Complete integer decision procedures as derived rules in HOL
 Michael Norrish

Michael. Norrish@nicta.com.au

Introduction

- Historically, theorem-provers have provided incomplete methods for universal Presburger arithmetic over \mathbb{N} and \mathbb{Z}
- Alternating quantifiers not handled at all
- Performance of complete methods can be acceptable:
- Omega Test's performance on goals proved by Fourier-Motzkin variable elimination (used in HOL, Isabelle/HOL and Coq), should be identical.
- Provide illustration of implementation techniques for derived rules in LCF-like setting
- Will cover Omega Test (paper also describes Cooper's algorithm)

Presburger formulas

$\left.\begin{array}{rlrl}\text { formula }: & := & \text { formula } \wedge \text { formula | formula } \vee \text { formula | } \\ & \\ & \neg \text { formula | } \exists \text { var. formula | } \forall \text { var. formula } \\ & \text { numeral } \mid \text { term | term relop term }\end{array}\right\}$

Presburger formulas

formula $::=$ formula \wedge formula | formula \vee formula term "is divisible by" numeral \neg formula | \exists var. formula | \forall var. formula numeral|term : | term relop term
term ::= numeral | term + term | -term | numeral*term | var
relop $::=<|\leq|=|\geq|>$
var : := x | y | $z \ldots$
numeral $::=0$ | 1 | $2 \ldots$

FMVE Basics in a Slide

Over $\mathbb{R}(\operatorname{or} \mathbb{Q})$, with $c, d>0$:

$$
(\exists x: \mathbb{R} . a \leq c x \wedge d x \leq b) \equiv a d \leq b c
$$

(\Rightarrow : from transitivity of $\leq . \Leftarrow$: pick x to be $\frac{b}{d}$.)
Provides a quantifier elimination procedure for \mathbb{R}

- extends to multiple inequalities

$$
\begin{aligned}
& \text { \# of constraints on RHS = } \\
& \text { (\# of upper bounds)(\# of lower bounds) }
\end{aligned}
$$

- extends to handle $<$

FMVE for \mathbb{Z} ?

- Central theorem is false:

$$
(\exists x: \mathbb{Z} .3 \leq 2 x \leq 3) \not \equiv 6 \leq 6
$$

- But one direction still works:

$$
(\exists x \cdot a \leq c x \wedge d x \leq b) \Rightarrow a d \leq b c
$$

- Thus an incomplete semi-procedure for universal formulas over \mathbb{Z} :

1. Compute negation: $(\forall x . P(x)) \equiv \neg(\exists x . \neg P(x))$
2. Compute consequences: if $(\exists x . \neg P(x)) \Rightarrow \perp$ then $(\exists x . \neg P(x)) \equiv \perp$ and $(\forall x . P(x)) \equiv \top$

- This is Phase 1 of the Omega Test (when there are no alternating quantifiers)

Some Shadows

Given $\exists x .\left(\bigwedge_{i} a_{i} \leq c_{i} x\right) \wedge\left(\bigwedge_{j} d_{j} x \leq b_{j}\right)$

- The formula

$$
\bigwedge_{i, j} a_{i} d_{j} \leq b_{j} c_{i}
$$

is known as the real shadow.

- If all of the c_{i} or all of the d_{j} are equal to 1 , then the real shadow is exact
- If the shadow is exact, then the formula can be used as an equivalence.

Exact Shadows

- When $c=1$ or $d=1$, the core theorem

$$
(\exists x: \mathbb{Z} \cdot a \leq c x \wedge d x \leq b) \equiv a d \leq b c
$$

is valid because

- \Rightarrow : transitivity still holds
- \Leftarrow : take $x=b$ if $d=1, x=a$ if $c=1$
- Pugh claims many problems in his domain have exact shadows. Experience suggests the same is true in interactive theorem-proving.

Dark Shadows

- The formula

$$
\bigwedge\left(c_{i}-1\right)\left(d_{j}-1\right) \leq b_{j} c_{i}-a_{i} d_{j}
$$

is known as the dark shadow. (NB: if all c_{i} or all d_{j} are one, then this is the same as the real shadow.)

- The real shadow provides a test for unsatisfiability
- The dark shadow tests for satisfiability, because

$$
(c-1)(d-1) \leq b c-a d \Rightarrow(\exists x \cdot a \leq c x \wedge d x \leq b)
$$

(proof in paper)

