2008) is currently undergoing EAL6+ certification, projected to complete in May 2008. EAL6
does involve formal modelling, but only semi-formal treatment of the high-level design and below.
At this point this is all Greenhills seems to be aiming for. Of the projects in Fig. 5, only the seL4
kernel (Derrin et al., 2006) analysed in L4.verified is targeted at the commercial market.



4.2 Related Projects

A number of smaller projects are related to this overview. We do not survey these in depth, because
they either targeted kernels less complex than microkernels or did not attempt proofs down to the
implementation level. Nevertheless, they deserve mentioning in this context.

Flint The Flint project is not directly aimed at OS verification, but has made a number of important
contributions in the area. In particular, Ni et al. (2007) describe a logic in which they verify low-
level context switching code on the Intel x86 architecture how it typically would appear in an OS.
Feng et al. (2008); Feng (2007) show how to verify low-level code in the presence of hardware
interrupts and thread pre-emption.

MASK Martin et al. (2000; 2002) use the Specware tool (Kestrel Institute, 1998) to design
and build the Mathematically Analyzed Separation Kernel (MASK). They provide a high-level
information-flow guarantee in the sense of Sect. 3.2. The separation property is guaranteed by
construction in their highest-level model, and by multiple formal refinement proofs down to a
low-level design, which is close to an implementation. This low-level design is manually translated
into C and reviewed against the Specware models. The kernel analysed is a separation kernel
only, not a full microkernel. Code proofs as in the sections below were not attempted. Its main
application was a cryptographic smartcard platform developed at Motorola. The project was a
collaboration between the NSA, Motorola, and the Kestrel Institute.

Embedded Device Heitmeyer et al. (2006, 2008) report on the verification and Common Criteria
certification of a software-based embedded device featuring a separation kernel. They do not go
into detail about which device, which kernel, and which evaluation level exactly, but the report
mentions 3,000 lines of C as the size of the kernel implementation, and data separation as its main
purpose. The proof described in the report should qualify for EAL 7, but formal proof is of course
only one of the requirements in a Common Criteria evaluation. Judging from its implementation
size, the separation kernel is considerably less complex that a general purpose microkernel.

The verification approach is the TAME mentioned above (Timed Automata Modelling En-
vironment) which was also used for analysing SELinux. The proof here, however, does aim to
establish a formal relationship to the implementation. The verification comprises a Top Level
Specification (TLS), a machine-checked proof that it satisfies the selected security policy, and
a formal, but manual proof that the code implements the TLS. The TLS describing the abstract
system is with 368 lines of TAME code very compact and the effort of mechanically verifying
the separation policy on this model is given as only 2 weeks (Heitmeyer et al., 2006, Sect. 5.3).
This roughly corresponds to the effort that the L4.verified project reports for its high-level security
model (Elkaduwe, Klein and Elphinstone, 2007).

The separation policy of the embedded device kernel is divided into five parts: no-exfiltration,
no-infiltration, temporal separation, control separation, and kernel integrity. The first two state that
the running process cannot write data to other domains and that no other domains can write to
the data of the current process. The term temporal separation is not used in the sense of timing or
scheduling attacks, but means here that the separation kernel ensures that no sensitive data is left
lying around at process switches. Control separation states that computation is strictly sequential:
when one process computes, no other process is computing. Finally, kernel integrity means that
user processes cannot change kernel memory.

The authors relate this model and proof to the C implementation by formal refinement (Abadi
and Lamport, 1991), which they translate into Hoare-style pre/post condition proofs on the C



code. The C code is annotated with assertions. They do not go into detail on which semantics or
memory model of the C language is used in the verification, but the semantics includes at least
pointers, potentially in a simplified form. As is common in refinement, program states of the C
implementation are related to automata states of the TLS by a mapping function. We describe a
similar approach in more detail in Sect. 4.3. To simplify verification, the code was divided into
three categories: event code, trusted code, and other code. Event code directly corresponds to
actions in the TLS, trusted code is code that potentially has access to secure information, and other
code is code that is not directly security relevant. The first category is shown to implement the
TLS actions by refinement (see Sect. 4.3), the second category is shown not to leak information
between security domains, and the last category is only formally analysed where considered
security relevant; for instance when it prepares access to the MMU. Two months were spent on
these code conformance proofs (Heitmeyer et al., 2006, Sect. 5.4). The report admits that the
semantic distance between the abstract TLS required for a Common Criteria evaluation and a
low-level C program is huge (Heitmeyer et al., 2006, Sect. 6.2) and recommends investigation
of a mechanical proof assistant to relate the code to the TLS. Comparing the time spent on code
verification with the effort spent in the projects in Fig. 5 suggests that implementation correctness
is indeed the hard part of OS verification. Although it investigates a less complex system and does
not achieve the same level of assurance and mechanisation as the projects from the table are aiming
for, the work of Heitmeyer et al. is an impressive demonstration that formal methods can be used
cost effectively and successfully for OS verification.

AAMP7 The last project (Greve et al., 2004; Hardin et al., 2006) concerns the verification and
Common Criteria EAL7 certification of the AAMP7 microprocessor (Rockwell Collins, Inc.,
2003). This processor implements the functionality of a static separation kernel in hardware.
Strictly speaking, this does not constitute kernel verification because an OS kernel is by definition
software, but the policies and properties considered are very similar and closely related. The
implementation language in this case is processor micro code, the prover used is ACL2 (Kaufmann
et al., 2000). The functionality provided is again less complex than a general purpose microkernel,
and the processor does not support dynamic delegation of authority or even online reconfiguration
of separation domains. The processor does provide time and space partitioning in the sense of
Sect. 3.2. The proof is based on a generic high-level model of separation kernels by Greve, Wilding
and Vanfleet (2003), which after critique by Alves-Foss and Taylor (2004) was improved and
generalised (Greve et al., 2005). The model is shown to implement partitioning. The proof also
features a low-level design that exhibits a close one-to-one correspondence to the microprocessor
code. The correspondence to code is not proven formally, but by manual inspection. In contrast to
the previous project, the semantic gap here is very small and the low-level design is extensively
validated by executing it in the ACL2 prover. High-speed execution of formal models is one of
ACL2’s distinguishing features and makes the validation of such low-level designs efficient and
effective.

Instead of manually checking and cross-referencing the low-level design against the code,
it would have been more satisfactory to translate the micro code into ACL2 automatically, thus
closing the gap around manual translation completely. However, the level of detail provided in this
project already seems to have surpassed what is usually expected for an EAL7 evaluation.

We now turn from the related projects to our survey of early work in OS verification.

4.3 Early Work

The table in Fig. 5 mentions three early OS verification projects: UCLA Secure Unix, PSOS, and
KIT.
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Fig. 6. UCLA Secure Unix. Specification layers and consistency proofs.

