
Complete integer decision
procedures as derived rules in HOL

Michael Norrish
Michael.Norrish@nicta.com.au

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.1

Introduction

Historically, theorem-provers have provided incomplete
methods for universal Presburger arithmetic over N
and Z
Alternating quantifiers not handled at all

Performance of complete methods can be acceptable:
Omega Test’s performance on goals proved by
Fourier-Motzkin variable elimination (used in HOL,
Isabelle/HOL and Coq), should be identical.

Provide illustration of implementation techniques for
derived rules in LCF-like setting

Will cover Omega Test (paper also describes Cooper’s
algorithm)

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.2

Presburger formulas

formula ::= formula ∧ formula | formula ∨ formula |

¬formula | ∃var. formula | ∀var. formula |

numeral | term | term relop term
term ::= numeral | term + term | − term |

numeral ∗ term | var
relop ::= < | ≤ | = | ≥ | >

var ::= x | y | z . . .

numeral ::= 0 | 1 | 2 . . .

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.3

Presburger formulas

formula ::= formula ∧ formula | formula ∨ formula |

¬formula | ∃var. formula | ∀var. formula |term “is divisible by” numeral

numeral | term | term relop term
term ::= numeral | term + term | − term |

numeral ∗ term | var
relop ::= < | ≤ | = | ≥ | >

var ::= x | y | z . . .

numeral ::= 0 | 1 | 2 . . .

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.3

FMVE Basics in a Slide

Over R (or Q), with c, d > 0:

(∃x : R. a ≤ cx ∧ dx ≤ b) ≡ ad ≤ bc

(⇒: from transitivity of ≤. ⇐: pick x to be b
d .)

Provides a quantifier elimination procedure for R
extends to multiple inequalities

of constraints on RHS =

(# of upper bounds)(# of lower bounds)

extends to handle <

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.4

FMVE for Z?

Central theorem is false:

(∃x : Z. 3 ≤ 2x ≤ 3) 6≡ 6 ≤ 6

But one direction still works:

(∃x. a ≤ cx ∧ dx ≤ b)⇒ ad ≤ bc

Thus an incomplete semi-procedure for universal
formulas over Z:
1. Compute negation: (∀x. P (x)) ≡ ¬(∃x. ¬P (x))

2. Compute consequences: if (∃x. ¬P (x))⇒ ⊥ then
(∃x. ¬P (x)) ≡ ⊥ and (∀x. P (x)) ≡ >

This is Phase 1 of the Omega Test (when there are no
alternating quantifiers)

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.5

Some Shadows

Given ∃x.(∧i ai ≤ cix) ∧ (
∧
j djx ≤ bj)

The formula ∧

i,j

aidj ≤ bjci

is known as the real shadow.

If all of the ci or all of the dj are equal to 1, then the real
shadow is exact

If the shadow is exact, then the formula can be used as
an equivalence.

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.6

Exact Shadows

When c = 1 or d = 1, the core theorem

(∃x : Z. a ≤ cx ∧ dx ≤ b) ≡ ad ≤ bc

is valid because
⇒: transitivity still holds
⇐: take x = b if d = 1, x = a if c = 1

Pugh claims many problems in his domain have exact
shadows. Experience suggests the same is true in
interactive theorem-proving.

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.7

Dark Shadows

The formula
∧

i,j

(ci − 1)(dj − 1) ≤ bjci − aidj

is known as the dark shadow. (NB: if all ci or all dj are
one, then this is the same as the real shadow.)

The real shadow provides a test for unsatisfiability

The dark shadow tests for satisfiability, because

(c− 1)(d− 1) ≤ bc− ad⇒ (∃x. a ≤ cx ∧ dx ≤ b)

(proof in paper)

This is the Phase 2 of the Omega Test

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.8

Splinters—I

Purely existential formulas are “often”
proved false by their real shadow; or
proved true by their dark shadow

But in “rare” cases, the main theorem is needed. Let m
be the maximum of all the djs. Then

(∃x.(∧i ai ≤ cix) ∧ (
∧
j djx ≤ bj)) ≡

(
∧
i,j(ci − 1)(dj − 1) ≤ bjci − aidj)

∨
∨
i

∨bmci−ci−mm c
k=0

(
∃x. (

∧
i ai ≤ cix) ∧ (

∧
j djx ≤ bj) ∧

(cix = ai + k)

)

dark shadowa splinter

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.9

Splinters—I

Purely existential formulas are “often”
proved false by their real shadow; or
proved true by their dark shadow

But in “rare” cases, the main theorem is needed. Let m
be the maximum of all the djs. Then

(∃x.(∧i ai ≤ cix) ∧ (
∧
j djx ≤ bj)) ≡

(
∧
i,j(ci − 1)(dj − 1) ≤ bjci − aidj)

∨
∨
i

∨bmci−ci−mm c
k=0

(
∃x. (

∧
i ai ≤ cix) ∧ (

∧
j djx ≤ bj) ∧

(cix = ai + k)

)

dark shadow

a splinter

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.9

Splinters—II

A splinter

∃x. (
∧

i

ai ≤ cix) ∧ (
∧

j

djx ≤ bj) ∧ (cix = ai + k)

does represent a smaller problem than the original
because the extra equality allows x to be eliminated.

