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°

Introduction

-

Historically, theorem-provers have provided incomplete
methods for universal Presburger arithmetic over N
and Z

Alternating quantifiers not handled at all

Performance of complete methods can be acceptable:

s Omega Test’s performance on goals proved by
Fourier-Motzkin variable elimination (used in HOL,
Isabelle/HOL and Coq), should be identical.

Provide illustration of implementation techniques for
derived rules in LCF-like setting

Will cover Omega Test (paper also describes Cooper’s
algorithm)

|
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Presburger formulas

o N

formula ::= formulan formula | formulav formula |
—formula | 3dvar.formula | Yvar. formula |

numeral|term | term relop term

term ::= numeral | term+term | —term |
numeral x term | var

relop =< | < | =0 > | >

var = x |y | oz...

numeral ::= 0 | 1 | 2..

o |
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Presburger formulas

formula ::= formulan formula | formulav formula |

term ::= numeral | term+term | —term |
numeral x term | var

relop =< | < | =0 > | >

var = |y | z..

numeral ::= 0 | 1 | 2..

o |
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FMVE Basics in a Slide
-

Over R (or Q), with ¢, d > 0:

(drx:R.a<cxAdr<b)=ad<bc
(=: from transitivity of <. <: pick x to be 2.)

Provides a quantifier elimination procedure for R
o extends to multiple inequalities

# of constraints on RHS =
(# of upper bounds)(# of lower bounds)

® extends to handle <

o |
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FMVE for Z.?

Central theorem is false:

(Ar:2.3<20<3)£6<6
But one direction still works:
(x. a < cx ANdx < b) = ad < be

Thus an incomplete semi-procedure for universal
formulas over Z:

1. Compute negation: (Vz. P(z)) = —(3z. ~P(x))
2. Gompute consequences: if (3z. =P(x)) = L then
(dx. =P(x)) = L and (Vx. P(z)) =T

This is Phase 1 of the Omega Test (when there are no
alternating quantifiers) |
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Some Shadows

o N

Given 3z.(A; a; < cix) A (N, djz < by)

® The formula
/\ (l@‘dj S bjci
o]
IS known as the real shadow.

» If all of the ¢; or all of the d; are equal to 1, then the real
shadow is exact

o |[f the shadow is exact, then the formula can be used as
an equivalence.

o |
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Exact Shadows
-

® Whenc=1o0rd=1, the core theorem
(Fx:Z.a <cxNdx <b)=ad < bc

Is valid because
s = transitivity still holds
o = takez=bifd=1,z2=alfc=1
# Pugh claims many problems in his domain have exact

shadows. Experience suggests the same is true in
interactive theorem-proving.

o |
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Dark Shadows

The formula

/\(Ci — 1)(Clj — 1) S bij,; — aidj
1,

Is known as the dark shadow. (NB: if all ¢; or all d; are
one, then this is the same as the real shadow.)

The real shadow provides a test for unsatisfiability
The dark shadow tests for satisfiability, because

(c—1)(d—1) <bc—ad= (x. a < cx ANdzx < b)

(proof in paper)
This is the Phase 2 of the Omega Test J

TPHOLSs’03: Complete integer decision procedures as derived rules in HOL — p.8



Splinters—I

o N

o Purely existential formulas are “often”
s proved false by their real shadow; or
s proved true by their dark shadow

® Butin “rare” cases, the main theorem is needed. Let m
be the maximum of all the d;s. Then

(Fz.(\; @i < cix) NN\ djz < bj)) =

(Aij(ci = 1)(dj = 1) < bje; — ady)

V
e () (o< o) A (A o <) A
\/ \/ ( (cw:az‘j‘k) )

o |
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Splinters—I

o N

o Purely existential formulas are “often”
s proved false by their real shadow; or
s proved true by their dark shadow

® Butin “rare” cases, the main theorem is needed. Let m
be the maximum of all the d;s. Then

lint
(3N ai < ciz) A (N djz < b)) = o
"""" WNigle = DUd; = 1) < bjei = aidy)
V
............................................ Yo oo
y \/mezn? | (5, (N @i <ciz) A(N\;djz < bj) A
dark shadow PR (Cix = a; + k)

o |
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Splinters—II
-

# A splinter

. (/\ai < cix)/\(/\dj:c <bj) N(cix =a; + k)
J

does represent a smaller problem than the original
because the extra equality allows z to be eliminated.

# When quantifiers alternate, and there is no exact
shadow, the main theorem is used as an equivalence,
and splinters can’t be avoided.

# Splinters must also be checked if neither real nor dark
shadows decide a goal.

o |
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Implementations in HOL

o N

Theorem instance re-proof: The proof of the
technique’s “main theorem” is played out for each
problem instance. (Used to implement Cooper’s

algorithm; see paper.)

Pro forma theorems: The “main theorem” is proved
once and for all, and is instantiated with each problem.