UCLA Secure Unix Walker et al. (1980) report on the specification and verification of UCLA
Secure Data Unix, an operating system that was aimed at providing a standard Unix interface to
applications, running on DEC PDP-11/45 computers. The verification effort was focused on the
kernel of the OS, which by its feature description is close to the services of modern microkernels.2 It
provides threads, capabilities (access control), pages (virtual memory), and devices (input/output).
The project was an early proponent of separating OS policy from kernel mechanism: It was argued
that, building on formally verified kernel mechanisms, it would be significantly easier to prove
properties about security policy enforcement (compared to implementing mechanism and policy
as one). The kernel would only provide the mechanisms whereas policy would be implemented on
the user level. The report does not state when exactly the project started, but it gives the total effort
as about four to five person years (Walker et al., 1980, Sect. 4). According to Walker et al. (1980),
first results appeared in 1977 (Popek et al., 1977); intermediate reports (Popek and Farber, 1978;
Popek et al., 1979; Kemmerer, 1979) followed. As in other projects, the proof assumes that the
compiler, hardware, and interactive verification tool work correctly.

Fig. 6 shows the verification approach taken by the project. The left hand side shows the
specification layers that were used. At the bottom layer is the Pascal code of the kernel, which
the XIVUS tool used in the project could read. The highest level is the top-level specification. In
between, we have the low-level and abstract-level specifications. Note that this is not a layered
software architecture as in Fig. 7, Sect. 3.2 where each level is implemented by different code.
Instead, all these specification layers are formalisations of the same code artefact. They differ
only in their level of abstraction. For example, the code provides full detail of everything; the
low-level specification contains all variables that are retained between kernel calls, but uses more
abstract structures for the rest; the abstract-level specification uses only abstract data structures
such as lists and sets, but still describes all visible kernel operations; the top-level specification is a
capability-based access control model of the kernel that abstracts away from all detail not important
for this aspect. The intent was to show that the kernel provides a data-separation mechanism in the
sense of Sect. 3.2.

2 The first time microkernel-like concepts appear seems to be in the RC4000 Multiprogramming System in
the 1960s (Hansen, 1970). The term microkernel was coined for the Mach kernel in 1988 (Rashid et al.,
1989).



All of these specifications in UCLA Secure Unix are formally so-called state machines: they
have a set of possible states, a current state, and a set of possible transitions between them. The
proof then is to show that the specifications are consistent with each other, or formally, that the
state machines simulate each other. This is easier to do in a number of smaller steps than in one
big step, hence the multiple specification layers.

The right hand side of Fig. 6 shows the consistency proofs between the levels. Each such
proof in the project proceeds by defining a function that maps program states of the concrete
level to program states of the abstract level. For each operation in the concrete system, it is then
shown that the corresponding operation in the abstract system transforms the mapped concrete
state accordingly.

Although not called by that name at the time, the proof technique used in the project is formal
refinement (Morgan, 1990; de Roever and Engelhardt, 1998), more specifically, data refinement.
The idea is that a more concrete layer describes the same behaviour as an abstract layer, but with
more detail. The abstract layer may say pick an element of a set, the more concrete layer may
say pick the smallest element of the set, and the code may then implement the set as a sorted list
and efficiently pick the head of the list, knowing that it will be the smallest element. The first
refinement step in this example was reducing non-determinism (picking a specific element instead
of any), the second level was pure data refinement (using a different data structure to achieve
the same behaviour). The proof technique used in the project is an instance of the more general
technique of forward simulation.

Walter et al. report that about 90% of these specifications were completed in the project as
were about 20% of the code proofs. They managed to implement the kernel in a simplified version
of Pascal—the XIVUS tool did not support pointers. Hardware access was modelled by isolating
all functions that required such access. These functions were not covered by the standard Pascal
semantics the tool supported, but apparently were axiomatised with pre/post conditions manually.
The team did, however, extend the Pascal semantics with the ability to map certain global variables
to hardware registers, which would have reduced the number of functions to be axiomatised. With
regards to the proof, the report observes that invariants were an important component. Invariants
here are properties that are true before and after each kernel call (but not necessarily during a
kernel call). They are needed on each level to facilitate the consistency proof between levels and
they often define the relationship between the different data structures in the kernel. The authors
state that they were surprised by the degree of intrinsic relationship between data structures that
was uncovered in these invariants and the specification of each layer. Data structures tended to
be highly intermingled and not modular. This may be due to the nature of microkernels: Data
structures that are fully modular and could be implemented strictly separately from the rest would
be implemented separately and thus would not be part of the kernel any more.

The report concludes that the success in completing 90% of the specifications was generally
encouraging, but the proof effort sobering. Nevertheless, our specification work was very valuable,
not only as a research effort, but because significant security errors were uncovered (Walker et al.,
1980, Sect. 2.5). This observation is repeated in other projects. While not providing the degree
of assurance of a proof, a detailed specification effort already brings significant benefit in finding
errors.

The code proofs are described as painful and tedious, and the report advises to wait for more
effective machine aids (Walker et al., 1980, Sect. 3.3). It is the premise of the current OS verification
projects that this situation has changed significantly in the last 30 years. The report also states
that Performance of the completed system is poor, an order of magnitude slower than standard
Unix in some cases (Walker et al., 1980, Sect. 4). The authors attribute this not to the fact that
verification was performed, but to the non-optimising nature of their Pascal compiler and to the



high context-switching cost that later microkernels were criticised for as well. As mentioned in
Sect. 4, modern microkernels have overcome this limitation.

Regarding the development method, the authors find that the recommended approach to
program verification—developing the proof before or during software design and development—is
often not practical (Walker et al., 1980, Sect. 4), although they say that the system needs to be
developed with verification in mind. The L4.verified project comes to a similar observation in
Sect. 4.7.

A final interesting conclusion is that The effort involved in specification and verification
overwhelms that involved in coding, although it is less than the total amount spent in design,
implementation, and debugging (Walker et al., 1980, Sect. 4). Given that up to 70% of development
effort is spent on testing and validation for software systems, verification seems to be a viable, if
not cheaper alternative when it is applicable.

PSOS The provably secure operating system (PSOS) was a hardware/software co-design with the
goal of a useful general-purpose operating system with demonstrable security properties (Neumann
and Feiertag, 2003, Sect. 1). We use Neumann and Feiertag’s readable, retrospective report from
2003 as the main source for this overview. The project started in 1973, delivered an early summary
of its result in 1979 (Feiertag and Neumann, 1979), and its final report in 1980 (Neumann et al.,
1980). Work on information flow analysis on PSOS continued until 1983 (Feiertag, 1980; Goguen
and Meseguer, 1982, 1984) and in part lead to the development of SRI’s PVS theorem prover. It
was a larger and longer-term effort than UCLA Secure Unix; contemporary, but independent of it.
Rather than focussing on the kernel only, PSOS considered the whole operating system, including
new hardware design.

Considering that it involved new hardware, it is unclear how much of PSOS itself was imple-
mented, but the design appears substantially complete. Code proofs were not undertaken. Neumann
and Feiertag state that only some simple illustrative proofs were carried out (Neumann et al.,
1980, Sect. 1). Nevertheless, PSOS is an impressive effort that pioneered a number of important
concepts for OS verification and system design in general, and it aimed at applying formal methods
throughout the whole implementation of the OS.

