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Abstract

Componentised systems, in particular those with fault
confinement through address spaces, are currently
emerging as a hot topic in systems research. This pa-
per extends the unified rate-based scheduling frame-
work RBED in several dimensions to fit the require-
ments of such systems. First, we have removed the
requirement of the deadline of a task being equal to
its period. Second, we introduce inter-process commu-
nication and end-to-end deadlines, reflecting the need
to communicate and avoid fragmentation of the system
through deadline partitioning. Additionally we also dis-
cuss server tasks, general I/O management, budget re-
plenishment and low level details to deal with the phys-
ical reality of real systems work.

1 Introduction

The classification of embedded systems into hard real-
time, soft real-time and non real-time systems is be-
ing increasingly dissolved by the introduction of real-
time aspects into every day devices and the extension
of real-time systems with non real-time functionality.
Such embedded systems require the deadlines imposed
by hard real-time applications to be met, the probability
of missing a deadline for soft-real-time applications to
be managed gracefully, and non real-time applications
to be served in an efficient, best effort manner to ensure
progress is made by all applications. Two other trends
in the embedded systems area are the introduction of
partitioning via memory protection and devices which
have been developed using component frameworks.
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While many scheduling variants have been proposed,
the three most prominent areas have been time trig-
gered, fixed priority based and deadline based schedul-
ing. Time triggered scheduling is mostly deployed in
safety critical applications. The reasons for this are fo-
cused mostly on ease of analysis and avoidance of pre-
emption in the system. It has also been deployed to
some degree in the automotive sector. OSEKTime [1]
is a time triggered operating system, which provided the
possiblity in one of its time slices to enable interrupts, to
deal with interrupt driven hardware. However, anecdo-
tal evidence has shown that this restriction on possible
interrupts has been avoided for the sake of responsive-
ness. Fixed-priority based scheduling has a long history
and is widely used in commercial and academic real-
time operating systems. The main drawback is that a
fixed-priority scheduled system may start missing dead-
lines with a lower utilisation than those scheduled under
some deadline based scheduling approaches.

Various dynamic priority based approaches have
been proposed. The most dominant is earliest-deadline
first (EDF) [2] scheduling, which in general enables
a higher utilisation while still meeting all deadlines.
However, this has mostly been confined to academic
work, which can be attributed to two reasons. Firstly,
EDF deteriorates badly under overload situations and
secondly, if multiple tasks are involved the partitioning
of deadlines leads to pessimism in the analysis which
ultimately raises the question whether it is really more
efficient in terms of permissible load compared to fixed-
priority scheduling. Additionally, the integration of ap-
plications of different criticality is non trivial.

The difficulty in managing overload in EDF has been
addressed in the work of Brandt et al. [3]. Their rate-
based earliest-deadline first (RBED) scheduler obtains
this behaviour by implementing a form of proportional
share scheduling by Albeni et al. [4]. In doing so it
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realises temporal isolation between different tasks and
enables the seamless integration of best effort, soft real-
time and hard real-time tasks. It combines this with the
ability to deal with the arrival, departure, and dynamic
adjustment of parameters of tasks at runtime as well as
dynamic slack management [5], making it very versa-
tile.

However, there are still some shortcomings in RBED
and the derived work [5], which have so far not been
addressed. Fundamentally their work assumes indepen-
dent tasks, which excludes the majority of communi-
cation in a real system, in particular shared resources
and I/O. Additionally it assumes that all tasks are pe-
riodic and have a deadline equal to their period. We
consider it essential to provide an integrated solution
that supports multiple tasks participating in a system
response. Within a componentised systems these short-
comings are particularly critical.

Contribution: Within this paper we extend RBED
to solve the a number of systems issues. We detail
the handling of I/O and server tasks implementing crit-
ical sections, as well as discussing the impact of these
mechanisms have on the budget requirements of a task
to maintain temporal isolation of different system re-
sponses. We also introduce a form of end-to-end dead-
lines transported via IPC to bring an implementation of
a system closer to the deadlines imposed by the sys-
tem. We have integrated the scheduler into an L4 mi-
crokernel and built an application system on top of our
scheduler to demonstrate the real-world capabilities of
our work.