When quantifiers alternate, and there is no exact
shadow, the main theorem is used as an equivalence,
and splinters can’t be avoided.

Splinters must also be checked if neither real nor dark
shadows decide a goal.

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.10

Implementations in HOL

Theorem instance re-proof: The proof of the
technique’s “main theorem” is played out for each
problem instance. (Used to implement Cooper’s
algorithm; see paper.)

Pro forma theorems: The “main theorem” is proved
once and for all, and is instantiated with each problem.

External proof discovery: An external tool finds a
proof that can then be replayed in HOL. If proof search
dominates this can be very effective.

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.11

External proof discovery

External proof discovery works best when proofs are
short, but finding a proof is slow

Manipulating logical formulas in the HOL kernel is
always “slow” if it can be done elsewhere (in a C
program?) instead

Proofs are short in our domain:
Prove an existential formula valid by providing
witnesses
Prove an existential formula invalid by specifying the
chain of ≤-transitivity inferences that leads to ⊥

External proofs only for formulas with no alternation of
quantifiers

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.12

Shadow computation in ML

Provide an ML function that takes a vector of constraints
and returns a result:

datatype ’a result =
CONTR of ’a deriv

| SATISFIABLE of Arbint.int PIntMap.t
| NO_CONCL

A derivation is a proof of 0 ≤ c1x1 + . . .+ cnxn + c

datatype ’a deriv =
ASM of ’a

| REAL_COMBIN of int * ’a deriv * ’a deriv
| GCD_CHECK of ’a deriv
| DIRECT_CONTR of ’a deriv * ’a deriv

Code can be completely decoupled from HOL.
TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.13

Replaying proofs

With witnesses: instantiate input formula and peform
ground reduction to check

With proof tree for refutation: small piece of ML code
plays out corresponding proof in HOL kernel

If ML code returns NO_CONCL or if check fails, resort to
pro forma approach

Errors in ML code masked by use of alternative method

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.14

Using pro forma theorems

The “main theorem” and its supporting lemmas are
results about formulas of a particular form

HOL users work with arithmetic formulas that are
existentially or universally quantified predicates over Z,
with type Z→ B
Can’t prove results by induction over Z→ B
But can prove results over lists of constraints,
interpreted by special constants

Using the theorem will involve at least O(n) translation
work: into constraint lists with interpreters; and then
back out again.

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.15

Example: pro forma for exact shadows
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ⇒
EVERY fst1 uppers ∨ EVERY fst1 lowers ⇒
((∃x. evalupper x uppers ∧ evallower x lowers) ≡
real_shadow uppers lowers)

uppers and lowers are lists of pairs of numbers (x’s
coefficient and its upper/lower bound)

fst1(c, b) ≡ (c = 1)

evallower x [] = >
evallower x ((c,lb)::cs) =
lb <= c * x ∧ evallower x cs

real_shadow uppers lowers =
∀c d lb ub.

MEM (c,ub) uppers ∧ MEM (d,lb) lowers ⇒
c * lb <= d * ub

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.16

Using the pro forma theorem

(∃x. 3x+ y ≤ 10 ∧ 20 ≤ x− y)

(re-arrange)
≡ (∃x. 3x ≤ 10− y ∧ 20 + y ≤ x)

(re-express with evalupper & evallower)
≡ (∃x. evalupper x [(3, 10− y)] ∧ evallower x [(1, 20 + y)])

(apply theorem)
≡ real_shadow [(3, 10− y)] [(1, 20 + y)]

(unfold def’n of real_shadow)
≡ 3(20 + y) ≤ (10− y)

≡ 4y ≤ −50

≡ y ≤ −13

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.17

Using the pro forma theorem

(∃x. 3x+ y ≤ 10 ∧ 20 ≤ x− y)

(re-arrange)
≡ (∃x. 3x ≤ 10− y ∧ 20 + y ≤ x)