We have already mentioned the concept of hardware abstraction layers (HALs). Strong abstrac-
tions with small interfaces are a software engineering mechanism for building layered, complex
systems. Ideally, the interface between layers n and n + 1 serves as the high-level, functional
specification for level n, and at the same time as the enriched machine-model for the higher layer
n + 1. Fig. 7 depicts such an architecture used in PSOS.

Not many such layered architectures exist, because they are hard to implement. A very
widespread and successful example of a layered architecture is the TCP/IP network stack of an OS.
It can comprise for example a hardware device driver at the bottom, an ethernet driver on the next
level, an IP driver on top of that, followed by a TCP layer, and then application protocols.

The design of PSOS comprises 17 such layers, the bottom six of which were intended to be
implemented by hardware. PSOS is not a kernel-based system (Feiertag and Neumann, 1979,
p. 334). Instead it is based from the ground up on the principles of layer abstraction, modules,
encapsulation and information hiding. It uses layer 0, i.e. tagged, hardware-enforced capabilities,
as the pervasive mechanism for access control in the system. Tagged means that the hardware
supports an additional bit indicating whether a word in memory stores a capability. These memory
words may then only be accessed via special hardware instructions for capabilities and there are
no instructions that can alter or forge a capability.

To design PSOS, the project initially developed the Hierarchical Development Method (HDM)
(Robinson and Levitt, 1977) with its specification and assertion language SPECIAL. This language
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was used to formally specify each module in the system. Each system layer could be comprised
of a number of encapsulated modules with a formal interface. SPECIAL also allowed to specify
mapping functions and abstract implementations relating modules between levels, which is already
part of a potential implementation proof. Note that in such a layered system architecture, the
layers each implement different, potentially additional functionality. Thus they are not just levels
of specification abstraction as in Fig. 6. Level n is not necessarily invisible to every layer higher
than n + 1. Nevertheless, the interface that layer n exports to higher layers can be used as its
functional specification. This functional specification could independently have its own small stack
of specification abstraction levels in the sense of Fig. 6.

Some of the specifications in PSOS ranged up into the application level, including a confined-
subsystem manager, secure e-mail, and a simple relational database manager.

Neumann and Feiertag claim that the PSOS architecture effectively dispels the popular myth
that hierarchical structures must be inherently inefficient (Neumann and Feiertag, 2003, Sect. 2.2).
They make a valid point and argue this on a qualitative basis by looking at the design, but a
quantitative comparison to a traditional system delivering the same services would be even more
convincing.

Some of the underlying engineering principles that were used rigourously in PSOS have
become mainstream techniques. Encapsulation and information hiding, for instance, are the basis
of many object-oriented programming languages, and modules are a common concept in most
languages. Strict layering as in PSOS is employed less frequently.

The design methodology of PSOS was later used for the Kernelized Secure Operating System
(KSOS) (McCauley and Drongowski, 1979; Berson and Jr., 1979; Perrine et al., 1984) by Ford
Aerospace. The Secure Ada Target (SAT) (Haigh and Young, 1987) and the LOgical Coprocessor
Kernel (LOCK) (Saydjari et al., 1987) are also inspired by the PSOS design and methodology.

KIT Almost a decade after PSOS and UCLA Secure Unix, Bevier reports on the verification
of KIT (Bevier, 1989a, 1987, 1988, 1989b), a small operating system kernel written for a uni-
processor computer with a simple von Neumann architecture (Bevier, 1988, p. 1). KIT stands for
kernel for isolated tasks, which is the main service that KIT provides. In addition, KIT provides



access to asynchronous I/O devices, exception handling, and single-word message passing. It does
not provide shared memory or virtual memory in the modern sense. It also does not offer the
dynamic creation of processes or communication channels, or services such as file systems.

The implementation language is an artificial, but realistic assembler instruction set. With
620 lines of assembler source code and 300 lines of actual assembler instructions the kernel is
extremely small and purposely very simple. It is several orders of magnitude smaller and less
complex than modern microkernels.

KIT is significant because it is the first kernel that fully deserves the attribute formally verified.
Despite its simplicity, it provides a useful service, formally verified down to realistic assembly
source code. Bevier is the first to demonstrate conclusively that the level of detail required in OS
implementation verification is not an intrinsic problem for formal verification.

The verification was conducted in the Boyer-Moore theorem prover (Boyer and Moore, 1988),
the predecessor of the ACL2 prover that was also used in the verification of the AAMP7 micropro-
cessor described in Sect. 4.1. The syntax of the prover has been criticised as hard to read because
of its parenthesised prefix form that is derived from the programming language LISP. In fact, the
Boyer-Moore logic itself is very similar to pure LISP. The logic provides no explicit quantifiers like
∀ and ∃. As mentioned before, one of the prover’s major advantages is that the logic is efficiently
executable. The prover provides a high degree of automation for an interactive system.

Very similar to UCLA Secure Unix and other refinement-based verifications, the proof of the
KIT system shows correspondence between finite state machines which we explain below. In this
case, there are three such finite state machines: the abstract, operational specification, the ‘abstract
kernel’, and the kernel running on hardware.

The kernel running on hardware is realised as an operational semantics of the assembler
instructions: The states of the state machine are the hardware machine states, including its memory,
registers, flags and program counter; the transitions describe the fetch-execute cycle of the machine.
The correspondence theorem is almost exactly the same as in Fig. 6 above. The restrictions of the
Boyer-Moore logic make it necessary to reformulate it slightly to avoid an existential quantifier,
but the content of the statement remains the same.

The medium level specification, i.e. the abstract kernel, defines a scheduling algorithm for
a fixed number of tasks, implements the communication primitives (including the delay of tasks
which block on a communication), and handles communication with asynchronous devices (Bevier,
1988, p. 9).

The abstract, top-level specification defines the communication transitions in which a task
may engage, but says nothing about how tasks are scheduled (Bevier, 1988, p. 1). This abstract
specification effectively provides a model of several communicating tasks running concurrently.
The correspondence proof shows that the kernel correctly implements this abstraction on a single
CPU.

There is no specific security model that KIT implements, but the top-level specification seems
strong enough to at least imply data separation between processes.

Bevier and Smith later also produced a formalisation of the Mach microkernel (Bevier and
Smith, 1993a,b). They did not proceed to implementations proofs, though.

After KIT, more than a decade passed without any larger-scale, serious attempts at formally
verifying the implementation of an operating system. UCLA Secure Unix, PSOS and KIT had
shown that it was possible in principle, and had pioneered some of the techniques that could be
employed, but the systems that were implemented were either unrealistically small like KIT, or
were slow and/or incompletely verified like PSOS and UCLA Secure Unix. Formal verification
on the required scale seemed prohibitively expensive, and machine support not yet sufficiently
advanced.



The first decade after 2000 now sees a renewed interest in this topic. The next sections survey
these projects, starting with VFiasco.