Assumptions: We assume that tasks are described by
an estimate of the worst-case execution time (WCET)
of all code in the system, which involves a guaranteed
delivery of some service within a given deadline. We
also assume that there is some description of the worst-
case interarrival of all events which satisfies the require-
ments of the real-time analysis developed by Albers and
Slomka [6, 7]. In particular their analysis allows for
bursts of events. The worst-case description of non real-
time events is required to take the generated interrupt
load caused by non real-time events into account. Rel-
ative deadlines may be chosen arbitrarily; i.e. they may
be chosen longer or shorter than the period. The most
significant assumption is that the cost of preemption in
terms of (for example) reloading caches after the pre-
emption is neglibile. However, this is not a fundamen-
tally unsolvable problem, but rather avoids the presen-
tation being too cluttered with unneccesary explanation.
Finally, we assume a microkernel-based system which
lends itself naturally to build componentised systems.

The impact of this assumption is largely confined to
the fact that critical sections are implemented as servers
and that a system is assumed to have a fine-grained task
structure.

Outline: In the next section we will briefly intro-
duce the original RBED work. After this we will use
Section 3 to successively introduce our extension to the
work by Brandt et al. This covers in particular the re-
moval of the assumption that dealine equals period, the
addition of a message transported deadline model, bud-
get replenishment options, sever tasks, and finally inte-
gration of I/O. In Section 4 we discuss our implementa-
tion of the proposed work, a case study showcasing the
applicability of the scheduling framework and lessons
learned. After this we will give an overview of related
work before presenting our plans for future work.

2 RBED Summary

As our approach extends the work by Brandt et al. [3,5],
we will briefly introduce the motivation and fundamen-
tal concepts of their approch. Traditional embedded
systems were classified into dedicated hard real-time
systems, soft real-time or general purpose systems. To-
day’s systems have components from one or more of
these domains and many systems are networked in some
form and enable the installation of code post deploy-
ment. At the very least, this last property implies that
many systems containing real-time parts allow not a
once and for all analysis of the schedulability of the sys-
tem, but need to be able to isolate system parts of higher
criticality against those with lower criticality. Addition-
ally the system requires admission control.

A central observation by Brandt et al. was that any
system supporting applications of different criticality
needs to do so natively instead of retrofitting best ef-
fort scheduling into a RT scheduling framework or vice
versa. They developed a multi-class scheduling frame-
work based on EDF which provides temporal isolation
of tasks and avoids the issue of EDF misbehaviour un-
der overload. It seamlessly supports hard real-time, soft
real-time and best effort tasks, by separating the con-
cepts of resource allocation and scheduling. The pre-
emptive scheduler implements the EDF policy but en-
sures that only time allocated by the resource allocator
is used.

The resource allocation step is moved into a sepa-
rate unit, which provides overall CPU share allocation
called budget and adjustment in the case of new arrival
of tasks. If the requested budget for a new arrival task
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is not available, the allocator first reduces the budget
reserved for best effort tasks either until the requested
allocation can be satisfied or until a minimum budget
set for the best effort tasks is reached. The minimum
budget ensures that a system still responds to some de-
gree to non real-time requests. In the case of budget
reduction for the best-effort tasks being insufficient to
satisfy the requested budget for the newly arrived task,
the budget of soft real-time tasks is scaled. The budget
of hard real-time tasks is never adjusted. Obviously this
simple policy can be adjusted to the needs of a given
system.

A major advantage of this is that it enables the choice
of using less than the WCET as a budget request for
soft real-time applications. This avoids excessive over-
allocation of resources without impacting on the perfor-
mance of hard real-time tasks. The interested reader is
directed to the original work [3]. Figure 1 provides an
overview of the Nomenclature used.

U utilisation of the entire taskset, U =
∑
∀i

ui

ui utilisation of a given task τi, ui = Ei/Ti

ri,n release time of a given job Ji,n

di,n absolute deadline of a given job Ji,n

xi,n current service time ui(t−di,n−1) of a given
job Ji,n

Ci WCET of a given task τi (later chain Si), it
has to be noted that this needs to include the
cost of system calls.