- This is the Phase 2 of the Omega Test

Splinters-I

- Purely existential formulas are "often"
- proved false by their real shadow; or
- proved true by their dark shadow
- But in "rare" cases, the main theorem is needed. Let m be the maximum of all the $d_{j} \mathrm{~s}$. Then
$\left(\exists x .\left(\bigwedge_{i} a_{i} \leq c_{i} x\right) \wedge\left(\bigwedge_{j} d_{j} x \leq b_{j}\right)\right) \equiv$

$$
\begin{gathered}
\left(\bigwedge_{i, j}\left(c_{i}-1\right)\left(d_{j}-1\right) \leq b_{j} c_{i}-a_{i} d_{j}\right) \\
\vee \\
\bigvee_{i} \bigvee_{k=0}^{\left\lfloor\frac{m c_{i}-c_{i}-m}{m}\right\rfloor}\left(\exists x . \begin{array}{c}
\left(\bigwedge_{i} a_{i} \leq c_{i} x\right) \wedge\left(\bigwedge_{j} d_{j} x \leq b_{j}\right) \wedge \\
\left(c_{i} x=a_{i}+k\right)
\end{array}\right)
\end{gathered}
$$

Splinters-I

- Purely existential formulas are "often"
- proved false by their real shadow; or
- proved true by their dark shadow
- But in "rare" cases, the main theorem is needed. Let m be the maximum of all the $d_{j} \mathrm{~s}$. Then

$$
\left(\exists x \cdot\left(\bigwedge_{i} a_{i} \leq c_{i} x\right) \wedge\left(\bigwedge_{j} d_{j} x \leq b_{j}\right)\right) \equiv
$$

$$
\begin{aligned}
& >\left(\bigwedge_{i, j}\left(c_{i}-1\right)\left(d_{j}-1\right) \leq b_{j} c_{i}-a_{i} d_{j}\right) \\
& \text { V } \\
& \bigvee_{i} \bigvee_{k=0}^{\left\lfloor\frac{m c_{i}-c_{i}-m}{m}\right\rfloor} \vdots\left(\begin{array}{c}
\exists x . \\
\left(\bigwedge_{i} a_{i} \leq c_{i} x\right) \wedge\left(\bigwedge_{j} d_{j} x \leq b_{j}\right) \wedge \\
\left(c_{i} x=a_{i}+k\right)
\end{array}\right)
\end{aligned}
$$

Splinters-II

- A splinter

$$
\exists x .\left(\bigwedge_{i} a_{i} \leq c_{i} x\right) \wedge\left(\bigwedge_{j} d_{j} x \leq b_{j}\right) \wedge\left(c_{i} x=a_{i}+k\right)
$$

does represent a smaller problem than the original because the extra equality allows x to be eliminated.

- When quantifiers alternate, and there is no exact shadow, the main theorem is used as an equivalence, and splinters can't be avoided.
- Splinters must also be checked if neither real nor dark shadows decide a goal.

Implementations in HOL

Theorem instance re-proof: The proof of the technique's "main theorem" is played out for each problem instance. (Used to implement Cooper's algorithm; see paper.)
Pro forma theorems: The "main theorem" is proved once and for all, and is instantiated with each problem.
External proof discovery: An external tool finds a proof that can then be replayed in HOL. If proof search dominates this can be very effective.

External proof discovery

- External proof discovery works best when proofs are short, but finding a proof is slow
- Manipulating logical formulas in the HOL kernel is always "slow" if it can be done elsewhere (in a C program?) instead
- Proofs are short in our domain:
- Prove an existential formula valid by providing witnesses
- Prove an existential formula invalid by specifying the chain of \leq-transitivity inferences that leads to \perp
- External proofs only for formulas with no alternation of quantifiers

Shadow computation in ML

Provide an ML function that takes a vector of constraints and returns a result:

```
datatype 'a result =
        CONTR of 'a deriv
        SATISFIABLE of Arbint.int PIntMap.t
        NO_CONCL
```

A derivation is a proof of $0 \leq c_{1} x_{1}+\ldots+c_{n} x_{n}+c$

```
datatype 'a deriv =
``` ASM of 'a
| REAL_COMBIN of int * 'a deriv * 'a deriv
| GCD_CHECK of 'a deriv
| DIRECT_CONTR of 'a deriv * 'a deriv
Code can be completely decoupled from HOL.

\section*{Replaying proofs}
- With witnesses: instantiate input formula and peform ground reduction to check
- With proof tree for refutation: small piece of ML code plays out corresponding proof in HOL kernel
- If ML code returns No_CONCL or if check fails, resort to pro forma approach
- Errors in ML code masked by use of alternative method

\section*{Using pro forma theorems}
- The "main theorem" and its supporting lemmas are results about formulas of a particular form
- HOL users work with arithmetic formulas that are existentially or universally quantified predicates over \(\mathbb{Z}\), with type \(\mathbb{Z} \rightarrow \mathbb{B}\)
- Can't prove results by induction over \(\mathbb{Z} \rightarrow \mathbb{B}\)
- But can prove results over lists of constraints, interpreted by special constants
- Using the theorem will involve at least \(O(n)\) translation work: into constraint lists with interpreters; and then back out again.

