
seL4
Formal Verification of an OS Kernel
Gerwin Klein Kevin Elphinstone Gernot Heiser

June Andronick David Cock Philip Derrin
Dhammika Elkaduwe Kai Engelhardt Rafal Kolanski

Michael Norrish Thomas Sewell Harvey Tuch
Simon Winwood

1 microkernel

0 bugs

 8,700 l nes of Ci

qed

*conditions apply

*

2

The Goal

3

The Problem

© NICTA 2009

Small Kernels

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

5

Hardware

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

© NICTA 2009

Small Kernels

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

5

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

The Proof

The Proof

© NICTA 2009 7

Functional Correctness

Specification

Code

Proof

© NICTA 2009 7

Functional Correctness

Specification

Code

What

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

© NICTA 2009 7

Functional Correctness

Specification

Code

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

© NICTA 2009 8

*conditions apply

Specification

Proof

Code

© NICTA 2009 8

*conditions apply

Specification

Proof

Assumptions

Code

© NICTA 2009 8

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

© NICTA 2009 8

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

© NICTA 2009 9

Implications

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

Specification

C Code

© NICTA 2009 10

Proof Architecture

Specification

Proof

C Code

© NICTA 2009

Design

11

Proof Architecture

Specification

C Code

© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Access Control Spec Confinement

© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement

© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement

© NICTA 2009

C Code

Design

Specification

12

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement

© NICTA 2009 13

System Model

idle

event

idle
event

kernel exit

States:
User, Kernel, Idle

U

I

K

Events:
Syscall, Exception, IRQ, VM Fault

kernel mode

© NICTA 2009 13

System Model

idle

event

idle
event

kernel exit

States:
User, Kernel, Idle

U

I

K

Events:
Syscall, Exception, IRQ, VM Fault

kernel mode

seL4

Kernel Design for
Verification

Kernel Design for
Verification

© NICTA 2009 16

Two Teams

Formal Methods Practitioners

Kernel Developers

© NICTA 2009 16

Two Teams

Formal Methods Practitioners

Kernel Developers

Exterminate All
OS Abstractions!

(Engler 95)

The Power of
Abstraction

(Liskov 09)

© NICTA 2009 17

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

© NICTA 2009 17

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

© NICTA 2009 18

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

© NICTA 2009 18

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

© NICTA 2009 19

Design for Verification

Reducing Complexity

Hardware
• drivers outside kernel

Concurrency
• event based kernel

• limit preemption

Code
• derive from functional representation

© NICTA 2009 20

C subset

Everything from C standard

• including:
- pointers, casts, pointer arithmetic
- data types
- structs, padding
- pointers into structs
- precise finite integer arithmetic

• plus compiler assumptions on:
- data layout, encoding, endianess

• minus:
- goto, switch fall-through
- reference to local variable
- side-effects in expressions
- function pointers (restricted)
- unions

© NICTA 2009 21

Did you find any Bugs?

Bugs found

 during testing: 16

 during verification:
• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

Cost
Common Criteria EAL6:
L4.verified:

$87M
 $6M

© NICTA 2009 21

Did you find any Bugs?

Bugs found

 during testing: 16

 during verification:
• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

Cost
Common Criteria EAL6:
L4.verified:

$87M
 $6M

© NICTA 2009 22

Summary

Formal proof all the way from spec to C.

Formal Code Verification up to 10kloc:

It works.
It’s feasible.
It’s cheaper.

(It’s fun, too.
 And we’re hiring..)

• 200kloc handwritten, machine-checked proof

• ~460 bugs (160 in C)

• Verification on code, design, and spec
• Hard in the proof Hard in the implementation

Thank You

Thank You