Ei budget allocated to task τi (later chain Si)
Di relative deadline of task τi (later chain Si)
Ti period/minimal interarrival time of task τi

(later chain Si)
C∗

i part of current job of task τi (later chain Si)
completed

Figure 1: Nomenclature Used

The original work has made a number of assump-
tions. All tasks are independent; i.e. there is no block-
ing communication between tasks and no runnability
dependency. A task τi consists of multiple jobs Ji,n

released a time ri,n and has a minimum interarrival
time of Ti. The releases can not be overlapping i.e.
ri,n+1 ≥ ri,n + Ti. Each job has a deadline di,n rel-
ative to its release time. The deadline is assumed to be
equal to the period Ti = Di. The WCET Ci of each
task is estimated using well known techniques and is
very likely larger than the real execution time required
at runtime. The resource allocator provides a budget

Ei, which is reserved to be used by each job Ji,n. In
the case of hard real-time tasks the budget must equal
the WCET Ei = Ci to guarantee completion of the hard
real-time task.

In the case of a task exceeding its budget the task
is preempted, thus ensuring that the assumption of the
schedulability argument holds. The schedulability argu-
ment is, under the above assumptions, an overall system
utilisation U ≤ 1. To enforce this the resource allocator
must coordinate and acknowledge all requested changes
to the allocation, in particular changes to periods, bud-
gets, or deadlines. The dynamic changes to these sys-
tem parameters are supported by five theorems:

Theorem 2.1 The earliest deadline first (EDF) algo-
rithm will determine a feasible schedule if U ≤ 1 under
the assumption Di = Ti.

Theorem 2.2 Given a feasible EDF schedule, at any
time a task τi may increase its utilisation ui by an
amount up to 1 − U without causing any task to miss
deadlines in the resulting EDF schedule.

Theorem 2.3 Given a feasible EDF schedule, at any
time a task τi may increase its period without causing
any task to miss deadlines in the resulting EDF sched-
ule.

Theorem 2.4 Given a feasible EDF schedule, if at time
t task τi decreases its utilisation to u′i = ui − ∆ such
that ∆ ≤ xi,n/(t−ri,n), the freed utilisation ∆ is avail-
able to other tasks and the schedule remains feasible.

Theorem 2.5 Given a feasible EDF schedule, if a cur-
rently released job Ji,n has negative lag at time t (the
task is over-allocated), it may shorten its current dead-
line to at most xi/ui and the resulting EDF schedule
remains feasible.

The introduction of per job budgets enables easy
tracking of available dynamic slack in the system,
which may be due to the actual execution time being
shorter than the budget allocated. The work by Lin
and Brandt [5] provides several policies and respective
correctness proofs on how such dynamic slack may be
spent. Within our work we make use of two of the poli-
cies: the donation of dynamic slack to the earliest dead-
line task and the borrowing of budget from future jobs
of the same task. The budget borrowing is possible un-
der the condition that the task may only use the bud-
get with the deadline of the job it was taken from, thus
maintaining the schedulability proof condition.
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3 Our Extensions

3.1 Deadlines 6= Period
As a first step we want to introduce the notion of a
schedulability analysis as basis for allowing deadlines
to be different to periods. The superposition analysis
work by Albers and Slomka [6, 7] enables the integra-
tion of bursts of task activation as well as arbitrary rel-
ative deadlines. We will briefly outline the analysis and
its rationale, but direct the interested reader to the orig-
inal publications.

In the analysis the work of Albers and Slomka is
based on a task that is represented as a step function.
Starting with a critical instant, each job generates at its
deadline a request equal to its WCET, which has to be
completed by that deadline. The release times of all
jobs throughout the analyisis have to be chosen such
that it describes in any interval starting at the critical
instant the worst-case number of jobs that may be re-
leased in such an interval. The resulting step function is
called processor-demand functions (PDF). The PDF for
all tasks are added to a system-wide PDF.

If this system wide PDF is for any interval starting
with the critical instant larger than the interval, i.e. in
an interval we have requested more computation time
than is available in the interval, the test has failed. The
dotted lines in Figure 2 indicate the maximum request
possible in any interval.
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Figure 2: Sample Processor Demand Functions

The exact test described above may be costly if the
task’s interarrival time does not easily combine into a
least common multiple. To alleviate this problem Al-
bers and Slomka have chose to approximate the PDF
with line segments in such a way that the PDF is never
larger than the approximating segments. However, as

this is only an approximation, they have opted to keep
the exact analysis in tact for the first k jobs of a task
and only afterward approximate with the line segments.
This is lightweight enough to be deployed online. Fig-
ure 2 a) shows the PDF of a task, which has a dead-
line shorter than its minimum interarrival time. After
an initial burst it is expected that there will be a time
of quiescence before a reoccurance of the burst. The
dashed line indicates the equivalent of the original anal-
ysis. Figure 2 b) has a similar distribution but has a
deadline which is longer than its minimum interarrival
time. In both cases the dotted line represents the avail-
able computation time for a given analysis interval.