4.4 VFiasco

The VFiasco (Verified Fiasco) project started in November 2001. Hohmuth et al. (2002a,b) detailed
the main ideas and the approach of the project in 2002.

Fiasco (Hohmuth and Härtig, 2001) is a binary compatible re-implementation of the high-
performance, second generation microkernel L4. The Fiasco implementation specifically empha-
sises reliability, maintainability, and real-time properties. In exchange for these, it sacrifices a small
part of the performance the L4 kernel is known for. The implementation language is C++ with
isolated interface code and optimised IPC in assembly. This choice addresses the maintainability
goal of the project—early L4 implementations were written directly in hand-optimised assembly
code.3 The real-time focus expresses itself in the fact that almost all of the Fiasco code is fully
preemptible. That is, apart from some short operations, it runs with hardware interrupts enabled.
This leads to very short reaction times to external events (which are delivered via interrupts), but it
makes the implementation and therefore the verification of the kernel considerably more complex.

The initial report (Hohmuth et al., 2002a) already recognises a number of issues that are crucial
for the verification of modern microkernels: a precise formal semantics of the implementation lan-
guage and the fact that kernel code runs under a much more complex view of memory than normal
applications. The latter interferes with usual descriptions of programming language semantics.
For example, most semantics textbooks (Winskel, 1993) assume that memory can be seen as a
consecutive array of bytes and that memory reads and writes can never fail. None of these are true
for kernel code. Since it is the code that implements the basis of the virtual memory abstraction,
effects like page faults are fully visible to the code.

The proposed solution is to set up an invariant for well-behaved memory ranges. Traditional
programming language semantics can be employed for code running only in those well-behaved
ranges. This is expected to cover the largest percentage of the kernel code. The memory invariant
might be broken temporarily by the kernel, for instance for MMU manipulations. For these cases a
more complicated semantics must be used.

Next to its virtual memory model, the second area of contributions of the VFiasco project
is its modelling of the C++ language for the verification of low-level code. The approach is to
translate a C++ program directly into its semantics in the theorem prover PVS. This idea of a
semantics compiler had previously been used in the LOOP project (Huisman and Jacobs, 2000)
for Java. It avoids defining the syntax of C++ in the theorem prover and instead outputs functions
that transform the program state and describe the operation of the C++ program. C++ is a very
large and not a very clean language. It was not designed with verification in mind. Nevertheless,
the project managed to produce a detailed model for C++ data types (Hohmuth and Tews, 2003).
The authors use the under-specification present in the C++ standard to model type-safe fragments
of the language. The C++ model also includes structurally unpleasant statements like goto. In an
interesting case study, Tews (2004) demonstrates the verification of Duff’s device, an abuse of C++
control flow features at whose discovery its inventor Tom Duff said he felt a combination of pride
and revulsion (Duff, 1983). It is illustrative of the programming tricks some kernel programmers
like to employ.

The last publication of the project in 2005 again summarises the approach on C++ verifica-
tion (Hohmuth and Tews, 2005). The VFiasco approach to C++ source code verification was

3 Later L4 implementations such as L4Ka::Pistachio (System Architecture Group, 2003) were written in
C++ as well, retaining their high performance characteristics.



continued in the Robin project (Tews, 2007; Tews, Weber and Völp, 2008) which investigated the
verification of the Nova hypervisor, a different microkernel aimed at OS virtualisation, running
multiple guest OS instances such as Linux on top. Like Fiasco, Nova is an L4-based kernel. Robin
completed in April 2008 and produced about 70% of a high-level specification for the Nova
kernel (Tews, Weber, Poll, van Eekelen and van Rossum, 2008). Neither VFiasco not Robin did
manage to verify significant portions of the implementation.

4.5 EROS/Coyotos

The Coyotos kernel (Shapiro et al., 2004) is the successor of the capability-based microkernel
EROS (Extremely Reliable Operating System) (Shapiro et al., 1999), which itself is the successor
of the KeyKOS (Hardy, 1985) kernel.

Like L4, the EROS system is a second-generation microkernel. Its emphasis is on solid
performance and building secure systems. Shapiro and Weber (2000) formalised and analysed
its security model in a pen-and-paper proof. The model was based on the take-grant model of
capability distribution (Lipton and Snyder, 1977) where, apart from invoking a capability to
read or write data, one may grant a capability to someone else, or one may have the right to
take a capability from someone else. Both these rights are themselves conferred via capabilities.
Additionally, new capabilities can be created in the model, and existing ones deleted. Lipton and
Snyder (1977) originally analysed this take-grant model and observed that it is possible for the
OS to decide efficiently for each of these operations whether the operation would allow a subject
to break a global security policy at some point in the future. The model can therefore be used to
implement mandatory access control.

The security model of the EROS kernel was not formally connected to the implementation.
This was supposed to change for the successor kernel Coyotos. Shapiro et al. (2004) laid out a plan
for the design and formal implementation of the new kernel. One of the central features of this
approach was to create a new programming language for kernel implementation first—one that is
safe, clean, and suitable for verification and low-level implementation at the same time. The idea
was not necessarily to invent new language features, but rather to pick and choose from existing
research and combine the necessary features into a targeted language for implementing verified
OS kernels (Sridhar and Shapiro, 2006; Shapiro, 2006). This is a far-reaching and long-term effort,
but one with great appeal: The main kernel languages assembler, C, and C++ are old, with many
unsafe features and were not built to ease program verification. A new, modern language suitable
for kernel implementation and verification might take a long time to design and get right, but
would certainly benefit future verification efforts.

The Coyotos project has made significant progress on the design and implementation of the
kernel itself (Shapiro, 2008), as well as on the design of BitC, the proposed new implementation
language. Sridhar and Shapiro (2006) describe the language specification and a number of small
innovations in its type system. The language is designed to be type safe and fast, and to allow
reasoning about the low-level layout of data structures. The latter is important for issues such as
predictable cache performance and hardware interfaces. Its LISP-like syntax is reminiscent of the
ACL2 prover. Some early experiments were conducted, but the project has not yet published any
kernel verification results or a logic for reasoning about BitC programs.

4.6 Verisoft

The Verisoft project is a large-scale effort to demonstrate the pervasive formal verification (Bevier
et al., 1989) of a whole computer system from the hardware up to application software. The project
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started in 2003 and received EUR 14.8 million in funding from the German government (Verisoft
Project, 2006) for a period of four years until its scheduled end in 2007. The successor project
Verisoft XT began immediatly afterward in 2007. Pervasive verification in this context means
that the project does not plan to rely on the correctness of the compiler or even the instruction set
model. Instead, all of these steps are to be formally verified as well, such that there is a complete,
unbroken formal chain from hardware to applications.

Hillebrand and Paul (2008) give an overview of the verification technology and approach.
The project consists of a number of parts, some of which involve confidential work for industry
partners. We concentrate here on the public part which contains most of the OS work. According to
project manager Tom in der Rieden, the total effort spent on this part is estimated to be 30 person
years.