External proof discovery: An external tool finds a
proof that can then be replayed in HOL. If proof search
dominates this can be very effective.

o |
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External proof discovery

-

External proof discovery works best when proofs are
short, but finding a proof is slow

Manipulating logical formulas in the HOL kernel is
always “slow” if it can be done elsewhere (ina C
program?) instead

Proofs are short in our domain:

» Prove an existential formula valid by providing
witnesses

» Prove an existential formula invalid by specifying the
chain of <-transitivity inferences that leads to L

External proofs only for formulas with no alternation of
quantifiers

|
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Shadow computation in ML

fProvide an ML function that takes a vector of constraints T
and returns a result:

datatype "a result =
CONTR of ’'a deriv

| SATISFIABLE of Arbint.int PIntMap.t
| NO_CONCL

A derivation is a proof of 0<cix1+...+cpan +c

datatype 'a deriv =
ASM of ’"a

REALL. COMBIN of int * 'a deriv *
GCD_CHECK of ’"a deriv
DIRECT CONTR of ’"a deriv * "a deriv

LCode can be completely decoupled from HOL. J
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Replaying proofs
-

With witnesses: instantiate input formula and peform
ground reduction to check

With proof tree for refutation: small piece of ML code
plays out corresponding proof in HOL kernel

If ML code returns NO_coNCL or if check fails, resort to
pro forma approach

Errors in ML code masked by use of alternative method

|

TPHOLSs'03: Complete integer decision procedures as derived rules in HOL — p.14



e

Using pro forma theorems

-

The “main theorem” and its supporting lemmas are
results about formulas of a particular form

HOL users work with arithmetic formulas that are
existentially or universally quantified predicates over Z,
with type Z — B

Can’t prove results by induction over Z — B

But can prove results over lists of constraints,
interpreted by special constants

Using the theorem will involve at least O(n) translation
work: into constraint lists with interpreters; and then
back out again.

|
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Example: pro forma for exact shadows

-

.

EVERY fst_nzero uppers A EVERY fst_nzero lowers =
EVERY fstl uppers V EVERY fstl lowers =
((dx. evalupper x uppers A evallower x lowers) =

real_shadow uppers lowers)

°

uppers and lowers are lists of pairs of numbers (x’s
coefficient and its upper/lower bound)

fstl(c,b) =(c=1)

evallower x [] = T
evallower x ((c,1lb) ::cs) =
1lb <= ¢ * x A evallower x cs

real_shadow uppers lowers =
Ve d 1b ub.

MEM (c,ub) uppers A MEM (d,1lb) lowers =
c * 1lb <= d * ub J
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Using the pro forma theorem

o N

(. 3x+y <10N20 <z —y)
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Using the pro forma theorem

o N

(Fz. 3z +y <10AN20 <z —y)
(re-arrange)
= (dz.3z <10—yAN20+y < x)

o |
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Using the pro forma theorem

o N

(Jx. 3z +y <10AN20 <z —y)
(re-arrange)
(Jx. 32 <10 -y A20+y < x)
(re-express with evalupper & evallower)
(dx. evalupper z [(3,10 — y)] Aevallower z [(1,20 + y)])

o |
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Using the pro forma theorem

o N

(. 3x+y <10N20 <z —y)
(re-arrange)

(Jx. 32 <10 -y A20+y < x)
(re-express with evalupper & evallower)

(dx. evalupper z [(3,10 — y)] Aevallower z [(1,20 + y)])
(apply theorem)

real_shadow [(3,10 — y)] [(1,20 + y)]

o |
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-

Using the pro forma theorem

-

(Jx. 3z +y <10AN20 <z —y)
(re-arrange)
(Jx. 32 <10 -y A20+y < x)
(re-express with evalupper & evallower)
(dx. evalupper z [(3,10 — y)] Aevallower z [(1,20 + y)])
(apply theorem)
real_shadow [(3,10 — y)] [(1,20 + y)]
(unfold def’n of real_shadow)
3(20 +y) < (10 — y)
4y < —5H0
y < —13

|
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°

Pre-processing for efficiency

-

The Omega Test’s big disadvantage is that it requires
formula under quantifier to be eliminated to be in DNF

Consider
Ve,x #10ANz #11AN9<2<12= 2 =12

Negate, remove #, <:

Jz. (z <9V 1I1<z2)A(x <10 vV 12<2) A
0<zNe<12A(x <11 V 13 <)

Evaluate 8 (= 2°) clauses.

Clever preparation of input formulas can make orders of
magnitude difference J
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°

Pre-processing for scope

-

Procedure for Z trivially extends to be one for N (or any
mixture of N and Z) too

Unfold definitions of constants like MAX and 3!

Ignore non-Presburger sub-terms by trying to prove
more general goals. E.g., Vz,y. zy > 6 = 22y > 13
becomes Vz. z > 6 = 2z > 13

Handle (integer) division by constants:

P(x/d) =
Jgr.(z=qd+r)AN0<r<dvd<r<0)AP(q)

(Pre-processing code shared with Cooper’s algorithm)

|
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Comparisons?

o N

Comparisons are odious, but. ..

#® Omega Test looks quicker than Cooper’s algorithm on
small sample

On the other hand

# Omega Test can be destroyed by examples that need
work converting to DNF

# | wrote the implementation of Cooper’s algorithm before
that of the Omega Test; despite some sharing, code is
probably better in Omega Test implementation

o |
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Conclusions

-

Used well-understood technigques to implement
complete methods for Z

Demonstrated that complete methods need not be
infeasible

Made HOL slightly more usable

|
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