To reconcile that not all tasks in the system have a
known WCET bound we use budgets instead of WCETs
for the analysis. Since the budgets are enforced, the fact
that best effort tasks WCETs may be unknown is imma-
terial. However, this also means that the cost of enforc-
ing the budget in terms of interrupt handling and a full
system call (ε) needs to be added to the analysis model
on top of the budget Ei. The reasoning for this is that in
the worst-case scenario the code has just entered a sys-
tem call, which implies that the interrupt preempting
the task may be delayed. The deadlines for best effort
tasks are set to be equal to the period. The periods and
budgets of best effort tasks are used to balance respon-
siveness and fair sharing of resources. Long periods
may be used when responsiveness of the application is
not a major issue, but may enable longer shares and thus
enabling best effort tasks to work in longer stretches, re-
ducing the management overhead of our scheduler. The
budgets of best effort tasks relative to each other can
be used to reflect different time complexity to achieve
fairness or to improve the responsiveness of some best
effort tasks over others.

3.2 End-to-End Deadlines

Within our work we combine the concepts of message
based EDF (MEDF) scheduling [8] and RBED schedul-
ing. The MEDF concept is driven by the observation
that deadlines are usually system wide properties and
thus are best reflected as such without introducing ar-
tificial partitioning of the physical deadline into indi-
vidual task deadlines. Within MEDF a set of tasks re-
sponsible for a system response are scheduled using the
same deadline. The deadline is propagated between the
tasks of the task set using inter-process communication
(IPC). By doing so partitioning of deadlines is avoided.
The reason that this is relevant is that the release jitter of
subsequent tasks caused by variation in the actual exe-
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cution time of a preceeding tasks causes the analysis to
be forced into a conservative assumption regarding task
interarrival times of these subsequent tasks. The ques-
tion may arise why one would not integrate the set of
tasks into a single task. Possible motivations for such
a move may be a componentised system, fault confine-
ment, IP blocks, or simply license isolation.

We group one or more tasks τk, which are contribut-
ing to an overall system response with a physical end-
to-end deadline into a set Si, called a task chain. All
tasks in this task chain should be scheduled using the
same deadline which will be transported by messages.
Figure 3 illustrates such a task chain.

message
Triggering event/

Output messages/
actuator manipulation

IPCIPC

IPC

Figure 3: Taskchain

Definition The tasks τk in the task chain Si have the
following properties:

• The task chain is triggered by a single message or
interrupt; in case of a required aggregation of data
from multipe sources this aggregation needs to be
implemented as server;

• Ti describes the minimum interarrival time of the
triggering message of task chain Si;

• all tasks within the task chain have a direct com-
munication relationship with at least one other task
of the task chain Si;

• with the exception of a triggering message or inter-
rupt the task chain is never blocked on a communi-
cation with a task outside the task chain which has
a longer deadline than its own.

The last point may be enforced by not allowing syn-
chronous communication with tasks outside the task
chain. Beside the definiton above, which will be re-
quired throughout the paper, we introduce a second def-
inition which states requirements to hold for this section
only and will be relaxed in later sections.

Definition Each task is member of exactly one task
chain:

∃!Si : τk ∈ Si (1)

From a schedulability perspective the chained tasks
adhering to the definitions above act as a single task
with internal scheduling of subtasks. Special care needs
to be taken in the case of partitioning of deadlines into
more than one unit. Obviously this increases the con-
straints of the system, as now an additional deadline
will have to be met. Additionally the partitioning leads
to input message jitter for the second part of the parti-
tioned deadline. Both these consequences at the very
least complicate analysis, or in the worst case increase
the pessimism of the schedulability analysis.