Fig. 8 shows the verification approach. Similar to PSOS, it is a layered approach with hardware
at the bottom and application software at the top. In contrast to PSOS, the focus here is not on
a design methodology. Work has progressed far beyond the design stage, all of the artefacts are
implemented and formally specified. Most of them are verified in pen-and-paper proofs, and
roughly 75% of the proofs are machine-checked in the theorem prover Isabelle/HOL (Nipkow
et al., 2002) at the time of writing. The parts we refer to as verified below are those that have been
verified in Isabelle/HOL.

As mentioned, the bottom layer of Fig. 8 is the hardware, in this case the VAMP microprocessor,
a variant of the DLX architecture (Hennessy and Patterson, 1996). Its instruction set behaviour
has been formally verified down to the gate level (Beyer et al., 2006; Dalinger et al., 2005) in the
theorem prover PVS, in part before the Verisoft project started. The instruction level specification
has been ported to Isabelle which was used for the OS verification part of the project. The
VAMP processor is a real processor in the sense that it exists in silicon, but it is not widely
used (commercially or otherwise). It supports simple address translation, memory mapped I/O
devices (Hillebrand et al., 2005; Alkassar et al., 2007) and a pipeline architecture. It provides a
firm, formal basis for the software stack on top.



The next layer in Fig. 8 is the CVM (Communicating Virtual Machines) layer. It comprises
the hardware-dependent part of the OS kernel and establishes a hardware independent interface
for the rest of the kernel to run on (in der Rieden and Tsyban, 2008). This division is convenient
for the verification effort, because it isolates those parts of the kernel that involve assembly-level
constructs. They have to be verified in a more detailed model than the rest of the system and are
consequently more labour intensive. This software layer is implemented in C0A, a variant of the
C0 language with inline assembly. We will discuss C0 below in more detail. The CVM layer
verification has been mostly completed. Proofs for some of the device drivers are missing, but a
hard disk driver has been verified as part of the memory paging mechanism (Alkassar et al., 2008;
in der Rieden and Tsyban, 2008).

The next layer up in Fig. 8, VAMOS (Dörrenbächer, 2006), delineates code running in the
privileged mode of the hardware. Together with the CVM layer, it makes up the OS kernel. It is
implemented purely in the C0 programming language. The VAMOS/CVM combination cannot
be called a microkernel in the strict sense, because it includes a kernel-mode device driver and a
(verified) memory paging and disk swapping policy (Alkassar et al., 2008). In a true microkernel,
this functionality and policy would be implemented in user mode. The idea is close, though, and
including this driver and pager in the kernel considerably simplifies the memory view of the
processes running on top of the kernel. If all components are verified, the question is not one of
reliability any more, but one of flexibility and performance only. Verification of the VAMOS layer
has progressed substantially (Starostin and Tsyban, 2008), but not as far as the CVM layer. At
the time of writing, a number of small kernel calls are missing. The hardest part, IPC, is 90%
complete.

On top of the VAMOS/CVM kernel, a simple operating system (SOS) is implemented in the
user-mode of the hardware. The SOS runs as a privileged user process, that is, it has more direct
access rights to the hardware than what is granted to usual applications. It provides file based
input/output, IPC, sockets and remote procedure calls to the application level (Hillebrand and Paul,
2008, p. 156). This level as well as the next is implemented in C0. SOS has currently only been
verified in part.

The uppermost layer in Fig. 8 is the application layer, where a number of example applications
have been implemented and in part formally verified, including a small email client (Beuster et al.,
2006).

Fig. 8 depicts only those artefacts that are implementations in the traditional sense. They are
written in assembly or the C0A and C0 languages. If we introduce specifications, the picture
becomes more complex, gaining a number of layers. For instance, the CVM layer has an abstract
specification that in conjunction with the instruction set model of the hardware is used as a basis
for specifying and implementing the hardware independent layer VAMOS. The CVM layer itself
also has a C0A implementation that formally refines the abstract CVM specification (in der Rieden
and Tsyban, 2008). If we view specifications as generalised programs, we get (from the bottom):
hardware, CVM implementation, CVM specification, VAMOS. Each of the layers in Fig. 8 has at
least one such implementation and specification part.

The goal of the project was to demonstrate pervasive verification, i.e. to end with one final,
machine-checked theorem on the whole system, including devices. This theorem for example
should state the correct operation of the compiled email client on VAMP gate level hardware.
This in turn means that we cannot stop at source code implementations. For each of the layers
in Fig. 8, we not only have to consider their C0 implementation, but we also need to relate
this implementation to compiled VAMP code. As for the relationships between the other layers,
this could in theory be achieved by the same kind of manual simulation proof, but since the
transformation from source to assembly implementation is automated by the compiler, it is far



more economic to verify the correctness of the compiler instead. The compiler correctness theorem
then merely needs to be strong enough to imply the inter-layer proof that would otherwise have
been done manually.

Consequently, compiler verification was a strong focus in the Verisoft project. Starting with
an initial report in 2005 by Leinenbach et al. (2005), the project has made significant progress
towards a fully verified, non-optimising C0 compiler that supports mixing inline assembly with
C0 code (Leinenbach and Petrova, 2008). In contrast to other efforts (Leroy, 2006; Blazy et al.,
2006; Klein and Nipkow, 2006), this not only includes a high-level executable compiler written
in the theorem prover’s specification language, but also a C0 implementation of this high-level
specification (Petrova, 2007). Due to time constraints the front-end of the compiler (parsing the
syntax of C0) was excluded and remains unverified.

There are three languages involved in the compiler verification effort: C0, C0A, and VAMP
assembler. The top-level C0 language used in the project is C-like in its syntax and Pascal-like in
its semantics. It is a clean, formally well-defined, type-safe programming language. It does not
contain arbitrary pointer arithmetic or unsafe pointer casts. In its pure form, it is not suited to fully
implement a low-level OS kernel. For those parts of the system that require direct hardware access,
the language is enriched with the possibility to mix inline VAMP assembly code with C0, arriving
at the C0A language. The VAMP assembler finally is the instruction set provided by the hardware
platform.

The compiler correctness theorem (Leinenbach and Petrova, 2008) states that the compiled
assembler program simulates the semantics of the high-level C0 or C0A program. Leinenbach
and Petrova (Leinenbach and Petrova, 2008, Sect. 4.4) also briefly consider the bootstrap prob-
lem (Goerigk and Hoffmann, 1998): how to arrive at a trusted, verified compiler binary when
the compiler is used to compile itself. They solve this by two external means: code generated by
the theorem prover out of the high-level specification, and translation validation for the initial
compilation. The authors argue that it is extremely unlikely that the same error remains unspotted
by both techniques at the same time on a formally analysed implementation. There is another way
to do this with fully formal guarantee: verify the initial compilation, using the existing VAMP
instruction set semantics (either manually or automatically). This was not attempted. Leinenbach
and Petrova give the size of the compiler implementation with 1,500 lines of C0 code and 85,000
lines of Isabelle proof (Leinenbach and Petrova, 2008, Sect. 5).