\section*{Example: pro forma for exact shadows}
```

EVERY fst_nzero uppers ^ EVERY fst_nzero lowers =>
EVERY fst1 uppers V EVERY fst1 lowers }
((\existsx. evalupper x uppers ^ evallower x lowers) \equiv
real_shadow uppers lowers)

```
- uppers and lowers are lists of pairs of numbers (x's coefficient and its upper/lower bound)
- fstr \((c, b) \equiv(c=1)\)
- evallower x [] = T
evallower x ((c,lb)::cs) =
\[
\text { lb <= c * x } \wedge \text { evallower x cs }
\]
- real_shadow uppers lowers = \(\forall c\) d lb ub.

MEM (c,ub) uppers \(\wedge\) MEM (d,lb) lowers \(\Rightarrow\) c * lb <= d * ub

\section*{Using the pro forma theorem}
\((\exists x .3 x+y \leq 10 \wedge 20 \leq x-y)\)

\section*{Using the pro forma theorem}
\((\exists x .3 x+y \leq 10 \wedge 20 \leq x-y)\) (re-arrange)
\(\equiv(\exists x .3 x \leq 10-y \wedge 20+y \leq x)\)

\section*{Using the pro forma theorem}
\((\exists x .3 x+y \leq 10 \wedge 20 \leq x-y)\)
(re-arrange)
\(\equiv(\exists x .3 x \leq 10-y \wedge 20+y \leq x)\)
(re-express with evalupper \& evallower)
\(\equiv(\exists x\). evalupper \(x[(3,10-y)] \wedge\) evallower \(x[(1,20+y)])\)

\section*{Using the pro forma theorem}
\((\exists x .3 x+y \leq 10 \wedge 20 \leq x-y)\)
(re-arrange)
\(\equiv(\exists x .3 x \leq 10-y \wedge 20+y \leq x)\)
(re-express with evalupper \& evallower)
\(\equiv(\exists x\). evalupper \(x[(3,10-y)] \wedge\) evallower \(x[(1,20+y)])\) (apply theorem)
\(\equiv\) real_shadow \([(3,10-y)][(1,20+y)]\)

\section*{Using the pro forma theorem}
\((\exists x .3 x+y \leq 10 \wedge 20 \leq x-y)\)
(re-arrange)
\(\equiv(\exists x .3 x \leq 10-y \wedge 20+y \leq x)\)
(re-express with evalupper \& evallower)
\(\equiv(\exists x\). evalupper \(x[(3,10-y)] \wedge\) evallower \(x[(1,20+y)])\) (apply theorem)
\(\equiv\) real_shadow \([(3,10-y)][(1,20+y)]\)
(unfold def'n of real_shadow)
\(\equiv 3(20+y) \leq(10-y)\)
\(\equiv 4 y \leq-50\)
\(\equiv y \leq-13\)

\section*{Pre-processing for efficiency}
- The Omega Test's big disadvantage is that it requires formula under quantifier to be eliminated to be in DNF
- Consider
\[
\forall x . x \neq 10 \wedge x \neq 11 \wedge 9<x \leq 12 \Rightarrow x=12
\]
- Negate, remove \(\neq,<\) :
\[
\begin{aligned}
\exists x . & (x \leq 9 \vee 11 \leq x) \wedge(x \leq 10 \vee 12 \leq x) \wedge \\
10 & \leq x \wedge x \leq 12 \wedge(x \leq 11 \vee 13 \leq x)
\end{aligned}
\]
- Evaluate \(8\left(=2^{3}\right)\) clauses.
- Clever preparation of input formulas can make orders of magnitude difference

\section*{Pre-processing for scope}
- Procedure for \(\mathbb{Z}\) trivially extends to be one for \(\mathbb{N}\) (or any mixture of \(\mathbb{N}\) and \(\mathbb{Z}\)) too
- Unfold definitions of constants like MAX and \(\exists\) !
- Ignore non-Presburger sub-terms by trying to prove more general goals. E.g., \(\forall x, y . x y>6 \Rightarrow 2 x y>13\) becomes \(\forall z . z>6 \Rightarrow 2 z>13\)
- Handle (integer) division by constants:
\[
\begin{aligned}
& P(x / d) \equiv \\
& \quad \exists q r .(x=q d+r) \wedge(0 \leq r<d \vee d<r \leq 0) \wedge P(q)
\end{aligned}
\]
- (Pre-processing code shared with Cooper's algorithm)

\section*{Comparisons?}

Comparisons are odious, but...
- Omega Test looks quicker than Cooper's algorithm on small sample

On the other hand
- Omega Test can be destroyed by examples that need work converting to DNF
- I wrote the implementation of Cooper's algorithm before that of the Omega Test; despite some sharing, code is probably better in Omega Test implementation

\section*{Conclusions}
- Used well-understood techniques to implement complete methods for \(\mathbb{Z}\)
- Demonstrated that complete methods need not be infeasible
- Made HOL slightly more usable```