As such, a task chain Si has the overall worst-case
execution time Ci,

Ci =
∑

∀τk∈Si

Ck (2)

and is triggered with minimum interarrival time Ti.

Theorem 3.1 A task chain Si in a system is schedula-
ble under the presented scheduling regime if:

• The scheduling proof [6] holds with Ei used as
worst-case execution times within the analysis and

• Ei ≥ Ci

Proof As previously noted we can interprete the task
chain as single task with internal scheduling. As such
the case of case Ei ≥ Ci is the equivalent of a single
task whose WCET may be pessimistic. The enforced
budgets ensure that task chain is not adversely affected
by another task chain exceeding its analysed Ei.

3.3 Replenishment and Sporadic Tasks
We have integrated two of the algorithms presented by
Lin and Brandt [5]: slack donation and the borrowing
of budgets of future instances of the task chain. This is
particularly driven by the notion that soft real-time task
chains may be deliberately allocated budgets which are
less than their WCET, in order to increase the utilisation
at the expense of the occasional missed deadline.

During normal operation the budgets are replenished
at release time. In the case of unused budget, this dy-
namic slack is handed to the next task chain with a later
deadline than the deadline of the current budget. A sim-
ple example of this is shown in Figure 4 a).

The deadline of the task chain donating the slack is
noted alongside the slack amount. A task chain with
a shorter deadline than the remaining slack cannot use
this slack using its own deadline without violating the
terms of the schedulability analysis. However, once the
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task chain has entirely consumed its budget, it can use
the slack under the deadline of the slack. Whenever the
idle task is running the budget is consumed by the idle
task.

Theorem 3.2 Slack si with associated deadline di,n

is preserved across an idle-task time δid at a rate
max (si − δidle, 0).

Proof The idle task can be considered as being part of
the last task chain running. As such the idle task con-
sumes budget for the time it is runnning. The new ar-
rival of a task chain preempts the idle task and frees up
the remaining slack.

In the case of an overrun of a task chain the budget
is enforced and the task chain may receive the budget
of a future release of the task chain with a respective
deadline of that future budget, as shown in Figure 4 b).
In this case there is obviously no donation of remaining
budget once the task chain has completed, but instead
the remaining budget needs to be preserved for the fu-
ture release of the task chain.

S
2

S
1

S
2

S
1

b)

a)

Future Budget
Borrowing

Overrun

Donation

Slack

Figure 4: Slack donation and budget borrowing

Obviously this future release has now a budget which
is less than its normal budget. In the original work this
shortfall may be covered by slack donations of other
task chains and a potential variation in the actual execu-
tion time of a task chain.

3.4 Deadline and Budget Inheritance
In the case of communicating tasks beyond the limi-
tations presented in the previous section, we need to
consider server tasks which encapsule critical sections.
The first consideration is where the time spent in the
server needs to be attributed. Using dedicated budgets
and deadlines for server tasks creates two problems:

• The partition running on the server budget and
deadline blocks the client task. In the case where
the server task is executed at the end or the begin-
ning of a task chain this may not cause major prob-
lems, but if the server task is called by a client task
which will then continue execution after the server
returns, assumptions made in Section 3.2 will be
violated.

• Secondly, in order to guarantee reasonable respon-
siveness, the server would need a short deadline
compared to its minimum interarrival time, and
thus put unnecessary constraints the system for its
schedulability analysis.

The case of server calls within the body of a client task
(as opposed to the beginning or end of the task chain) is
common in L4 based systems, as servers like the nam-
ing server are frequently called upon. The other prob-
lem with server tasks is the contention in the access
of the server and the associated dynamic priority inver-
sion. Priority inversion is caused when a high priority
task is being blocked on a sever working for a low pri-
ority task, which in turn is preempted by a medium pri-
ority task. [9] The previously mentioned borrowing of
future budgets ensures that a task is never out of budget,
but may have a very long deadline.

This can be solved in several ways.

• A server with its own deadline and budget would
take care of this, however, as mentioned earlier
this would potentially violate assumptions about
the non-blocking of tasks.

• Providing a rollback and restart of the server task
for the preempted client would require substantial
spare budget for restarts. This would scale with
the number of possible preempting threads trying
to access the server.