(re-express with evalupper & evallower)
≡ (∃x. evalupper x [(3, 10− y)] ∧ evallower x [(1, 20 + y)])

(apply theorem)
≡ real_shadow [(3, 10− y)] [(1, 20 + y)]

(unfold def’n of real_shadow)
≡ 3(20 + y) ≤ (10− y)

≡ 4y ≤ −50

≡ y ≤ −13

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.17

Using the pro forma theorem

(∃x. 3x+ y ≤ 10 ∧ 20 ≤ x− y)

(re-arrange)
≡ (∃x. 3x ≤ 10− y ∧ 20 + y ≤ x)

(re-express with evalupper & evallower)
≡ (∃x. evalupper x [(3, 10− y)] ∧ evallower x [(1, 20 + y)])

(apply theorem)
≡ real_shadow [(3, 10− y)] [(1, 20 + y)]

(unfold def’n of real_shadow)
≡ 3(20 + y) ≤ (10− y)

≡ 4y ≤ −50

≡ y ≤ −13

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.17

Using the pro forma theorem

(∃x. 3x+ y ≤ 10 ∧ 20 ≤ x− y)

(re-arrange)
≡ (∃x. 3x ≤ 10− y ∧ 20 + y ≤ x)

(re-express with evalupper & evallower)
≡ (∃x. evalupper x [(3, 10− y)] ∧ evallower x [(1, 20 + y)])

(apply theorem)
≡ real_shadow [(3, 10− y)] [(1, 20 + y)]

(unfold def’n of real_shadow)
≡ 3(20 + y) ≤ (10− y)

≡ 4y ≤ −50

≡ y ≤ −13

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.17

Using the pro forma theorem

(∃x. 3x+ y ≤ 10 ∧ 20 ≤ x− y)

(re-arrange)
≡ (∃x. 3x ≤ 10− y ∧ 20 + y ≤ x)

(re-express with evalupper & evallower)
≡ (∃x. evalupper x [(3, 10− y)] ∧ evallower x [(1, 20 + y)])

(apply theorem)
≡ real_shadow [(3, 10− y)] [(1, 20 + y)]

(unfold def’n of real_shadow)
≡ 3(20 + y) ≤ (10− y)

≡ 4y ≤ −50

≡ y ≤ −13

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.17

Pre-processing for efficiency

The Omega Test’s big disadvantage is that it requires
formula under quantifier to be eliminated to be in DNF

Consider

∀x. x 6= 10 ∧ x 6= 11 ∧ 9 < x ≤ 12⇒ x = 12

Negate, remove 6=, <:

∃x. (x ≤ 9 ∨ 11 ≤ x) ∧ (x ≤ 10 ∨ 12 ≤ x) ∧
10 ≤ x ∧ x ≤ 12 ∧ (x ≤ 11 ∨ 13 ≤ x)

Evaluate 8 (= 23) clauses.

Clever preparation of input formulas can make orders of
magnitude difference

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.18

Pre-processing for scope

Procedure for Z trivially extends to be one for N (or any
mixture of N and Z) too

Unfold definitions of constants like MAX and ∃!
Ignore non-Presburger sub-terms by trying to prove
more general goals. E.g., ∀x, y. xy > 6⇒ 2xy > 13
becomes ∀z. z > 6⇒ 2z > 13

Handle (integer) division by constants:

P (x/d) ≡
∃q r. (x = qd+ r) ∧ (0 ≤ r < d ∨ d < r ≤ 0) ∧ P (q)

(Pre-processing code shared with Cooper’s algorithm)

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.19

Comparisons?

Comparisons are odious, but. . .

Omega Test looks quicker than Cooper’s algorithm on
small sample

On the other hand

Omega Test can be destroyed by examples that need
work converting to DNF

I wrote the implementation of Cooper’s algorithm before
that of the Omega Test; despite some sharing, code is
probably better in Omega Test implementation

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.20

Conclusions

Used well-understood techniques to implement
complete methods for Z
Demonstrated that complete methods need not be
infeasible

Made HOL slightly more usable

TPHOLs’03: Complete integer decision procedures as derived rules in HOL – p.21

	Introduction
	Presburger formulas
	FMVE Basics in a Slide
	FMVE for ints ?
	Some Shadows
	Exact Shadows
	Dark Shadows
	Splinters---I
	Splinters---II
	Implementations in HOL
	External proof discovery
	Shadow computation in ML
	Replaying proofs
	Using emph {pro forma} theorems
	Example: emph {pro forma} for exact shadows
	Using the emph {pro forma} theorem
	Pre-processing for efficiency
	Pre-processing for scope
	Comparisons?
	Conclusions

