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Functional Correctness

Specification

Code

What

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;
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*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)
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Implications

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

Specification

C Code



© NICTA 2009 10

Proof Architecture

Specification

Proof

C Code



© NICTA 2009

Design

11

Proof Architecture

Specification

C Code



© NICTA 2009

C Code

Design

Specification

12

Proof Architecture



© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Access Control Spec Confinement



© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement



© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66



© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement



© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement



© NICTA 2009 13

System Model

idle

event

idle
event

kernel exit

States:  
User, Kernel, Idle

U

I

K

Events: 
Syscall, Exception, IRQ, VM Fault

kernel mode



© NICTA 2009 13

System Model

idle

event

idle
event

kernel exit

States:  
User, Kernel, Idle

U

I

K

Events: 
Syscall, Exception, IRQ, VM Fault

kernel mode





seL4



Kernel Design for 
Verification



Kernel Design for 
Verification



© NICTA 2009 16

Two Teams

Formal Methods Practitioners

Kernel Developers
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Two Teams

Formal Methods Practitioners

Kernel Developers

Exterminate All 
OS Abstractions!

(Engler 95)

The Power of 
Abstraction

(Liskov 09)
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Design for Verification

Reducing Complexity

Hardware
• drivers outside kernel

Concurrency
• event based kernel

• limit preemption

Code
• derive from functional representation
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C subset

Everything from C standard 

• including: 
- pointers, casts, pointer arithmetic
- data types
- structs, padding
- pointers into structs
- precise finite integer arithmetic

• plus compiler assumptions on:
- data layout, encoding, endianess

• minus:
- goto, switch fall-through
- reference to local variable
- side-effects in expressions
- function pointers (restricted)
- unions 
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Did you find any Bugs?

Bugs found

  during testing:  16

  during verification:
• in C:           160

• in design: ~150

• in spec:    ~150

                        460 bugs

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

Cost
Common Criteria EAL6:
L4.verified:                    

$87M
  $6M
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Summary

Formal proof all the way from spec to C. 

Formal Code Verification up to 10kloc:

It works.
It’s feasible.
It’s cheaper.

(It’s fun, too.
 And we’re hiring..)

• 200kloc handwritten, machine-checked proof

• ~460 bugs (160 in C)

• Verification on code, design, and spec
• Hard in the proof            Hard in the implementation
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