• A multithreaded server would be the preferred so-
lution, but this in turn requires substantial imple-
mentation by the server writer and ultimately only
reduces the length of the critical section imple-
mented by the server, which does not fully solve
the problem. This argument is based on the ob-
servation that a server usually embodies a critical
section and a set of common operations on it.

• Deadline inheritance avoids the dynamic prior-
ity inversion problem. This raises the question
where the budget for this operation would come
from. Running on a budget with a longer dead-
line would obviously violate the assumption made
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in the schedulability analysis. The alternative is to
combine deadline inheritance with budget inher-
itance. This implies that a client task using the
server needs to have extra budget to execute the
server on behalf of the client task which is already
being served by the server task.

Similar to work by Wang et al. [10] the budget associ-
ated with the deadline needs to be inherited alongside
the deadline. Avoiding the budget inheritance is possi-
ble, but would require changing the schedulability anal-
ysis to take blocking time into account, which in our
opinion would not lead to an improved schedulability
bound.

3.5 I/O Management
The use of I/O deserves special consideration, as it re-
quires somewhat counterintuitive solutions. In a micro-
kernel setting drivers usually reside in user-level. In the
investigated L4 kernel, interrupts raised by hardware
devices are delivered as asynchronous IPCs to the driver
tasks.

The first problem encountered is where to attribute
in-kernel interrupt handling. As the interrupt is first
received in the kernel, it can not be subjected to the
scheduling rules for user-level applications. As such
the in-kernel IRQ code needs to be considered in the
analysis. For this, interrupt WCETs are attributed with
deadlines such that in the model interrupts are sched-
uled immediately in the analysis, e.g. in case of two in-
terrupts simultaniously the deadline would be the com-
bination of the two WCETs for analysis purposes. The
mechanisms in the real-time proof [6] assumed in this
work are well equipped model bursts of interrupts. The
deadlines of the respective tasks are obviously impacted
by this and need to be adjusted accordingly.

The second problem is that devices may be asso-
ciated with several applications and several deadlines.
For example, a network device may receive packets
from sensor nodes with readings, as well as requests
for higher-level data from a remote user panel. In a mi-
crokernel environment the actual decoding of packets
would occur in a user-level task and as such the user-
level task would serve different task chains. As such the
client deadline and budget is not known when the user-
level driver starts decoding the package. Retroactively
assigning the budget and deadline to the task chain in
question may lead to a violation of the EDF policy in
the case of the deadline of the client being further out
than another runnable task. In this particular scenario,
partitioning of budgets is the only viable option. Similar

to interrupts, the resulting jitter needs to be considered
for the interarrival time of the subsequent task chain.

4 Road Test

4.1 Implemementation

We have implemented the aforementioned algorithms
in and on top of an OKL4 [11] kernel version 1.5.2 as
proof of concept. All tests and measurements in this
paper were taken on an XScale PXA255 based Gumstix
[12] board. The actual scheduler was implemented in
the kernel and the resource allocator was realised in the
root task, which is the first task launched in the system
and initially holds ultimate control over access rights
throughout the system. Thus it comes naturally to use
the root task to keep track of all tasks in the system and
their reserved resources. It provides the kernel with the
deadlines, budgets and minimum interarrival times of
all tasks which then stores this information in the task
control block.

The scheduler in itself is a purely EDF scheduler.
The enforcement of budgets is realised by a timer,
which is set up whenever a new task is scheduled with a
new budget and deadline. The timer will be used to pre-
empt the task if it runs out of budget. The new deadline
may be necessary when either a task is newly released,
a task chain is completed, or when a task chain changes
its budget and deadline due to exhaustion of its current
budget. Since deadlines and budgets may be passed on
via messages in task chaining or deadline inheritance,
not every release or completion forces a reprogramming
of the budget watchdog.

The ready queue and send queues are deadline
sorted. The priority and budget inheritance for servers
is achieved by using the deadline and budget of the
head of the send queue. This property is transitive in
the sense that nested servers are equally affected by the
deadline inheritance caused by the send queues of any
outer nesting level servers.

In the proof of concept implementation we have re-
moved the hand optimised fast path implementation of
the IPC primitive and have forced a reschedule after
each IPC. Call IPCs are used by the kernel to iden-
tify servers. For all other synchonous send or asyn-
chronous notify IPC the kernel checks whether the re-
ceiving thread has an individual deadline and budget
and if not implements task chaining.
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4.2 Case Study
We have developed a small, but non-trivial case study to
identify issues with the proposed method and to demon-
strate that the method may be deployed in a realistic
scenario.