The main code verification technology used in this project as well as in the L4.verified project
below was developed by Schirmer (2004, 2006). The tool is a generic environment in the theorem
prover Isabelle for the verification of sequential, imperative programs that can be instantiated to a
number of different languages, in this case C0 and C0A. The tool set includes a Floyd-Hoare-style
logic (Hoare, 1969) for program verification, a big-step semantics that is convenient for language
proofs such as compiler correctness and type safety, and a small-step semantics that is detailed
enough to allow reasoning about interleaved, concurrent execution and non-terminating programs.
These semantic levels are connected to each other by equivalence proofs. They are used at their
appropriate level of detail in the simulation proofs between the software layers of the project. The
verification environment also integrates with tools such as software model checkers (Daum et al.,
2005) that can automatically discharge certain kinds of proof obligations, thereby reducing the
manual proof effort.

Apart from work directly on the system layers explained above, the project also verified and
published work on a number of libraries, including a string library (Starostin, 2006) and a big-
integer library (Fischer, 2008). As in the rest of the project, the focus was on ease of verification,



not on providing a high-performance implementation.4 Most of the artefacts and proofs described
here, including the compiler, are publicly available (Verisoft Project, 2008).

Putting all these layers back together with simulation theorems, connecting gates to VAMP
instructions, VAMP instructions to C0 implementations, C0 implementations to their next layer
specifications and so on, it is in principle possible to arrive at the pervasive theorem that was the
original goal of the project. Verisoft has not published this final theorem yet, but has come close.
Work on the remaining OS kernel primitives is still in progress.

From the perspective of the OS verification overview in this paper, the Verisoft project focused
on pure implementation correctness only and did not investigate high-level security policies or
access control models of the OS in the sense of Sect. 3.2. From the projects surveyed here, it
clearly demonstrates the most comprehensive and detailed implementation correctness statement.

Given this achievement, it is a shame that the resulting verified system is not likely to see
widespread use and through it have a direct impact on deployed systems in the short term. The
system is available for the VAMP processor only, and since performance was not a focus, is
unlikely to convince application programmers by its verified merits alone. There is no indication
that this is due to a problem of the technology that was developed; rather it is the consequence of
where the focus of the project was. Verisoft showed conclusively in an impressive verification and
engineering effort that a fully trustworthy base for computing systems is firmly within reach of
current technology.

4.7 L4.verified/seL4

The L4 verification effort includes two different, but closely related projects: seL4 and L4.verified.
The L4.verified project aims to provide a machine-checked, formal correctness proof of a high-
performance implementation of the seL4 microkernel. The seL4 (secure embedded L4) kernel (El-
phinstone et al., 2007) is an evolution of the L4 microkernel (Liedtke, 1995) with emphasis on
efficient support for security and embedded systems. The author of this overview is affiliated with
the L4.verified project.

After a small pilot project in 2004, L4.verified started in 2005 (Tuch et al., 2005), concurrently
with the seL4 project whose task it was to design and implement seL4. The stated goal of these
two projects was to provide an implementation correctness proof for seL4 with the kernel running
on a mainstream embedded processor within 10% of the performance of L4, currently the fastest
microkernel in the world. The initial pilot project resulted in a case-study on virtual memory of the
existing L4 kernel (Tuch and Klein, 2004; Klein and Tuch, 2004), a high-level specification of L4
IPC (Kolanski and Klein, 2006) and initial design ideas for seL4 (Elphinstone, 2004).

The seL4 project was concluded successfully by the end of 2007 (Elphinstone et al., 2007).
The resulting seL4 design provides the following kernel services: threads, IPC, virtual memory
control, capabilities, and interrupt control. The design was implemented in C and assembly on
the ARM11 platform (ARM, 2000). Its performance matches that of L4; in some cases that are
important for virtualisation, it even exceeds that of L4 (Elkaduwe et al., 2008).

The capability system of seL4 is similar to that of the EROS kernel (Shapiro et al., 1999)
mentioned above. Like the latter, it is based on the take-grant model (Lipton and Snyder, 1977).
One particular feature of seL4 is that there is no implicit kernel resource consumption for user
processes—capabilities explicitly manage and account for all resource aspects (Elkaduwe, Derrin
and Elphinstone, 2007; Elkaduwe et al., 2008). This is significant because the old L4 kernel is

4 Wolfgang Paul, the scientific director of the project, mentioned at the SSV’08 workshop in Sydney,
Australia that a factor of 100 is considered to be an acceptable slow-down for easing the verification task.
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vulnerable to a simple denial of service attack: A thread can exhaust kernel memory by constantly
creating new threads. EROS solves this problem by viewing kernel memory as a cache of the
system state (Shapiro et al., 1999). This solution makes it hard to predict worst-case execution
times and is therefore not well suited for embedded and real-time applications. Separation kernels
solve the problem by giving each separation domain a fixed quota of kernel memory. This solution
is not flexible enough for a full microkernel design. The seL4 design on the other hand provides a
solution well suited for embedded and real-time systems.

Capabilities in seL4 are not hardware-enforced like in PSOS. Instead they are software-
implemented on a standard processor architecture and are kernel-enforced. They provide fully
dynamic, flexible mechanisms for hierarchically delegatable authority.

An important factor in the success of the seL4 kernel design was the tight integration of the
two teams: While the design was mainly driven by the NICTA OS group in the seL4 project, the
concurrent verification effort in L4.verified provided continuous, early feedback that was taken into
account by the design group. This way, a good balance between external performance requirements
and verification constraints was maintained. The tight integration kept the focus on performance
and realistic architecture decisions instead of trading off more ease-of-verification for slower kernel
implementation as in Verisoft. The verification influence kept the design to a small, manageable
size instead of the greater complexity of a system such as PSOS. The seL4 and L4.verified projects
jointly developed a methodology that facilitated this tight integration between formalisation and
kernel prototyping. Fig. 9 gives a summary of the idea.

The most important activities in designing a microkernel are discussions between the devel-
opers, e.g. on a whiteboard. To validate the design decisions, in the traditional OS approach a
prototype kernel is implemented in C or similar. This exposes performance and data structure
layout problems and allows direct testing of applications on top of the kernel. However, this
prototyping has a long overhead time between new design ideas and new prototype versions (on
the order of weeks and months). Additionally, initial case studies in the L4.verified project (Tuch
et al., 2005) and the experience in VFiasco showed that starting the verification directly from the C
source without any higher-level specification should be expected to be a difficult and long process.



In contrast to the OS approach, the traditional formal methods approach would take the design
ideas, formalise them into a high-level specification first and then analyse that specification. This
has the advantage of exposing conceptual problems early. The disadvantages lie in not exercising
the design through user applications and not exposing performance and data structure layout
problems.

In the seL4 approach, the prototype is not written in C, but in a high-level, functional pro-
gramming language that is efficiently executable and close to the notation of the theorem prover.
In this case, the language chosen by the OS group was Haskell (Jones, 2003), a pure, side-effect
free functional language that the kernel implementers felt comfortable with. Given a hardware
simulator for the target platform that transforms hardware kernel trap instructions into calls to
the Haskell prototype, normal user application binaries can still exercise the design directly. The
Haskell prototype can be made sufficiently low-level to expose data layout problems immediately.
Performance is only evaluated in a qualitative way, by observing the number of system calls
necessary to achieve a desired goal and by inspecting the Haskell code of these calls to judge
how well they could be implemented in C. Since Haskell is very close to Isabelle/HOL, it can be
automatically translated into the theorem prover. In this way, we arrive automatically at a precise,
formal low-level design which is the basis of further formal analysis. Both the formal analysis and
the validation against user binaries are able to feed back rapidly into the design cycle. Changes
in the design can be implemented in a manner of days, sometimes hours (Heiser et al., 2007;
Elphinstone et al., 2007, 2006).

For the purpose of running the Haskell kernel prototype, the two projects jointly developed a
hardware simulator generator that takes an instruction set specification together with a simple de-
vice description and turns it into an efficient instruction-level simulator as well as an Isabelle/HOL
formalisation. This hardware formalisation can then form the basis for assembly level verification.
By running the simulator, the formalisation can be extensively validated against the real processor.
Trust is reduced from a manual formalisation to the correct operation of the generator.

The total effort spent on designing, implementing and validating the seL4 kernel comes to
6 person years. This includes benchmarking and porting the L4/Linux (Leslie, van Schaik and
Heiser, 2005) and Iguana (NICTA, 2008) operating systems to the new kernel.

We now turn from the seL4 design to its verification in the L4.verified project. Fig. 10
gives an overview of how the design fits into the verification picture. The L4.verified refinement
approach looks similar to that of UCLA Secure Unix. On the bottom layer, we find the source
code implementation of the kernel in C and assembly. To reason about the implementation, this
lowest model also needs to include some detail about the hardware such as a model of the MMU,
exceptions, and interrupts. The next layer up is the low-level design—the Isabelle/HOL translation
of the Haskell prototype mentioned above. It contains implementations of all important data
structures with a high degree of low-level detail like the number of bits that are used to store
capabilities, doubly-linked lists implemented by pointers etc. The second highest layer in Fig. 10
is the high-level design. It contains a description of all user-visible kernel operations, but leaves
out data structures and detail where possible. For instance, the scheduler on the abstract level is
specified simply by saying pick any thread in the system that is runnable, but in the low-level
design, a data structure is provided for tracking which threads are runnable and which priority they
have. The top level of Fig. 10 is the access control model of seL4 (Elkaduwe, Klein and Elphinstone,
2007). It abstracts strongly from detail and only specifies how capabilities are distributed in the
system. The security property proven in L4.verified states that the kernel can effectively isolate
subsystems and can enforce flexible global security policies.

All specifications in Fig. 10 have been completed (Cock et al., 2008). The security specification
is ca 300 loc, the high-level design 3,000 loc, the low-level design 7,500 loc, and the C code
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10,000 loc. The project is concurrently working on a formal refinement proof between the access
control model and this high-level design and also on the refinement proof between the low-level
design and the C implementation (Elphinstone et al., 2007, 2006). The project has completed the
machine-checked proof that the security property holds on the access control model (Elkaduwe,
Klein and Elphinstone, 2007); this took 2 person months. The project has also completed the
machine-checked proof in Isabelle/HOL that the Haskell prototype providing the low-level design
of seL4 correctly implements its high-level specification (Cock et al., 2008). This fills one of the
largest semantic gaps in the chain of Fig. 10. The refinement proof between abstract and executable
specification is 100,000 lines of Isabelle proof. It took five person years.

The large-scale proof between high- and low-level design produced a number of innovations
in proof engineering (Cock et al., 2008). They allow multiple people to work with a high degree
of independence on large-scale proofs for refinement of functional programs, thus reducing the
overall time required for such verifications.

The main approach for C-level implementation verification in L4.verified is to take not a
slightly changed variant of C, such as C0, but to formally treat a realistic, true subset of C. This
way, the implementation can be compiled with standard tools and used directly for commercial
systems on mainstream platforms. The compiler is part of the trusted tool chain this project. As
Verisoft has shown, this gap can in principle be eliminated as well.

The subset of C the project treats is strictly pragmatic. It includes unsafe C features that the OS
team considered mandatory for the efficient implementation of the kernel. Among these features
are arbitrary pointer arithmetic and unchecked type casts. As mentioned previously, L4.verified
uses Schirmer’s verification environment (Schirmer, 2006) developed in the Verisoft project. For
this, some features of C were restricted: taking the address of a local variable is not allowed;
neither is the use of unions and function pointers. These three could be added to the model with
some effort, but they were not needed for the implementation of seL4. The model does not include
inline assembly. Instead, assembly portions are isolated into separate functions, which are verified
separately against their specification. This specification is then used in the rest of the C program.



The C program state may be enriched with hardware state that is only accessible to these assembly
functions. The technique is similar to Verisoft’s XCalls (Leinenbach and Petrova, 2008).

One salient feature of the L4.verified C model is that it is formalised at a very detailed level to
support reasoning about unsafe language constructs. For example, it uses a formalisation of fixed-
size machine words (Dawson, 2007) such as 32-bit or 64-bit words, instead of assuming general
natural numbers. At the same time, the formalisation provides proof techniques and abstractions
that allow efficient, abstract verification of program parts that do not use unsafe C features (Tuch
and Klein, 2005; Tuch et al., 2007; Tuch, 2008b). Tuch’s (2008a) work proves two high-level
reasoning techniques correct and integrates them into the C verification framework: separation
logic (Reynolds, 2002) and multiple typed heaps (Bornat, 2000; Burstall, 1972). The first is a logic
for pointer-based programs that is currently gaining popularity in the verification community. The
second allows the program heap to be cut into separate, non-interfering parts by type to simplify
verification.

The C code is parsed directly and automatically into the theorem prover. The technology has
been tested in a complex case study of the L4 kernel memory allocator functions (Tuch et al.,
2007). As part of the project, Kolanski (2008) has developed an adaptation of separation logic
that allows reasoning about the virtual memory layout of the machine. This logic can be used to
justify a simpler memory model for the majority of the code, and to reason directly about MMU
manipulations.

The total effort spent on all tool, library, logic, and C model development spent in the project
so far was an estimated 10 person years.

Coming back to the already completed, large-scale proof between high-level and low-level
design, the formal implementation correctness statement required the project to show a large
number of internal consistency invariants on both models. These invariant proofs made the
strongest direct contribution to the seL4 design process. One of the simplest of these invariants
states that all references in the kernel, including all capabilities, always point to valid objects
of the right type (i.e. thread capabilities always point to thread control blocks). This is easy to
establish for most kernel operations, but becomes interesting in the case of the retype operation
which allows processes to re-use memory, destroying old kernel data structures and initialising
new ones in their place. The kernel implements a number of complex bookkeeping data structures
and enforces restrictions on the retyping operation. These elaborate data structures and restrictions
are collectively designed to make sure that the internal consistency cannot be broken by cleverly
misusing the operation alone or in combination with any other kernel operation.