The system, shown in Figure 5, emulates an in-
stant messaging device, allowing for two-way voice and
text communication across a network. Audio transmis-
sion was chosen because it provides periodic deadlines
which must be met, otherwise audible glitches can be
heard at run time. Text transmission and receiving was
added to add sporadic tasks to the system. Obviously
the text messaging has best effort scheduling character
while the audio transmission is soft real-time.

Audio Device Network Device Serial Device

REQ
TXRX

IRQ

DMA
Driver

DMA
IRQ

Ready
Data
DMA

REQ
TXRX

IRQ

Network
Server

Driver
Serial

Driver
Network

Audio
Server

Chat
Server

Memory
Shared

Message
Queue

Async IPC
Data Transfer

Hardware Signal

Adjust

Figure 5: Case Study

Hardware drivers in this system are implemented as
user-level threads. The audio driver has been omitted
from Figure 5 because DMA is used to perform the data
transfers to and from the audio device. A DMA driver
was developed for future scalability purposes, which al-
lows multiple clients to initialize multiple DMA chan-
nels and also keeps track of DMA interrupts. It should
be noted that the impact of DMA on the WCET is out-
side the scope of this paper [13].

Communication between threads is generally han-
dled by a combination of shared memory and message
queues. The shared memory is used to hold data pay-
loads, while message queues hold pointers to the pay-
loads in the shared memory. Every write to a message
queue also implicitly involves an asynchronous IPC to
the receiving thread to notify it of the valid data in the

queue.
All tasks depicted have their own budget and dead-

line pair. The reason for this is that due to the low level
nature of the case study most tasks work in two direc-
tions (e.g. the network driver receives network pack-
ets and sends network packets) and requires knowledge
from the sending to decode received packets and vice
versa. Besides the threads depicted in Figure 5 a num-
ber of servers in the system are active: The root task per-
forms the resource allocator role for the scheduler and
a core device server manages hardware devices. Both
services are not used past the initialisation phase. A
naming server is responsible to dissolve named object
references in the flat name space and an event server
is used to register notification callbacks for event no-
tifications. The notifications are asynchronous mes-
sages whereas the registrations are synchronous IPCs.
These two tasks are true servers implementing the dead-
line inheritance protocol. For evaluation purposes we
also added a task that obtains and transmits information
about the scheduling behaviour which is also not shown
in Figure 5. This monitoring task makes use of a virtual
timer server and the network server.

4.3 Discussion

As efficient IPC system calls are the backbone of
any microkernel, we have paid special attention to
these. Given the proposed requirement that syn-
chronous (blocking) IPC may only happen to servers or
tasks with deadlines being passed on by the IPC, it be-
comes apparent that under these conditions the enqueue
operation is always at the head of the queue. Making the
enqueue operation O(1) and neglegibily small. In fact
smaller than the equivalent fixed-priority implementa-
tion, showcasing another benefit of deadline passing.

However, asynchronous communication which must
be used for any IPC with a deadline potentially longer
than the deadline of the current task, may trigger a task
and thus may force an arbitrary enqueue in the ready
list. The current implementation of the ready list as
linked list is thus of O(N) with N being the number
of ready tasks. Figure 6 depicts measured data on the
enqueue operation where the x-axis indicates the posi-
tion a given task is enqueued to, with 0 being the head
of the queue. The enqueue operation in the fixed prior-
ity queues are roughly equivalent to our enqueue opera-
tion with enqueueing in the 1st position after the queue
head.

The dequeue operation on the ready queue, once a
task is blocked on a receive IPC is again O(1) and with
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27 cycles faster than the fixed-priority implementation
which reaches complexity up to the same level as the
enqueue operation. On the given hardware platform the
resetting of a timer for budget monitoring was only a
matter of a few processor cycles. In order to speed up
the enqueue operation, the ready queue may be imple-
mented as priority heap making enqueue and dequeue
O(log(N)). In a system which makes heavy use of the
message-based deadline passing and server tasks this
might not be the preferable solution.