The invariant proof shows that this design and interplay between bookkeeping and API
restrictions indeed works: No user will be able to create unsafe pointers inside the kernel, spoof
capability derivations, or gain elevated access to kernel resources through obscure corner conditions
or wrong parameter encodings. The project has established these consistency invariants for all
kernel operations, for all possible inputs, and for all possible sequences of kernel invocations.
Cock et al. (2008) describe some of them in more detail. Even without C-level implementation
verification yet, this proof constitutes a strong validation of the seL4 design and the mechanisms it
provides.

The L4.verified project is scheduled to complete by the end of 2008. Introduction of seL4 or a
derivative of it into the marketplace is currently being planned with Open Kernel Labs, Inc. (2007).

5 Conclusion

In this article, we have given a brief overview on software verification in general and operating
systems verification in particular. We have looked at modern microkernels and the security policies



they enforce. Finally, we have surveyed the state of the art in OS verification, looking at nine
different projects in the area from 1973 to 2008.

There is currently still no general-purpose OS or OS kernel that would deserve the tag “fully
formally verified”. There are a number of smaller systems that have undergone EAL7 certification,
but none of the systems have managed to close the gap so far that manual translation is not needed
between the code running on the machine and the code verified in the theorem prover. The AAMP7
project came close to this goal. The Verisoft project could close the gap completely and go beyond
source code verification, but the official project has terminated; work on the VAMOS kernel
verification is progressing on a smaller scale only. The L4.verified project includes source code
verification and is still ongoing. It is scheduled to complete by the end of 2008. Both, Verisoft and
L4.verified have a realistic chance at creating a fully verified OS kernel by the end of 2008: one
with a completely pervasive verification approach, arguably on a niche architecture, the other with
source code verification and a full high-performance implementation on commercial systems.

The projects surveyed demonstrate that OS verification is still a hard and expensive task, but
in contrast to 30 years ago, it is clearly within the reach of current technology. Proof automation,
memory and machine models, language semantics, prover user interfaces, proof libraries, and
program logics have developed significantly in those 30 years. Instead of on the order of hundred
lines of assembly code in KIT, we can now formally verify thousands of lines of complex C
code. Keeping the verified code base updated and verified, repeating the verification effort, or
adapting it to slightly larger systems should be faster and cheaper: a significant part of the effort in
existing projects was spent on the further development of verification tools, on formal models for
low-level programming languages and paradigms, and on general proof libraries. The sharing of
substantial parts of the verification tools between Verisoft and L4.verified demonstrates that there is
a significant degree of re-usability in these developments and large parts have been made publicly
available. Future efforts will be able to build on these tools and reach far-ranging verification goals
faster, better, and cheaper.
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Tews, H., Weber, T. and Völp, M. (2008), A formal model of memory peculiarities for the verification of
low-level operating-system code, in R. Huuck, G. Klein and B. Schlich, eds, ‘Proceedings of the 3rd
international Workshop on Systems Software Verification (SSV’08)’, Vol. 217 of Electronic Notes in
Computer Science, Elsevier, Sydney, Australia, pp. 79–96.

Tuch, H. (2008a), Formal Memory Models for Verifying C Systems Code, PhD thesis, School for Computer
Science and Engineering, University of New South Wales, Sydney, Australia.

Tuch, H. (2008b), Structured types and separation logic, in R. Huuck, G. Klein and B. Schlich, eds, ‘Proceed-
ings of the 3rd International Workshop on Systems Software Verification (SSV’08)’, Vol. 217 of Electronic
Notes in Computer Science, Elsevier, Sydney, Australia, pp. 41–59.

Tuch, H. and Klein, G. (2004), Verifying the L4 virtual memory subsystem, in G. Klein, ed., ‘Proceedings of
the 1st International Workshop on OS Verification 2004, Technical Report 0401005T-1’, NICTA, Sydney,
Australia, pp. 73–97.

Tuch, H. and Klein, G. (2005), A unified memory model for pointers, in ‘Proceedings of the 12th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’05)’, Montego Bay,
Jamaica, pp. 474–488.

http://www.securityfocus.com/vulnerabilities
http://www.securityfocus.com/vulnerabilities
http://www.coyotos.org/
http://it.slashdot.org/article.pl?sid=06/10/16/2038253
http://it.slashdot.org/article.pl?sid=06/10/16/2038253
http://www-wjp.cs.uni-sb.de/publikationen/St06.pdf
http://www-wjp.cs.uni-sb.de/publikationen/St06.pdf
http://l4ka.org/projects/pistachio/pistachio-whitepaper.pdf
http://l4ka.org/projects/pistachio/pistachio-whitepaper.pdf
http://wwwtcs.inf.tu-dresden.de/~tews/Goto/goto.ps
http://www.cs.ru.nl/~tews/Robin/specification-deliverable.pdf
http://www.cs.ru.nl/~tews/Robin/specification-deliverable.pdf


Tuch, H., Klein, G. and Heiser, G. (2005), OS verification—now!, in ‘Proceedings of the 10th Workshop on
Hot Topics in Operating Systems’, USENIX, Santa Fe, NM, USA, pp. 7–12.

Tuch, H., Klein, G. and Norrish, M. (2007), Types, bytes, and separation logic, in M. Hofmann and
M. Felleisen, eds, ‘Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages’, Nice, France, pp. 97–108.

Verisoft Project (2006), ‘BMBF-funding improves the security of computer systems’, http://www.
verisoft.de/PressRelease20050826.html. Visited May 2008.

Verisoft Project (2008), ‘Verisoft repository’, http://www.verisoft.de/VerisoftRepository.
html. Visited May 2008.

Walker, B. J., Kemmerer, R. A. and Popek, G. J. (1980), ‘Specification and verification of the UCLA Unix
security kernel’, Communications of the ACM 23(2), 118–131.

White, P. and Allen Goldberg, a. F. S. T. (2002), ‘Creating high confidence in a separation kernel’, Automated
Software Engineering 9(3), 263–284.

Wiedijk, F. (2008), ‘Formalising 100 theorems’, http://www.cs.ru.nl/˜freek/100/. Link visited
May 2008.

Wiedijk, F., ed. (2006), The Seventeen Provers of the World, Foreword by Dana S. Scott, Vol. 3600 of Lecture
Notes in Computer Science, Springer-Verlag.

Winskel, G. (1993), The formal semantics of programming languages, MIT Press, Cambridge, UK.

http://www.verisoft.de/PressRelease20050826.html
http://www.verisoft.de/PressRelease20050826.html
http://www.verisoft.de/VerisoftRepository.html
http://www.verisoft.de/VerisoftRepository.html
http://www.cs.ru.nl/~freek/100/