As indicated, the current implementation leaves room
for optimisation. In particular direct process switch and
lazy dequeuing should be sped up. As opposed to the
case of fixed-priority scheduling [14], the EDF schedul-
ing policy enables a much easier reasoning about which
task of two communicating parties should run next.

Lazy dequeueing describes the effect of avoiding de-
queue operations of tasks which are likely to be en-
queued again shortly after dequeueuing. Again as op-
posed to fixed priority scheduling [14] the EDF-sorted
ready queue provides scope to optimise without losing
predictability. As defined a task may block either when
it has called a server or when it has completed the job.
In the latter case, the task should be dequeued. In the
former case we need to discern two distinct cases. If a
task is blocked on a server and the server executes on
behalf of that client task, the client task may stay en-
queued in the ready queue, with the server task forming
the new head of the queue. The reasoning is that the
task will be ready once the server has returned and the
server will be completed before the task is scheduled
again. The second case is the blocking and deadline in-
heritance. In this case the scheduler can insert the task
behind the server task it is blocked on, following the
same reasoning as before.

5 Related work
A large body of work exists in the area of this paper.
We aim to discuss the most relevant and representa-
tive subset within this section. The notion of deadlines
transported by messages through a system has been de-
veloped by Kolloch [8]. He implemented the approach
in RTEMS which is a small real-time executive with-
out memory protection. While implementing deadline
inheritance, he was not working with budgets and tem-
poral isolation, assuming instead all WCET estimates
are conservative. Additionally the target application do-
main are systems specified in SDL, whose state transi-
tion tasks are computationally light. This has two im-
plications: Firstly, server task blocking is much more
light weight and thus not overly affected by a some-
what conservative consideration in the schedulability
analysis. Secondly, his algorithm is heavily dependent
on message based deadline transportation, as individual
”tasks” are very small, but a single input might trigger
multiple state transitions.

Jansen et al. [15] have also worked on a EDF schedul-
ing solution providing deadline inheritance. They pre-
sented a schedulability analysis for their algorithm,
which has some similarities with the test used in our
paper. However, in heavily loaded system with tasks
having a long hyperperiod (i.e. least common multiple
of periods) their analysis will take substantial resources.
Also the execution times are not enforced and thus un-
controllable behaviour in the case of a best effort or a
soft real-time task misbehaving is not guaranteed.

The concept of budget inheritance during priority in-
heritance has been investigated by Lamastre et al. [16].
The motivation for their work was similar to ours in the
sense of providing support for real-time tasks of differ-
ent criticality and best effort tasks in a system making
use of servers. However, their work assumes no knowl-
edge of interarrival times of the soft real-time compo-
nents and thus the dynamic slack of a task may not be
freely donated to another task. The concept has been
extended to a bandwidth exchange server by Wang et
al. [10] which returns inherited budget at a later point
in time. Our work allows the change of parameters at
runtime and enables deadlines to be different compared
to the period of tasks.

Resource sharing in a rate based environment has
also been investigated by Liu and Goddard [17]. Instead
of deadline inheritance they have implemented a dead-
line ceiling protocoll. Similar to the work by Brandt
et al. they have implemented the approach inside the
Linux kernel. While it supports servers it does not ac-
count for other communication or I/O.
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6 Conclusions and Future Work
Within this paper we have presented an integrated
scheduling approach detailing many issues which have
been abstracted in previous work, but are crucial to
building real systems. We have taken a particular view
in enabling componentised systems with strong fault
isolation guarantees on top of a microkernel. The issues
addressed in this paper are augmentation of a schedul-
ing approach with schedulability analysis, the integra-
tion of task chains which may be used to describe acti-
vation chains in a componentised system, the impact of
system services on the budget planning, I/O, and server
tasks.

While the work presented in this paper covers a large
range of issues, there are still issues which may be ad-
dressed. The previously mentioned optimisation and
subsequent detailed comparison with a fixed-priority-
based version is an obvious avenue for future work.
We also have started to integrate RBED scheduling and
power management [18]. The integration of the solu-
tions presented in both papers and validation of this in-
tegrated approach will further improve the real-world
appeal of the presented scheduling framework. Finally
the provided bandwidth isolation mechanisms and re-
source reservation may open up the option of exploiting
these in a multiprocessor setting.
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